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Abstract: Satellite remote sensing has been used in forest health management as a method for vegetation mapping, fire 

fuel mapping, fire risk estimation, fire detection, post-fire severity mapping, insect infestation mapping, and relative water 

stress monitoring. This paper reviews the use of satellite remote sensing in forest health studies, including current research 

activities; the satellite sensors, methods, and parameters used; and their accuracy. 

The review concludes that the Moderate Resolution Imaging Spectroradiometer satellite data (MODIS) are more 

appropriate for most of the remote sensing applications for forest health than other current satellite data when considering 

temporal and spatial resolutions, cost, and bands. MODIS has a 1-2 day temporal and a 250-1000 m spatial resolution; the 

data are free and cover more spectral bands than other satellites (up to 36 bands). We recommend that physical and 

physiological modeling (e.g., evapotranspiration and biomass growth) be developed for remote sensing of forest health. 

Some additional satellite sensors, such as for high temperature estimates (as high as 1800 K) and sensors of narrow bands, 

are also needed. 
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1. INTRODUCTION 

 Campbell [1] defines remote sensing as “the practice of 
deriving information about the earth’s land and water 
surfaces using images acquired from an overhead 
perspective, using electromagnetic radiation in one or more 
regions of the electromagnetic spectrum, reflected or emitted 
from the earth’s surface.” Remote sensors can be deployed 
on satellites, airplanes, balloons, or remote-controlled 
vehicles. 

 Current and past satellite remote sensing of forest health has 
focused on the following categories: vegetation and landscape 
classification, biomass mapping, invasive plant detection, fire 
fuel mapping, canopy or foliar water stress, fire detection and 
progression mapping, post-fire burn area and severity mapping, 
and insect infestation detection. Most of these studies have 
analyzed spectral signatures or simple indices (calculated from 
reflectance data) such as the Normalized Difference Vegetation 
Index (NDVI). Little has been done for remote sensing of 
absolute forest water stress (e.g., evapotranspiration [ET]) and 
biomass growth using physically- and physiologically-based 
algorithms. Previous studies estimated biomass by using NDVI 
or other simple indices using correlation and regression 
methods. These studies may not result in accurate biomass 
growth estimates for other locations and different environmental 
conditions [2]. 
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 Institutes working on satellite remote sensing of forest 
health include the United States Forest Service (USFS), 
universities, state forest services, federal institutes, and 
private companies. Most of the studies (41%) have been 
conducted by the USFS, but universities represent 28% of 
the research in forest remote sensing (based on submitted 
papers in Beck and Gessler [3]). 

2. SATELLITE SENSORS USED IN REMOTE 
SENSING OF FOREST HEALTH 

 An understanding of satellite sensors is necessary in 
order to understand the remote sensing capabilities of each 
satellite, as well as the types of tools that can be developed 
to make forest management decisions using the satellite 
information. There are nine satellite sensors that are widely 
used in forest health research (Tables 1 and 2). The major 
satellite sensors are Advanced Spaceborn Thermal Emission 
and Reflection Radiometer (ASTER), Advanced Land 
Imager (ALI), Advanced Very High Resolution Radiometer 
(AVHRR), MODIS, Landsat 5 TM (Thematic Mapper), 
Landsat 7 ETM+ (Enhanced Thematic Mapper Plus), Spot 4 
and 5, Quickbird-2, and IKONOS-2. Each sensor has its own 
advantages and disadvantages in spatial and temporal 
resolutions, cost, and acquisition time. The high spatial 
resolution sensors (15-120 m), such as ASTER, ALI, and the 
Landsats, cannot give a high temporal resolution; their 
temporal resolution is more than 16 days. Additionally, the 
cost of data from these sensors ranges from $80 to $600 per 
scene (each scene can cover 25-60 km2) (Landsat data is free 
currently). 
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 Quickbird-2, IKONOS-2, and Spot 4 and 5 have high 
spatial (0.61-20 m) and temporal (1-3.5 days) resolutions. 
However, the temporal resolution is for future or requested 
data. Past data for an area may not be available for the 1-3.5 
day resolution, because if data are not requested, they will 
not be collected. In addition, the cost to sense an area on the 
scale of a forest will be large ($15 to $22.50 per km2 for 
Quickbird-2 and IKONOS-2, and $3375 to $6750 for each 
Spot 5 scene of 56 km2). Moreover, the satellites do not have 
thermal bands and, consequently, cannot provide data to map 
ET using an energy balance method (e.g., [4-6]). MODIS 
data have a one- or two-day frequency and a 250-1000 m 
spatial resolution, both of which are adequate for forest 
health monitoring. Also, the data are free and cover more 
bands than other satellites (36 bands total). 

 The data for all sensors are available as both raw data and 
processed data, where the raw data is corrected for 
atmospheric effects and algorithms are used to produce 
specified products such as surface temperature. 

 The Landsat 7 ETM+ data have the highest thermal band 
resolution among all current satellite sensors. The Landsat 5 
TM and 7 ETM+ sensors have high resolutions in the visible 
and near and short wave infrared bands. However, because 
of hardware limitations, historical data may not be available 
for a location. The temporal resolution of 16 days or more 
can make Landsat imagery acquisition problematic. For 
example, it cannot be used in emergency situations such as 
fires. The extended temporal resolution is even a problem for 
forest water stress monitoring. Finally, the scene size is not 
appropriate for national mapping. 

 Satellite instrument problems that degrade sensing 
products can occur. Due to problems with the scan line 
corrector on the Landsat 7 ETM+ sensor, only the middle 20 
km of the imagery is currently useful [7]. 

 Landsat does not provide higher-level products such as 
surface temperature and reflectance, which are important 
variables for water stress (ET) models based on energy 
balance [4, 8]. With Landsat, water stress must be calculated 
from lower-level data. 

 In addition to Landsats 5 and 7, Landsat also launched 
Landsats 1 through 4 in different years (1972, 1975, 1978, 
and 1982, respectively). Landsat 4 had the same bands as 
Landsat 5. Landsat data now are free at USGS Earth 
Resources Observation and Science (EROS) Center. 

 The ASTER sensor was launched the same year as the 
Landsat 7 ETM+ satellite (Table 1), but the instrumentation 
package was changed to record more bandwidths (Table 2). 
ASTER also includes a telescope that is used to view 
backward in the near infrared spectral band (band 3B) for 
stereoscopic capability. The ASTER data have similar 
applications as Landsat because they have similar bands and 
resolutions. All ASTER data were free before March 2006; 
now each scene of both lower- and higher-level products is 
about $80. Except for Landsat 7 ETM+, ASTER data have 
the highest thermal band resolution among all current 
satellite sensors, and they have high resolution in the visible 
and near infrared bands. 

 ASTER higher-level products provide the temperature 
and reflectance data needed as inputs for the energy balance-

based ET model [8, 9]. Like Landsat, the temporal resolution 
of 16 days or more makes ASTER data application in forest 
health sometimes problematic. Consequently, ASTER data 
are more appropriate for research purposes than operational 
applications. 

 The Spot 4 satellite sensor was launched one year before 
Landsat 7 ETM+ and one and a half years before ASTER 
sensor; Spot 5 was launched about 4 years after Spot 4 
(Table 1). The instrumentation packages of Spot 4 and 5 
were different from ASTER and Landsat (Table 2); 
additionally, these satellites are owned by a private company 
(Space Imaging) in France and not by NASA. The spectral 
resolution and bandwidth of Spot 4 and 5 are limiting 
compared to Landstat and ASTER (Table 2), but the 
resolution is much higher. For example, Spot 5 has a 2.5 m 
spatial resolution for the panchromatic band and a 3 day 
temporal resolution, compared to 15 m and 16 days for both 
Landstat and ASTER. Spot data have been used for 
monitoring forest fire progression, post-fire severity 
mapping, invasive weed detection, and vegetation mapping 
[7]. The biggest drawback of using Spot imagery is the high 
cost of the delivered data. Use of Spot 4 costs $1200-$1900 
per scene, plus additional fees for rush programming and 
delivery if the need is urgent (as in the case of fires). The 
USFS Remote Sensing Applications Center (RSAC) 
typically pays about $9175 for a Spot 4 scene for Burned 
Area Emergency Response (BAER) support. A Spot 5 scene 
costs $3300, plus additional fees for rush programming and 
delivery. RSAC typically pays about $10 575 for a Spot 5 
scene for BAER support [7]. To ensure prompt image 
delivery for emergency events, researchers can order Spot 
imagery without any terrain correction. This adds a few 
hours of processing time to make the imagery usable for 
immediate post-fire assessment, but saves days of processing 
time [7]. Spot does not have thermal infrared bands and 
cannot provide surface temperature products for ground heat 
mapping or the calculation of ET based on energy balance. 

 Several AVHRR sensors have been launched since June 11, 
1978, and have provided data continuously. The temporal 
resolution is daily with a spectral resolution of 4 to 5 bands; the 
spatial resolution is 1100 m. These sensors are owned by the 
National Oceanic and Atmospheric Administration (NOAA). 
These sensors have fewer spectral bands than Landsat 5 and 7, 
ASTER, ALI, and MODIS. AVHRR’s objective is to provide 
radiance data for the investigation of clouds, land-water 
boundaries, snow and ice extent, ice or snow melt inception, day 
and night cloud distribution, temperatures of radiating surfaces, 
and sea surface temperature. 

 Other applications include agricultural assessment, land 
cover mapping, fire and burnt area mapping, production of 
large-area maps, and evaluation of regional and continental 
snow cover. The AVHRR raw data (not geo-registered) are 
free. However, dates are provided only in limited sets. The 
geo-registered raw data are $190 per scene. The AVHRR 
data include thermal infrared data but not derived 
temperature data that can be used to estimate energy balance-
based ET [8, 9]. The disadvantage to using AVHRR imagery 
is the coarse spatial resolution, which often is too coarse for 
fire analysis [7]. 
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 There are two MODIS sensors, one on Terra satellite, 
which also carries the ASTER sensor and the other on Aqua 
satellite. Although Terra ASTER and MODIS are on the 
same satellite, the temporal resolution of this MODIS is 
much shorter than ASTER’s (1 day versus 16 days) because 
the MODIS view field is much larger than ASTER’s (2300 
km2 versus 60 km2). Terra MODIS and ASTER were 
launched by NASA in the same year as Landsat 7 ETM+ 
(Table 1), but the MODIS spatial resolution was coarse. The 
MODIS sensors’ temporal resolution is daily with a spectral 
resolution of 36 bands (Tables 1 and 2). Currently, MODIS 
data are free. MODIS data have been used in monitoring 
forest fire, post-fire burn area mapping, vegetation 
classification, biomass estimation, and soil degradation. 

 Because the first seven bands of MODIS were designed 
to simulate the Landsat sensors—except for the spatial 
resolution—users can view MODIS imagery in much the 
same way as Landsat imagery [7]. MODIS also provides 
products of surface temperature and reflectance, which drive 
energy balance-based ET modeling [8, 9]. Like AVHRR 
data, the disadvantage to using MODIS imagery is the coarse 
spatial resolution. The finest pixel size is 250 m, which often 
is too coarse for fire analysis [7]. 

 NASA launched the Advanced Land Imager (ALI) in 
November 2000 (Table 1) to supplement data from Landsat. 
Because ALI follows the same orbit track as Landsat 7, 
images can be acquired from this satellite in addition to 
Landsat 7 to achieve better temporal resolution. 

Table 1. Launch Date, Status, and Spatial and Temporal Resolutions of Selected Satellite Sensors 

 

 Landsat 5 TM/7 ETM+ ASTER Spot 4
(a)

 Spot 5
(a)

 AVHRR IKONOS-2 

Owner NASA NASA 
Space Imaging 

(France) 
Space Imaging 

(France) 
NOAA 

Space 
Imaging 
(France) 

Launch Date March 1984/April 1999 December 1999 March 1998 May 2002 
Since June 11, 1978, 

several satellite sensors 
have been launched 

September 
1999 

Status 

Landsat 7 ETM+: the Scan Line 
Corrector aboard malfunctioned on  

May 31, 2003. Data only in the  
middle part of the images can be used. 

Working  Working  Working 

Recently launched 
sensors (2000, 2002, 
2005) still work well. 

Continuous historical 
data from 1978 to 

present are available. 

Working  

Spatial  

Resolution (m) 
15-120 15-90 

20 (10 m 
monochromatic) 

10 (2.5 m 
panchromatic) 

1100  1-4  

Temporal 

Resolution (day) 
16 (b) 16 (b) 3 (b) 3 (b) 1 1-3 (b) 

Scene Size  

(km x km) 
185 x 185 60 x 60  56 x 56  56 x 56  2400 x 6400 11.3 x 11.3  

Price for each 

achieved raw  

data scene (US $) 

600 Free(c) 1200-1900 3375-6750 
Free for raw L1B data; 
$190 for geo registered 

L1B. 

7/km2, 
minimum  

49 km2 

 

 MODIS ALI  Quickbird-2 

Owner NASA NASA DigitalGlobe (USA) 

Launch Date 
Decmber 1999, Terra satellite;  

April 2002, Aqua satellite. 
November 2000 October 2001 

Status 
Terra MODIS band 5 and Aqua MODIS  

band 6 have erroneous data. 
Working  Working  

Spatial Resolution (m) 250-1000 30 (10 m panchromatic) 0.6-2.44  

Temporal Resolution (day) 1-2 16 (b) 1-3.5 (b) 

Scene Size (km x km) 2300 x 2300 37 x 185  16.5 x 16.5  

Price for each achieved  

raw data scene (US $) 
Free(c) 250-500 22.5/km2, minimum 25 km2 

(a)There is an additional sensor (Vegetation sensor) on Spot 4 and 5 satellites, which has a resolution of 1 km for the whole field of view of 2400 km, offering almost daily coverage 
of the whole of the earth's surface. Of its 4 spectral bands, 3 bands characterize vegetation (0.61-0.68 μm red band, 0.78-0.89 μm near infrared, and 1.58-1.75 μm short wave 

infrared) and the fourth band (0.43-0.47 μm, blue) is for atmospheric correction. 
(b)This is the potential temporal resolution for a location because the historical data may have not been available if no one requested that the satellite collect data on a certain date and 

at a certain location. 
(c)The price of higher-level products (such as temperature and reflectance) derived from the raw radiance data are $80 per scene. Only ASTER and MODIS provide higher-level 
products. 
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 The ALI is an experimental sensor, and provides 
Landsat-type panchromatic and multi-spectral bands. 
Consequently, the data applications are similar to those for 
Landsat. The bands have been designed to mimic six Landsat 
MSS bands, with three additional bands covering 0.433-
0.453 m, 0.845-0.890 m, and 1.20-1.30 m (Table 2). In 
theory, this sensor could be a replacement for Landsat 7 [7]. 
Archived ALI radiometrically-corrected data are $250 per 
scene; archived radiometrically- and geometrically-corrected 

data are $500 per scene. A Data Acquisition Request (DAR) 
must be submitted in order to collect a requested image for a 
specific area of interest. There will be a $750 service fee for 
tasking the sensor(s). 

 Because this sensor is still experimental, NASA does not 
acquire the full 185 km2 footprint. ALI images are much 
narrower than a typical Landsat footprint. For example, the 
image acquired of the Old/Grand Prix fires was only 37 km 

Table 2. Spectral and Spatial Resolutions and Principle Application for Landsat 5 TM, Landsat 7 ETM+, ASTER, ALI, 

Quickbird-2, IKONOS-2, Spot and MODIS Satellite Sensors 
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Principle Application
(b)

 

All: 0.45-0.52, except ALI: 0.430-
0.453, 0.450-0.515; MODIS: 
0.459-0.470 

B 30/30 N/A(c) 30 2.44 4 N/A N/A 500 

Costal water mapping, soil 
vegetation differentiation, 
deciduous/coniferous 
differentiation 

All: 0.52-0.60, except ALI: 0.525-
0.605; Spot: 0.50-0.59; 
MODIS:0.545-0.560 

G 30/30 15 30 2.44 4 20/10 N/A 500 
Green reflectance by 
healthy vegetation 

All: 0.63-0.69, except 
Spot: 0.61-0.68; AVHRR: 0.58-
0.68 

R 30/30 15 30 2.44 4 20/10 1100 250 
Chlorophyll absorption for 
plant species differentiation, 
forest vigor 

All: 0.76-0.90, except ASTER: 
0.78-0.86; ALI: 0.775-0.805, 
0.845-0.890; Quickbird-2: 0.76-
0.89; 
Spot: 0.79-0.90; MODIS: 0.841-
0.870; AVHRR:0.725-1.100 

NIR 30/30 15 30 2.44 4 20/10 1100 250 
Biomass surveys, water 
body delineation, forest 
vigor 

1.23-1.25 MODIS only SWIR N/A N/A N/A N/A N/A N/A N/A 500 
Leaf area index, land and 
vegetation classification 

All: 1.55-1.75, except ASTER: 
1.6-1.7; 
Spot: 1.58-1.75; MODIS: 1.628-
1.652; AVHRR:1.58-1.64, 
Daytime only, available for 
AVHRR 14-16 (After 1998-05-13) 

SWIR 30/30 30  30 N/A N/A 20/20 1100 500 
Vegetation moisture 
measurement, snow cloud 
differentiation 

All: 2.08-2.35, except ASTER: 
1.450-2.185, 
2.185-2.225, 2.235-2.285, 2.295-
2.365, 2.36-2.43; 
MODIS: 2.105-2.155; AVHRR: 
3.55-3.93 

SWIR 30/30 30 30 N/A N/A N/A 1100 500 Hydrothermal mapping 

All: 10.4-12.5, except ASTER: 
two bands 10.25-10.95, 10.95-
11.65; AVHRR: two bands 10.3-
11.3, 11.5-12.5 

TIR 120/60 90 N/A N/A N/A N/A 1100 
See 
note(d) 

Plant heat stress 
measurement, other thermal 
mapping 

All: 0.52-0.90, except ASTER: 
0.52-0.60; 
Quickbird-2: 0.45-0.90; 
IKONOS-2: 0.526-0.929; 
Spot 4: 0.61-0.68; 
Spot 5: 0.48-0.71 

All: Panchromatic, 
G-NIR, 
except ASTER: G; 
Quickbird-2: B-
NIR; Spot 4: R 

N/A/15 15 10 0.61 1 10/2.5 1100 N/A Vegetation mapping 

Web sites: 
Landsat: http://landsat7.usgs.gov (user name and password required), ASTER: http://lpdaac.usgs.gov/aster/asterdataprod.asp, ALI: http://eo1.gsfc.nasa.gov/Technology/ 
ALIhome1.htm, Quickbird-2: http://www.digitalglobe.com/, IKONOS-2: http://www.geoeye.com/CorpSite/products/Default.aspx, Spot: www.spot.com, AVHRR: http://edc.usgs. 
gov/products/satellite/avhrr.html#description, MODIS: http://modis.gsfc.nasa.gov, (a)B: blue, G: green, R: red, NIR: near infrared, SWIR: short wave infrared. 
(b) The principle applications were concluded by Nicholas M. Short, Sr. (http://rst.gsfc.nasa.gov/Intro/Part2_20.html). 
(c)N/A: Not available. 
(d)MODIS has an additional 29 bands from 0.405 to14.385 m, which include 16 thermal infrared bands from 3.66 to 14.385 m. 
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wide and 185 km long [7]. The ALI sensor does not have 
any thermal bands. 

 Quickbird-2, owned by one of three private satellite 
companies offering remote sensing information for profit, 
was launched by DigitalGlobe Corporate in the U.S. in 2001 
(Tables 1 and 2). Quickbird-2 has the highest spatial 
resolution in panchromatic, visible, and near infrared bands 
among current satellite sensors; it also has a high temporal 
resolution. The data are used for vegetation classification, 
invasive weed detection, insect infestation mapping, 
landscape classification, and forest fire fuel mapping. The 
cost of use is $22.50 for 1 km2 of archived data, with a 
minimum order of 25 km2. New DARs must request at least 
64 km2. Because Quickbird-2 has no thermal bands, surface 
temperature data can be neither estimated nor provided. 
Scene size is relatively small and may not be large enough 
for forest mapping. Costs also limit its use for forest health 
monitoring. 

 IKONOS-2 was launched in 1999 by Space Imaging, a 
private French company. Like Quickbird-2, IKONOS-2 
collects high spatial resolution data (Tables 1 and 2). The 
cost of use is $7 for 1 km2 of archived data, with a minimum 
order of 49 km2. New DARs cost $15 for 1 km2, with a 
minimum order of 100 km2. After Quickbird-2, IKONOS-2 
has the next-highest spatial resolution in the panchromatic, 
visible, and near infrared bands among current satellite 
sensors (Table 2). Consequently, IKONOS-2 data are used 
for vegetation classification, landscape classification, and 
burn area mapping. Like Quickbird-2, it has no thermal 
bands that can be used for surface temperature estimation. 

3. DATA FORMATS AND SOFTWARE TOOLS TO 

VIEW DATA 

 The most commonly used satellite data formats are 
Hierarchical Data Format (HDF) and Geographic Tagged 
Image File Format (GeoTIFF). Data from NASA usually 

have these formats (Table 3). Some early satellites from 
NASA, like AVHRR and Landsat, have other data formats: 
Fast, National Landsat Archive Production System (NLAPS) 
Data Format, and National Imagery Transmission Format 
(NITF). Spot satellites from Space Imaging have special 
formats: Centre d’Archivage et de Prétraitement (CAP) and 
Digital Image Map (DIMAP), which is the new Spot product 
data format introduced in mid-2002 for the launch of the new 
Spot 5 satellite. 

 All of these data formats need special reader software to 
view the data, and most of these software readers are 
proprietary (Table 3). ENVI software, produced by ITT 
Corporation, can read all the satellite data formats 
mentioned. The price for the Windows version of ENVI is 
about $1250 for educational institutions and $5000 for 
commercial institutions. 

 There are also some free software packages available 
(Table 3). For example, HDFview, produced by NASA, can 
read HDF files. The source codes are in JAVA and can be 
downloaded for free. 

 It is possible for researches and other users to program 
their own software to read satellite data, but this requires 
much effort. For example, we tried to program a MODIS (L1 
B 1000 m) raw data reader to read MODIS raw data, which 
have the HDF format. However, the data inside the files can 
also have different formats. Some of the files contain 
compressed data formats inside the files, while others may 
just contain the uncompressed data. 

4. INDICES AND DATA TRANSFORMATIONS USED 

IN REMOTE SENSING OF FOREST HEALTH 

 An index is formed from combinations of several spectral 
values from satellite data that are added, divided, or multiplied 
in a manner designed to yield a single value [1]. In satellite 
remote sensing for forest health, the indices of vegetation, burn, 

Table 3. Selected Satellite Data Formats and Software Tools to Read the Data 

 

Format GeoTIFF HDF Fast NDF NITF 

Reader tools 

ArcView Extension: TIFF 6.0 Image 
Support6, ENVI, SOCET GXP v2.2, 

DRG/GeoTIFF viewer (free software), 
PCI Freeware Viewer (free software) 

Software tool list: 
http://home.earthlink.net/~ritter/geotiff

/software.html 

ENVI, Cube Visualization, Global 
Mapper v6.06, HDFView (free 
software), McIDAS-Lite (free 

software) 
Software tool list: 

http://hdf.ncsa.uiuc.edu/hdfeoss.html 

ENVI, dlgv32 
Pro, SOCET 

GXP v2.2 

ENVI, 
SOCET GXP 

v2.2 

ArcView 
Extension: NITF 
Image Support6, 

SOCET GXP v2.2 

Landsat 1, 2, 
3, 4, and 5 

x (for Landsat 5 TM data only)   x  

Landsat 7 
ETM+ 

x x x x  

ASTER  x    

Spot 4 (a)      

Spot 5 (a)      

AVHRR     x 

MODIS x (some data products only) x    

ALI  x    

Quickbird-2 x    x 

IKONOS-2 x    x 
(a)SPOT 4: CAP format; SPOT 5: DIMAP format. SOCET GXP v2.2 and ENVI can read these formats. 
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and foliar moisture and data transformations are often used as 
the preprocessed data for regression or other data analyses. 
Regression analysis between an index and a physical 
characteristic in the forest is a first approximation of the 
physical characteristic observed by the satellite data. 
Consequently, regression analyses have low coefficients of 
determination when using indices to predict plants’ responses to 
changes in the environment. Future work should be based on the 
physiology of a plant’s response to its environment as observed 
by the satellite, such as the surface temperature response of 
plants to moisture stress. However, indices and regression 
analyses still result in valuable information. 

 Plants absorb red light by chlorophyll and strongly reflect 
near infrared radiation by mesophyll tissue. Thus, near infrared 
reflectance will be high and red reflectance will be low for 
actively growing plants. Near infrared and red reflectance are 
commonly used in vegetation indices [1]. Researchers have 
proposed a number of spectral vegetation indices premised on 
the contrasts in spectral reflectance between green vegetation 
and background materials [10-13]. Of the indices, the 
Normalized Difference Vegetation Index (NDVI, [10]) is the 
most commonly utilized, and is based on infrared and red 
reflectance (Table 4). NDVI has been used for fuel mapping, 
foliar moisture stress detection, burn severity mapping, 
vegetation classification, forest type mapping, invasive weed 
detection, and land degradation modeling (Table 5). 

 Foliar moisture indices indicate leaf moisture. Because plant 
leaf moisture is related to the short wave infrared band [14], 
foliar moisture indices are formulated with the short wave 
infrared band and other bands (Table 4). 

 Burn indices, which detect burnt and burning areas, are 
usually formulated with near infrared and short wave bands. 
These two bands exhibit the greatest reflectance change in 
response to fire. Short wave reflectance increases with fire, 
while near infrared decreases [15]. The common burn index is 
the Normalized Burn Ratio (NBR, Table 4), which is widely 
used in burning detection and burn severity mapping (Table 5). 

4.1. Data Transformations 

 Because of the low coefficient of variation between a 
satellite-derived index and a measured physical characteristic on 
the ground, two data transformation methods are often used in 
remote sensing of forest health: Principal Component Analysis 
(PCA) and Tasseled Cap Transformation (TCT). PCA is a 
classical statistical method equivalent to transforming the data 
to a new coordinate system with a new set of orthogonal axes, 
which reduces the information of the reflective bands into fewer 
useful vectors that explain the majority of the variation. The 
TCT, which is mathematically similar to the PCA but data 
independent [16, 17] and based on empirical observations, was 
performed on all images. TCT gets three major physical bands: 
wetness, brightness, and greenness. 

5. REMOTE SENSING APPLICATION IN FOREST 
HEALTH 

5.1. Fire Fuel Mapping 

 The type, composition, and distribution of fuels are the 
most important factors influencing fire hazard and fire risk 
[18]. Wildland fuels are typically divided into three strata:  
 

ground fuels, surface fuels, and crown fuels [19]. Remote 
sensing-based fuel mapping has typically employed one of 
the Landsat sensors to map fuel characteristics (Table 4) 
[20]. The Quickbird-2 and ASTER satellites have also been 
used for fuel mapping [21]. 

 The common methods used in fuel mapping are 
regression methods and gradient modeling [21-23]. Gradient 
modeling refers to the use of environmental gradients 
(topographical, biogeochemical, biophysical, and 
vegetational) to model the occurrence of natural phenomena 
[22]. This approach has been used with moderate success in 
estimating fuel types and fuel loading. Environmental 
gradients such as topography, moisture, and time since last 
burn have a large impact on fuel loading [23]. High fuel 
loading, for example, can be partially explained by lower 
decomposition rates (characterized by moisture and 
temperature gradients) and a long time interval since the last 
fire [24]. 

 The input parameters derived from satellite data for 
regression equations or gradient models are vegetation 
indices (Tables 3 and 4) and spectral transformations such as 
PCA and TCT. The outputs of fuel mapping usually are fuel 
load (kg/m

2
), canopy closure (percent cover), bulk density, 

canopy height, and vegetation types. The accuracy is around 
50-85%, even after using PCA or TCT analysis. 

5.2. Foliar Moisture Stress Detection 

 Foliar moisture stress is mapped for fire risk assessment. 
Foliar moisture stress, or SMC (mass of foliar water per unit 
area), is defined as the total understory and overstory leaf 
moisture per unit area (kg H2O/m

2
) [14]. Landsat, ASTER, 

and Spot have been used for foliar moisture prediction. 
Regression methods are the most commonly used methods of 
foliar moisture prediction [25-30, 14]. The inputs were the 
components of TCT, PCA, vegetation indices, or foliar 
moisture indices (Tables 3 and 4). The R

2
 values range from 

0.5 to 0.8. 

 PCA is functional only for single-date analyses of foliar 
moisture, and cannot be used for monitoring forest health. 
Consequently, for periodic analysis and comparison, the 
weighted Normalized Difference of Infrared Index (wNDII) 
or TCT wetness are the most suitable approaches for 
estimating SMC [14]. 

5.3. Fire Detection 

 For forest fire detection, MODIS and AVHRR data and 
contextual algorithms are often used [31-36]. Contextual 
algorithms consider the local neighborhood of the pixel 
under examination to cope with variations in the background 
environmental temperature that may occur across the large 
area viewed by satellite systems [37]. 

 Most of these algorithms use TIR bands at relatively 
short wavelengths around 4 μm and long wavelengths 
around 11 μm as the input data. Threshold values were set 
for these bands to detect fires. These algorithms require 
manual tuning of a series of thresholds according to the 
available spectral bands [37]. 

 Li et al. [37] developed a hybrid algorithm based on 
previous contextual algorithms. The algorithm used multiple  
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bands (14 bands from MODIS) and the Normalized Thermal 
Index (NTI) (Tables 3 and 4). More importantly, it used the 
well-known squared Mahalanobis distance operating in  
 

multi-spectral feature space to identify fire pixels. This 
algorithm had better accuracy than previous algorithms. It 
worked when data from some bands were not available  
 

Table 4. Selected Indices and their Definitions Used in Remote Sensing for Forest Health 

 

Index Name Acronym Index Type Definition
(a)

 References 

Normalized Difference Vegetation Index  NDVI Vegetation 
NIR

 - 
R

 
NIR

 +
R

  [21] 

Simple Ratio SR Vegetation 
NIR

  
R

 [21] 

Green-Red Ratio GRVI Vegetation 
G

 - 
R

 
G

 +
R

 [21] 

Modified Soil Adjusted Vegetation Index MSAVI Vegetation 
NIR R

NIR
+

R
+ L

(1+ L)  [79] 

Enhanced Vegetation Index EVI Vegetation G
NIR R

NIR
+ c

1 R
c
2 B

+ l
 [80] 

Foliar Moisture Index MI1 Foliar moisture 
NIR

  
R SWIR

 [14] 

Foliar Moisture Index MI2 Foliar moisture 
NIR

 - 
R

 (
NIR

 +
R

)
SWIR

 [14] 

Foliar Moisture Index MI3 Foliar moisture 
2.5( NIR  - R )

 (1+
NIR  + 6 R 7.5 B )

SWIR

 [14] 

Infrared Ratio Index IRI Foliar moisture 
NIR

  
SWIR

 [14] 

Normalized Difference Infrared Index NDII Foliar moisture 
NIR SWIR

  
NIR

+
SWIR

 [14] 

Wide-band Normalized Difference Infrared Index wNDII Foliar moisture 
2

NIR SWIR

  2
NIR

+
SWIR

 [14] 

Global Vegetation Moisture Index GVMI Foliar moisture 
(

NIR
+ 0.1) (

SWIR
+ 0.02)

(
NIR

+ 0.1)+ (
SWIR

+ 0.02)
 [29,30] 

Normalized Burn Ratio NBR Burn 
NIR SWIR

  
NIR

+
SWIR

 [45] 

Background (not burnt) Ratio BR Burn 
G TIR

G
+

TIR

 [37] 

NBR Change Index dNBR Burn NBRBefore NBRAfter
 [45] 

Normalized Thermal Index NTI Burn 
R
3.9

R
12

R
3.9
+ R

12

 [81] 

(a)
NIR  is the reflectance of near infrared band, 

R
 is the reflectance of red band, 

G
 is the reflectance of green band, 

B
 is the reflectance of blue band, 

SWIR
 is the reflectance 

of short wave infrared band, and 
TIR

 is the reflectance of thermal infrared band L is a correction factor, which ranges from 0 for very high vegetation cover to 1 for very low 

vegetation cover. 

c1: atmosphere resistance red correction coefficient. 

c2: atmosphere resistance blue correction coefficient. 

l: canopy background brightness correction factor. 

G: gain factor. 

The coefficients adopted in the EVI algorithm are: l = 1, c1 = 6, c2 = 7.5, and G (gain factor) = 2.5 [80]. 

NBRBefore
 and NBRAfter

 are NBR values before and after fires. 

R3.9 is the radiance of 3.9 μm band and R12 is the radiance of 12 μm band. 
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Table 5. Selected Studies of Satellite Remote Sensing for Forest Health. The Satellite, Band and Parameter Used, Method, and 

Accuracy are Provided 

 

Study/ 

Reference 
Satellite/Band/Parameter Method Accuracy 

Fuel mapping [21] ASTER/NIR, R, G/NDVI, GRVI, SR 
Regression and gradient 

modeling 

R
2
 > 77% for canopy closure prediction, R

2
 > 46% for bulk density 

prediction; the prediction of potential vegetation type agreed with 
the local expert system. 

Fuel mapping [82] 

Landsat 5/R, G, B, NIR, SWIR/PCA 
components 1, 2, and 3; brightness, 
wetness and greeness of TCT, LAI, 

MNDVI 

Regression and gradient 
modeling 

For fuel load prediction (kg/m
2
) accuracy from 51-85%. 

Foliar moisture stress 
[14] 

Landsat 5 TM, ASTER/R, G, B, 
NIR, SWIR/NDVI, SR, MI1, MI2, 

MI3, IR, wNDII, PCA, TCT 
Regression 

Correlation coefficients with SMC, PCA second component: R2 = 
0.765, wNDII: R

2
 = 0.627, TCT wetness: R

2
 = 0.638, R

2
 for others 

are around 0.5-0.6. 

Fire detection [35] 
MODIS/TIR: 3.66-4.08 μm, 3.929-
3.989 μm, 11.770-12.270 μm; NIR: 

0.86 μm/temperature, reflectance 

Contextual and threshold 
algorithms  

The detection algorithm is currently functioning reasonably well. 
Some sensitivity to relatively small yet obvious fires has been 

sacrificed to reduce persistent false detections occurring in regions 
of hot, reflective, exposed soil. Nevertheless, some of these false 

alarms remain. 

Fire detection [37] 
MODIS/fourteen TIR bands from 
3.660-14.085 μm/NTI, radiance 

Contextual algorithms  84-100% 

Post-fire burn area and 
severity mapping [44] 

Landsat 5, Spot4, ASTER, 
MODIS/NIR, SWIR, R/NBR, 

dNBR, NDVI 
Regression 

Correlation between the satellite parameters and burned severity. 
R

2: 44-79% 

Post-fire burn area and 
severity mapping [42] 

Spot vegetation/NIR, SWIR/NBR, 
NDVI 

Spectral change detection > 85% 

Post-fire burn area and 
severity mapping [45] 

Landsat 7/NIR SWIR/dBNR 
Compare the BNR 

difference before and 
after fires 

73% 

Vegetation 
classification [52] 

Landsat/R, G, B, NIR, SWIR, 
TIR/NDVI, PCA, TCT 

Unsupervised and 
supervised algorithms 

The forest/non-forest estimates are in close agreement with the FIA 
data. 

Vegetation 
classification [83] 

Landsat/R, G, B, NIR, SWIR, 
TIR/N/A 

Unsupervised algorithm 
and visual interpretation 

The forest/non-forest accuracy was 83%. The accuracy of no 
change forest, forest loss, and forest gain were 90%, 88%, and 

92%, respectively. 

Vegetation 
classification [51] 

Landsat 5/R, NIR, SWIR/spectral 
signature 

Supervised spectral 
classification 

75-98% 

Landscape mapping 
[53] 

Landsat/NIR SWIR, R, G, B/spectral 
signature 

Regression-trees 

Percent canopy average relative error was 55%, percent 
impervious surface cover analysis had an average error of 36%. 

The overall accuracy of this classification was 99%, from 
classifying forest, non-forest, mixed, and water. 

Landscape mapping 
[84] 

Landsat 7/NIR SWIR, R/N/A Supervised classification 82% 

Insect infestation [85] Landsat 7/NIR SWIR, R, G, B/N/A Supervised classification  
It was able to evaluate very broad categories of deciduous, 

coniferous, and mixed forests, but could not determine the dead 
trees infested by spruce bark beetles. 

Forest type mapping 
[86] 

Spot/NIR SWIR, R/N/A  Supervised classification 79-86% 

Forest type mapping 
[87] 

Landsat 5/NIR SWIR, R, G, B/TCT 
wetness, brightness, greenness 

Gradient modeling using 
inputs of TCT 

components, climate, 
topography, forest 

ownership, geology, 
location 

56-89% for the prediction of seven species. 

Invasive weed 
detection[88] 

Quickbird-2, IKONOS-2/B, G, R, 
NIR/NDVI, other reflectance ratios 

of G, R, NIR 
Analysis of variance 

The values of NDVI and other indices of Ridolfia segetum were 
significantly different from the values of bare soil, sunflowers. 

Forest vigor [3] 
Landsat 7/R, G, B, NIR, 

SWIR/NDVI, TCT wetness and 
greenness 

Change detection of the 
indices 

Shows high potential for efficiently mapping and monitoring 
vegetation change in a cost-effective manner. 

Biomass [58] 
Landsat/R, G, B, NIR, SWIR/NDVI, 

other ratios of different bands 
Regression, neural 

networks 
R2

 > 50% 

Stand volume [89] 
Spot and Landsat/all bands/TCT, 

NDVI, band ratios 
Regression R

2
 > 31-44% 

Land degradation 
model [73] 

MODIS/NIR, R/NDVI 

Integrated MODIS 
vegetation index time 

series data and spatially-
detailed climate data to 

predict soil loss and 
erosion 

No ground truth comparison. 

R: red, G: green, B: blue, NIR: near infrared, SWIR: short wave infrared, TCT: Tasseled Cap Transformation, PCA: Principle Component Analysis. 
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 (e.g., sensor problems) because it could use other available 
bands. It can be tuned easily through a very small training set 
(four images). 

 There are problems detecting fires if the algorithms use 
only coarse-resolution data such as MODIS, or use only fine-
resolution data such as Landsat or Quickbird-2. Coarse data 
will not detect small fires, and fine-resolution data coverage 
is too small [38]. A combination of course- and fine-
resolution data may solve theses problems. 

 In addition to the above problems, current satellite 
sensors saturate at certain temperatures. For example, for 
MODIS sensors the commonly used bands for fire detection 
are 1.65 μm, 2.13 μm, 4 μm, and 11 μm, with saturation 
temperatures of 740 K, 570 K, 500 K, and 400 K, 
respectively [39]. However, forest fires can reach 
temperatures as high as 1800 K [40], which can sterilize the 
soil and make post-fire vegetation recovery difficult. Sensors 
and algorithms for estimating high temperatures need to be 
developed in order to estimate fire damage more precisely. 

5.4. Post-Fire Burned Area Mapping 

 After forest fires, the burn area and burn severity need to 
be mapped to help rehabilitation. The most commonly used 
parameters for estimates of burn severity and area are 
Normalized Burn Ratio (NBR), dNBR, and NDVI (Table 5). 
Usually, researchers use these indices with a threshold value 
or a regression equation to predict the burn area and burn 
severity (Table 6) [41-45]. In addition, some researchers 
observe temporal differencing of spectral transformation 
(TCT) to detect the burned area [46, 47]. 

 Lieberman et al. [47] examined the use of satellite multi-
spectral imagery to map three levels of fire severity within 
two southern California fire scars. They compared the effects 
of spectral transformation, temporal dimensionality, 
classifiers, and satellite sensor types on the ability to 
accurately map wildfire severity when field data were used 
for training. Temporal differencing of the TCT on Landsat 
Thematic Mapper (TM) imagery was the most accurate of all 
approaches and image types tested for both burn sites. The 
classification maps derived from NBR, spectral 
transformations on TM imagery, and non-enhanced 
IKONOS-2 multi-spectral images resulted in the lowest 
accuracies. 

5.5. Mapping of Vegetation, Landscape, Insect 
Infestation, and Invasive Weeds 

 Vegetation and landscape mapping (including insect 
infestation and invasive weed mapping, both types of 
vegetation mapping) used image classification algorithms. 
There are two general types of classification algorithms: 
supervised and unsupervised [48-52, 1, 2]. In supervised 
classification, known spectral reflectance values, derived 
either from known locations on the image or from handheld 
spectrometers, are used to identify other pixels having the 
same reflectance. In unsupervised classification algorithms, a 
computer recognizes different patterns and classifies them 
into different vegetation or land cover categories. In general, 
supervised classification is more accurate than unsupervised. 
The classification software packages of eCognition 
(Definiens Inc., Boston, MA), Feature Analyst (Visual 
Learning System, Inc., Missoula, MT), and ERDAS Imagine 

(Geosystems Geospatial Imaging, LLC, Norcross, GA) have 
been commonly used for vegetation classification and 
mapping [53]. 

 Regression-tree classification is a relatively new 
procedure for land cover classification. Regression-tree 
classification procedures have several advantages over more 
traditional classification procedures such as supervised and 
unsupervised algorithms. Regression-trees are non-
parametric and, as such, do not require knowledge about data 
distributions and can handle non-linear relationships between 
variables. They can also allow for missing data values, 
handle both numerical and categorical data, and incorporate 
multiple remote sensing and GIS data layers. Regression-tree 
classifications are significantly less labor-intensive than 
other classification techniques and can be used efficiently for 
large land cover classifications. Accuracies of regression-tree 
classifications are either similar to or better than supervised 
and unsupervised classification [53]. 

 For the mapping of vegetation, landscape, insect 
infestation, and invasive weeds, the input data from satellites 
are usually NDVI, Enhanced Vegetation Index (EVI), 
Modified Soil Adjusted Vegetation Index (MSAVI), TCT 
brightness, greenness, wetness, elevation, aspect, and slope. 
The outputs are percent canopy cover, forest/non-forest 
classification, and tree types (Table 4). The accuracy was 
between 50% and 99%, and depended on the predictor 
variable selection and dependent variable type. For example, 
the forest/non-forest classification (dependent variable) 
obtained the highest accuracy among all types of 
classifications. 

5.6. Forest Vigor 

 Cost effective methods are necessary for broad-scale 
regular assessment of forest vigor over complex terrain. 
Satellite-derived vegetation indices such as NDVI can 
monitor large remote areas with an effective database for 
evaluating vegetation vigor. 

 High percentages of spectral variance in individual 
scenes can be explained using TCT [54]. The TCT greenness 
and wetness bands have a strong correlation to the 
percentage of vegetation cover [17]. The greenness feature 
measures the presence and density of green vegetation while 
the wetness feature measures soil moisture content and 
vegetation density [17]. 

 For example, Beck and Gessler [3] proposed methods for 
mapping and monitoring forest status through the creation of 
maps that show departure from average NDVI, TCT 
greenness, and TCT wetness indices derived from an 
expanding time-series of Landsat imagery. Methods for 
displaying negative and positive departures were presented 
and evaluated for significance in support of forestland 
management. Current departure classification clearly 
delineates major disturbances such as roads and forest 
harvest activities within the negative departure from the 
average. 

5.7. Stand Volume and Biomass 

 Satellite data of high-resolution [55], medium-resolution 
(Landsat; [56-59]) and coarse-resolution (MODIS, AVHRR, 
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and Spot; [60-62]) have been used for forest biomass 
estimation. 

 Researchers have used multiple regression analysis, K 
nearest-neighbor, and neural network mapping to estimate 
above-ground biomass [62-65, 57-59, 21]. Compared with 
vegetation classification (e.g., percent canopy cover), forest 
stand volume and biomass estimation were less accurate 
(Table 4). The R

2
 is usually below 50%. The most 

commonly used method of biomass estimation is regression 
using vegetation indices as the inputs. The low accuracy may 
be due to the weak relationship between the dependent 
variables (biomass and volume) and the predictor variables 
(e.g., NDVI). 

 Lu [65] reviewed current studies about biomass remote 
sensing. He concluded that biomass estimation remains a 
challenging task, especially in those study areas with 
complex forest stand structures and environmental 
conditions. 

 Biomass estimation has also been used in rangeland 
management. For example, Gillham and Mellin [66] 
conducted temporal image analysis to assist rangeland 
managers in assessing range readiness, monitoring utilization 
levels, and making decisions to extend or shorten the length 
of the grazing season. Landsat TM and ETM+ images were 
used to develop correlations between the field-gathered data 
(dry biomass weight per unit area) and remotely-sensed 
imagery. The overall R

2
 was 0.68. MODIS satellite images 

were used to develop a series of greenness indices 
throughout the growing season but were not directly 
correlated with field data. 

5.8. Forest ET and Carbon Fluxes 

 Forest water stress, biomass, and growth (including fuel 
level and forest vigor) are highly related to fire and insect 
risks. However, there have been few studies on forest ET 
(forest water stress indicator) and biomass growth 
predictions. Previous studies estimated forest water stress 
(foliar moisture) using regression equations from inputs of 
vegetation and moisture indices or PCA- and TCT-
transformed data [29, 30, 14]. Regression equations may 
produce errors for different locations and environmental 
conditions. Physically- and physiologically-based models 
need to be developed for the water stress calculation. ET 
models using the energy balance principle for agriculture 
fields (level-ground) are available with high accuracy [67, 
68, 4, 8]. The typical accuracy at field scale is 85% for 1 day, 
and increases to 95% on a seasonal basis [4]. The 
physiological relationship between ET and biomass growth 
has been obtained from physiological models [69]. 
Therefore, the biomass growth can be calculated from 
modeled ET. 

 The difficulty in mapping forest ET and biomass growth 
is to correct the effects from elevation, slope, and aspect, 
which cause surface temperature and radiation variations and 
can result in errors of ET estimations using energy balance 
methods [9]. Morse et al. [70] tried to correct this surface 
temperature effect by assuming a 6.5°C/km lapse rate. 
However, this lapse rate was for air temperature, which may 
not be the lapse rate for the surface temperature. Further 
work, including experiments and models, is needed to 

calibrate and validate elevation, aspect, and slope effects on 
ET calculation. 

5.9. Data Management Tools 

 Several studies have focused on data management for the 
satellite remote sensing of forest health (e.g., [71]). The 
purpose of these studies is to allow users to more 
conveniently and quickly find and obtain the desired data. 
Most of these data management tools are web-based. 

 For example, the FSGeodata Clearinghouse at the USFS 
allows users to search, view, and download geospatial 
datasets and metadata created and maintained by the Forest 
Service. Access to datasets is provided through a user-driven 
geographic interface. It provides geospatial data, National 
Forest Lands Cartographic Feature Files, National Forest 
Lands Raster 1:24 000 Map Files, real-time and near real-
time MODIS fire detection GIS data, MODIS fire detection 
maps, MODIS imagery, and other related fire geospatial data 
for the U.S. and Canada. Fig. (1) is a sample MODIS Active 
Fire Detection map for the southwestern U.S. on June 9, 
2006. 

 The U.S. Geological Survey (USGS) also provides a 
web-based fire data ordering system for use in wildfire 
applications for GIS technical specialists, infrared 
interpreters, and fire managers. The application at USGS 
allows for an interactive display of maps integrated with 
current wildfire information, and is enhanced with the 
capability to process, reproject, mosaic, and tone balance 
Digital Raster Graphics, Digital Orthophoto Quads, and 
Digital Elevation Models. The application can automatically 
disseminate the data for users to download, or deliver the 
data on CD-ROM using various mail delivery methods. 

 In addition, the Goddard Space Flight Center and the 
University of Maryland built a web-based, real-time 
automated global fire detection system using MODIS 
products, and the Cooperative Institute for Meteorological 
Satellite Studies (CIMSS) at the University of Wisconsin-
Madison has used the Geostationary Satellite (GOES) series 
of satellites to monitor fires and smoke in the western 
hemisphere. 

 The USFS provides Forest Inventory and Analysis (FIA) 
data that are used to monitor tree growth and harvests, tree 
species, land use patterns, forested wildlife habitat, 
mortality, and other forest health attributes, as well as 
regional biological processes, timber and non-timber forest 
products, and associated human activities. These data files 
are compressed; comma separated, and can be easily 
uploaded into spreadsheets. 

 The Arizona Remote Sensing Center in the Office of 
Arid Lands Studies at the University of Arizona provides a 
web-based geospatial application (RangeView) for viewing, 
animating, and analyzing multi-temporal satellite and 
precipitation data to monitor vegetation dynamics over time 
and across landscapes. RangeView has been developed for 
natural resource managers, but also has significant value for 
educators and researchers. MODIS-derived products have 
been developed and integrated to facilitate monitoring and 
interpretation of vegetation growth, drought, and wildfire 
dynamics. The MODIS-derived products include spectral 
vegetation indices (in 250 m and 1 km resolutions) and a 



38    The Open Geography Journal, 2010, Volume 3 Wang et al. 

prototype of associated cloud and snow cover data. A color 
composite image is also provided to help assess the quality 
of the NDVI data. 

 The MODIS-derived Leaf Area Index (LAI) is provided 
as an additional indicator of live vegetation. Fig. (2) shows 
the western U.S. MODIS LAI maps in January, February, 
March, and April of 2006. 

 The USFS Pacific Northwest Region developed a toolkit 
of terrestrial ecological unit inventories (TEUI-Geospatial 
Toolkit) [72]. A primary objective of the TEUI-Geospatial 
Toolkit is to implement national inventory protocols and 
provide an efficient and repeatable method for conducting 
TEUI at the landscape and land unit scale. The toolkit 
combines geospatial data preparation, visualization; on-
screen digitization, map unit analysis, and field-sheet map 
production tools in a step-by-step and user-friendly format. 
Using the TEUI-Geospatial Toolkit, a resource specialist 
controls the entire mapping process from data loading to 
concept development to landscape stratification. The toolkit 

was field verified and found to be very effective for 
predicting soil patterns and distribution across the study area. 

 The above studies illuminate the major operational tools 
for satellite remote sensing of forest health. Most of the other 
studies described in this paper have not provided operational 
tools for forest health managers. 

5.10. Other Studies 

 There have been some studies in land degradation 
modeling and hydrology. For example, van Leeuwen and 
Sammons [73] used MODIS products and data integration 
methods to assess land degradation and rehabilitation, and to 
incorporate seasonal and geospatial vegetation and climate 
products into two soil erosion assessment models. The 
Revised Universal Soil Loss Equation (RUSLE) model was 
used to assess monthly soil loss. MODIS-based NDVI was 
used to derive monthly vegetation cover and vegetation 
resistance to soil erosion. No ground truth comparison was 
conducted in this study. 

 

 

Fig. (1). A sample MODIS Active Fire Detection map for the southwestern US on June 9, 2006. Downloaded from the USFS Geodata 

Clearinghouse at http://svinetfc4.fs.fed.us/. 
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6. FUTURE WORK 

6.1. Sensors 

 The current satellite sensor capabilities are impressive, 
yet some additional sensors are needed. For example, current 
satellite TIR sensors saturate at low fire temperatures and 
therefore cannot distinguish the very high temperature fires 

from lower temperature fires, which is important to estimate 
fire damage and post-fire vegetation recovery. 

 Several indicators of the physiological state of vegetation 
require narrow bandwidths (5 m or less) that are not 
measured by current satellite sensors. For example, the 
narrow bands of the green wavelength can be used to directly 

 

 

Fig. (2). Western US LAI maps in January (top left), February (top right), March (bottom left), and April (bottom right) of 2006. 

Downloaded from the Arizona Remote Sensing Center, Office of Arid Lands Studies, University of Arizona at http://rangeview.arizona.edu 

��������	
����	�
��������
������������� ��������	
����	�
��������
�������������

��������	
����	�
��������
�� ���������� ��������	
����	�
��������
������������

����������� �
!�"#����$"�	 ����������� �
!�"#����$"�	� ����� � �����

����������� �
!�"#����$"�	 � ���������������� �
!�"#����$"�	 � �����

%

%

%

%

%%

��	#����	�
����

�	�&��	

'�	(

)*�&��"

��	#����	�
����

+�  ��,�)&-.�/	
	

��	#����	�
����

+�  ��,�)&-.�/	
	

��	#����	�
����

+�  ��,�)&-.�/	
	

� �0� �0� �0� �0� �0��01 �0��0� �0� �0� 2	���0� 3	
�� �"��	
	 � �0� �0� �0� �0� �0��01 �0��0� �0� �0� 2	���0� 3	
�� �"��	
	

� �0� �0� �0� �0� �0��01 �0��0� �0� �0� 2	���0� 3	
�� �"��	
	 � �0� �0� �0� �0� �0��01 �0��0� �0� �0� 2	���0� 3	
�� �"��	
	



40    The Open Geography Journal, 2010, Volume 3 Wang et al. 

calculate carbon flux using the photochemical reflectance 
index 

( 531 - 570)/( 531 + 570),            (1) 

 where 531 and 570 are the reflectance of narrow bands 
with wavelengths 531 m and 570 m, respectively. The 
index exhibits a high correlation to ground measurements via 
gas exchange on leaves or via flux towers [73-75]. 

 Another example is the water index, particularly 

900/ 970,             (2) 

where 900 and 970 are the reflectance of narrow bands with 
wavelengths 900 m and 970 m, respectively. This index 
effectively measures column density of water in canopy 
leaves [77]. 

 A final example is the chlorophyll index. The index, 
originally posited as 

( 750 - 705)/( 750 + 705),           (3) 

where 750 and 705 are the reflectance of narrow bands with 
wavelengths 750 m and 705 m, respectively, has been 
refined to achieve high fidelity to actual chlorophyll content, 
which can then be related to biomass growth [78]. 

6.1.1. Physical Models for Biophysical Attributes 

 The limitations to inferring forest biomass, stress, water 
use, and other attributes have been noted earlier. For 
example, because forest water stress strongly affects forest 
health, which can increase the risk of fires and insect 
outbreaks, work was done to monitor forest water stress 
using NDVI and other indices. However, regression 
equations using only these indices may not be accurate for 
other locations and environmental conditions. 

 Physical models are needed. ET is an indicator of forest 
water stress and may be estimated using satellite remote 
sensing using a physical model (e.g., energy balance model) 
[9, 4-6]. Because a remote sensing model of level-field ET is 
available, the major work to adapt this model to forests will 
be to incorporate the effects of the elevation, aspect, and 
slope of mountain areas. 

 As another example, a physical method must be 
developed to predict biomass growth. There was some work 
on forest biomass or growth estimation, which is related to 
fire fuel mapping. NDVI and other vegetation indices were 
used to predict biomass and growth using regression 
equations. The accuracy of the equation will be affected by 
environmental factors, especially illuminations. A more 
stable method must be developed to predict biomass growth. 
Because biomass growth is highly related to ET, biomass 
growth can be estimated using appropriate adjustments from 
an ET map obtained from remote sensing [69]. 

6.2. Data Management Tools 

 Most forest management tools are user-friendly. 
However, some tools require operators who are expert-level 
researchers. These tools are not appropriate for forest 
managers. Some tools require the user to operate different 
software packages step-by-step to obtain results. In addition, 
some web-based forest health tools provide only maps, with 
no grid data available. The above needs to be improved in 
the future. 

7. CONCLUSIONS 

 Current and previous satellite remote sensing 
applications for determining forest health have focused on 
the following categories: vegetation and landscape 
classification, biomass mapping, invasive plants detection, 
fire fuel mapping, canopy or foliar water stress, fire 
detection and progression mapping, post-fire burn area and 
severity mapping, and insect infestation detection. The USFS 
is the lead agency in forest status and health studies using 
satellite remote sensing. The major satellite sensors used for 
remote sensing of forest health are ASTER, ALI, MODIS, 
Landsat 5 TM and Landsat 7 ETM+, Spot 4 and 5, 
Quickbird-2, and IKONOS-2. The majority of studies have 
analyzed spectral signatures or simple indices (calculated 
from reflectance data) such as NDVI. Correlation and 
regression methods are the most commonly used research 
methods. 

 Among the satellite sensors, MODIS data are more 
appropriate than other satellite data for most of the remote 
sensing applications for forest health because of their 
temporal and spatial resolutions, cost, and bands. MODIS 
has a 1-2 day temporal and a 250-1000 m spatial resolution; 
the data are free and cover more bands than other satellites 
(36 bands total). 

 Physical and physiological modeling (e.g., ET and 
biomass growth) must be developed to improve remote 
sensing of forest health. In addition, some satellite sensors, 
such as for high temperature estimates (as high as 1800 K) 
and sensors of narrow bands, are needed to provide more 
accurate measurements for a wide range of variables. 
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