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Abstract 

This literature review considers the problem of finding a suitable 

configuration of sensors and actuators for the control of an internal 

combustion engine. It takes a look at the methods, algorithms, 

processes, metrics, applications, research groups and patents relevant 

for this topic. Several formal metric have been proposed, but practical 

use remains limited. Maximal information criteria are theoretically 

optimal for selecting sensors, but hard to apply to a system as 

complex and nonlinear as an engine. Thus, we reviewed methods 

applied to neighboring fields including nonlinear systems and non-

minimal phase systems. Furthermore, the closed loop nature of 

control means that information is not the only consideration, and 

speed, stability and robustness have to be considered. The optimal 

use of sensor information also requires the use of models, observers, 

state estimators or virtual sensors, and practical acceptance of these 

remains limited. Simple control metrics such as conditioning number 

are popular, mostly because they need fewer assumptions than 

closed-loop metrics, which require a full plant, disturbance and goal 

model. Overall, no clear consensus can be found on the choice of 

metrics to define optimal control configurations, with physical 

measures, linear algebra metrics and modern control metrics all being 

used. Genetic algorithms and multi-criterial optimisation were 

identified as the most widely used methods for optimal sensor 

selection, although addressing the dimensionality and complexity of 

formulating the problem remains a challenge. This review does 

present a number of different successful approaches for specific 

applications domains, some of which may be applicable to diesel 

engines and other automotive applications. For a thorough treatment, 

non-linear dynamics and uncertainties need to be considered together, 

which requires sophisticated (non-Gaussian) stochastic models to 

establish the value of a control architecture.  

Introduction 

Current design processes of internal combustion engines are based on 

experience and incremental improvements, which may not lead to the 

optimal control architecture. Engines are designed to meet certain 

emissions regulations and performance criteria, subject to cost 

constraints. As with any trade-off, certain sensors and actuators can 

cause the engine to perform optimally for one subsystem, like 

aftertreatment, but can inhibit the performance for another, such as 

air system control. Various sensors measure variables such as speed, 

pressure and temperature to maintain torque and emissions control. 

However, often the systems controlling them are legacy-based 

implementation rather than utilising optimised control methods. We 

aim to find optimised control systems based on assessment metrics 

including degrees of freedom, open-loop performance, closed-loop 

performance and other metrics related to controllability/observability. 

The issue of optimal control architecture is not exclusive to engines 

and is applicable to many different areas of engineering. We aim to 

review the decisions and methods used to select sensors and actuators 

for different applications. The wider goal of this work is to identify 

potential areas of research that can be used to design suitable sensor 

and actuator configurations for different design trade-offs. This can 

potentially lead to the reduction of physical sensors and actuators 

used on engines and other applications. 

Review of Sensor and Actuator Configurations 

Selection Criteria Methods 

Methodology 

Initially, search terms were divided into 3 sections. Firstly, Sensors 

and Actuators, which included Sensor Signal Processing and 

Actuator, combined with the terms Virtual, Placement, Selection, Fit, 

Set, Observability, and Detectability. Secondly the list of Control 

Metric search terms included: Fault Tolerant Sensor, Object Oriented 

Architecture Control, Sensor Redundancy, Plant Domain Control, 

Input-Output Methods Control, Controllability, Right Half Plane 

Zeros, Manipulation and Estimation, Robust Stability, Maximum 

Entropy Sensors, and Optimal Sensor Placement Industry. Finally, 

the terms Actuator, Signal Processing and Sensor, were combined 

with the industrial search terms: Internal Combustion Engine, Power 

Plants, Process Control, Automotive and Aeronautical. 

For the searches, the following databases were used due to the 

flexible search capabilities (we focused mainly on the first two due to 

their relevance within the field): 

• Institute of Electronic and Electrical Engineers (IEEE) 

• Society of Automotive Engineers (SAE) 

• National Aeronautics and Space Administration (NASA) 

• Web of Science 

• Scopus 

• Compendex 

The initial search terms had demonstrated where literature could be 

found, however it did not give any indication of what could be learnt 

from the literature, or the level of relevance of the results. To deal 

with this problem an alternative form of filtering was applied. A 

question based filter was created to ensure that the information 

contained in the review answers these questions. The questions of the 

filter were: 

1. Which industries use sensor/actuator selection filters? 

2. Which methods are used in sensor/actuator selection? 

3. What are the specific challenges of engine control? 

4. How much data can you get through sensor/actuator signal 

processing? 

5. Optimisation - What does it mean to be better? 

6. Which specific sensors/actuators are suitable? 

7. How do you define a good sensor/actuator? 
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8. Specific examples of where sensors/actuators are being 

used in industry? 

After using the question based filter, the literature was then organized 

into four main areas: Industrial Uses, System Models, Optimization 

and Control Metrics. Initially we focused on recent literature to 

assess current selection methods used, and followed this up by 

reviewing older literature to complete the assessment of the 

questions.  

Doctorate documents were not included as part of this review. 

Additionally, this review does not include an assessment of the 

economic costs saved by doing this work. Typically, this is not 

discussed in the literature explicitly, as this information is usually 

confidential. Our aim is to give insight into what research could be 

done, but the full implications requires in-depth technical 

assessments to be carried out, so that the trade-offs between 

performance and costs, including effort, are understood. 

Industrial Applications 

This section outlines examples of industrial examples of where 

sensors and actuators have been selected for different applications. 

The selection criteria and development of the control architecture all 

differ, thus optimal selection methods could be applicable in these 

examples. 

Onen et al [1] summarizes the design of a lower extremity 

exoskeleton (wearable robots), named walking supporting 

exoskeleton (WSE). There are three stages in the WSE design: 

mechanical design, actuator selection, and controller design. 

Actuators used in exoskeleton applications are required to provide 

high torques while operating in high speeds. Therefore, DC 

servomotors are used as actuators because of their compactness, 

lightweight design, energy efficiency and controllability. Many 

criteria are used to select actuators including torque-mass ratio, 

velocity, range of motion, and controllability. 

Control of wireless actuators in the process industry faces many 

challenges including feedback latency and battery longevity. Blevins 

et al [2] demonstrate how traditional control methodologies can be 

modified to effectively work with general wireless communication 

and achieve control of a wireless valve. They propose a modified 

Proportional-Intergral-Derivative (PID) Controller known as 

PIDPlus. Blevins et al propose a unique time-to-apply field when 

sending the output value to a wireless valve. This field specifies a 

time in the future when the output value takes effect. The implied 

valve position is calculated using the target position communicated to 

the valve and the time specified when the valve should take action. 

The proposed concepts were successful in controlling an industrial 

size flow process with wireless sensors and actuators. 

S Puliyakote et al [3] used signal processing tools on Acoustic 

Emission (AE) from engine cylinder liner to identify faults found in 

critical engine components. Faults from a small petrol engine were 

recreated such as the engine running with worn out piston rings and 

under lubricant oil level. The benefits of AE are that it is non-

intrusive and has good signal to noise ratio. Additionally, there are 

many sources of AE within an engine including valve impacts, fluid 

flow, combustion and sliding and rolling contact. In their case an AE 

sensor was attached to the periphery of the cylinder liner to collect 

the signals. The signal was then successfully processed to emphasise 

the characteristics of the faults in lubricant oil studies. 

J Xiaojing et al [4] proposed the general design plan of networked 

testing platform for internal combustion engine based on virtual 

instrumentation. The state parameters, transducers models, 

configuration plans and signal condition circuits were implemented. 

Two types of state parameters were used: structure and diagnosis. 

The structural parameters determine the technical condition, whereas 

diagnosis parameters are the indexes which are contacted with the 

structure parameters and show the technical state of the structure. A 

simple PID controller is used to control the virtual instrumentation. 

Three parts were used in the design of the signal acquisition and 

condition system’s hardware: Central Processing Unit, signal 

measurement and data conversion. At time of publication the design 

platform was considered ‘prospective and open’. 

S Mohanty et al [5] characterize a wireless MEMS capacitive 

accelerometer for Industrial ball mill applications. The selection 

parameters include demands that the sensor is capable of mounting 

on a rotating platform, with higher value of acceleration, sensitivity, 

and wide bandwidth of operation. Higher sensitivity causes problems 

for the range of acceleration and the bandwidth of operation. An 

assessment of the sensor principles is described as well as 

performance at different tilt angles and rotational speeds. 

M Raoufat et al [6] proposed a new approach to design fault-tolerant 

wide-area damping controllers (WADCs). Power system security is 

provided using actuator redundancy. When an actuator fails, 

mechanically or through miscommunication, the supervisory 

controller redistributes the control signals to the remaining actuators 

of the system. Multi-objective H-2 and H-∞ optimization with linear 

matrix inequality pole placement region was used in the design of the 

WADC to achieve high damping performance. As part of the fault 

tolerance, virtual actuators (VAs) are designed to manage actuator 

failures without the need to redesign the nominal WADC. These are 

made using a reconfiguration block, which is controller independent 

and only needed to know that the actuator is unavailable.  

H Husted et al [7] developed a new sensor that directly detects the 

particles passing through the diesel particulate filter (DPF) and 

estimates the cumulative particle flow. New threshold levels for 

diagnosis have required new approaches as opposed to using 

feedback from differential pressure sensing across the filter. Due to 

high temperatures in the after-treatment, requirements of the 

particulate matter (PM) sensor include: Wide operating temperature 

range, Rugged and robust to exhaust exposure, Quick time to sensor 

ready, Accurate, Features to support diagnostic requirements, 

Provision for regeneration (heater), Wide exhaust velocity range, 

Senses near centre of exhaust pipe, and Robust to water condensate 

exposure. Physical placement of the sensor is also critical for quick 

sensor operation as the farther back from the DPF it is, the longer the 

delay to reach the dew point temperature, which is due to the large 

thermal mass of the DPF.  

J Alfaya et al [8] considered the problems of cooling and energy 

management by designing a multivariable robust controller for a one-

stage refrigeration cycle and performing controllability analysis. The 

objective of the system was to maintain the temperature of the cold 

room at a desired value. Therefore, its controlled variables include 

the superheating degree of refrigerant at the evaporator outlet and the 

outlet temperature of the evaporator secondary flux. The manipulated 

variables are the electronic expansion valve opening and the 

compressor speed. Multivariable linear models are identified at 

several operating points, and a nominal one is chosen to minimize 

uncertainty. Challenges in the design included the speed of response, 

consequently, the compressor, the expansion valve and the thermal 

behaviour of secondary fluxes are statically modelled, whereas, for 

heat exchangers dynamical models are developed. Alfaya designed 

an H-∞ controller, based on unstructured uncertainty, using the 

Mixed Sensitivity Problem approach. 

 

 

 

 
Table 1. Summary of industrial uses and their applications. 
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Authors Industry Applications 

Onen [1] Medical Exoskeletons 

Blevins [2] Process Wireless Actuators 

Puliyatoke [3] Automotive Acoustic Emission 

Xiaojing [4] Automotive Testing platform - Virtual Instrumentation 

Mohanty [5] Materials MEMS Accelerometer 

Raoufat [6] Power Systems Virtual Actuators 

Husted [7] Automotive Particulate Matter Sensor 

Alfaya [8] Energy Management Refrigeration System 

 

Even though the applications described come from different 

industries, each example describes methods that could be applied to 

sensor selection in for internal combustion engines to at least some 

degree. Later we will assess optimisation techniques from the 

aeronautical industry, where optimal placement methods are 

described extensively. 

System Models 

In order to consider transducers, it is essential to understand how they 

interact with the process under control, and this is usually achieved 

with a system model. In this paper, three fundamental types of 

dynamic models are considered: State Space, Modal Domain and 

Physical Models. 

State Space 

Many of the papers reviewed investigated control in linear systems. 

This is probably due to the fact that simple linear models and 

simulations can be produced to verify the control strategies. Franzè et 

al [9] and Munz [10] et al apply their fault tolerance and sensor 

placement algorithms, respectively, to linear discrete-time systems. 

Lee [11] defines degrees of freedom of control in linear systems. The 

main issue with linear control is that it does not represent real 

systems well because too many assumptions are made, and generally 

automotive systems are nonlinear. A whole engine has too many 

degrees of freedom for different domains to be modelled linearly, 

however, individual sections at particular operating points can be 

modelled, and scheduled state space control techniques can be 

applied.  

Modal Domain 

Another system model that control analysis has been performed on in 

this area is in the modal domain. Frequency-based control has been 

extensively researched. In addition to linear systems, Lee [12] defines 

controllability metrics in the modal domain. These are in the form of 

controllability and observability Gramian matrices. 

Automotive engine efficiency is significantly dependent on the 

performance of the sensors and actuators installed. Sliding Mode 

Observers (SMO) are widely used for fault diagnosis of dynamical 

systems. The key attribute of nonlinear SMO is its robust nature. 

However, multiple filters are used for state/parameter estimation, 

which may lead to corruption in results. Q Ahmed et al [13] proposed 

a Second Order Sliding Mode Observer for virtual sensors to monitor 

Air Intake System (AIS) health including engine air intake path 

sensors, manifold pressure sensor and the crankshaft position sensor. 

The scheme provided an estimate of immeasurable parameters, 

redundancy of sensors and effective monitoring. If AIS performance 

is ensured, the standard stoichiometric ratio can be maintained. On 

the other hand, a faulty pressure sensor can lead to: Exhaust gases 

and gas smell, rough idling, poor fuel economy, and hesitation (poor 

pick up). These faults can be due to bias or drift in sensor outputs. As 

a preventative measure, early diagnosis of sensor health in addition to 

the correct selection is necessary. 

Physical Models 

For more complex systems, physical descriptions of the system are 

necessary. The physical models often use computational models to 

determine the necessary inputs and outputs of the control system 

rather than relying on closed-loop feedback. The Mean Value Engine 

Models (MVEMs) approximates the behaviour on a mean value 

timescale of complex parts. The MVEM can be based on either State 

Space or Physical models. 

M Meza-Aguilar et al [14] proposed an observer-based controller for 

an internal combustion engine. This estimator is based on sliding 

mode algorithms, providing a finite time and robust estimation, using 

only measurements from the velocity of the engine. The engine speed 

control is complicated. Usually, these controllers are based on 

MVEMs because it can describe the behaviour of spark ignition (SI) 

engines. This controller was made using observer design, Engine 

Adaptive Back-stepping controller design and actuator higher order 

sliding mode controller design. The states of the SI engine included 

fuel film flow or mass, crank shaft speed and manifold pressure 

described by the differential equations; and the control inputs are 

injected fuel flow rate, spark advance and port and throttle air mass 

flow. 

Fresh charge mass trapped in-cylinder at the end of the gas exchange 

process is a particularly difficult variable to measure, especially when 

the throttle position, intake air pressure and engine speed are 

instantaneously changing. Jingping et al [15] proposed a virtual 

instrumentation set up consisting of two dynamic pressure 

transducers to measure pressure fluctuation near the intake and 

exhaust ports and a descriptor control system. Therefore, the fresh 

mass and un-swept burnt mass fraction trapped in the cylinder can be 

calculated throughout the process. The pressure signals are coupled to 

the numerical solver of a 1-D gas exchange simulation, which is 

modelled using thermodynamics and hydrodynamics equations (see 

figure 1). Using the instant flow area at valve locations and the 

descriptor model, the instantaneous gas mass flowrate through the 

engine intake and exhaust ports can be calculated. Only the section 

between the intake and exhaust pressure transducers is modelled 

which reduced modelling complexity. 
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Figure 1. The Virtual Air Flow Meter Set Up proposed by L Jingping et al 
[15] showing the experimental engine and locations of transducers. 

 

U Vaidya et al [16] proposed an explicit formula for the 

controllability and observability Gramians as a function of actuator 

and sensor locations and the advection velocity field. The Gramian 

based approach is one of the systematic approaches available for 

optimal placement of actuators and sensors, as their locations are 

based on where the degree of controllability and observability of the 

least controllable and observable state is maximized. The problem of 

actuator and sensor placement in a linear advection PDE is studied, as 

this approach is particularly useful for the control and detection of 

temperature and air quality. In order to achieve effective control over 

shorter duration of time, actuator placement must be in a location 

where system dynamics expands and spreads over a larger region of 

the phase space. Moreover, it is shown that the ergodic properties of 

the vector field are an important factor in actuator and sensor 

placement for a model based on linear advection. 

Additionally, Lee [17] defined controllability Gramians for descriptor 

based systems, but we will discuss this later in the assessment of 

control metrics. 

Ma et al [18] developed an adaptive valve lift control strategy to 

improve the intake valve lift repeatability. Electro-pneumatic valve 

actuators (EPVA) were used as they can control the opening timing, 

duration and lift of both intake and exhaust valves. The variable valve 

actuation enables variable valve timing. A descriptor based approach, 

of linearizing the physics (flow and fluid dynamics, was used to make 

a control-oriented model. The model reduces computational effort 

and enables real-time implementation. An adaptive parameter 

identification algorithm using model reference technique and MIT 

rule (developed by Astrom et al [19]) were utilized to estimate the 

two damping coefficients at both opening and closing stages. The 

identified parameters are then used to construct the feedforward 

control as part of the closed-loop valve lift Proportional-Integral 

controller. The MIT rule uses the error between the model and plant 

outputs to generate the estimated model/plant damping ratio 

corresponding to the plant/model damping ratio, and is updated at 

every valve event.  

 

 

 

 

 

 

 

 

Table 2. Summary of system models 

Authors System Model Application 

Franze [9] 
State Space Discrete time linear systems 

with bounded disturbances 

Munz [10] 
State Space Sensor and Actuator Placement 

– H-2 and H-∞ 

Lee [11] State Space Controllability 

Lee [12] Modal Domain Controllability 

Ahmed [13] Modal Domain Virtual Sensors - Sliding Modes 

Meza-

Aguilar [14] 
Physical Model Mean Value Engine Model 

Jingping [15] Physical Model Virtual Air Flow Meter - ICE 

Vaidya [16] Physical Model Linear Advection PDE 

Lee [17] Physical Model Controllability 

Ma [18] Physical Model Valve Actuator - ICE 

 

Relevant types of system models that can be used to aid sensor and 

actuator selection for suitable configurations in engines have been 

identified. State space models can be used for linearized sections of 

the engine, emphasising the point that dealing with nonlinearities is 

an important area of work that plays a key role in the selection 

criteria of sensors. Possible applications of modal domain models are 

using the resonant frequencies that occur within the manifold 

combined with the right sensor selection. There is an abundance of 

literature on physical modelling for automotive systems, yet what is 

evident is that the impact of selecting a sensor on the performance of 

the configuration is not discussed in depth. This is one of the reasons 

for assessing optimisation methods, so that we can determine how 

applicable these modelling techniques are to design a configuration. 

Optimisation based approaches to sensor 

selection 
There are various methods for optimisation of a system. In the 

context of sensor and actuator configurations, these include optimal 

placement and selection. Another approach is to maximise the 

entropy of the system. Finally, in a software context, the system 

architecture can be optimised. 

Optimal Placement 

The placement methods are based on using the physical location of 

the transducers to maximise performance based on a certain metric 

i.e. robustness. An industrial use of actuators is found in active 

control of helicopter vibrations. In the field of active control of 

structural response (ACSR), actuator locations have an important 

influence on the control effect. Q Cheng et al [20] proposed an 

optimal design method based on the theory of least squares 

estimation. The air frame structure was modelled as number and 

location of actuators (design variables), the forces of actuators 

(restriction condition) and the vibration acceleration responses 

(dynamic characteristic). The optimization process was then applied 

to the model. The efficiencies of vibration reduction were observed in 

three configurations, indicating that the vibration acceleration 

responses and number of actuators used can be reduced by actuator 
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placement. Other systems can also be controlled by optimal actuator 

placement. A Armaou et al [21] proposed optimal locations of 

actuators for processes described by parabolic partial differential 

equations. The particular case that is investigated was transport-

reaction processes, such as chemical vapour deposition reactors when 

there is significant time-varying disturbance present. By using modal 

decomposition for space discretization, spatial distribution of noise 

and model uncertainty was taken into consideration. The optimization 

takes care into avoiding actuator locations that excite the higher 

modes of the system. Figure 2 shows how the modal controllability 

changes depending on the actuator placement.  

 
Figure 2. An example of modal controllability of optimal actuator placement 

by A Armaou et al [21]. The graph represents the percentage controllability of 
modes one, two and three against the spatial distance of the actuators. 

 

J Yoo et al [22] uses a Gaussian process to estimate a target position 

against a highly non-linear and noisy Received Signal Strength 

(RSS). The aim of the work was to find optimal sensor placement for 

RSS based localization. The Gaussian process is used to construct the 

localization performance. N sensors at known locations receive a 

signal from a target emitting signal strength at an unknown position. 

The covariance matrix of the noise variance of sensor measurements 

makes it possible to explicitly analyse configuration. Interestingly, 

the placement where all sensors have the same distance to the target 

is not optimal. Likewise, the placement where all sensors are close to 

the target is not optimal. Therefore, a condition of the optimal 

angular and distance configuration is that the sensors are apart from 

each other.  

R Skelton et al [23] proposed a method for selecting actuators and 

sensors in structures, to minimize the instrumental cost. The method 

consisted of an iterative minimization algorithm to identify the 

sensor/actuator that requires the least precision from an initial 

acceptable placement of sensors/actuators. The sensor/actuator with 

the least precision is removed until a loss of feasibility in the control 

of the system is noticed. From this approach, the necessary number 

and type of sensor/actuator, and the location and precision for each 

sensor/actuator can be identified. The output variance constrained 

(OVC) problem is to design a dynamic output feedback controller 

such that the control energy is minimized while each output variance 

constrain is satisfied. Therefore, economic design is used to 

determine the location, type and precision of each sensor/actuator as 

it minimizes the total required precision, while satisfying the system 

performance constraints. As the price of a component is proportional 

to its precision; thus the instrumental cost can be expressed in term of 

the noise covariance matrix. 

X Zhao et al [24] investigated engine vibration reduction for 

aeroplanes using active damping methods and passive systems with 

squeeze film dampers at bearings. Optimal placement of actuators 

along the vibration transmission path was assessed against the 

following measures: robustness of the active system, optimal 

effectiveness and realizable effectiveness. Nevertheless, active 

control methods increase the weight of the plane, through the 

addition of isolating spring and dampers. Other problems with 

passive techniques include insufficient bandwidth and attenuation to 

damp the vibration. Zhao et al concluded that the optimal solution is 

a combination of active and passive.  

As previously discussed (see System Models – Descriptor System), 

Vaidya [16] also investigated optimal actuator and sensor placement, 

in the context of linear advection PDE. The main contribution was 

showing that optimal actuator placement depended on a relationship 

between the system dynamics and phase space.  

U Munz et al [10] developed sensor and actuator placement 

algorithms for linear discrete-time systems based on the closed-loop 

performance metrics of H-2 and H-∞ optimization. To test the 

effectiveness of the algorithm, the optimization process was applied 

to a power grid, provided by the IEEE 14-bus test system, and the 

results proved it was highly accurate. 

Maximum Entropy 

Maximum entropy uses probability distributions to minimise 

uncertainty of outputs. R Oseguedo et al [25] addressed the problem 

of optimal sensor placement for non-destructive testing on aeroplanes 

by using the maximum entropy approach as a solution. Uncertainty 

(i.e. state of aircraft) prevents optimization, so symmetry is used to 

overcome this. The maximum entropy approach calculates 

probability distributions for different fault locations and sensor 

placement configurations. This approach involves calculating 

distributions that are invariant with the symmetries, thus the 

optimality criterion is also invariant with the symmetries. After 

several possible sensor locations are found, numerical simulations are 

run to find the optimal sensor placement. The sensor placement 

described is for the best relative to all possible reasonable optimality 

criteria. This is because as the probabilities of faults are unknown, the 

exact optimality criterion is also unknown. Nonetheless, the shape of 

the plane must be taken into consideration as this can lead to non-

unique optimal placement, because it can be split into perfectly 

symmetric shapes. When symmetry is only approximate or local, 

optimal placement is still non-unique. The issue of non-uniqueness is 

addressed by Group theory which is used to find optimal families of 

sets e.g. groups of rotations. Every set from the optimal family 

consists of one or several orbits of subgroups of the original 

transformation group. 

Systems Engineering 

Systems engineering is applicable to the optimization of the control 

architecture on a higher level. R Kudikala et al [26] used multi-

criteria optimization for system architecture design in the case of an 

aero engine health management (EHM) system. Due to the large and 

discontinuous design search space, there are many qualitative and 

quantitative criteria that must be considered. However, an 

evolutionary multi-objective genetic algorithm (MOGA) and a 

progressive preference articulation technique, is used to solve the 

optimization problem. Therefore, it is necessary to identify the 

following key components: a model of the system, its decision 
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variables, the objective functions to be optimized and system 

constraints. For designing the EHM functional architecture for the 

aero engines, all primary EHM functional requirements and stake 

holder requirements are captured using requirements analysis and 

flow-down techniques, and represented as EHM system use cases. 

The EHM system primary use cases are decomposed into several 

EHM functions and functional operations (OPs). ‘Criticality’, 

‘Immediacy’, ‘Coupling’, ‘Security’, ‘IP sensitivity’ and ‘Flexibility’, 

are considered as six individual objective functions to be minimized 

in the optimization process. Furthermore, the process of introducing, 

incorporating and modifying designer preferences in an interactive 

and progressive way at any time during the optimization search 

process; is a key feature for multi-criteria decision making (MCDM). 

The paper identifies that it is not possible to fully satisfy all attributes 

for the EHM system, while observing the given constraints, thereby 

highlighting the value of a multi-criteria approach. 

 
Figure 3. The Interactive Multi-Criteria Optimization Design Framework 
proposed by Kudikala [26]. 

Optimal Selection  

Another industry that uses sensor and actuator filters are autonomous 

vehicles. C Moreno et al [27] proposed an approach, based on robust 

controllers accounting for model uncertainty, in sensor and actuator 

selection on aircraft (in particular, aero-servo-elastic systems). 

Control design-independent methods are based on measures of 

controllability and observability of the plant. Therefore, robust full-

information controllers are designed for different actuator 

configurations, and their performance is compared to obtain an 

optimal selection. This is followed by designing robust full-control 

controllers for different sensor configurations and using similar 

techniques to obtain an optimal selection. The general control 

synthesis configuration for uncertain systems helps define the robust 

control problem; which is to find a stabilizing controller that 

minimizes the H-∞ norm of the closed-loop transfer function while 

maximizing the robustness against the uncertainty. After physical 

testing on a small unmanned autonomous vehicle, it was observed 

that the sensor selection has a greater effect on the robustness 

performance than the selection of actuators. 

Huber et al [28] described a methodology for the selection of sensors 

for the diagnosis of faults within internal combustion engines. Faults 

were represented using parameter estimation to add states to the plant 

model. Redundant sensors are used for state estimation to identify 

faults and exclude faulty sensors. Although this can reduce system 

performance, it enables fault tolerant operation. Using a non-linear 

MVEM, an Extended Kalman Filter (EKF) is applied to perform the 

state and parameter estimation. The aim of the selection methodology 

is for a given set of faults, which are considered critical for operation, 

the lowest number of sensors are chosen to guarantee that the 

considered faults are detectable and can be isolated from others. As 

defined in the paper, ‘the optimal sensor configuration maximizes the 

minimal eigenvalue of the observability Gramian by the choice of 

sensor configuration and the related output matrix’. 

 

 

 
 

Table 3. Summary of optimization methods of sensor and actuator selection. 

Authors Optimization Method 
Application 

Cheng [20] Placement 

Active Control - Helicopter 

Vibrations 

Armaou [21] Placement 

Modal Controllability - Optimal 

Actuator Placement 

Yoo [22] Placement 

Received Signal Strength based 

localization 

Skelton [23] Placement 
Economic Design 

Zhao [24] Placement 
Actuator - Aircraft Engines 

Vaidya [16] Placement 
Sensor and Actuator 

Munz [10] Placement 
H-2 and H-∞ 

Oseguedo [25] Maximum-Entropy 
Aerospace Non-Destructive Testing 

Kudikala [26] Systems Engineering 
Real World System Design 

Moreno [27] Selection 
Autonomous Vehicles 

Huber [28] Selection 
State and Parameter Estimation 

 

This section is crucial to understanding the limitations of selection 

criteria. It shows the types of optimization methods that can be used 

for sensor selection. The literature is divided into optimization based 

on placement, maximum entropy, systems engineering and selection 

methods. The placement methods are based on using the physical 

location of the sensors and actuators to maximise performance based 

on a certain metric i.e. robustness. Maximum entropy uses probability 

distributions to minimise uncertainty of outputs. Systems engineering 

is the optimization of the control architecture on a higher level. Also, 

the selection methods are based on system state estimation. This 

section raises the issue that approach to building configuration can 

have a significant impact on trade-offs between performance and 

cost. Therefore, understanding how much information contained 

within the system is highly valuable and maximum entropy for 

optimisation can be an appropriate method to determine this. 

However, one of the limitations of using entropy is that it does not 

explicitly describe the usefulness of the information. As the engineer 

designing the system it must be considered whether a top down 

approach to building the configuration by assessing the high-level 

control architecture that oversees the whole system needs to be 

optimised or whether to focus on individual sections of the engine 

and build the configuration from the bottom up. 

Assessment of Control Metrics 

Many of the papers reviewed perform controllability analysis on their 

respective system. Control metrics are defined to assess performance 

quality and improve optimization in different areas. These are 

considered to be hard metrics, which are categorized into: Degrees of 

Freedom, Closed-loop, Open-Loop and Miscellaneous. 
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Figure 4. An example of model inversion to estimate variables proposed by 
Franchi et al [32]. 

Closed Loop Performance 

H-2 and H-∞ 

H-2 and H-∞ optimization was used for optimal transducer placement 

by U Munz et al [10]. An observer was designed for sensor 

placement that minimizes the H-2 norm of the error dynamics and the 

number of sensors simultaneously. Similarly, a state feedback 

controller is designed for actuator placement that minimizes the H-∞ 

norm of the closed-loop system and the number of actuators 

simultaneously. Due to the fact that algorithms are proposed for both 

H-2 optimal sensor and H-∞ placement, the proposed method can 

also be applied to controller and observer design and continuous-time 

systems. As previously outlined, C Moreno et al [27] proposed an 

approach for sensor and actuator selection on aircraft. This was also 

done by developing a robust controller based on H-2 and H-∞ 

techniques.  

Covariance 

Another closed loop control metric considered is the covariance 

between variables. This is particularly important when considering 

uncertainty within the system, as discussed within the maximum 

entropy method of optimisation. A Bertrand et al [29] described a 

distributed adaptive (time-recursive) algorithm to estimate and track 

the eigenvectors corresponding to the Q largest or smallest 

eigenvalues of the global sensor signal covariance matrix in a 

wireless sensor network. The algorithm proposed converges to the 

desired eigenvectors without explicitly constructing the global 

covariance matrix that actually defines them. This means that the 

desired eigenvectors are found without the need to centralize all the 

raw sensor observations. Data fusion is used to increase the accuracy 

of the measurement being performed and to overcome reliability 

issues in sensors and uncertainty in output, making the system more 

robust. Sequeira et al [30] used the robust estimation of a covariance 

matrix to express uncertainty when fusing information from multiple 

sensors. Additionally, the differences between estimators using 

explicit measurements from the sensors involved and estimators 

using only covariance estimates from the sensor models and 

navigation systems are also investigated. The paper focused on the 

estimation of a covariance matrix, using an Orthogonal 

Gnanadesikan–Kettenring (OGK) estimator, for a single landmark 

that has been observed by two different sensors. Analysis showed 

that there are regions of the spectrum of the covariance matrix where 

each of the estimators outperforms the other; implying that a hybrid 

of the two estimators can provide the best results.  

Robust Stability 

Traditional focus has been on developing a controller to stabilize the 

dynamic system when system parameters perturb in certain bounded 

range. Alternatively, X Li et al [31] investigates the robust inverse 

problem for linear systems, where they attempt to find a stable 

system parameters’ perturbation space for any given stable controller. 

Each system parameter must be considered as each has different 

effects on robust stability of the dynamic system or process. The 

inverse theorem states that any given linear closed-loop control 

system is asymptotically stable and the controller can stabilize 

dynamic systems or processes. Then processes must at least have a 

parameter perturbation space or robust stability domain and the 

controller can still stabilize the control system when system 

parameters of processes perturb in the same space. To demonstrate 

the theorem, a PID Controller is used to stabilize a nominal 

perturbation process. 

Estimation and Manipulation Theory 

Control systems controllability is integral with its ability to estimate 

variables using sensors and manipulate the plant using actuators. A 

good example of this is proposed by A Franchi et al [32]. Their paper 

describes a distributed strategy for the estimation of the kinematic 

and inertial parameters of an unknown body manipulated by a team 

of autonomous ground vehicles (mobile robots). Kinematics and 

dynamics arguments are used to estimate the relative positions of the 

contact points on a payload. The inertial parameters including mass, 

relative position of the centre of mass and moment of inertia are 

estimated using distributed estimation filters. The inertial parameters 

estimation is defined through an algorithm (figure 4), which is able to 

define constant parameters mass and inertia and the time varying 

relative position vector; whilst only controlling local force, using 

local information regarding speed and communicating with 

neighbours. The inversion used is implicit not explicit. In terms of 

control architecture it demonstrates how many signal flows within the 

system and how system structure is an important factor when 

considering the sensors and actuators selected. 
 
Table 3. Summary of closed loop performance metrics 

Authors 
Metric Applications 

Munz [10] H-2 and H-∞ 
Sen/Act Placement - Linear discrete-

time 

Moreno [27] H-2 and H-∞ Autonomous Vehicles 

Bertrand [29] Covariance 
Eigenvectors of matrix in wireless 

sensor network 

Sequeira [30] Covariance Data fusion from multiple sensors 

Li [31] Robust Stability Robust Inverse for Linear Systems 

Franchi [32] Estimation and 

Manipulation Theory 
Autonomous Ground Vehicles 

 

Open Loop Performance 

Open loop control metrics are concerned with the maximum entropy 

distribution which is constrained by the available data; which is the 
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joint distribution of the random variables that best describes current 

knowledge with no further assumptions. D Cochran et al [33] 

investigated multiple-channel detection in the context of a sensor 

network where raw data are shared only by nodes that have a 

common edge in the network graph. This is an interesting method if 

we consider the sensors on an engine to be a network made up of the 

signals that are contained within the control architecture. They use a 

maximum-entropy technique to formulate surrogate values for 

missing measurements corresponding to pairs of nodes that do not 

share an edge in the network graph. Their approach eliminates the 

need for a ‘fusion-centre’ where data is collected and processed at a 

central point in the network. Using this approach, data can be 

processed at nodes, locally. The technique was applied to a small 

network with limited connectivity. The performance of the 

connections was then reduced and the effectiveness of the technique 

was observed. Performance degradation of the network was modest, 

but to observe the true quality of the approach, it needs to be applied 

to a larger network. 

S Rajasegarar et al [34] proposed a framework combining Bayesian 

compressive sensing and a robust Bayesian maximum entropy (BME) 

based spatio-temporal estimation technique. The paper investigates 

large scale sensing, which requires a large numbers of sensors 

deployed in a region for accurate and high resolution spatio-temporal 

measurements and estimation. Factors that contribute to successful 

large scale sensing include high capacity, high precision, expensive 

and low capacity, low precision, cheap sensors in the monitored 

region. However, resource constraints and the availability of high-

capacity sensors are a challenge to achieving highly accurate 

estimations.  

One approach to successfully achieving large scale sensing is to use a 

compressive sensor, which exploits low sampling rate and is capable 

of processing at the node. Another method to improve large scale 

sensing is to use BME to estimate the value of the observed 

phenomena at arbitrary locations. The approach combines two prime 

knowledge bases. Firstly, a general knowledge base, such as from 

physical laws, summary statistics and scientific theories. Secondly, a 

case specific knowledge base obtained through experience with 

specific situations. The specific knowledge base accounts for both 

hard data (e.g. exactly measured values), and soft data; which is data 

with uncertainty due to factors including: inexact knowledge, 

experience, intuition, low precision sensor outputs. Results of 

simulation on a real wireless sensor network showed a trade-off 

between spatio-temporal estimation accuracy and the communication 

overhead in the network.  

 
Table 4. Summary of open loop performance metrics - maximum entropy. 

Authors Maximum Entropy 

Cochran [33] Multiple Channel detection of sensor network 

Rajasegarar [34] Spatio-Temporal Estimation 

 

Degrees of Freedom 

H Lee et al [11] defined a measure which can consider both 

controllability and observability simultaneously. This is the degree of 

compensation capability (DOCC) and degree of output noise 

sensitivity (DONS). DONS is a measure that represents the effect of 

output noise to control input and it can be represented by the trace of 

the inverse of controllability and observability Gramian. DOCC is a 

sum of three terms including DONS, degree of controllability and 

degree of observability. The measure involves minimizing energy 

transfer between sensor and noise, which is a measure of disturbance 

rejection. So DONS contains physical meanings of both 

controllability and observability. However, it does not mean the 

locations of actuators and sensors with the optimal value of DOC and 

DOO are same as that with the optimal value of DONS. Later, Lee et 

al [12] also defined controllability and observability Gramians in the 

modal domain. Then by using the definition of modal DONS, the 

locations of actuators and sensors to control of each individual mode 

can be determined by considering the effect of output noise to input.  

Finally, H Lee et al [17] defined measures for controllability in a 

descriptor system. The degree of controllability (DOC) for descriptor 

systems is defined as the minimum input energy to change the states. 

To improve the controllability of the systems, the DOC should be 

minimized by actuator placement. The results of the proposed 

measure show that the input energy to change the state of the 

Gramian is only affected by the final condition and of slow systems 

which means that the fast systems does not affect the input energy. 

Vaidya [16] also defines metrics for controllability and observability 

in descriptor systems. Gramians are defined for optimal actuator and 

sensor placement in linear advection PDEs. 

Furthermore, J Huber et al [28] defined another metric in the context 

of fault tolerance. This is the degree of fault observability, which is 

adapted from controllability. Huber also defined the Fault 

Observability Index, which is ‘the ratio of maximum to minimum 

eigenvalue of the fault observability Gramian’. A lower index is 

desirable because the measure is invariant to similarity transforms. 
 
Table 5. Summary of degrees of freedom metrics 

Authors Degrees of Freedom 

Lee Compensation Capability 

(Linear) [11] Output Noise Sensitivity 

(Modal) [12] Output Noise Sensitivity 

(Descriptor) [17] Controllability 

Vaidya [16] Controllability 

Vaidya [16] Observability 

Huber [28] Fault Observability 

 

Fault Tolerance 

In the case of sensor and actuator selection criteria it is important to 

consider the fault tolerance of the system. J Dai et al [35] addressed 

fault-tolerance of multi-agent systems. The behaviour of each agent 

in the system is described as a local automaton and the system 

behaviour as the composition of automatons. Sensor failures 

occurring in individual agents are defined as loss of observability of a 

local event of a failed agent, and actuator failures are modelled as a 

total loss of an event from an agent. Sensor failures are modelled by 

permanent loss of local observability and controllability (whenever it 

is locally controllable) of certain local events; and actuator failures 

are modelled as a loss of certain events from the corresponding 

agent’s local event sets. A learning-based algorithm is proposed to re-

synthesize appropriate local supervisors when sensor failure occurs, 

and target for the necessary and sufficient conditions under which the 

global specifications are maintained under actuator failures.  

G Franzè et al [9] proposed a novel actuator fault tolerant control 

strategy for constrained discrete time linear systems subject to 

bounded disturbances. The fault tolerance scheme consisted of three 

modules. The first module was a bank of estimators, each one 
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associated with healthy and faulty model configurations. The second 

module was a logic mechanism for identifying healthy-to-faulty and 

faulty-to-healthy transitions, which takes into account correctness and 

admissibility. The third module was an estimate based control 

reconfiguration unit. Initially, the scheme described different plant 

configurations through a switching paradigm and sequences of 

approximations of controllable sets. A switching logic is then used to 

determine the current plant configuration on the basis of the state 

estimate provided by the observers. There are two critical points in 

the strategy, how to distinguish between configurations and how to 

ensure a correct model configuration switching; whilst closed-loop 

stability and constraint fulfilment are preserved.  

J Machado et al [36] proposed a new method for the calculation of 

the fractional expressions in the presence of sensor redundancy and 

noise. The algorithm used is tuned and optimized through genetic 

algorithms. A Genetic Algorithm (GA) is a computational technique 

to find approximate solutions in optimization and search problems. 

GAs are simulated through a population of candidates that evolve 

computationally towards the better solution. GA take advantage of 

signal characteristics and sensor redundancy. The redundancy means 

that different signals can be processed through alternative algorithms 

and still lead to the same state variable. However, implementation 

issues such as sensor noise must be considered when creating a 

system with redundancy. The proposed scheme was successful in 

adapting to different fractional expressions for particular sensors and 

noise. 

 
Table 6. Summary of examples of fault tolerance. 

Authors Fault Tolerance 

Dai [35] Multi-Agent Systems 

Franze [9] Discrete time linear systems with bounded disturbances 

Machado [36] Fractional Expressions using sensor redundancy 

 

This section has outlined the types of control metrics that can be used 

to assess the performance of a model. Whether the system is closed 

loop or open loop we have metrics that can be used to determine its 

quality. The literature has showed that H-2, H-∞, covariance, robust 

stability and estimation/manipulation theory can be used to 

quantitatively assess the performance of a control system. The 

usefulness of these assessment metrics is limited but used in 

combination with one another they can achieve desired trade-off of 

the control architecture. The applications of these metrics showed 

that an alternative method to view the control architecture is to 

consider how signals flow within the system and how system 

structure is an important factor when considering the sensors and 

actuators selected. As previously stated, this is an interesting method 

if we consider the sensors on an engine to be a network made up of 

the signals that are contained within the control architecture. Sensors 

could then be selected to make a robust information centric 

configuration, which could make full use of the information available 

within the architecture. 

Historical Research 

This section is based on literature which is at least 5 years old, with 

some going back to the 1980s. This offers an opportunity to assess 

topics that at one point were of great interest to the field of optimal 

configuration. 

Applications 

Hammerschimdt et al [37] assessed the role of sensors for an ECU in 

automotive applications. They state that there are two types of 

sensors: offshore and local. Offshore sensors must sense the physical 

values at a location away from the ECU, whereas the local sensors do 

not have to be placed near the physical value. The types are divided 

by the need of power and communication between the ECU and 

sensor. This allows the designer to optimize the choice of sensors 

depending on functionality, safety, reliability, durability and 

availability. Thus other metrics can be modelled in the design stage. 

McKelvey et al [38] used sensors to gain a better understanding of 

the combustion process for optimization. By using a crankshaft 

mounted torque sensor and a signal processing technique, closed loop 

ignition timing control is achieved. Estimation of combustion phasing 

for each cylinder while compensating for torsional was carried out. 

The result was a reduction in fuel consumption of the 5 cylinder in 

line spark ignition engine. Balau et al [39] successfully modelled an 

electromagnetic valve actuator for clutch control in an automatic 

transmission. It was based on a linearized input-output model, with a 

suitable transfer function for Simulink, as well as a state space model. 

Furthermore, Aono et al [40] proposed a signal processing algorithm 

for compensating for the back flow effect in intake air mass 

measurement in internal combustion engines. This used frequency 

characteristics of a signal from an air flow sensor. This technique 

demonstrates how signal processing can be performed on an engine 

to find out new information and how correlation between signals can 

be exploited. 

 
Table 7. Summary of historical applications within industry. 

Authors Applications 

Hammerschidmt [37] Sensor interfaces 

McKelvey [38] Crankshaft mounted torque sensor 

Balau [39] Electromagnetic valve actuator for automatic transmission 

Aono [40] Signal Processing technique for back flow effect 

 

Control metrics 

Robust Stability 

Van de Wal has been identified as a relevant author in the field of 

input/output sensor selection methods. This is an early paper which 

covers the work of the selection methods review paper (which we 

will discuss later), Philips et al [41] aimed to eliminate 

actuator/sensor combinations for which no controller exists that 

achieves a specified level of robust performance. Additionally, 

complete controller synthesis is avoided by using necessary 

conditions for robust performance, but this highlights one of the 

limitations of the method; stabilization for certain combinations is not 

guaranteed. The research uses structured singular value theory and 

states that the effectiveness of the combination is strongly affected by 

the choice of design filter. 

Rotea et al [42] identified the relations between two types of stability: 

quadratic and robust (formal definitions are provided). The systems 

assessed were uncertain systems with structured uncertainty due to 

both real and complex parameter variations. One of the learning 

outcomes is that for systems containing at least two uncertain blocks 

quadratic stability for real perturbations does not imply quadratic 

stability for complex perturbations. This shows that there are 
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different types of stability depending on the structure of the 

uncertainty of the system.  

Right Half Plane Zeros 

Pandolfi et al [43] observed the effects of right half plane (rhp) zeros 

on sensitivity reduction. The paper is very short in length but explains 

the effects of the location of unstable zeros, multiple zeros and 

transmission delays. Also, control feedback design is considered 

including stability, sensitivity reduction and robustness. Another 

paper that looks at the effects of right half plane zeros was produced 

by Cheng et al [44]. The focus was on the limitations of the closed-

loop transfer function of any stable feedback system due to rhp zeros. 

However, this research is more relevant to electronics, than being 

applicable to an engine. 

Closed Loop 

As discussed in optimal placement methods, Skelton [23] proposed 

an Economic design approach to actuator/selection. Norris et al [45] 

published a paper on actuator selection when noise is present. This is 

based on Closed-Loop Input/Output Cost Analysis (CIOCA). Due to 

the methods associated with the technique, it was demonstrated that 

performance may be degraded when a transducer is noise free.  

Open Loop 

Li et al [46] proposed research on multi-sensor correlation analysis 

for control systems in coal mines. It used a fast algorithm that 

calculates the combinations of correlative sensors. The paper shows 

the use of condition number in systems with a large number of 

sensors. Similarly to the previous paper mentioned, Welsh et al [47] 

identified an application of the condition number. In this case, the 

focus is on wide-band system identification, as parameters of a 

system with a large dynamic range are difficult to compute for a least 

squares type algorithm. A condition number of the least squares 

problem, which is independent of the frequency range for a particular 

class of models; is used as a bound for output errors of the system. 

 
Table 8. Summary of historical control metrics. 

Authors Control Metrics 

Philips [41] Robust stability used in selection methods 

Rotea [42] Quadratic and robust stability 

Pandolfi [43] Effects of right half plane zeros on sensitivity reduction 

Cheng [44] Effects of right half plane zeros 

Norris [45] Closed-Loop Input/Output Cost Analysis 

Li [46] Condition number 

Welsh [47] Condition number for wide-band system 

 

Fault Tolerance 

An approach to fault tolerant detection and identification was 

proposed by Seron et al [48], using an invariant set combined with a 

virtual actuator to controller reconfiguration. It is based on the 

separation of invariant sets that characterise healthy system operation 

from those that describe faulty operation. The benefit of this scheme 

is that any existing nominal controller that satisfies the desired 

specifications for the plant can be kept in the loop at all times. 

Moreover, the virtual actuator is used to preserve closed-loop 

properties under fault such as stability and set-point tracking. It was 

concluded that the faults have negligible effect on the plant states, 

which track the desired reference almost perfectly. The use of virtual 

actuators to create a fault tolerant control scheme is an alternative 

selection. Furthermore, optimal design of fault tolerant sensor 

networks was reviewed by Hoblos et al [49]. The paper covered the 

design of sensor networks such that the observability of the variables 

for the process control remains satisfied under faults. Definitions are 

provided on Pseudo-minimal and minimal sensor sets. These sets are 

organized into an oriented graph which contains all the possible 

reconfiguration paths for which those variables remain observable. 

The overall objective was to improve the robustness of the 

observability property. A highly relevant paper was found during the 

search of the literature review that described a method of assessing 

sensor quality in a system. Chen et al [50] proposed a novel real-time 

fault compensation method, which uses state estimation and 

compensation techniques (state feedback), that allow the sensor 

system to perform robust measurements even when sensor outputs 

are noisy and drifting. It identified that geometric redundancy is an 

important design aspect for fault tolerance. The method was also 

capable of compensating sensor drifts without affecting the sensor 

accuracy. Virtual actuators were also used by Richter [51] for the 

control reconfiguration of a thermo-fluid process. As outlined 

previously, it hides the fault from the controller, allowing the nominal 

controller to remain in the loop. The reconfiguration goals are: Fault 

hiding goal, stabilisation goal, equilibrium recovery goal, trajectory 

recovery goal. It was concluded that the linear virtual actuator is able 

to reconfigure processes with nonlinear behaviour. 

 

 
Figure 5. Reconfigured loop with reconfiguration block by Richter et al [51]. 
This is an example of designing virtual actuators using loop shifting methods. 

Table 9. Summary of historical examples of fault tolerance. 

Authors Fault Tolerance 

Seron [48] 
Invariant set combined with a virtual actuator to controller 

reconfiguration 

Hoblos [49] Optimal design of fault tolerant sensor networks 

Chen [50] Novel real-time fault compensation method 

Richter [51] Control reconfiguration of a thermo-fluid process 
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Optimization 

Placement 

Actuator and sensor placement is fundamental to selection criteria 

and Chevrel et al [52] proposed a methodology using convex 

optimization tools to determine the optimal placement. The 

controllability and observability of a system are dependent on the 

transducer locations. There are four optimization problems which are 

defined in the paper: sensor placement, sensor placement in worst 

case, actuator placement and actuator and sensor placement. These 

are equivalent to a linear objective optimization problem under 

constraints, which are solvable using the complex tools. Antoniades 

et al [53] proposed an integrated optimal actuator placement and 

robust control of uncertain transport reaction processes. The results 

were successfully applied to a diffusion-reaction process with 

uncertainty. Similar methods were found in the optimization review 

of recent literature. 

CanXing et al [54] reviewed optimal sensor placement for health 

monitoring. Cause-Effect analysis methods were used including: 

Fault tree method, Petri-Net method, and Graph theory.  Optimization 

was also split between component and system level. Although it is a 

short review paper, the general optimal approaches for sensor 

placement are presented.  Finally, it is identified that Demetriou and 

Armaou have produced research on optimal placement that is 

particularly relevant to this field. An earlier conference paper [55] of 

early work was reviewed, which also used a spatial H-2 norm. 

Selection 

Chmielewski and Peng presented two papers on Covariance based 

hardware selection the first is on globally optimal actuator selection 

[56]. Through a linear matrix inequality (LMI) based transformation 

the original problem is converted into a mixed integer convex 

program (MICP). The MICP is capable of calculating globally 

optimal solutions to the covariance based actuator selection problem. 

The second paper [57] is based on the equivalence results for the 

sensor, actuator, and simultaneous selection problems. It is concluded 

that ‘significant advantages can be found in the suboptimal controller 

version of the actuator selection problem. In particular, the 

suboptimal version can be used to find global solutions to the 

previously intractable optimal controller formulation’. The 

advantages of using suboptimal actuator selection strategies are also 

discussed by Vanbeveren et al [58]. They provide a definition of the 

cost function which is ‘the integral of a weighted combination of the 

achieved accuracy on the state of the system and the control energy’. 

The control energy term is dependent on the selected actuator and the 

magnitude of the applied control. They use a sub-optimal ‘Forward-

Backward’ Algorithm which is used when certain actuators can be 

rejected a priori. 

Systems Engineering 

One of the older papers of the literature review was produced by 

Lynch et al [59], who proposed an object oriented intelligent control 

architecture. The objects, which contain data, functions and inherited 

knowledge, represent: sensors, a sensor manager and a controller. 

The intelligence is embedded within each object, allowing for the 

construction of efficient systems. The paper is useful because it 

critically assesses the use of architectures in control systems. 

Another method of creating control architecture is proposed by 

Voulgaris et al [60]. Certain optimal control problems are considered, 

with constraints on the processing of the measurement data. The two 

types of problems are based on whether the structure of the plant that 

relates controls to measurements has the same structure in the 

feedthrough term as the one restricted by the observation pattern. 

Loop shifting ideas similar to those found in fault tolerance (figure 5) 

are used when the structure is not the same. The approach is based on 

one step delay observation sharing pattern. 

Clarhaut et al [61] extensively described optimal control architecture 

design. A complete design methodology for dependable systems is 

outlined. Hierarchical functional decomposition of the system is 

carried out for efficiency. This divides the architecture into 

functional, equipment and operational. It is at this stage a 

dependability level is either static or dynamic. Failure relationships 

between functions and dependability are calculated through multi-

fault tree representation. This paper identifies that we must also 

review soft metrics for a complete optimization of the system. 

Hammerschmidt et al [37] outlined useful soft metrics in the selection 

of control architecture. Other metrics include: Design Complexity 

(Effort of Controller Design), Uncertainty, Skill Based, Customer 

Experience, Connectedness, and Qualitative metrics – existence of 

sign reversal (loop gain change). Systems engineering is where the 

majority of this literature will be found. Pugh matrix analysis of these 

metrics would be a useful indicator for sensor selection criteria. 

Freudenberg et al [62] investigated design trade-offs in feedback 

systems. Physical realizability is emphasised as the origin of the 

trade-offs assessed in the paper. This is different to trade-offs 

between performance and robustness. The paper also identifies 

limitations on the sensitivity function to open rhp zeros and unstable 

poles. 

Bushnell et al [63] designed an expert systems solution (SYSMON) 

to ‘Automate the function of a Junior Control Engineer’ in an early 

paper. Object oriented concepts such as inheritance, encapsulation 

and polymorphism were used in the design of architecture for 

transmissions system monitoring. The modules used in the system 

included data acquisition, on-line analysis, predictive applications, 

human computer interface and other specific expert system modules. 

Chan et al [64] developed object oriented architecture of control 

system for agile manufacturing cells. There are three modes to 

manufacturing cell control: centralized, hierarchal and heterarchical. 

The objects are divided into: control objects, resource objects 

(supervisor, functional component and driver) and information 

objects. The architecture improves the controller design because the 

system is simplified, communication is now message based and 

objects are reusable. 

 
Table 10. Summary of historical optimization methods. 

Authors Optimization 

Chevrel [52] Placement using convex optimization tools 

Antoniades [53] Optimal actuator placement for transport reaction processes 

CanXing [54] Optimal sensor placement for health monitoring 

Demetriou [55] Optimal actuator placement 

Chmielewski [56], 

Peng [57] 
Globally optimal actuator selection 

Vanbeveren [58] Suboptimal actuator selection strategies 

Lynch [59] Object Oriented Intelligent Control Architecture 

Voulgaris [60] 
Optimal control of systems with delayed observation sharing 

patterns 

Clarhaut [61] Optimal Design of Dependable Control System Architectures 
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Freudenberg [62] Design trade-offs in feedback systems 

Bushnell [63] Application of object oriented techniques 

Chan [64] Object-oriented architecture of control system 

 

System Models 

A different form of system modelling proposed is the use of a neural 

network, which is used by Papadimitropoulos et al [65] for fault 

detection in mechanical systems, performing linear motion with 

friction. The neural fault detection methodology is assessed by 

robustness and sensitivity properties. 

Sarrate et al [66] proposed an algorithm for model-based fault 

detection and isolation sensor placement based on formulating a 

mixed integer optimization problem. Constraints are used to create 

the optimization problem based on a set of analytical redundancy 

relations and a fault signature matrix, which used isolability and 

detectability.  

Alternatively, plant based modelling was used by Zhang et al [67] for 

the robust control of interval plants. Interval ranges of model 

parameters are used to determine the closed-loop control actions of 

the system. The paper also states that interval models are useful 

descriptions for uncertain dynamic processes.  

 
Table 11. Summary of historical system models. 

Authors System Models 

Papadimitropoulos [65] Neural Network 

Sarrate [66] Model-based fault detection and isolation 

Zhang [67] Plant based modelling 

 

This section identified some non-technical metrics (i.e. dependability 

and reliability) that can be used for optimization. Systems 

engineering is the most relevant field that can be used to find 

literature on this form of optimization and as stated a Pugh matrix 

analysis of these metrics would be a useful indicator for sensor 

selection criteria. These are important criteria for the selection of 

sensor and actuator. This literature also reiterates the need an 

understanding between the optimisation at the different levels of the 

system. It is shown that optimisation can be carried out on multiple 

levels including high level overall system (i.e. engine health 

management) and low level (i.e. sensor placement on the air system 

control). 

Selection Methods Review Paper 

It should be stated that a review paper by Van de Wal [68] was 

studied. The paper is titled ‘A review of methods for input/output 

(IO) selection’. It gives a clear outline of control system design based 

on 8 desirable properties of IO selection methods: Well-founded, 

Efficient, Effective, Generally Applicable, Rigorous, Quantitative, 

Controller Independent, and Direct. A Pugh matrix is used to assess 

the classes of IO selection methods that were review in the paper. 

The paper outlined many open loop and closed loop performance 

metrics that are referred to as IO selection criterion. 

Patent Search of Sensor Selection Methods 

The results of the patent search demonstrated that only patents on 

control strategies and sensors were found. Nothing was found on 

selection methods; however, the focus was on automotive patents. 

We did not look into electronics, control or computing fields, where 

potentially relevant patents can be found here. 

The subcategory F02D 41/1401 is especially relevant: 

• Electrical control of supply of combustible mixture or its 

constituents (F02D43/00 takes precedence) 

• Circuit arrangements for generating control signals 

• Introducing closed-loop corrections 

• Characterised by the control or regulation method 

(F02D41/1473, F02D41/1477 take precedence) 

• Controller structures or design 

The following patents have been identified to be relevant, because 

they apply to specific solutions (and certainly further such patents 

exist): 

• KR20150122935 (A)  - Exhaust processing device control 

method for vehicle [69] 

• US2013197779 (A1)  -  Setpoint Bank Control Architecture 

[70] 

• US2016215749 (A1)  - Control device of internal 

combustion engine [71] 

• KR20160056822 (A)  - Method for processing a signal of 

combustion chamber pressure sensor [72] 

• US2016237933 (A1)  - Method and apparatus for 

controlling a reciprocating-piston engine having several 

cylinders [73] 

• JPS5895214 (A)  - Signal processing method for hot-wire 

flow rate sensor [74] 

• EP1413728 (A2)  -  Controller and method for controlling a 

NOX-sensor arranged in an exhaust gas channel of an 

internal combustion engine [75] 

Conclusions 

Having extensively and systematically reviewed the literature, we 

have provided an overview of the current state of selection criteria for 

suitable sensor and actuator configurations for internal combustion 

engines. System Modelling, Optimisation and Control Metrics are the 

three key areas of study for this topic. The patent search found many 

patents for specific sensors and control schemes, but there is no 

evidence of a systematic approach to sensor and actuator selection. 

An engine is an ideal opportunity to apply these methods because 

success in each of the key areas have been found in many alternative 

industries across engineering. The review aimed to answer the 

following questions to assess these selection criteria: 

1. Which industries use sensor/actuator selection filters? 

Examples of industries using selection filters include 

Exoskeleton, Process Control, UAV, Automotive, and 

Aeronautical. 

2. Which methods are used in sensor/actuator selection? 

No consensus is found on a particular selection method, but 

development of robust full information/control controllers 

has been suggested. 

3. What are the specific challenges of engine control? 

To be fully answered the question needs to be divided into 

engine subsystems. 
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4. How much data can you get through sensor/actuator signal 

processing? 

Information based criteria are possible in the form of 

maximum entropy methods, but they often neglect other 

important metrics such as speed and robustness. Inversion 

models are also useful for signal processing. 

5. Optimisation - What does it mean to be better? 

Optimisation methods identified include placement, 

maximum entropy, systems engineering, and selection.  

6. Which specific sensors/actuators are suitable? 

Having reviewed the literature it is clear that no consensus 

can be found on the correct selection criteria to find the 

suitable sensors/actuators.  

7. How do you define a good sensor/actuator? 

Different control metrics for control architecture analysis 

include: Degrees of freedom, closed loop performance 

metrics, open loop performance metrics and fault tolerance 

8. Specific examples of where sensors/actuators are being 

used in industry? 

Numerous examples have been reviewed including wireless 

sensors/actuators in communications, exoskeletons for 

disabled people, virtual actuators for power systems, and 

traditional automotive after-treatment sensors. 

 

Dealing with nonlinearities within the engine system is an important 

area of work that determines the appropriate selection criteria to be 

used. System modelling can help with this, but the impact on the 

performance of the configuration requires optimisation methods. The 

literature suggests that optimisation can be split hierarchically. On the 

lower level is the selection and location of the sensors. At a higher 

level the optimisation is based on systems engineering, object 

oriented architecture and multi-criteria algorithms, such as the 

MOGA developed by Sheffield University. One of the critical 

questions to be considered early in the design phase is the approach 

to the optimisation; will it be a top-down approach or bottom-up? 

This requires in depth technical analysis of the system to determine. 

Architecture optimisation is an issue within engineering in general, 

particularly due to hierarchal considerations. The cost functions are 

dependent on low level optimisation and any useful assessment 

metrics are dependent on time dependent root mean square 

deviations. Thus, we have not only considered optimization based on 

technical metrics (i.e. robustness) but also on non-technical metrics 

(i.e. reliability). There are many metrics currently being used to 

assess sensor and actuator configurations as physical measures, linear 

algebra metrics and modern control metrics were all being used by 

different groups. There are several metrics that can be used to assess 

the quality of the system; however, the choice is dependent on the 

type of controller and sensors/actuators used. As many of the metrics 

were applied to network and signal based systems, we could use this 

to determine a robust information based control architecture by 

considering the system structure and how signals flow within the 

engine. This could be achieved by using maximum entropy methods 

from optimisation. Alternatively, the engine could be modelled as a 

sensor network made up of the signals that are contained within the 

control architecture. Sensors could then be selected to make a robust 

information centric configuration, which could make full use of the 

information available within the architecture. Using these methods, 

virtual instrumentation, as proposed in the literature [15] [51], could 

be applied in the information centric configuration. 

Currently there is no clear consensus of selection criteria for specific 

sensors/actuators for automotive applications to determine an optimal 

configuration. Still, the literature does present many potential 

methods for determining the appropriate selection methods. Despite 

many methods used are based on determining the optimal placement, 

it is suggested that maximum-entropy methods can give us a deeper 

understanding of our system from an information based perspective. 

The issue with entropy as a metric is it does not suggest the 

usefulness of the information. The assessment metrics are limited in 

value and use, but by using a combination of them, different levels of 

trade-offs can be achieved. However, for a thorough treatment, non-

linear dynamics and uncertainties need to be considered together, 

which requires sophisticated (non-Gaussian) stochastic models to 

establish the value of a control architecture. If achieved, optimal 

selection criteria of sensor and actuator configurations could reduce 

manufacturing costs by potentially reducing the number of 

sensors/actuators as demonstrated in the literature [20]. Nevertheless, 

for an accurate idea of cost savings, in-depth technical assessment 

would need to be carried out as it is difficult to measure without 

context and experimental validation. A method or a tool that can 

suggest through relevant assessment metrics the value of a control 

architecture to determine an optimal sensor and actuator 

configuration would be particularly useful for control design in many 

industries. 

Bibliography 

1. Onen, U., Botsali, F., Kalyoncu M., Tinkir, M. et al “Design and 

Actuator Selection of a Lower Extremity Exoskeleton,” 

IEEE/ASME Transactions on Mechatronics, no. 2 (2014): 623-

32., 2014, doi:10.1109/TMECH.2013.2250295 

2. Blevins, T., Chen, D., Han, S., Nixon, M. et al, “Process Control 

over Real-Time Wireless Sensor and Actuator Networks,” 

Proceedings of the 2015 IEEE 17th International Conference on 

High Performance Computing and Communications, USA, Aug 

24-26, 2015, doi:10.1109/HPCC-CSS-ICESS.2015.141 

3. Puliyatoke, S., and Balasubramaniam, K., “A Novel Use of 

Signal Processing Tools for Fault Detection in IC Engines,” 

Proceedings of the 2013 IEEE International Ultrasonics 

Symposium (IUS), Czech Republic, Jul 21-25, 2013, 

doi:10.1109/ULTSYM.2013.0116 

4. Xiaojing, J., Xiaoqiang, Y., and Xiaolong W., “Networked 

Testing Platform of Internal Combustion Engine Based on 

Virtual Instrumentation,” Proceedings of the 2012 Second 

International Conference on Intelligent System Design and 

Engineering Application, China, Jan 6-7, 2012, 

doi:10.1109/ISdea.2012.603 

5. Mohanty, S., Gupta, K., Raju K., Mishra, V. et al 

“Characterization of Wireless Accelerometer Sensor and its 

Industrial Applications,” Proceedings of the 2014 20th National 

Conference on Communications (NCC), India, 28 Feb-2 Mar, 

2014. doi:10.1109/ncc.2014.6811373. 

6. Raoufat, M., Tomsovic, K., and Djouadi S., “Virtual Actuators 

for Wide-Area Damping Control of Power Systems,” IEEE 

Transactions on Power Systems 31, no. 6 (2016): 4703-711. 

doi:10.1109/tpwrs.2015.2506345. 

7. Husted, H., Roth, G., Nelson, S., Hocken, L. et al., “Sensing of 

Particulate Matter for On-Board Diagnosis of Particulate 

Filters,” SAE Int. J. Engines 5(2):235-247, 

2012, https://doi.org/10.4271/2012-01-0372. 

8. Alfaya, J., Bejarano, G., Ortega, M., and Rubio, F., 

“Controllability Analysis and Robust Control of a One-Stage 

Refrigeration System,” European Journal of Control 26 (2015): 

53-62. doi:10.1016/j.ejcon.2015.08.001. 

9. Franze, G., Tedesco, F., and Famularo, D., “Actuator Fault 

Tolerant Control: A Receding Horizon Set-Theoretic 

Approach,” IEEE Transactions on Automatic Control 60, no. 8 

(2015): 2225-230. doi:10.1109/tac.2014.2375731. 

https://doi.org/10.1109/TMECH.2013.2250295
https://doi.org/10.1109/HPCC-CSS-ICESS.2015.141
https://doi.org/10.1109/ISdea.2012.603


Page 14 of 16 

30/01/2018 

 

10. Munz, U., Pfister, M., and Wolfrum, P., “Sensor and Actuator 

Placement for Linear Systems Based on H-2 and H-∞ 

Optimization,” IEEE Transactions on Automatic Control 59, no. 

11 (2014): 2984-989. doi:10.1109/tac.2014.2351673.  

11. Lee, H., Park, Y., and Park, Y-s., “Quantitative Measures of 

Compensation Capabilities and Output Noise Sensitivities of 

Linear Systems,” Proceedings of the 2011 11th International 

Conference on Control, Automation and Systems, South Korea, 

26-29 Oct, 2011 

12. Lee, H., and Park, Y., “Quantitative Measures of Output Noise 

Sensitivities of Linear Systems in Modal Domain,” Proceedings 

of the 2012 12th International Conference on Control, 

Automation and Systems, South Korea, 17-21 Oct, 2012 

13. Ahmed, Q., Iqbal Bhatti, A., and Iqbal, M., “Virtual Sensors for 

Automotive Engine Sensors Fault Diagnosis in Second-Order 

Sliding Modes,” IEEE Sensors Journal 11, no. 9 (2011): 1832-

840. doi:10.1109/jsen.2011.2105471. 

14. Meza-Aguilar, M., Sanchez-Torres, J. D., Loukianov, A., 

Navarrete-Guzman, A. et al, “Observer Based Controller for 

Internal Combustion Engine,” Proceedings of the 2013 10th 

International Conference on Electrical Engineering, Computing 

Science and Automatic Control (CCE), Mexico, 30 Sep-4 Oct, 

2013. doi:10.1109/iceee.2013.6676067. 

15. Jingping, L., Xiaolang,  X., Yong, W., and Hanqian, Y., 

“Development of a Fast Response High Accuracy Virtual Air 

Flow Meter for Internal Combustion Engine 

Applications,” Proceedings of the 2011 Third International 

Conference on Measuring Technology and Mechatronics 

Automation, China, 6-7 Jan, 2011. 

doi:10.1109/icmtma.2011.260. 

16. Vaidya, U., Rajaram, R., and Dasgupta, S., “Actuator and 

Sensor Placement in Linear Advection PDE,” Proceedings of 

the 2011 IEEE Conference on Decision and Control and 

European Control Conference, USA, 12-15 Dec, 2011. 

doi:10.1109/cdc.2011.6161350. 

17. Lee, H., and Park, Y., “Quantitative Measures of Controllability 

for Descriptor systems,” Proceedings of the 2013 13th 

International Conference on Control, Automation and Systems, 

South Korea, 20-23 Oct, 2013, 

doi:10.1109/ICCAS.2013.6704061. 

18. Ma, J., Zhu, G. G., and Schock, H., “Adaptive Control of a 

Pneumatic Valve Actuator for an Internal Combustion 

Engine,” IEEE Transactions on Control Systems Technology 19, 

no. 4 (2011): 730-43. doi:10.1109/tcst.2010.2054091. 

19. Astrom, K.j., and B. Wittenmark. “A Survey of Adaptive 

Control Applications,” Proceedings of the 1995 34th IEEE 

Conference on Decision and Control. 

doi:10.1109/cdc.1995.478986. 

20. Cheng, Q., Jing-Hui, D., Jian-Ping, H., Ai-Min, L. et al, 

“Optimization Selection Approach for Distribution of Actuators 

in Active Vibration Control of Helicopter,” Proceedings of the 

2015 34th Chinese Control Conference (CCC), China, 28-30 

Jul, 2015. doi:10.1109/chicc.2015.7260140. 

21. Armaou, A., and Demetriou, M. A., “Towards Optimal Actuator 

Placement for Dissipative PDE Systems in the Presence of 

Uncertainty,” Proceedings of the 2010 American Control 

Conference, USA, 30 Jun-2Jul, 2010. 

doi:10.1109/acc.2010.5531128. 

22. Yoo, J., and Kim, H. J., “Optimal Sensor Placement for RSS-

based Localization using Gaussian Process,” Proceedings of the 

2014 4th IEEE International Conference on Cyber Technology 

in Automation, Control and Intelligent, China, 4-7 Jun, 2014. 

doi:10.1109/cyber.2014.6917461. 

23. Skelton, R. E., and Li, F., “Economic Sensor/Actuator Selection 

and its Application to Flexible Structure Control,” Proceedings 

of the Smart Structures and Materials 2004: Modeling, Signal 

Processing, and Control, 2004. doi:10.1117/12.540156. 

24. Zhao, X., and Rinderknecht, S., “Investigation of Actuator 

Placement Approaches for Active Vibration Control in the 

Aircraft Engine,” Proceedings of the 2015 IEEE Aerospace 

Conference, USA, 7-14 Mar, 2015. 

doi:10.1109/aero.2015.7119298. 

25. Osegueda, R., Ferregut, C., George, M. J., Gutierrez, J. M. et al, 

“Maximum Entropy Approach to Optimal Sensor Placement for 

Aerospace Non-Destructive Testing,” Maximum Entropy and 

Bayesian Methods, 1998, 277-89. doi:10.1007/978-94-011-

5028-6_23. 

26. Kudikala, R., Mills, A. R., Fleming, P. J., Tanner, G. F. et al, 

“Real World System Architecture Design Using Multi-Criteria 

Optimization: A Case Study,” EVOLVE - A Bridge between 

Probability, Set Oriented Numerics, and Evolutionary 

Computation IV Advances in Intelligent Systems and Computing, 

2013, 245-60. doi:10.1007/978-3-319-01128-8_16. 

27. Moreno, C. P., Pfifer, H., and Balas, G. J, “Actuator and Sensor 

Selection for Robust Control of Aeroservoelastic 

Systems,” Proceedings of the 2015 American Control 

Conference (ACC), USA, 1-3 Jul, 2015. 

doi:10.1109/acc.2015.7171010. 

28. Huber, J., Kopecek, H., and Hofbaur, M., “Sensor Selection for 

Fault Parameter Identification Applied to an Internal 

Combustion Engine,” Proceedings of the 2014 IEEE Conference 

on Control Applications (CCA), France, 8-10 Oct, 2014. 

doi:10.1109/cca.2014.6981334. 

29. Bertrand, A., and Moonen, M., “Distributed Adaptive 

Eigenvector Estimation of the Sensor Signal Covariance Matrix 

in a Fully Connected Sensor Network,” Proceedings of the 2013 

IEEE International Conference on Acoustics, Speech and Signal 

Processing, Canada, 26-31 May, 2013. 

doi:10.1109/icassp.2013.6638458. 

30. Sequeira, J., Tsourdos, A., and Lazarus, S. B., “Robust 

Covariance Estimation for Data Fusion from Multiple 

Sensors,” IEEE Transactions on Instrumentation and 

Measurement 60, no. 12 (2011): 3833-844. 

doi:10.1109/tim.2011.2141230. 

31. Li, X., Yu, H., Zeng, P., and Sun, L., “Study on Robust Stability 

Inverse Problem for Linear Systems,” Proceedings of the 2014 

CACS International Automatic Control Conference (CACS 

2014), Taiwan, 26-28 Nov, 2014. 

doi:10.1109/cacs.2014.7097158. 

32. Franchi, A., Petitti, A., and Rizzo, A., “Distributed Estimation of 

the Inertial Parameters of an Unknown Load via Multi-Robot 

Manipulation,” Proceedings of the 53rd IEEE Conference on 

Decision and Control, USA, 15-17 Dec, 2014. 

doi:10.1109/cdc.2014.7040346. 

33. Cochran, D., Howard, S. D., Moran, B., and Schmitt, H. A., 

“Maximum-Entropy Surrogation in Network Signal 

Detection,” Proceedings of the 2012 IEEE Statistical Signal 

Processing Workshop (SSP), USA, 5-8 Aug, 2012. 

doi:10.1109/ssp.2012.6319686. 

34. Rajasegarar, S., Leckie, C., and Palaniswami, M., “Spatio-

Temporal Estimation with Bayesian Maximum Entropy and 

Compressive Sensing in Communication Constrained 

Networks,” Proceedings of the 2014 IEEE International 

Conference on Communications (ICC), Australia, 10-14 Jun, 

2014. doi:10.1109/icc.2014.6884036. 

35. Dai, J., and Lin, H., “Learning-based Design of Fault-Tolerant 

Cooperative Multi-Agent Systems,” Proceedings of the 2015 

https://doi.org/10.1109/ICCAS.2013.6704061


Page 15 of 16 

30/01/2018 

 

American Control Conference (ACC), USA, 1-3 Jul, 2015. 

doi:10.1109/acc.2015.7171015. 

36. Machado, J.a., “Exploiting Sensor Redundancy for the 

Calculation of Fractional Derivatives in the Presence of 

Noise,” Signal Processing 92, no. 1 (2012): 204-09. 

doi:10.1016/j.sigpro.2011.07.007. 

37. Hammerschmidt, D. and Leteinturier, P., “Automotive Sensors 

& Sensor Interfaces,” SAE Technical Paper 2004-01-0210, 

2004, https://doi.org/10.4271/2004-01-0210. 

38. McKelvey, T., Andersson, I., and Thor, M., “Estimation of 

Combustion Information by Crankshaft Torque Sensing in an 

Internal Combustion Engine,” Proceedings of the 2007 2nd 

IEEE International Workshop on Computational Advances in 

Multi-Sensor Adaptive Processing, USA, 12-14 Dec, 2007. 

doi:10.1109/camsap.2007.4497979. 

39. Balau, A. E., Caruntu, C. F., Patrascu, D. I., Lazar, C. et al, 

“Modeling of a Pressure Reducing Valve Actuator for 

Automotive Applications,” Proceedings of the 2009 IEEE 

International Conference on Control Applications, Russia, 8-10 

Jul, 2009. doi:10.1109/cca.2009.5280939. 

40. Aono, T., and Kowatari, T., “A Signal Processing Algorithm for 

Compensating for Back Flow Effect in Intake Air Mass 

Measurement in Internal Combustion Engines,” Proceedings of 

the 2004 IEEE International Conference on Control 

Applications, 2-4 Sep, 2004. doi:10.1109/cca.2004.1387237. 

41. Philips, P., Van de Wal, M., de Jager, B., “Selection of Sensors 

and Actuators based on a Necessary Condition for Robust 

Performance,” Proceedings of the 1997 European Control 

Conference, Belgium, 1-7 Jul, 1997 

42. Rotea, M.a., Corless, M., Da, D., and Petersen, I.r., “Systems 

with Structured Uncertainty: Relations between Quadratic and 

Robust Stability,” IEEE Transactions on Automatic Control 38, 

no. 5 (1993): 799-803. doi:10.1109/9.277250. 

43. Pandolfi, L., and Olbrot, A.W., “The Effects of Multiple Right 

Half Plane Zeros and Time Delays on the Achievable Sensitivity 

Reduction,” Proceedings of the 29th IEEE Conference on 

Decision and Control, USA, 5-7 Dec, 1990. 

doi:10.1109/cdc.1990.203897. 

44. Cheng, V., and Desoer, C., “Limitations on the Closed-Loop 

Transfer Function due to Right-Half Plane Transmission Zeros 

of the Plant,” IEEE Transactions on Automatic Control 25, no. 6 

(1980): 1218-220. doi:10.1109/tac.1980.1102530. 

45. Norris, G., Skelton, R., “Sensor and Actuator Selection for 

Optimal Closed-Loop Performance in the Presence of Correlated 

Noise,”  Proceedings of the American Control Conference, USA, 

10-12 Jun, 1987 

46. Li, A., and Song, L., “Multisensor Correlation Analysis and its 

Application in Coal Mines,” Proceedings of the 2009 WRI 

Global Congress on Intelligent Systems, China, 19-21 May, 

2009. doi:10.1109/gcis.2009.79. 

47. Welsh, J., and Rojas, C., “Frequency Localising Basis Functions 

for Wide-band System Identification: A Condition Number 

Bound for Output Error Systems,” Proceedings of the 2007 

European Control Conference, Greece, 2-5 Jul, 2007 

48. Seron, M. M., and De Dona, J. A., “Fault Tolerant Control using 

Virtual Actuators and Invariant-Set based Fault Detection and 

Identification,” Proceedings of the 48th IEEE Conference on 

Decision and Control (CDC) held jointly with 2009 28th 

Chinese Control Conference, China, 15-18 Dec, 2009. 

doi:10.1109/cdc.2009.5399909. 

49. Hoblos, G., Staroswiecki, M., and Aitouche, A., “Optimal 

Design of Fault Tolerant Sensor Networks,” Proceedings of the 

2000 IEEE International Conference on Control Applications, 

USA, 27 Sep, 2000,  Conference Proceedings (Cat. 

No.00CH37162). doi:10.1109/cca.2000.897468. 

50. Chen, T.l., and You, R.z., “A Novel Fault-Tolerant Sensor 

System for Sensor Drift Compensation,” Sensors and Actuators 

A: Physical 147, no. 2 (2008): 623-32. 

doi:10.1016/j.sna.2008.05.026. 

51. Richter, J.h., Lunze, J., and Schlage, T., “Control 

Reconfiguration of a Thermofluid Process by Means of a Virtual 

Actuator,” IET Control Theory & Applications 1, no. 6 (2007): 

1606-620. doi:10.1049/iet-cta:20060506. 

52. Chevrel, P., and Guo, L., “Actuator and Sensor Placement using 

Convex Optimization Tools,” Proceedings of the 2001 

European Control Conference, Portugal, 4-7 Sep, 2001 

53. Antoniades, C., and Christofides, P.d., “Integrated Optimal 

Actuator Placement and Robust Control of Uncertain Transport-

Reaction Processes,” Proceedings of the 2001 American Control 

Conference. USA, 25-27 Jun, (Cat. No.01CH37148), 2001. 

doi:10.1109/acc.2001.946025. 

54. Canxing, L., Xingshan, L., Ping, Z., and Jing, D., “A Review on 

Optimal Sensor Placement for Health Monitoring,” Proceedings 

of the 2007 8th International Conference on Electronic 

Measurement and Instruments, China, 16-18 Aug, 2007, 

doi:10.1109/icemi.2007.4351109. 

55. Demetriou, M.a., and Armaou, A., “Optimal Actuator Placement 

and Model Reduction for a Class of Parabolic Partial 

Differential Equations using Spatial H 2 norm,” Proceedings of 

the 2005, American Control Conference, USA, 8-10 Jun, 

2005, doi:10.1109/acc.2005.1470716. 

56. Chmielewski, D.j., and Peng, J.K., “Covariance-based Hardware 

Selection-Part I: Globally Optimal Actuator Selection,” IEEE 

Transactions on Control Systems Technology 14, no. 2 (2006): 

355-61. doi:10.1109/tcst.2005.863670. 

57. Peng, J.K., and Chmielewski, D.j., “Covariance-based Hardware 

Selection-Part II: Equivalence Results for the Sensor, Actuator, 

and Simultaneous Selection Problems,” IEEE Transactions on 

Control Systems Technology 14, no. 2 (2006): 362-68. 

doi:10.1109/tcst.2005.863671. 

58. Vanbeveren, Y., and Gevers, M., “On Optimal and Suboptimal 

Actuator Selection Strategies,” IEEE Transactions on Automatic 

Control 21, no. 3 (1976): 382-85. 

doi:10.1109/tac.1976.1101237. 

59. Lynch, P.M., De Paso, J., “An Object Oriented Intelligent 

Control Architecture,” Proceedings of the 1992 American 

Control Conference, USA, 24-26 Jun, 1992 

60. Voulgaris, P.G. “Optimal Control of Systems with Delayed 

Observation Sharing Patterns via Input-Output 

Methods,” Proceedings of the 39th IEEE Conference on 

Decision and Control, Australia, 12-15 Dec, 2000 (Cat. 

No.00CH37187). doi:10.1109/cdc.2000.914143. 

61. Clarhaut, J., Cocquempot, V., Conrard, B., and Hayat, S., 

“Optimal Design of Dependable Control System Architectures 

Using Temporal Sequences of Failures,” IEEE Transactions on 

Reliability 58, no. 3 (2009): 511-22. 

doi:10.1109/tr.2009.2026790. 

62. Freudenberg, J., and Looze, D., “Right Half Plane Poles and 

Zeros and Design Tradeoffs in Feedback Systems,” IEEE 

Transactions on Automatic Control 30, no. 6 (1985): 555-65. 

doi:10.1109/tac.1985.1104004. 

63. Bushnell, M.J., “Application of Object Oriented Techniques in a 

Modular Expert System Architecture for Transmission System 

Monitoring and Control,” Proceedings of the 1994 International 

Conference on Control, UK, 21-24 Mar, 1994. 

doi:10.1049/cp:19940121. 



Page 16 of 16 

30/01/2018 

 

64. Chan, F.T.S., Zhang, J., Lau, H.C.W., and Ning, A., "Object-

Oriented Architecture of Control System for Agile 

Manufacturing Cells." Proceedings of the 2000 IEEE 

International Conference on Management of Innovation and 

Technology. ICMIT 2000. Management in the 21st Century, 

Singapore, 12-15 Nov, 2000, (Cat. No.00EX457). 

doi:10.1109/icmit.2000.916819. 

65. Papadimitropoulos, A., Rovithakis, G. A., and Parisini, T., 

“Fault Detection in Mechanical Systems with Friction 

Phenomena: An Online Neural Approximation 

Approach,” IEEE Transactions on Neural Networks 18, no. 4 

(2007): 1067-082. doi:10.1109/tnn.2007.899182. 

66. Sarrate, R., Puig, V., Escobet, T., and Rosich, A., “Optimal 

Sensor Placement for Model-based Fault Detection and 

Isolation,” Proceedings of the 2007 46th IEEE Conference on 

Decision and Control, USA, 12-14 Dec, 2007. 

doi:10.1109/cdc.2007.4434452. 

67. Zhang, Y.M., and Kovacevic, R., “Robust Control of Interval 

Plants: A Time Domain Method,” IEE Proceedings - Control 

Theory and Applications 144, no. 4 (1997): 347-53. 

doi:10.1049/ip-cta:19971170. 

68. Van De Wal, M., and De Jager, B., “A Review of Methods for 

Input/Output Selection,” Automatica 37, no. 4 (2001): 487-510. 

doi:10.1016/s0005-1098(00)00181-3. 

69. Choi, M., “Exhaust processing device control method for 

vehicle,” KR Patent KR20150122935 (A) , November 03, 2015. 

70. Seiberlich, M., McNulty, M., Rodriguez, J., and Schipper, J., 

“Setpoint Bank Control Architecture,” U.S. Patent 

US2013197779 (A1), August 01, 2013. 

71. Matohara, S., Kumano, K., and Akagi, Y., “Control Device of 

Internal Combustion Engine,” U.S. Patent US2016215749 (A1), 

July 28, 2016. 

72. Fischer, W., and Kluth, C., “Method for Processing a Signal of a 

Combustion Chamber Pressure Sensor,” KR Patent 

KR20160056822 (A), issued May 20, 2016. 

73. Gustmann, M., Fehrmann, R., Heise, M., Saravanalingnam, A., 

and Selle, R., “Method and Apparatus for Controlling a 

Reciprocating-Piston Engine Having Several Cylinders,” US 

Patent US2016237933 (A1), August 18, 2016. 

74. Amano, M., Sakamoto, S., Hirayama, T., and Sasayama, T., 

“Signal Processing Method for Hot-Wire Flow Rate Sensor,” JP 

Patent JPS5895214 (A), June 06, 1983. 

75. Berns, A., Daetz, M., Hahn, H., and Pelz, N., “Controller and 

Method for Controlling a NOx-Sensor Arranged in an Exhaust 

Gas Channel of an Internal Combustion Engine,” EP Patent 

EP1413728 (A2), April 28, 2004. 

 

Contact Information 

Mr Rhys Comissiong 

Aeronautical and Automotive Engineering 

Stewart Miller Building 

Loughborough University 

Leicestershire 

LE11 3TU 

r.m.comissiong@lboro.ac.uk 

Acknowledgements 

This work was funded as part of the EPSRC Centre for Doctoral 

Training in Embedded Intelligence grant number EP/L014998/1. 

 


