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Abstract This paper presents a comprehensive review of

the current state of knowledge of second harmonic genera-

tion (SHG) measurements, a subset of nonlinear ultrasonic

nondestructive evaluation techniques. These SHG techniques

exploit the material nonlinearity of metals in order to mea-

sure the acoustic nonlinearity parameter, β. In these measure-

ments, a second harmonic wave is generated from a propagat-

ing monochromatic elastic wave, due to the anharmonicity

of the crystal lattice, as well as the presence of microstruc-

tural features such as dislocations and precipitates. This arti-

cle provides a summary of models that relate the different

microstructural contributions to β, and provides details of the

different SHG measurement and analysis techniques avail-

able, focusing on longitudinal and Rayleigh wave methods.

The main focus of this paper is a critical review of the liter-

ature that utilizes these SHG methods for the nondestructive

evaluation of plasticity, fatigue, thermal aging, creep, and

radiation damage in metals.
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1 Introduction

Nonlinear ultrasonic methods have the powerful ability to

characterize microstructural features in materials. Compared

to more conventional linear ultrasonic methods that can

detect cracks or features on the order of the wavelength

of the ultrasonic wave, nonlinear methods are sensitive to

microstructural features that are orders of magnitude smaller

than the wavelength. Second harmonic generation (SHG) is a

type of nonlinear ultrasonic method that has been shown to be

capable of detecting and monitoring microstructural changes

in metals. The physical mechanism of this is as follows: as

a sinusoidal ultrasonic wave propagates through a mater-

ial, the interaction of this wave with microstructural features

generates a second harmonic wave. This effect is quantified

with the measured acoustic nonlinearity parameter, β. SHG

measurement methods have received significant focus and

attention in the literature in recent decades, as the reliability

and integrity of structural components becomes increasingly

important to ensure safe operation of critical structures in,

for example, the energy, transportation, and aviation indus-

try. This paper presents a review of SHG measurements and

their applications, to provide a comprehensive summary of

these techniques, to thoroughly explain these measurements

to new comers in this field of research, and to show where

advances in this field of research are needed.

SHG methods were first reported on back in the 1960s,

with a series of papers by Breazeale et al. [1,2], work by

Gedroitz and Krasilnikov [3], and another series by Hikata

et al. [4,5]. Some of the first reported SHG measurements of

anharmonicity were conducted by both Gedroitz and Krasil-

nikov [3], as well as Breazeale and Thompson [1]. In the

latter, the second harmonic wave was measured in polycrys-

talline aluminum over increasing source voltage of the fun-

damental wave with quartz crystal transducers, showing the
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linear dependence of the generated second harmonic wave on

the squared amplitude of the fundamental wave. Other ini-

tial experimental studies primarily focused on single crystals

(e.g. copper [2,6–10], germanium [11], aluminum [5,12]),

and on fused silica [12–15].

There are a multitude of other nonlinear ultrasonic

NDE techniques. Acousto-elasticity measurements are based

on the phenomenon that changes in the stress state of

a nonlinear medium cause a change in the wave veloc-

ity [16], and measurements exploiting the acousto-elastic

effect have shown the sensitivity of material nonlinearity

to fatigue microcracks [17]. Nonlinear elastic wave spec-

troscopy (NEWS) methods—such as nonlinear resonant

ultrasound spectroscopy (NRUS) and nonlinear wave modu-

lation spectroscopy (NWMS) techniques—have been exten-

sively used to characterize a variety of materials such as geo-

materials, rock, and concrete [18]. These techniques exploit

the nonlinear hysteretic nature of these materials. NRUS

techniques look at a resonance frequency shift with increas-

ing amplitude excitation [18–20]. NWMS techniques typi-

cally look at modulation frequencies as a result of mixing

a very low frequency (sometimes induced by a shaker or

mechanical tapping) and a high frequency ultrasonic wave

[21,22]. Nonlinear time reversal methods have been used

in geophysics applications and detecting surface defects

[23,24]. Nonlinear mixing techniques [25,26] utilize two

input waves at different ultrasonic frequencies, and have

recently gained attention in the literature. Material nonlinear-

ity causes the generation of sum or difference frequencies,

depending on input wave polarities, where the two waves

interact. Nonlinear mixing techniques have the potential to

be isolated from equipment and system nonlinearities inher-

ent in harmonic generation experiments.

Second harmonic generation measurements have shown

to be very applicable in detecting microstructural changes in

metals prior to macroscopic damage and/or microcracking.

Some experimental techniques have the unique advantage

of simplicity in utilizing commercial transducers and stan-

dard ultrasonic testing equipment. Much of the current work

on SHG techniques is focused on how these measurements

can be applied to interrogate real materials under realistic

loading conditions. A variety of different measurement tech-

niques have been developed to interrogate different geome-

tries and damage types. This review is intended to extend pre-

vious reviews [27,28], and will specifically focus on second

harmonic generation experiments and applications explored

particularly within the recent years. This review begins with

a theoretical overview of SHG of longitudinal and Rayleigh

waves, followed by a review of different microstructural con-

tributions to β. Then, the different SHG measurement tech-

niques reported throughout the literature are reviewed, fol-

lowed by a discussion on how these measurements have been

applied to monitor microstructural evolution during material

damage. Finally, an outlook on potential future directions of

SHG measurement research is given.

2 Review of SHG Theory

2.1 Longitudinal Waves

Consider longitudinal wave propagation through an isotropic

medium with a quadratic nonlinearity, which results from a

non-quadratic interatomic potential in crystalline materials.

The equation of motion, simplified to one-dimension is:

ρ
∂2u

∂t2
=

∂σxx

∂x
(1)

where ρ is the material density, u is the particle displacement,

σxx is the normal stress in the x-direction, x is the material

coordinate, and t is time. The constitutive equation for a

quadratic nonlinearity is given as:

σxx = σ0 + E1

(

∂u

∂x

)

+
1

2
E2

(

∂u

∂x

)2

+ . . . (2)

where E1 and E2 are the appropriate second- and third-order

elastic constants. The nonlinear wave equation can thus be

derived as

∂2u

∂t2
= c2

[

1 − β
∂u

∂x

]

∂2u

∂x2
(3)

where β is the nonlinearity parameter, and c is the longitudi-

nal wave velocity in the material. For a material in its virgin

state, β is equivalent to the lattice anharmonicity component,

β0, and is a function of second- and third-order elastic con-

stants of the material:

β0 = −
(

3C11 + C111

σ0 + C11

)

(4)

where C11 and C111 are the second- and third-order Brugger

elastic constants, respectively, written in Voigt notation, and

σ0 is the initial stress in the material. Equation (4) assumes

wave propagation in the (100) direction, and is also an exact

solution for isotropic materials. Note that β depends on the

crystalline structure and symmetry of the material, which

was shown in [29] through calculations of β for pure mode

propagation for various single-crystals.

The time harmonic solution to Eq. (3), assuming plane

wave propagation, has the form:

u = A1 sin(κx − ωt) +
β A2

1xκ2

8
cos(2κx − 2ωt) + . . .

(5)
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where ω(= 2π f )is the radial frequency of the wave at fre-

quency f , κ(= ω/c) is the wavenumber of the propagating

wave, A1 is the amplitude of the first harmonic wave. The

coefficient in front of the second term is A2, the amplitude

of the second harmonic wave, which assumes the absence of

attenuation, diffraction, scattering, and assumes plane wave

propagation. By simply rearranging this amplitude term, the

nonlinearity parameter can be expressed in terms of acoustic

quantities, i.e.:

β =
8A2

A2
1xκ2

(6)

When written in this form, β is generally referred to as

the acoustic nonlinearity parameter. Thus by measuring the

second harmonic wave amplitude, along with the first har-

monic amplitude, wavenumber, and propagation distance,

one can determine the acoustic nonlinearity parameter, β.

This derivation can be expanded to three dimensions [30],

and has been derived for Rayleigh waves [31] and explored

for Lamb waves [32]. The same general form of A2 has

been shown for Rayleigh waves, in terms of dependence on

propagation distance, wavenumber, and first harmonic wave.

Experimental results have shown the same relationship of

A2 proportional to A2
1 holds true for Lamb waves as well

[82–85].

Note that the energy transfer from the first to second har-

monic wave in SHG is very small compared to the energy of

the propagating first harmonic wave, such that the decrease in

A1 due to the energy transfer is insignificant for small propa-

gation distances. Further, in most experiments, the amplitude

A2 is orders of magnitude smaller than A1. In the present

considerations, we assume the wave propagation distance is

small enough such that the energy loss of A1 is negligible

compared to the total energy of the propagating first har-

monic wave.

For real materials and finite propagation distances,

attenuation (dissipation, scattering, diffraction) will further

decrease the amplitudes of the first and second harmonic

waves with increasing propagation distance. The effect on the

generated second harmonic wave when attenuation effects

are non-negligible is derived elsewhere for longitudinal

waves [5,16,33]. Attenuation effects are non-negligible at

larger propagation distances, i.e. when x(α2 − 2α1) << 1

does not hold, and the acoustic nonlinearity parameter for

this case is given as [5,16]:

βatten = β
x(α2 − 2α1)

{1 − exp [−(α2 − 2α1)x]}
(7)

where α1 is the attenuation coefficient at the first harmonic

frequency, and α2 is the attenuation coefficient at the second

harmonic frequency. Note that in Eq. (7) it is assumed that

SHG and attenuation effects occur independently, and in the

limit α2 → 2α1, the measured β equals the actual β.

A more accurate expression for the acoustic nonlinearity

parameter can be found by accounting for the on-axis dif-

fraction effects of both the first and second harmonic wave.

A diffraction correction
∣

∣Dβ

∣

∣ to β was introduced by Hurley

et al. [14] as:

∣

∣Dβ

∣

∣ =
|D(ω)|2

|D(2ω)|
(8)

where |D(ω)| and |D(2ω)| are the diffraction corrections

to the first and second harmonic waves, respectively. The

acoustic nonlinearity parameter scaled by this diffraction cor-

rection is thus βD = βDβ .

The linear diffraction correction, i.e. the diffraction cor-

rection for the propagating first harmonic wave, has been

derived in full previously [34] for a piston source such that

the amplitude is constant across the source. This diffraction

correction is given by:

D(ω, x, a)=1−exp(−iκa2/x)

[

J0(κa2/x)+i J1(κa2/x)

]

(9)

where a is the transducer radius, and J0 and J1 are Bessel

functions of the first kind. In actuality, transducers are not a

perfect piston source and there is some spatial distribution

of amplitude over the surface of the transducer face, which

could potentially approximate a Gaussian distribution [35].

The diffraction of the second harmonic wave is spatially

different than that of the first harmonic. The wave is gener-

ated not by the transducer (in a perfect system at least), but

by the propagating first harmonic wave, which is diffracting

over propagation distance. This nonlinear diffraction can be

physically interpreted as follows: at each instance that a por-

tion of the second harmonic wave is generated, that portion

will then diffract linearly over the remainder of the propa-

gation distance to the receiving transducer. This nonlinear

diffraction effect has been derived as [14,36]:

D(2ω, x, a) =

∣

∣

∣

∣

∣

x
∫

0

[D(ω, x − σ/2, a)]2 dσ

∣

∣

∣

∣

∣

x
(10)

where D(ω, x, a) is the linear diffraction correction given in

Eq. (9).

2.2 Rayleigh Surface Waves

Consider a Rayleigh surface wave propagating in the positive

x direction in an isotropic infinite half-space, with direction

z pointing into the half-space, with a weak quadratic nonlin-

earity. The Rayleigh wave motion along a stress-free surface,
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assuming plane wave propagation, can be decomposed in

terms of its shear and longitudinal wave components, which

for a propagating sinusoidal wave is given as:

ux = A1

(

e−pz −
2ps

κ2
R + s2

e−sz

)

ei(κR x−ωt) (11)

uz = i A1
p

κR

(

e−pz −
2κ2

R

κ2
R + s2

e−sz

)

ei(κR x−ωt) (12)

where p2 = κ2
R − κ2

p, s2 = κ2
R − κ2

s , and κR , κP , and κS are

the wavenumbers for the Rayleigh, longitudinal, and shear

waves, respectively. The second harmonic wave displace-

ment components can be approximated at a sufficiently far

distance as [37,38]:

ux (2ω) = A2

(

e−2pz −
2ps

κ2
R + s2

e−2sz

)

ei2(κR x−ωt) (13)

For isotropic materials, the acoustic nonlinearity due to shear

waves vanishes due to symmetry conditions, so the gener-

ated second harmonic wave is purely due to the longitudi-

nal wave component of the Rayleigh wave. Herrmann et al.

[38] derived the acoustic nonlinearity parameter in terms of

out-of-plane components of the first and second harmonic

amplitude as:

β =
ūz(2ω)

ū2
z (ω)x

i8p

κ2
PκR

(

1 −
2κ2

R

κ2
R + s2

)

(14)

where the overbar indicates the displacement is evaluated at

z = 0.

As can be seen in Eq. (14), the dependence of β on first

and second harmonic amplitude, as well as on propagation

distance is the same for nonlinear Rayleigh waves as it is for

nonlinear longitudinal waves, at least under the plane wave

assumption. The dependence on propagation distance is gen-

erally exploited in nonlinear Rayleigh wave measurements—

the wave propagation distance is varied over multiple mea-

surements of first and second harmonic wave amplitude, and

a relative measure of β can thus be made.

Since nonlinear Rayleigh waves are typically used for

longer propagation distances, accounting for attenuation [39]

and diffraction effects [35,39,40] are crucial for accurate

measurements of β. Shull et al. [35] explored diffraction

effects of nonlinear Rayleigh waves both theoretically and

numerically for a general forcing function, a uniform line

source, and a Gaussian source. For example, a line source

with a Gaussian distribution along the y-axis is defined by:

w(y) = v0e−(y/a) (15)

where v0 is the source amplitude and a is the half-length of

the line source. The first harmonic wave velocity component

p
ro

p
a
g
a
ti
o
n
 d

is
ta

n
c
e
 [
m

]

Sample/source width [m]

−0.05 0 0.05

0

0.1

0.2

0.3

0.4

0.5 0

0.2

0.4

0.6

0.8

1

p
ro

p
a
g
a
ti
o
n
 d

is
ta

n
c
e
 [
m

]

Sample/source width [m]

−0.05 0 0.05

0

0.1

0.2

0.3

0.4

0.5 0

1

2

3

4

5

x 10
−3

Fig. 1 Amplitude of first harmonic from Eq. (16) (left) and second har-

monic from Eq. (17) (right) Rayleigh wave with propagation distance

and sample width, including diffraction and attenuation effects, at y=0

[40]. Results normalized by input first harmonic amplitude (reproduced

from [40] with permission from Elsevier)

for this forcing function has been derived as [35]:

v1(x, y) =
v0e−(α1x)

√
1 + i x/x0

exp(−
(y/a)2

1 + i x/x0
) (16)

where x0 = κRa2/2 is the Rayleigh distance that marks the

transition from the near field to the far field diffraction region

of the source, where κR is the Rayleigh wavenumber. The

second harmonic wave velocity component can be written

as:

v2(x, y) = β11v
2
0 DR(2ω) (17)

where β11 is a nonlinearity parameter defined elsewhere

[35,37], and DR(2ω) is the complex diffraction coefficient

for the propagating and generated second harmonic Rayleigh

wave, which is given in full in [35]. The first and second har-

monic Rayleigh wave amplitude with propagation distance

including diffraction and attenuation effects, i.e. Eqs. (16)

and (17), are plotted in Fig. 1 [40]. These plots are normal-

ized to the input first harmonic amplitude at x=0. In these

plots, it is assumed that αn = n4 α1, and note that the prop-

agation distance, x , is plotted on the vertical axis on these

plots, and the sample/source width, y, is plotted on the hori-

zontal axis.

The proportionality of the generated second harmonic

wave remains the square of the fundamental at a given propa-

gation distance x , i.e. v2(y) ∝ v2
1(y), though the dependence

of v2(y)on propagation distance is obscured. While the linear

dependence of v2(y) on propagation distance has been shown

to be a good approximation for short propagation distances

in many metals [38,41–43], the full solution incorporating

attenuation, diffraction, and source effects will result in a

more accurate determination of β.
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2.3 Microstructural Contributions to β

The parameter β depends on the crystalline structure of the

material, and also on localized strain present in the mate-

rial. This strain arises from microstructural features such

as dislocations and precipitates, and dislocation contribu-

tions to β can greatly exceed that of the lattice anhar-

monicity. This section provides a comprehensive review

of different microstructural contributions to the magnitude

of the acoustic nonlinearity parameter. Theoretical deriva-

tions of effects of dislocation pinning [4,16,44], dislocation

dipoles [45,46], precipitate-pinned dislocations [16,47–49],

and cracks [50–52] are reviewed.

2.3.1 Dislocation Pinning: Hikata et al. Model

The dislocation motion contribution to acoustic nonlinearity

was first developed by Suzuki et al. [53] and expanded on by

Hikata et al. [4], and this model has been used to interpret a

multitude of experimental results of second harmonic gener-

ation. The model is based on the dislocation string vibration

model of Granato and Lücke [54], and considers dislocation

bowing as a line segment pinned between two points, a dis-

tance 2L apart. These pinning points can be grain boundaries,

other dislocations, or point defects in the material. Assume a

small but non-zero longitudinal stress, σ , with shear compo-

nent τ such that τ = Rσ where R is the resolving shear factor,

is then applied to this dislocation segment such that it bows

out between the two pinning points. An approximation of this

geometry is depicted in Fig. 2, where the radius of curvature,

r , of the bowed segment and angle θ are annotated. Note

that this stress can be thought of as either an internal resid-

ual stress or externally applied stress, but it is small enough

such that the dislocation segment does not break away from

the pinning points. An ultrasonic stress wave sets the pinned

dislocation segment into a vibrational motion. However, the

dynamics of the dislocation motion is neglected by assum-

ing that the mass density of the dislocation line is negligi-

ble. Further, the dislocation dynamics that may occur during

Fig. 2 a Diagram showing geometry of bowed dislocation segment of

length 2L between two pinning points and under an applied shear stress

τi , in terms of radius of curvature r and angle θ . b Diagram showing

movement of dislocation segment with superimposed ultrasonic stress

on top of initial stress τ

transient plastic deformation is not considered since this is

not of the source of ultrasonic nonlinearity considered here.

Assuming the dislocation density is small enough such

that bowed dislocations act independently of each other, the

line tension, T , of this dislocation segment due to the applied

stress was approximated as constant and independent of ori-

entation as T = µb2/2, where b is the Burgers vector and µ is

the shear modulus. In the Hikata et al. model, the area swept

out by the dislocation is approximated as a circular arc with

a constant radius.

The total strain in the material can be written as a summa-

tion of the lattice strain plus the strain due to the dislocation

motion, i.e. ε = ε1 + γ , where  is the conversion factor

between shear and longitudinal strain and the shear strain γ

due to a distribution of bowed dislocations. Assuming the

same form of the stress–strain relation as in Eq. (2) for the

internal stress, the resulting stress–strain relationship due to

the total strain in the material is:

ε =
(

1

E1
+

2�L2 R

3µ

)

σ +
E2

E3
1

σ 2 +
4�L4 R3

5µ3b2
σ 3 (18)

with bowed dislocations density �, dislocation loop length

L . Assuming a small ultrasonic stress �σ is superimposed on

the internal stress σ1, and assuming the lattice contribution

of the nonlinearity parameter is β0 = −E2/E1, the change

in nonlinearity parameter due to dislocation pinning can be

written as:

�βpd =
24

5

�L4 R3C2
11

µ3b2
σ1 (19)

Further details of this model can be found elsewhere [4,16].

Note that E1 is defined as σ0 + C11 in Eq. (4), but here

it is assumed that the initial stress σ0 is zero. It should be

specifically noted that the internal stress σ1 in this analysis,

as well as the superimposed ultrasonic stress, is assumed to

be much smaller than the yield stress of the material, such

that dislocation displacement is small.

2.3.2 Dislocation Pinning: Extensions of the Hikata et al.

Model

Later work by Cash and Cai [55] extended the Hikata et al.

model to account for orientation-dependent line energy in

the analytical model and verified with dislocation dynamics

simulations. Results showed that the Hikata et al. model can

accurately predict β only for small values of Poisson’s ratio

for both screw and edge dislocations. However, at values

of Poisson’s ratio greater than about 0.2 (i.e. most metals),

the dislocation dynamics simulations and developed analyt-

ical model show that relationship between β and the applied

stress is not in fact linear, and simulations show that β can
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even be negative for an edge dislocation at small stresses.

This result is not surprising since β is known to be com-

plex, but since current experimental techniques generally

only measure amplitudes of the first and second harmonic

waves, a negative β would not be distinguishable from a

positive β of equal magnitude. However, if phase informa-

tion were extracted from the experiments, a negative β could

be measured. This work provided sound evidence of the lim-

itations of the widely utilized Hikata et al. model and called

for further experiments to measure β over increasing levels

of applied stress to further explore this relationship.

Zhang et al. [56,57] extended the Hikata et al. model to

account for the nonlinearity from screw and edge disloca-

tions, however their work still considered the constant line

tension model to express the area swept by the bowed dis-

location segment as an approximation of a circular arc with

constant radius. The model predicted that edge dislocations

give rise to a larger acoustic nonlinearity than screw dis-

locations, and compared their predictions to previous SHG

experiments on cold rolled 304 stainless steel [58]. While

these SHG experimental results show better correlation with

the Zhang models in [56,57] than the Cash–Cai model [55],

significant variation from dislocation measurements taken

from a previous paper were not included in the analysis.

More importantly, the dislocation structures formed during

cold rolling will likely have stronger effects on β than the

pure dislocation monopole contribution considered in these

models.

Further work by Chen and Qu [59] extended the Hikata

et al. model as well as the Cash–Cai model by developing

a solution for pure and mixed dislocations with orientation-

dependent line energy in anisotropic crystals. They validate

their model with molecular dynamic simulations. The con-

tribution from pinned dislocations to β from their results was

derived as:

�βpd = 4�L4 R2b2

(

C1111

C1212

)2 (

L

b

)3

S̄′′(τn) (20)

where S̄′′(τn) is the second derivative with respect to τn of

the swept-out area of the dislocation segment under a shear

stress, and τn is a dimensionless value proportional to the

applied shear stress and the dislocation length. The authors

present a procedure to determine S̄′′(τn) without needing to

perform the numerical derivatives, and the reader is referred

to the paper for more details [59]. Their model shows that the

asymptotic solution derived by Cash and Cai [55] is a good

approximation for the generated acoustic nonlinearity from

screw dislocations, but does not accurately predict the full

solution for β due to edge dislocations. The authors show

with a simulation experiment that their solution can track β

for changing dislocation lengths, but the crucial link to real

SHG experiments has yet to be realized.

2.3.3 Dislocation Dipoles

Dislocation dipoles are formed when two dislocations of

opposite sign move within some small distance d of each

other and become mutually trapped. The force–displacement

relation of the dipole is a nonlinear relation, and as such it

has been shown that when perturbed by an ultrasonic wave,

this feature generates a nonzero component of acoustic non-

linearity [16,45,46,60,61]. The contribution to nonlinearity

from dislocation dipoles, �βdp, has been derived as [46,61]:

�βdp =
16π2R2�dph3(1 − ν)2C2

11

µ2b
(21)

where �dp is the density of dislocation dipoles, and h is the

dipole height.

In fatigue damage, increased cyclic loading causes dislo-

cation substructures to form. In wavy-slip metals (e.g. poly-

crystalline nickel [46], aluminum alloys [51], and copper sin-

gle crystals [62] and references therein), these substructures

initiate as vein structures that are regions of high dislocation

density that ultimately becomes saturated with dislocation

dipoles. Regions in between vein structures are referred to

as channels, and generally have a few orders of magnitude

less dislocation density. The vein structures can further trans-

form into a stable persistent slip band structure (PSBs) that

is a ladder-type configuration of vein regions. In planar slip

metals, for example the IN100 nickel superalloy studied in

[63] (and the references therein), the primary dislocation sub-

structures are planar slip bands and intermittently activated

persistent Luders bands (PLBs).

As an example, Cantrell has derived the total value for

the nonlinearity parameter in wavy-slip metals for different

contributions from dislocation monopoles, dipoles, and the

different substructures as:

β =
βe + f mpβmp + f dpβdp

[

1 + f mpŴmp + f dpŴdp
]2

(22)

where f mp and f dp are the total volume fractions of dis-

location monopoles and dipoles respectively, and f mpβmp

and the corresponding dipole term depend on specific β and

f parameters in the veins, channels, and PSBs. The gamma

factors depend on dislocation and material parameters and

are given in full in [46].

2.3.4 Precipitates

Now consider the effect of a distribution of precipitates on

the magnitude of β. Precipitates themselves do not have a

significant effect on β [47], but their interaction with dislo-

cations has shown to give rise to a significant change in the
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Fig. 3 a Diagram of precipitate

with radius rp embedded in a

matrix with natural radius of ra,

and b diagram of a dislocation

bending around a distribution of

precipitates, with spacing of L

(based on [66])

magnitude of β [47–49]. Effectively, the precipitate embed-

ded in a surrounding matrix creates a local stress field which

is then used as the applied stress on a pinned dislocation seg-

ment, as given in Eq. (19). Consider a precipitate with radius

rp embedded in the matrix, with a precipitate-matrix lattice

misfit parameter δ such that rp = ra(1+δ), where ra is the

natural radius in the matrix, as depicted in Fig. 3a [64]. The

precipitate is approximated as spherical and embedded in an

isotropic medium, exerting a non-zero internal pressure p0

on the matrix [46]. The stress, σrr (r), in the radial direction at

radius r > ra for this scenario are given in Eringen [65], as:

σrr (r) = −p0

r3
p

r3
(23)

Assuming the precipitate and matrix have different elastic

properties, the stress in the matrix at radius r due to this

embedded precipitate can then be written as [49,67]:

σrr (r) = −4µδ

[

3Bp

3Bp + 4µ

]

r3
p

r3
(24)

where Bp is the bulk modulus of the precipitate.

Then assume there is a distribution of these spherical

precipitates embedded in a microstructure with dislocations

present. The precipitates exert a local stress field as described

above in its vicinity. Since a dislocation line is assumed to fol-

low a contour of minimum energy, it is assumed that two pre-

cipitates a distance L/2 away from each dislocation segment

act on the dislocation segment, and contributions from other

nearby precipitates are negligible. This scenario is depicted

in Fig. 3b. Thus, the stress is evaluated at r = L/2 [47]. We

can then write Eq. (19) in terms of precipitate parameters [49]

to find the change in the acoustic nonlinearity parameter due

to precipitate-pinned dislocations, �βppd :

�βppd =
1536

5

R3C2
11

µ3b2

[

3Bp

3Bp + 4µ

]

(�Lr̄3
p |δ|) (25)

where the terms in parentheses are parameters that will most

likely evolve throughout initial stages of material damage

such as fatigue, thermal aging, or radiation damage (i.e. the

dislocation and precipitate parameters). The precipitate spac-

ing has been estimated as L ∝ N
−1/3
p , where Np is the

number density of total precipitates. The number density of

precipitates is related to the volume fraction of precipitates,

f p, as f p = NpVp, where Vp = 4π/3r3 is the average vol-

ume of each precipitate. Thus, through a simple substitution,

�βppd can be written in terms of number density or volume

fraction of precipitates. Note that these results are the same as

derived in [49], and based off of other previous work as well

[46–48]. Further, it is useful to reiterate, in simpler terms, the

dependence of �β on precipitate and dislocation parameters:

�βppd ∝
�r̄3

p |δ|

N
1/3
p

(26)

�βppd ∝ �r̄3
p |δ|

(

r3
p

f p

)1/3

(27)

2.3.5 Microcracks

Higher harmonic generation from crack contacting surfaces

as a function of stress was studied by Hirose and Achenbach

[68] with the boundary element method. Nazarov and Sutin

later derived the nonlinearity parameter of elastic solids with

uniformly distributed, randomly oriented penny shape cracks

[52]. They assumed that the contact of asperities on the crack

faces is elastic and the overall nonlinearity originates from the

nonlinear stress–strain relationship of the asperity contact.

Cantrell later applied this model to determine the contribution

of nonlinearity from fatigue-induced cracks, depending on

the fatigue process parameters and as a percent of fatigue

life [51].

First consider the volume change of a single crack which

is produced by the elastic deformation of the asperities in

the crack surface and then evaluate the average strain of

the whole solid body due to the individual volume changes.

Assuming the deformation in every crack face is uniform,

the applied longitudinal stress and the average strain due to

the volume change is related by:
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Fig. 4 Diagram of rough surface in contact with rigid plane [52].

Adapted with permission from Nazarov and Sutin [51]. Copyright 1997,

Acoustical Society of America

σ = Eα

[

ε − (β/2)ε2 − (δ/6)ε3
]

(28)

α = (1 + aN0/5)−1, β = bN0α
2
1/7,

δ = cN0α
3
1[1 − 27α1b2 N0/49c]/9 (29)

where E is the Young’s modulus, N0 is the crack density (the

number of cracks per unit volume), and a, b, c are the coef-

ficients in the Taylor expansion of the volume change in the

normal stress (σn , normal to the crack face). These expansion

coefficients are determined from the analysis of the contact

of multiple asperities in the crack. As shown in Fig. 4 [52],

the contact of two rough crack surfaces is transformed to an

equivalent problem of a rough surface in contact with a rigid

flat surface [52]. Moreover, the asperity heights are assumed

to follow an exponential distribution. Then, the normal con-

tact stress resulting from asperities currently in contact with

the rigid flat is written as follows:

σn = −
∞

∫

d

f (h − d)W (h)dh (30)

where f is the force from the contact of a single spheri-

cal asperity on a rigid flat [69] and W is the asperity dis-

tribution function which is given as W (h) = n(π R2h)−1

exp(−h/
√

2h0), with R being the radius of the spheri-

cal asperity and h0 being the characteristic height of the

rough surface. Note that Eq. (29) is the famous formula of

Greenwood and Williamson [70]. The coefficients a, b, c are

obtained by evaluating Eq. (29) for the infinitesimal distur-

bance of ultrasound acting on the cracks as shown in [52].

It has been shown that the nonlinearity of contacting cracks

is orders of magnitude higher than that of the dislocations

substructures in cyclically fatigued metals [51]. Papers that

include the effect of local plastic deformation [71] and adhe-

sion of contacting asperities [72] have also appeared.

3 Experimental Techniques

Second harmonic generation measurements of the acoustic

nonlinearity parameter can be conducted using multiple wave

types, different generation and detection methods, and a vari-

ety of experimental set-ups. The general process is similar

in all cases, where an ultrasonic tone burst at frequency ω

is generated in the material, it propagates some distance

through the material or structure, and the response is mea-

sured at some distance from the transmitter—specifically, the

amplitudes of the first harmonic and second harmonic waves,

A1 and A2, respectively, are extracted from the frequency

response of the received signal. SHG measurements ofβ have

been realized using longitudinal waves e.g. [49,73–76], and

Rayleigh surface waves e.g. [38,39,43,77–81]. Lamb wave

(or plate) modes are also utilized for SHG measurements, e.g.

[32,82–85], but this review will not discuss these techniques

due to added complications with their dispersive and multi-

modal characteristics. This section gives a detailed overview

of current experimental methods, measurement techniques,

set-ups, and post-processing used for both longitudinal and

Rayleigh wave SHG measurements of β.

3.1 Longitudinal Waves

Measurements of β using longitudinal waves have been

conducted with contact piezoelectric transducers [58,74–

76,86,87], capacitive (electrostatic ultrasonic) transducers

[6,11,12,14,33,73,88,89], and laser interferometer detec-

tion [14,49,90,91]. An absolute measure of β is possible

with longitudinal waves using either capacitive transducers

[12,73] or contact piezoelectric transducers using a calibra-

tion procedure [92,93] in which the absolute displacement

amplitude of the first and second harmonic waves can be mea-

sured. As an example, absolute measurements of β have been

made extensively in fused silica materials, where values of β

range from 9.7 to 14 [12–15,90,92]. Absolute measurements

have also been made in heat treated aluminum alloys where

values of can range from 4 to 12 [92,94,95], as well as heat

treated Inconel 718 with β ranging from 3.5 to 7 and 7.5 to

9 depending on the specific heat [33]. Further, absolute mea-

surements have been made most recently in fatigued single

crystal copper, with values of β over fatigue damage ranging

from 7.8 to 13.2 and 10.3 to 21.3 depending on orientation

[62].

Throughout the recent literature, β has more typically

been measured as a relative parameter since it is more practi-

cal in an in-situ setting to measure the relative amplitudes of

A1 and A2 rather than the absolute physical displacement of

the first and second harmonic waves. In the simplification of

a relative measure of nonlinearity, the voltage amplitudes of

the first and second harmonic are instead measured and the

relative acoustic nonlinearity parameter is calculated, which

is defined as:

β ′ =
Av

2

(Av
1)

2

8

xκ2
(31)
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where recall that κ is the wavenumber as defined in Eq. (5).

Note that the change in the relative acoustic nonlinear-

ity parameter is proportional to the change in the absolute

acoustic nonlinearity parameter and thus the material prop-

erty and microstructural changes it encompasses, with

respect to its initial state. A measurement of β ′ can be made

by varying the input amplitude and measuring the resulting

first and second harmonic amplitudes, and then calculating

the slope of the linear fit between (Av
1)

2 and Av
2. While the

amplifier, transducers, and/or coupling may excite a nonlin-

earity (referred to as the system nonlinearity) that is also pro-

portional to the first harmonic squared, these measurements

can be used to detect changes in material nonlinearity, since

the system nonlinearity will remain constant over all the mea-

surements. Note that in measurements utilizing longitudinal

waves, the propagation distance and the wavenumber should

be kept constant, otherwise β ′ must be scaled accordingly.

3.1.1 Piezoelectric Methods: Relative Amplitude

Measurements

A longitudinal wave relative measurement of β (meaning

a measure of only the voltage amplitudes of A1 and A2)

has been widely utilized throughout the recent literature

[49,58,74–76,87,96–101]. Contact piezoelectric transduc-

ers offer a robust solution since these transducers are typ-

ically used in other linear ultrasonic measurements, sample

surface preparation is not extreme (typically involving hand

polishing of the contact surfaces), and can be purchased off-

the-shelf for relatively low cost. However, transducers must

be bonded (or coupled using a liquid coupling agent) to the

sample surface which can introduce measurement variation

if conditions are not accounted for or not kept consistent [96].

These measurements are made by fixing a transmitting

and receiving transducer on opposite sides of the sample,

using some acoustic coupling between the transducer face

and the material (e.g. light oil, ultrasonic coupling gel, phenyl

salicylate, or epoxy). Only a thin layer of coupling is needed,

and care should be taken to ensure no air bubbles contaminate

the coupling area. It has generally been found that a light

oil coupling works better than thicker ultrasonic coupling

gels, and much better than most adhesives due to inherent

inconsistencies in bond quality after solidification. A fixture

that can apply a consistent force on the transducer is crucial

to measurement repeatability, since this directly influences

the coupling condition between the transducer and sample.

Liu et al. [102] showed that a low-level coupling force (2–

5N) produced most consistent SHG results. A technique to

minimize coupling effects on the nonlinearity measurement

has been proposed in [96], in which the authors report a

decrease in measurement variation by half using light oil

coupling.

Transducers must be accurately aligned to each other, par-

ticularly since wavelengths in metal materials for relevant

frequencies will likely be less than 1mm, so slight misalign-

ments would result in smaller than accurate received ampli-

tudes. In general, excitation frequencies in the range of 1–5

MHz have been most utilized throughout the literature. The

transmitting transducer has a center frequency at approxi-

mately the first harmonic frequency, and the receiving trans-

ducer has a center frequency at approximately the second har-

monic frequency. While this receiving transducer will simul-

taneously detect the first and second harmonic amplitude,

tuning it to the second harmonic frequency is crucial since

that amplitude will be a few orders of magnitude smaller

than the first harmonic wave amplitude. It has also been pro-

posed to select the operating first harmonic frequency based

on the transmitting transducer frequency response, such that

the response of the transmitting transducer at the second har-

monic frequency is minimized [102].

Common piezoelectric materials used as contact trans-

ducers for SHG measurements are lead–zirconium–titanate

(PZT) and lithium niobate. PZT material is a ceramic that has

a high efficiency yet is highly nonlinear [103]. So, this mate-

rial will introduce system nonlinearity into the experiments.

Lithium niobate on the other hand is not as efficient as PZT,

but the material has a much smaller nonlinearity than PZT.

A linear amplifier, such as a RITEC amplifier, and a func-

tion generator is used to excite a sinusoidal wave in the trans-

mitting transducer. Note that the RITEC amplifier has built-in

frequency filtering capabilities that can accurately detect har-

monic amplitudes. The amplifier should be inherently linear,

and have the capability of exciting a high-powered ultra-

sonic wave, for example 1,200 Vpp on a 50 load. As many

cycles as possible should be used to excite as much acoustic

energy in the sample as possible to accurately detect the sec-

ond harmonic wave amplitude above the signal noise level.

Too many cycles such that successive reflections between

sample boundaries interfere with the received signal should

be avoided, particularly if small deviations in sample thick-

nesses (e.g. slight differences in thicknesses among different

samples, or deviation in parallelism of the sample faces) are

expected that would change how the reflected signal would

interfere with the incoming wave. An oscilloscope or data

acquisition system is used to receive the time domain sig-

nal, which is generally an average of multiple signals to

improve the signal to noise ratio (256–512 averages have

been reported as sufficient in some current experimental

setups). Then the fast Fourier transform (FFT) is calculated

to determine the amplitude of the signal as a function of fre-

quency, in order to extract the relative amplitudes of the first

and second harmonic waves. The pulse inversion technique,

which can suppress the fundamental and odd harmonics, has

also been utilized to more accurately extract the small second

harmonic wave [74]. This process is repeated for different
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input amplitudes, and then the entire measurement procedure

is repeated multiple times to achieve statistically significant

data.

The exact values of input amplitude for these experiments

can be crucial. Amplifiers must excite a stress wave with

amplitude above the so-called “Buck hook” region, where β

is known to be largely dependent on amplitude. In this region,

β increases to a maximum and drops off rapidly with excita-

tion voltage [89,104–106]. A damped oscillatory behavior of

β has been shown in regions above the Buck hook, which is

a result of the Peierls–Nabarro barrier stress associated with

dislocation motion [89,105], but this oscillatory behavior is

greatly damped in polycrystalline metals due to the random

orientations of slip systems (and thus random values of the

Schmid factor) [89]. As an example, the Buck hook region in

Al2024 has been shown to be about 0.15–1.5 MPa, and about

0.1–1.3 MPa in IN100 [89]. Above this stress amplitude, β

has shown to be relatively constant, unless extremely high

stress amplitudes are excited such that dislocations break

away from pinning points. Therefore, the oscillatory behav-

ior of β on stress amplitude in non-polycrystalline materials

must be considered in second harmonic generation measure-

ments.

3.1.2 Piezoelectric Methods: Absolute Amplitude

Measurements

Absolute measurements ofβ, through measuring the absolute

displacement of the fundamental and second harmonic

amplitudes of the received wave, are possible with piezo-

electric contact transducers through a reciprocity-based cal-

ibration procedure. This method was originally formulated

by Dace et al. [92,93] and utilized in subsequent works, e.g.

[14,33,74]. The purpose of the calibration procedure is to

calculate the frequency-dependent transfer function, H(ω),

of the receiving transducer by measuring the voltage and cur-

rent signals of an echo from the stress-free back wall of the

specimen. Then, a measured current signal can be directly

converted to the displacement in the following way:

A(ω) = H(ω)I ′(ω) (32)

where A(ω) is the displacement amplitude and I ′(ω) is the

current signal measured during the nonlinear measurement.

The transfer function is defined as:

H(ω) =

√

Iin(ω)Vout (ω)/Iout (ω) + Vin(ω)

2ω2ρcLaIout (ω)
(33)

where Iin , Iout , Vin , and Vout are the input and output current

and voltage signals measured in the calibration measurement,

ρ is the material density, cL is the longitudinal wave speed,

and a is the transducer radius.

The experimental procedure is as follows. The receiving

transducer is mounted on the sample, with a small amount of

liquid coupling or a solid coupling such as phenyl salicylate.

The receiving transducer must be attached to the sample such

that when the transmitting transducer is later attached to the

sample, the contact conditions of the receiving transducer are

not disturbed, since this will change the transfer function. The

receiving transducer is used in pulse-echo mode and excited

with a broadband signal. A voltage and current probe are

used to measure the input voltage and current to the trans-

ducer, as well as the output voltage and current signals of the

reflected signal. The calibration procedure is based off of lin-

ear electroacoustic reciprocity, such that the reflection of the

pulse is from a stress-free surface, so the transmitting trans-

ducer must not be attached to the sample surface during the

calibration. After the calibration, the transmitting transducer

is attached to the opposite side of the sample and aligned

with the receiving transducer. The transmitting transducer is

excited with a tone burst signal at the fundamental frequency,

and the receiving transducer is used to measure the output

current I ′(ω). The experimental setup used in Barnard et al.

[33] for these absolute β measurements is shown in Fig. 5.

3.1.3 Capacitive Methods

Absolute measurements of β first became possible through

the development of the capacitive receiver for SHG mea-

surements by Gauster and Breazeale [11]. In this method,

which is extensively described in [88,107], a broadband air-

gap capacitive transducer is held at a small distance above

the sample (1–10 µm). A gated tone burst sinusoidal signal is

generated with a transmitting transducer bonded to one side

of the sample. The wave propagates through sample, and the

capacitive transducer is held a small distance (about 1–10

µm) away from the opposite side of the sample. The sample

(or a conductive coating on the sample surface) acts as one

plate of a capacitor, and the impinging ultrasonic wave causes

the gap spacing between the sample and the transducer to vary

with time. In the recent literature, these methods have been

extensively and very successfully used by Cantrell and Yost

and co-authors, e.g. [45,62,89]. This detection system has a

reported sensitivity of 10−16 m, which is more than sufficient

to detect the displacement amplitudes of the propagated first

and second harmonic wave [108]. The first and second har-

monic displacement amplitudes, A(ω), are determined from:

A(ω) =
dV0(ω)

2Vb

(34)

where d is the gap spacing, V0 is the output voltage, and Vb is

the applied bias voltage [107]. V0 is determined as the mea-

sured voltage at the oscilloscope, using a narrow band pass

filter at ω1 and ω2. Note that the factor of 2 in the denominator

of Eq. (34) is to account for the doubling of the displacement
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Fig. 5 Experimental schematic

for SHG calibration and

absolute measurement of β

using piezoelectric transducers

(adapted from [33] with

permission from Springer)

Fig. 6 Schematic of experimental setup for capacitive dection for SHG

measurements. This is based off the experiments developed in [88,107].

(Reproduced from Hurley et al. [14] with permission from IOP Science)

amplitude when reflected from a free surface. To further cal-

culate the output voltage from this measured voltage, the

signal received on the oscilloscope is matched by generat-

ing an RF signal with a highly accurate function generator

through the same narrow band pass filters and matching the

amplitude of the measured voltage from the nonlinear mea-

surement; the output voltage from the function generator is

used as V0 in the calculation of the displacement amplitude

in Eq. (34). A schematic of an example experimental setup

utilizing the capacitive detection system for SHG measure-

ments is shown in Fig. 6.

While this method offers a direct way of measuring

absolute displacements of the first and second harmonic

waves compared to piezoelectric transducers (which require

a series of calibrations for these absolute measurements [92])

sample preparation is cumbersome, requiring an optically flat

and parallel sample surface over the receiver area and a small

gap of only a few microns.

3.1.4 Laser Methods

Laser ultrasonic SHG methods have the unique advantage

of being a noncontact measurement, with the capability of

detecting an absolute, point-like displacement measurement.

These methods have been recently reviewed in detail, in terms

of guided wave NDE [109], and a review of non-contact

ultrasonic measurements in general can be found in [110].

Absolute measurements of β in fused silica have been made

using a heterodyne [90] and homodyne [14] interferometer,

and in both cases measurements of β corresponded well with

literature values. A heterodyne laser interferometer was used

to detect both longitudinal and Rayleigh waves in fatigued

Al2024 and as a 2D imaging system to spatially measure

β using surface waves [81]. A similar measurement with

a heterodyne laser interferometer was utilized to make SHG

measurements of Rayleigh waves in a nickel superalloy [38].

Recent developments in laser instrumentation such as the

CHeap Optical Transducer (CHOT) [111,112] where pat-

terns are essentially deposited on the surface of a sample for

laser generation or transmission, could eventually make laser

interrogation portable and feasible in an in situ application.

Laser-based generation and detection has also been utilized

in vibro-acoustic measurements [112–114]. Signals from a

laser detector are usually weak such that careful signal con-

ditioning is essential to reliably extract the second harmonic

signal.
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Fig. 7 Normalized second

harmonic Rayleigh wave

amplitude measured over

increasing propagation distance,

on samples with varying

intensities of shot-peening

(reproduced from [80] with

permission from Elsevier)

3.2 Nonlinear Rayleigh Wave Measurements

Surface wave measurements of the acoustic nonlinear-

ity parameter have the advantage of reducing coupling

and source effects of the transmitting source, as well as

eliminating any potential nonlinearities induced by dif-

ferent excitation voltages. As such, measurements utiliz-

ing Rayleigh waves have received considerable attention

throughout the literature—for example using a variety of

wedge-contact generation and/or reception [38,42,43,79,

80,115–118], laser interferometer detection [38,81,115],

air coupled detection [64], comb transducer generation

and detection [39], and electromagnetic acoustic transducer

(EMAT) detection [119,120]. While guided waves do offer

some advantages in nonlinear measurements, achieving con-

sistent coupling becomes increasingly difficult for guided

wave wedge set-ups, which can still factor into measurement

error on the detection side. So, the push toward a non-contact

detection method will be crucial for robust measurements on

real structures.

A nonlinear Rayleigh wave measurement typically mea-

sures the first and second harmonic wave amplitude at dif-

ferent propagation distances from the source transducer. A

relative β parameter, similar to that in Eq. (31), is generally

made for Rayleigh waves, i.e.

β ′
R =

[

Av
2

(Av
1)

2x

]

i8p

κ2
PκR

(

1 −
2κ2

R

κ2
R + s2

)

(35)

Within a range of propagation distances, the amplitude ratio

Av
2/(Av

1)
2 is approximately linearly proportional to x , and

thus the slope is a proportional measure of β ′ from Eq. (35).

Note that β ′ is also proportional to the material nonlinearity

parameter, e.g. from Eqs. (4) or (19). An example of this lin-

ear fit between the normalized second harmonic amplitude

and propagation distance is shown in Fig. 7, which shows

measurements on samples with varying intensities of shot

peening [80]. As seen in this example, the linear increase of

Av
2/(Av

1)
2 over x is only applicable over a range of 6cm in two

of the measurements, and about 11cm in another sample, due

to attenuation and diffraction effects. Care must be taken to

account for these attenuation and diffraction effects, particu-

larly if these effects change with damage imposed on the sam-

ples. Diffraction models for the nonlinearly generated second

harmonic wave have been well developed for Rayleigh wave

propagation from a variety of excitation sources [35,78], and

recent work has further considered effects of nonlinearity

from generating sources on nonlinear Rayleigh wave mea-

surements [40,64]. This aspect is crucial for longer prop-

agation distances, since the linear increase of the normal-

ized second harmonic generated wave is only applicable for

short propagation distances. Some work has relied on hand-

selecting the linear region of Av
2/(Av

1)
2 over x , and extract-

ing the slope of that linear fit to represent β ′. However, fit-

ting models based on a least-squares fit have been applied to

nonlinear Rayleigh wave measurements to more accurately

extract β ′ by directly incorporating attenuation and diffrac-

tion [39]. More recently, these models have been expanded to

incorporate nonlinear least squares curve-fitting algorithms

to more accurately extract β ′ based not only on attenuation

and diffraction effects, but also accounting for source non-

linearity effects [40]. A comparison of the raw linear fit of

Av
2/(Av

1)
2 over x and the nonlinear fitting algorithm to exper-

imental nonlinear Rayleigh wave measurements is shown in

Fig. 8, showing a wide range of propagation distances for

which the nonlinear curve fitting can be applied.
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Fig. 8 Comparison of nonlinear diffraction curve-fit model and linear

fit of normalized second harmonic amplitude over propagation distance

from Rayleigh wave measurements on thermally aged 2205 duplex

stainless steel [43] (reproduced from [40] with permission from Else-

vier)

Many aspects of the experimental set-up for nonlinear

Rayleigh wave measurements are similar to that of the con-

tact longitudinal methods. A sinusoidal wave is excited in

the source transducer with a high-power gated amplifier.

A longer excitation signal is generally preferred, since this

results in a longer steady state received signal. This facil-

itates accurate signal processing such that the instrumen-

tation response (e.g. transient response of the transducers)

can be removed before processing (FFT). Thus, for Rayleigh

waves, around 20–30 cycles is generally employed. The time

domain signal is detected at some distance from the generat-

ing source and recorded with a digital oscilloscope or other

data acquisition system, and averaged over many signals,

generally around 256–512 signals to improve the signal-to-

noise ratio. The signal is windowed and then the frequency

response extracted with an FFT. From this, the first and sec-

ond harmonic amplitudes can be determined. This process

is then repeated at increasing propagation distances, keep-

ing the input parameters constant and generally leaving the

source transducer (and its coupling conditions) intact. Then,

the source transducer is removed completely and remounted

to repeat the entire measurement set multiple times to achieve

statistically significant data. As shown in the example mea-

surements in Figs. 7 and 8, multiple measurements at each

propagation distance are averaged and one standard devia-

tion from the mean are shown in error bar form attached to

each data point. Since variations in nonlinear measurements

can be quite large, failing to report this error analysis greatly

discredits the work.

A variety of source and receiver configurations have

been successfully employed for nonlinear Rayleigh wave

measurements—specifically, wedge-contact generation

and/or reception [38,42,79,80], laser interferometer detec-

Fig. 9 Rayleigh wedge geometry

tion, comb transducer generation and detection [39], electro-

magnetic acoustic transducer (EMAT) detection [119,120],

and air coupled detection [41,64]. The following sections

discuss in detail some of these configurations.

3.2.1 Wedge-Contact Methods

Wedge-contact methods utilize an intermediary layer between

the transducer and the sample to satisfy phase matching con-

ditions. The wedge material is typically made of acrylic or

other plastic material, and is designed to mount the trans-

ducer at the angle required to excite the Rayleigh surface

wave in the sample. The wedge angle, θw, as depicted in Fig.

9, can be determined from Snell’s law:

sin θw =
cw

cR

(36)

where cw is the longitudinal wave velocity of the wedge, and

cR is the Rayleigh wave velocity in the sample. Acoustic cou-

pling is necessary between both the transducer and wedge,

as well as between the wedge and sample. Consistency in

the clamping force on the transducer to the wedge, as well

as on the wedge to the sample is also important. However,

consistent clamping force and uniform contact are difficult to

secure and this is the major source of scatter in this method.

3.2.2 Air Coupled Detection

Using air-coupled transducers for ultrasonic measurements

is not new, e.g. [121–125], but only recently have they

been applied to second harmonic generation measurements

[41,64]. These methods have shown considerable improve-

ment over wedge-contact reception methods since variations

in contact conditions on the receiving end are essentially

eliminated with the air-coupled detector. The air-coupled

transducer detects a longitudinal wave in air that is leaked

from the propagating Rayleigh wave in the sample. This com-

ponent can be determined through displacement continuity

considerations by relating the out-of-plane displacement of

the Rayleigh wave to the longitudinal wave displacement in

air [41,126]. One possible measurement setup is shown in

Fig. 10 [41]. The main components of the air-coupled detec-
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Fig. 10 Experimental setup of nonlinear Rayleigh wave measurement

with air-coupled transducer detection (reproduced from [41] with per-

mission from Elsevier)

tion system are the air-coupled transducer, which is mounted

a vertical distance z from the sample surface and at an angle

θR to accurately detect the leaked Rayleigh wave, and a

pulser-receiver to amplify the received signal. As in other

measurement systems, the received signal is averaged over

multiple signals to further improve the SNR.

The liftoff distance, which is defined as the vertical dis-

tance between the midpoint of the active area of air-coupled

transducer and the sample (z as shown in Fig. 10), should

be as small as possible to reduce attenuation and diffraction

effects in air. This distance should be kept as consistent as

possible throughout the measurements, or else the variation

must be accounted for—the attenuation coefficient of ultra-

sonic waves in air is much higher than in metals, so small

variations in z could greatly influence the amplitude of the

received wave. As such, a stable fixture for the air-coupled

transducer is required. Similarly, local areas of surface inho-

mogeneity, curvature, or surface roughness could change the

local liftoff distance, so care should be taken to ensure the

sample surface is polished flat; otherwise, these variations

must be characterized and accounted for.

Further details on this experimental setup can be found

in [41,64]. Note that air-coupled transducers have not yet

been used on the transmitting end of a second harmonic gen-

eration experiment. While the output of these transducers

can generate a high enough stress wave for second harmonic

generation in metals, the nonlinearity in air is so much larger

than in metals that the nonlinear response of the air would

dominate, masking the nonlinear response from the metal.

3.3 SHG Measurement Variations and Corrections

Variations in SHG measurements can arise from multiple

sources [102]. These can include differences in coupling con-

ditions between transducers and/or fixtures and the sample,

variations in clamping force for affixing transducers the sam-

ple. To accurately detect small changes in amplitude inher-

ent in SHG measurements, digitizers in the detection sys-

tem (oscilloscope or other A/D converter) must have high

enough resolution. Reflections from sample boundaries will

influence the measured β [127], so reflections in the received

signal from long signals should be avoided or accounted for

in analyses. Multiple measurements should be made by com-

pletely removing and remounting all fixtures from the sam-

ple and variations in measurements should be reported in all

SHG results. A comprehensive study on effects of system

nonlinear and measurement variations from positioning of

transducers, coupling effects, and signal processing can be

found in [102], along with experimental recommendations

to minimize measurement variations.

Care must also be taken in terms of post-processing of

measurements. For Rayleigh waves as described above, it

is crucial to account for attenuation and diffraction of the

first and second harmonic waves. For longitudinal waves,

losses such as attenuation must be accounted for if they are

non-negligible in the material and for the frequencies and

propagation distances measured. In some measurements, fre-

quency filtering of the first and second harmonic waves is

crucial. In absolute measurements this is critical in extract-

ing accurate values of β. In relative measurements, this is

needed for example if different transducers are used in dif-

ferent measurements—the frequency response of transducers

will bias the first and second harmonic differently.

4 Applications

There has been significant work in the past few decades aimed

at using second harmonic generation as an NDE technique for

early damage detection, by relating the acoustic nonlinear-

ity parameter to different microstructural features. The basic

models that relate the change in β to the evolution of different

microstructural features were reviewed in Sect. 2. This sec-

tion reviews the literature that applies SHG measurements

to monitor fatigue- and dislocation-based damage, thermal

aging, and radiation damage.

4.1 Fatigue- and Dislocation-Based Monitoring

Due to the strong link between second harmonic generation

and dislocations, a significant amount of work has focused on

monitoring fatigue damage with second harmonic generation

measurements. This problem was first considered from the

standpoint of fatigue crack contribution to harmonic gen-

eration e.g. [118,128], and later expanded to consider dis-

location motion, the development of dislocation substruc-

tures [129], and dislocation dipole contribution to β [45].

Cantrell later developed a more comprehensive theoretical

model to relate the change in magnitude of β due to a combi-
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nation of lattice anharmonicity, dislocation monopoles, dis-

location dipoles, and their substructures (e.g. persistent slip

bands, veins, channels) [51] that evolve during fatigue dam-

age. These detailed models relate β to percent of fatigue life

in wavy slip metals (e.g. in polycrystalline nickel [46] and

Al 2024 [51]), and 410Cb martensitic stainless steel [130].

These models have also been modified and applied to pla-

nar slip metals (e.g. IN100) [63], since the basic dislocation

structures that form during fatigue in both types of materials

are based on dislocation monopoles and dipoles. A struc-

tural health monitoring method for fatigue damage assess-

ment based in part on second harmonic generation measure-

ments and a probabilistic damage procedure [131] has been

developed to predict fatigue crack initiation. In a later paper,

Kulkarni and Achenbach [132] combined this crack initia-

tion prediction procedure with a fatigue crack growth predic-

tion model that incorporates imperfect inspections. A shift in

focus to this type of monitoring with SHG could help advance

the possibility of in-service applications of SHG measure-

ments.

Extensive experimental work has used SHG measure-

ments of β to monitor fatigue damage with a variety of wave

types and in a variety of materials, such as aluminum alloys

[45,51,117,118,129], nickel-based superalloys [38,63,74],

carbon steel [42,119,133], stainless steel [134], titanium

alloys [79,81,86], Inconel [79], and single crystal copper

[62]. Numerous experiments have shown that β increases

with increasing number of fatigue cycles and increasing

cumulative plastic strain e.g. [62,74,86,134]. The acoustic

nonlinearity parameter has shown to be more sensitive to

fatigue damage than ultrasonic linear parameters such as

wave velocity and attenuation throughout the earlier stages

of fatigue [86], which has also been shown by Nagy in 2090

aluminum with acousto-elasticity nonlinear measurements

[17] (note that this paper also measured nonlinearity in non-

metallic materials).

Monotonic increases in β over fatigue life have been the

most prevalent trend throughout the literature. Note that a

clear overarching trend of β over fatigue life is not realis-

tic, due to complex dislocation structures that form differ-

ently over different types of fatigue conditions and material

microstructures. Cantrell and Yost measured a monotonic

increase in β throughout fatigue in Al-2024 T4, which was

in good agreement with their theoretical model that consid-

ered dislocation monopole and dipole contributions to β [45].

Frouin et al. [86] measured acoustic nonlinearity in fatigued

Ti-6Al-4V, showing β increased by 180 up to 40 % of fatigue

life. Barnard et al. [79] measured β in a Ti and Ni alloy dur-

ing low and high cycle fatigue—measurements on the Ni

alloy showed a general trend of increasing β over increasing

fatigue life, though noise in the data obscured the results.

Kim et al. [74] measured an increase in β in nickel superal-

loys throughout low cycle fatigue, and a slower and noisier

increase in β throughout high-cycle fatigue life with longi-

tudinal waves. The trend of measured β in the same nickel

superalloy was found to be similar in Rayleigh wave mea-

surements [38], indicating the change in acoustic nonlinear-

ity parameter is independent of wave type used. Note that a

similar trend of an initial sharp increase in β followed by sat-

uration at higher fatigue cycles was also seen with nonlinear

Lamb waves in an Al-1100 alloy [84]. Measurements in A36-

type steel under low cycle fatigue also showed a monotonic

increase in β, which also followed a similar trend to measured

strain over increasing number of fatigue cycles [42]. Most

recently, Apple et al. [62] measured β in fatigued single crys-

tal copper, and measured dislocation density and loop length

using TEM analysis. Experimental results roughly showed

a dependence of β on the square root of cumulative plastic

strain.

Two peaks in the measured nonlinearity over fatigue life

have been measured in a few cases. Ogi et al. [119] reported

on EMAT measurements of β on fatigued steel rods, and

saw an increase in second harmonic amplitude with increas-

ing fatigue cycles up to about 60 % fatigue life, where the

authors reported A2/A1 as the nonlinearity, as opposed to the

conventional definition of nonlinearity, (A2/A2
1). Rao et al.

[117] measured β using Rayleigh waves throughout low-

cycle fatigue of Al-7075, also showing two peaks in nonlin-

earity throughout fatigue life. Their thorough study consid-

ered three different samples under the same fatigue condi-

tions, for two different sets of fatigue parameters. This dual-

peak in β over fatigue life was similar to that observed by Ogi

et al. [119]. Although, the authors did not account for attenu-

ation effects in their measurements of second harmonic gen-

eration, and the measured attenuation coefficient was shown

to peak around the same percentage of fatigue life as the sec-

ond SHG peak. A different trend was observed by Kumar et

al. [135], where an ultrasonic fatigue system was adapted to

make nonlinear measurements. This study and others showed

a correlation between measurements and fatigue behavior in

different aluminum alloys [136,137]. However, the relation-

ship between β and the measured second harmonic wave

generated from this resonance system was not used. This

relationship has actually been developed previously, for both

classical nonlinearity from a standing wave system as well

as hysteretic nonlinearity [138].

Detection of other dislocation-based damage mecha-

nisms, aside from fatigue, has been demonstrated with SHG.

The sensitivity of β to cold work, which produces a signifi-

cant amount of dislocations, along with residual stresses has

been shown by Viswanath et al. [58] in measurements in

cold-worked 304 stainless steel. The results showed a posi-

tive correlation of β with percent cold work, and also with

yield strength and tensile strength. Results were explained in

terms of dislocations and dislocation substructures formed

during cold rolling. Cold work and residual stresses due
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to surface shot peening has also been shown to increase β

measured with Rayleigh waves in Al-7075 [80]. Measure-

ments of β have also been correlated with increasing car-

bon content in quenched steel specimens [99], which was

attributed to increasing amounts of dislocations with carbon

content and interpreted using the Hikata et al. model [4].

Shui et al. [139] used SHG measurements to track monotonic

loading effects on an AZ31 magnesium–aluminum alloy

using longitudinal waves in different locations. The authors

interpreted the experimental results with a previously devel-

oped microplasticity model [140]. Herrmann et al. [38] also

looked at effects of monotonic loading in a nickel superal-

loy on the acoustic nonlinearity parameter using Rayleigh

waves. Results showed an increase in β, where the increase

was much greater in the initial stages of applied stress in

monotonic loading. Rao et al. [141] measured β in Al-7175

samples that were deformed under strain-controlled tensile

tests, and compared results to X-ray diffraction measure-

ments. Results showed that β was location-dependent along

the gauge length.

While the strong link between dislocation-based micro-

structural evolution and the acoustic nonlinearity parameter

has been well-established throughout numerous experiments

and developed models, care must be taken when applying

similar analyses to interpret β measurements on different

materials under different damage conditions. For example,

dislocation monopoles were shown to be the dominant mech-

anism of nonlinearity in fatigued single copper crystals [62],

but as pointed out by Apple et al., this does not apply for

other wavy slip metals such as Al-2024 or planar slip metals.

Analysis is further complicated by the fact that techniques

e.g. TEM capable of determining microstructural parameters

such as dislocation density and dislocation loop lengths can

have substantial variation. This variation in measured para-

meters has been reported to propagate out to a standard error

in theoretical calculations of β of up to 70 % [62]. Further,

TEM measurements only look at a volume of material that

is orders of magnitude smaller than typically insonified vol-

umes for SHG measurements. The key aspect to interpreting

these dislocation-based SHG measurements, as shown par-

ticularly in the numerous SHG measurements over fatigue

damage, is that specific dislocation substructures and evolu-

tion in the material system measured is crucial for accurate

SHG measurement evaluation.

4.2 Thermal Aging Monitoring

Significant work has considered the effect of microstructural

features that evolve throughout thermal aging, such as pre-

cipitates, vacancies, and voids, to the acoustic nonlinearity

parameter. This has potential applications in monitoring over-

aging or embrittlement of critical structural components at

elevated temperatures. Previously explored materials range

from aluminum alloys [47,48,129,142], Inconel alloys [33,

100], titanium alloys [97,143], ferritic steels [49,101,144],

stainless steels [43], and maraging steels [87,145].

Second harmonic generation due to precipitation during

thermal aging was first suggested by Yost and Cantrell [129].

Initial experimental evidence showed an increase of about

10 % in β throughout the heat treatment of Al-2024 from the

T4 to T6 temper. They pointed out that the change in β due to

fatigue was much greater than changes due to precipitates, but

that precipitate structures could greatly affect the dislocation

structure and interactions during fatigue. Further exploration

by Barnard et al. [33] on thermally embrittled Inconel 718

showed that with increasing heat treatment time, β increased

then decreased in one heat, and only decreased in the other

heat investigated. However, the increase in β was perhaps

only a result of a decrease in A1, since at this measurement

A2 was below the noise floor of the signal. Results were

compared to small punch test results, and changes in β dur-

ing heat treatments were attributed to coherent second phase

precipitates that formed and ultimately lost coherency with

the matrix, and differences in β between the two materials

were attributed to platelet phases that formed in one mater-

ial and not the other—potential evidence that grain structure

influences nonlinearity.

Theoretical models were developed that related changes

in β to coherency strains in the matrix [142], which were

due to precipitates in the matrix. Experiments showed that β

was proportional to the volume fraction of precipitates and

the effective misfit of the precipitate in the matrix. Cantrell

and Zhang [47] further modified this model to incorporate

dislocation and precipitate interactions to describe changes

in β. Yet another model was developed to relate both the

growth of precipitates and nucleation of precipitates to β

[48]. This model was then compared to experimental mea-

surements of β (from [129]) measured over precipitation heat

treatment time in Al-2024 from the T4 to T6 temper. Results

were consistent with the fact that most precipitates nucle-

ate within the first portion of heat treatment time in Al2024,

and showed an increase in β after short aging times, then a

decrease in β (to below the value in the unaged state) with

increasing aging time, and then a second increase in β at

even longer aging times. While supported by experimental

evidence, these precipitate-pinning models assume the stress

field of all the precipitates influence some dislocation seg-

ment at the low stress amplitudes of SHG measurements,

which for materials with low dislocation density or low pre-

cipitate volume fractions might not be the case.

Measurements of β have been made in a variety of mate-

rials subjected to thermal aging. Hurley et al. [49] measured

β in ASTM A710 steel that was heat treated to produce

varying amounts of precipitate hardening. Results were com-

pared to inhomogeneous strain. The paper shows a positive

correlation between β and strain, but only results from one
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sample set was convincing—the results from the second sam-

ple set does not show a clear linear trend between β and strain.

A modified model from [47] is used to express the contribu-

tion of β from precipitate and dislocation interactions, but

experimental results could not be compared to this model

since the authors were unable to measure dislocation density.

Measurements of β in heat treated CrMoV have been cor-

related to fracture toughness measured from Charpy impact

experiments [146]. The authors attribute the change in β to

segregation of impurity elements to grain boundaries, but

they provide no theoretical or physical basis for the contri-

bution of this effect to nonlinearity. Park et al. [147] mea-

sured β over isothermal aging and creep of 9-12Cr ferritic-

martensitic steel and compared measurements to metallurgi-

cal analyses. Results consistently showed a drastic decrease

in β followed by a gradual increase, over different aging

temperatures, which the authors correlated to changes in dis-

location density and second phase distributions. Abraham

et al. [148] correlated an increase in β with sensitized 304

stainless steel subjected to intergranular corrosion. Note that

Lamb waves have also been utilized to measure β during

thermal aging of a ferritic Cr-Ni steel [149].

Metya et al. [145] studied SHG in thermally aged C-250

maraging steel, showing a maximum increase of β at peak

hardening. Results were interpreted with X-ray diffraction

and TEM results, showing Ni3Ti and FeTi precipitate for-

mation followed by coarsening with increasing heat treat-

ment times. Unfortunately, the authors do not mention the

measurement error for β, which greatly weakens the paper’s

conclusions. In a separate work, Viswanath et al. [87] mea-

sured β in M250 grade maraging steel subjected to thermal

aging of varying times. Results show a linear increase in β

during the middle stages of heat treatment time, which the

authors explain is due to precipitation of Ni3Ti that causes

microstrain. The authors used a prior theoretical model [142]

to explain their results. Work by Li et al. [100] measured β,

attenuation, and ultrasonic velocity in heat treated Inconel X-

750. Results showed that β was more sensitive to microstruc-

tural changes than linear measurements—the change in β

was up to 70 % compared to a 16 % change in attenuation

and 0.8 % change in ultrasonic velocity.

Recent work by Ruiz et al. [43] measured β over increas-

ing thermal damage in 2205 duplex stainless steel, as well

as attenuation, and ultrasonic velocity. Results showed the

nonlinearity parameter was more sensitive to thermal aging

than the linear parameters—β increased during the initial

aging time, then decreased and increased with increasing

aging time. Changes in β were attributed to the increasing

formation of the sigma phase over increasing time of ther-

mal aging as measured by SEM analysis, results of which

correlate to degradation of impact properties of the stainless

steel. Nucera et al. [98] developed a model for the effect of

thermal stresses on second harmonic generation with varying

temperature loads. Their model incorporates the anharmonic

interatomic potential of energy absorbed during an applied

temperature load. Experimental results confirm an increase

in β as a result of an increase in temperature of a constrained

steel sample, although the authors did not consider all other

effects from experimental factors and contributors to nonlin-

earity in the analysis.

In summary, microstructural evolution throughout ther-

mal aging of metals has shown to be detectable with SHG

measurements. However, differences among different sam-

ples such as texture or preferred grain orientations in a mate-

rial microstructure have also been shown to influence β. In a

study on a heat treated titanium alloy, Mukhopadhyay et al.

[143] correlated cooling rates with scatter in the nonlinear-

ity parameter, attributing measurement variation to texture,

grain size, and grain orientation. So, care must be taken to

characterize and account for these variations to unambigu-

ously link β with microstructural changes that are early indi-

cations of thermally-induced material degradation. Further,

it is crucial to relate measurements of β to microstructural

features (e.g. precipitate formation) and then to macroscopic

damage (e.g. embrittlement). Different microstructural fea-

tures can lead to the same type of material degradation, and

since β is sensitive to microstructural features, this link can-

not be skipped.

4.3 Creep Damage

Creep damage has also been studied using SHG measure-

ment techniques, which are realized due to the combina-

tion of dislocations, precipitates, and voids that form dur-

ing creep. Baby et al. [97] measured the acoustic nonlinear-

ity parameter in a titanium alloy subjected to creep damage,

which produced an increase of volume fraction of voids in the

microstructure. Results showed an increase in β up to about

60 % of creep life, followed by a decrease in β, with a maxi-

mum of about a 200 % increase. They attributed the increase

in β to the increase in volume fraction of microvoids, and the

decrease in β to an increase in the damage scale caused by

coalescence of the microvoids as seen by optical microscopy.

Balasubramanian et al. [150] studied changes in β (along

with the third harmonic and static components) in creep frac-

ture pure copper specimens using a low amplitude excita-

tion method based on [106]. However, it is difficult to dis-

cern meaning from the results due to the lack of thorough

discussion on the complex creep testing matrix compared

with the ultrasonic measurements, and their newly developed

measurement technique of utilizing low amplitude excitation

showed an error of up to 50 %. Still, results indicate that a

more accurate measurement of β at low drive amplitudes

could provide useful microstructural information relating to

creep damage. Valluri et al. [151] and Narayana et al. [152]

reported measurements of the static component and second
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and third harmonic amplitudes at the typical higher excita-

tion amplitudes in pure copper material in continuous and

interrupted creep-induced damage. Measurements showed a

greater sensitivity of the third harmonic to creep damage.

Kim et al. [153] measured β in IN738 alloys subjected to

high-temperature creep. Measurements were made at mul-

tiple time intervals leading up to failure, in comparison to

field emission scanning electron microscopy of Ni3 Al pre-

cipitates. Results showed a monotonic increase in β with

increasing fraction of fatigue life for specimens under dif-

ferent static loads; unfortunately, β measurement error is not

reported, again, weakening the paper’s conclusions. Note that

the previously discussed paper of Park et al. [147] monitored

creep damage as well, indicating the applicability of SHG to

detect early stage creep damage.

4.4 Radiation Damage

Recently, second harmonic generation measurements have

been used to monitor radiation damage in structural material

[75,76,154]. Actually, an early work measured second har-

monic generation in neutron irradiated copper single crystals

[2]. These copper single crystals were annealed and neutron-

irradiated to 3.6 × 1015 n/cm2. Results showed a decrease

in second harmonic amplitude as well as in measured atten-

uation due to neutron bombardment, which the authors pos-

tulated was caused by the pinning or immobilization of dis-

locations in the irradiated material. Current work [75,76]

has focused on detecting radiation-induced embrittlement, a

result of microstructural features such as precipitate phases,

dislocations, and defect clusters, in nuclear reactor pressure

vessel steel material [155]. Note in comparison to the irra-

diated copper single crystals, the neutron fluence for reactor

pressure vessel materials is about 1–3 × 1019 n/cm2 (E >

1 MeV) after 40 years of operation, and significantly higher

for internals materials closer to the fuel rods. Note that the

explanation offered by Cash and Cai [55] that the decrease

in β due to irradiation in single crystal copper in [2] is pos-

sibly due to the reduction of dislocation dipole contribution

to β does not apply to irradiated RPV steels, since disloca-

tion dipoles do not form during irradiation and are extremely

unlikely to be present in the as-annealed materials.

Recent work shows that the acoustic nonlinearity parame-

ter is sensitive to microstructural changes in reactor pressure

vessel steels induced by increasing neutron fluence, differ-

ent irradiation temperatures, and different material composi-

tions [75,76]. Similar trends of β over neutron fluence were

measured in two separate low-alloy steel materials, and β

increased up to a roughly 5 × 1019 n/cm2 followed by a

decrease. A model for the change in β due to precipitate for-

mation over different irradiation parameters generally agreed

with experimental results.

4.5 Other Damage Types

SHG techniques have been utilized for a variety of other

types of damage. Rayleigh waves have been used to inter-

rogate coating damage [116], although no evidence of coat-

ing damage over the stress levels was provided. In another

work, Rayleigh waves were used to monitor stress corrosion

cracking in carbon steel, over increasing applied stress [156].

Results were consistent with the theory of nonlinearity gen-

erated by cracks developed by Nazarov and Sutin [52].

There has been extensive work done on monitoring crack-

ing in a variety of materials with SHG techniques. The phe-

nomenon of contact acoustic nonlinearity, directly related

to nonlinearity generated from crack interfaces, has been

utilized to interrogate material interfaces [50,128,157] and

bonds [158,159]. This contact acoustic nonlinearity has

shown to be much stronger than material nonlinearity [160].

SHG has been used to monitor for example hydration

processes in concrete [161], but SHG in concrete has not

been widely realized as of yet due to high attenuation effects

of the second harmonic in this material.

5 Conclusions and Future Outlook

Second harmonic generation measurement techniques have

the unique capability to detect microstructural changes in

metals prior to macroscopic cracking. While these methods

have been studied for many decades, they have received con-

siderable attention in the recent literature in efforts to address

safe and effective operation of the aging infrastructure of

transportation, energy industries, and defense systems. This

article reviews the different microstructural contributions to

the acoustic nonlinearity parameter β, and the variety of mea-

surement systems developed to date for longitudinal wave

and Rayleigh wave SHG measurements of β. Applications

of β to fatigue and other dislocation-based material dam-

age, thermal aging, creep damage, and radiation damage are

discussed.

Limitations should be kept in mind with any SHG mea-

surement technique. Scatter in SHG measurements is a well-

documented issue, and can be considerable if care is not taken

during experimentation to eliminate, minimize, or account

for all sources of variation (set up, contact conditions, sample

preparation, texture, etc.). The inherent scatter in measure-

ments of dislocation density and loop lengths in microscopy

methods such as TEM complicate the comparison of experi-

ment to theory. Some microscopy techniques also only look

at an extremely small region of the material compared to the

volume of the interrogating ultrasonic wave. So, any local

heterogeneity should be considered during analysis of SHG

measurements, since SHG is a global average of the interro-

gated volume of material.
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In terms of future thrusts with SHG measurement tech-

niques, the development of air-coupled and laser-based

detection systems will be crucial for monitoring real com-

ponents and structures. In real components, surface condi-

tions can be extremely variable and direct surface access is

not necessarily possible. At the same time, it is necessary

to continue to push the controlled laboratory-type measure-

ments to better understand SHG in terms of microstructural

changes and effects, and to continue to develop physics-based

materials models to relate nonlinear ultrasonic wave propa-

gation to material microstructural changes. The thrust of the

extensive model development relating SHG to microstruc-

tural evolution throughout fatigue [46,51,63,140] serve as

a guide for future model development for other microstruc-

tural contributions to β, and should be reciprocated in other

damage types. Further, absolute measurements of SHG have

only been realized in controlled laboratory settings, and are

not yet feasible for anywhere near an in-situ measurements.

And, components that SHG measurements could be applied

to and useful for will most likely not have a baseline (i.e.

β0) measurement of SHG to compare, which is absolutely

necessary for the interpretation of relative measurements

of β. So, either the development of a system for a practi-

cal absolute measurement of β is needed, or a calibration

system will need to be developed. SHG measurement sys-

tems that can be incorporated on components from the start

of operation may be a promising focus for newly designed

structures. Finally, there is substantial evidence that β can

monitor microstructural evolution leading to macroscopic

damage. However, studies using β to predict remaining use-

ful life or damage of structural components has been lim-

ited. A focus on this aspect would have extremely impor-

tant applications in the area of structural health monitoring

[131,132].
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