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Abstract: Ship microgrids have recently received increased attention, mainly due to the extensive

use of power electronically interfaced loads and sources. Characteristics of these microgrids are

similar to islanded terrestrial microgrids, except the presence of highly dynamic large loads, such as

propulsion loads. The presence of such loads and sources with power-electronic converter interfaces

lead to severe power quality issues in ship microgrids. Generally, these issues can be classified as

voltage variations, frequency variations and waveform distortions which are commonly referred

to as harmonic distortions. Amongst the solutions identified, energy storage is considered to be

the most promising technology for mitigating voltage and/or frequency deviations. Passive filtering

is the commonly used technology for reducing harmonic distortions, which requires bulky capacitors

and inductors. Active filtering is emerging as an alternative, which could be realised even within

the same interfacing converter of the energy storage system. The aim of this paper is to investigate

recent developments in these areas and provide readers with a critical review on power quality issues,

energy storage technologies and strategies that could be used to improve the power quality in ship

microgrids. Moreover, a brief introduction to ship power system architectures is also presented in

the paper.

Keywords: energy storage; frequency variations; harmonics; power quality; ship microgrids;

voltage variations

1. Introduction

Ship power systems have significantly evolved over the last century with complex network

architectures and power electronically interfaced multifarious high power loads and sources.

With these developments, modern ship electrical power systems have become more or less similar

to terrestrial microgrids [1]. The common characteristics between the two types of microgrids

include islanded operation, increased use of power electronic converters and network architectures.

Therefore, technologies developed for islanded microgrids can be extended for ship microgrids as

well. Nevertheless, due to the presence of large dynamic loads and various operating scenarios,

power management and control of ship microgrids have become more complex compared to terrestrial

microgrids [2].

Large dynamic loads in ship microgrids demand significant changes in the supply within a short

time which lead to large deviations in the voltage and/or frequency. The common approaches of

mitigating these deviations are the over design and maintaining a spinning reserve. These methods
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introduce additional weight, increase the cost and require more space. Energy storage systems

(ESSs) have been identified as a promising alternative that can be used to handle transients in

an efficient and effective manner in ship microgrids compared to the over design and having a spinning

reserve. The current practice in the maritime industry is to use ESSs as the emergency power supply.

However, they could also be designed to smoothen transients and thereby reduce voltage and/or

frequency deviations in ship microgrids. Moreover, ESSs can be used for shaving the peak-load,

energy recovery during regeneration and providing ancillary services to the main generator [1–4].

Power electronic converter systems found in propulsion motor drives, pumps, fans and generating

sources introduce waveform distortions, mainly in the form of harmonics. Distortions created by

high power converters with passive front-end interface or low frequency devices are more significant

compared to low power converters. As majority of the power converters in ship microgrids are of

these types, the effect of waveform distortions is much more severe compared to that of the terrestrial

microgrids. The traditional approach taken to mitigate these harmonic distortions in ship power

systems is the use of passive filters, which require bulky inductors and capacitors. Nowadays, the trend

is to use active filters which are based on power electronic converters. Modern ESSs are equipped

with bi-directional power electronic converter systems, hence they can control both active and reactive

power instantaneously. Therefore, there is a possibility of using those interfacing converters as active

filter as well to reduce waveform distortions.

The aim of this paper is to critically review the capabilities and characteristics of the energy storage

technologies in terms of power quality improvement, and recent developments in power quality

improvement strategies in ship microgrids. The rest of the paper is organised as follows: Section 2

presents an overview of ship power system architectures, loads and sources. A comprehensive analysis

on power quality issues in ship power systems and associated standards are presented in Section 3.

The potential use of energy storage systems as a solution to the identified power quality issues are

discussed in Section 4. Finally, conclusions drawn from the study and authors opinions on future

developments in the use of energy storage as a solution to power quality issues are presented in

Section 5.

2. Ship Power System Architectures, Loads and Sources

2.1. Ship Power System Architectures

2.1.1. Traditional Ship Power System Architectures

Traditional ac ship power systems are based on the radial power distribution architecture

and having separate generators for propulsion and service loads. The SS Canberra, ocean liner,

is a good example for this architecture. Single line diagrams of her power systems are shown in

Figure 1. The propulsion system is powered by two steam-turbine-coupled 32.2 MW generators,

while the service loads are supplied by four steam-turbine-coupled 1.5 MW generators. This approach

helps prevent transients and oscillations in the propulsion power system propagating into the service

power system. However, in this system, the excess capacity of the propulsion power system at low

speed or when the ship is not moving is not usable. Therefore, the utilization of available resources

is very low in this approach and it results in low efficiency in the overall system [5–8]. In addition,

with the growth of the power demand in service loads in modern ships maintaining two large power

systems is not efficient and economical.

Recent developments in power electronics have enabled more controllability in ac propulsion

systems, and thus the use of a common power system for both propulsion and service loads have

become possible [1–4]. This architecture is known as integrated power system (IPS). A simplified

representation of an IPS architecture with radial power distribution is given in Figure 2. The IPS

architecture is considered to be first used in the Queen Elizabeth II (QEII). The QEII ocean liner consisted

of steam-turbine-driven alternators which were fitted with diesel generator sets at a later stage [9].

The distribution system of QEII operated at 10 kV. Transformers were used to step down this voltage
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to a low voltage to accommodate service loads. This IPS architecture continued with modifications

such as separate high voltage and low voltage busses for port-side and starboard-side. As the IPS

architecture allows more flexibility in ship design, reduction in number of prime movers and increase

in the overall efficiency, it has become the popular choice, especially in cruise ships, ferries and large

vessels [1,9].

 

Figure 1. Traditional segregated ship power system with a propulsion power system and a service

power system (ST—Steam Turbine, G—Generator, M—Motor and L—Load).

 

Figure 2. Radial power distribution for integrated propulsion system (IPS) architecture (T—Transformer).

As the propulsion loads and service loads are connected to the the same power system,

power quality issues have become more significant with the IPS architecture. Some of these issues

are similar to those present in terrestrial microgrids as well, and thus technologies used to address

issues in terrestrial microgrids can be adopted in ship microgrids as well. Those issues and potential

solutions are discussed in Section 3.

2.1.2. Modern Power System Architectures

While the radial power distribution has been widely adopted in ship power systems, the need

for a more complex power systems that can offer higher survivability, reliability and efficiency have

recently gained priority. The zonal electrical distribution (ZED) is emerging as one of the most suitable

candidate power system architecture to achieve these objectives [10,11]. Figure 3a,b show a simplified

diagram of an ac ZED system proposed in [10] and a dc ZED system considered by the Electric Ship

Research and Development Consortium (ESRDC) [2,12], respectively. In contrast with radial power
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systems, zonal power systems achieve high survivability by separating the distribution system into

zones and maintaining independent power sources in each zone [10–12]. In the event of a fault,

it can be isolated by opening appropriate switches and thereby potential blackouts can be avoided.

For example, a fault in Zone-1 can be isolated by opening the two supply switches. A fault in any point

in the distribution cable system itself can also be isolated by opening any of the adjacent circuit breakers.

If the fault is in a zonal load, it can be isolated by opening the load terminal breaker. Under such

conditions, power distribution to any of the other loads can be continued via redundant paths with

minimal impact on the power disruption to the other loads.

ZED systems require comprehensive understanding of load profiles and complex communication

and coordination strategies [9–12]. Moreover, advanced fault detection, identification and isolation

algorithms are essential for the successful implementation of ZED systems in ship microgrids.

Communication technologies such as controller area network (CAN), local area network (LAN) based

systems [11], protection algorithms and monitoring systems, e.g., multi-functional monitoring (MFM)

systems and complex decision making algorithms, such as graph theory based techniques [11] are

a few examples that show the direction of technology development in ZED based ship power systems.

(a)

 
(b)

Figure 3. (a) AC zonal electrical distribution system (ac-ZEDS); (b) dc zonal electrical distribution

system (dc-ZEDS) (GT—gas turbine, G—generator, M—Motor and L—load).
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2.1.3. Comparison of ac and dc Power Systems and Impact on Power Quality

Traditional ship power systems are based on low voltage ac (LVAC) power distribution.

Recently, medium voltage ac (MVAC) distribution systems ranging from 3.3 to 13.8 kV have become

popular, especially in large ships [13–15]. These systems operate at a fixed frequency and the propulsion

motors are directly connected to the fixed frequency systems resulting in fixed-speed operation of

the motors. In this fixed-speed operation, pitch angle control is used to vary the propulsion power,

which is inefficient at low load conditions [13]. With technology development, it has been possible to

use variable-speed drives to control the speed of the propulsion motor with a fixed pitch propeller.

In addition to the propulsion drives, other loads have also experienced enhanced performance with

the application of the power electronic technology. As a result, recent developments in maritime power

systems have seen certain advantages in the use of variable-speed drives (VSD). Since the majority of

VSDs use the ac-dc-ac power conversion architecture, a dc distribution can eliminate the front-end

ac-dc rectifier and thereby reduce poser losses, cost, weight and volume of the converter system.

The use of ac power has advantages such as the possibility of using brushless ac machines for

loads without the need of control electronics and ease of protection during faults due to zero voltage arc

extinguishment. However, the use of ac power also leads to the need of bulky transformers for step-up

or step-down of voltages and relatively lower efficiency due to reactive power transfer. With modern

power electronic loads, the number of power conversion steps may also increase significantly and

hence pose a disadvantage. AC power systems require stringent fixed frequency and hence the prime

movers have to run at the given speed under varying loads which may not yield optimum operation

all the time. Furthermore, ac power systems also require multiple generator synchronization and

hence encounter difficulties in immediate re-engagement of isolated systems in contrast with dc power

system in a ZED based architecture. Such limitations have hindered the enhancement of survivability

of the power system and power quality enhancement under faulty conditions. As a result, the dc

power systems have been widely researched as an alternative to ac power systems.

The use of dc power for maritime power systems involves medium voltage dc (MVDC) having

voltages from 1 kV up to 35 kV [13–16]. DC power systems enable weight savings with the use of

different types of electrical machines for power generation e.g., high-speed machines with low weight,

volume and high power density and elimination of low frequency transformers [17,18]. In addition,

enhanced control of power flow, bi-directional power flow, ease of integration of energy storage, ease of

engagement and disengagement of different parts of the system and absence of synchronization are

some of the other advantages of having dc distribution in ships [13–17]. Moreover, the absence of

harmonic issues is another advantage of dc systems over ac systems. Nevertheless, dc ship power

systems and associated technologies are still at the development stage, and thus can be considered as

an expanding area of research in the field of transportation electrification.

2.2. Loads in Maritime Power Systems and Their Impact on Power Quality

Typical shipboard electrical loads include propulsion loads, pumps and compressors for heating

ventilation and air conditioning, control and communication systems in the bridge and hotel loads.

Other types of loads may vary depending of the functionality of the vessel. For example, in aircraft

carriers [16], additional loads may include lifting systems for aircrafts. These different loads also

demand power from the ship microgrid. Generally, their dynamics and characteristics should be taken

into consideration at the power system design stage. In a radial power system, the aggregated load

is considered for determination of design parameter of the system. For example, the required total

capacity will consider load factors for determination of switchgear and cables. The power quality can

also be analysed by consideration of worst-case scenarios of operation. However, in the case of using

ZEDs, the utilization of different components of the system is complicated [7]. The use of stochastic

methods is a solution proposed in literature to evaluate the power system operation under a range

of operating conditions and estimate corresponding load profiles [1]. Such techniques can also be

extended for the analysis of power quality to guarantee high quality power in all operating scenarios.
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The placement of the loads on a power system impacts the power system operation and power

quality. This is especially true for loads that demand high power such as the propulsion loads or

pulsed power loads in naval applications. The time constants of the loads characterize the rapidness of

power demand. Table 1 outlines typical time constants of common loads in ship power systems [5,19].

Load management in a complex ship microgrid having components with such a wide range of time

constants is a challenging task. Strategies based on time constant are becoming popular as promising

load management methods for ship microgrids [20].

Table 1. Time constants of different components of a marine electric power system [5,19].

Component Time Constant

Ship run-up time 20 to 500 s
Gas turbine generator 5 to 10 s
Propulsion motor 1 to 5 s
Propulsion motor stator leakage time constant 1 to 10 ms
Propulsion motor rotor time constant 50 ms to 1 s
Motor service loads 0.5 to 1 s
DC-DC converters 100 to 500 ms
Pulse width modulation 0.5 to 2 ms

The simplified representation of an IPS shown in Figure 2 can be used as an example system to

discuss further on the time constants of different components and their implications. In this system,

four steam-turbine-driven generators are used as the sources. The starboard and port propulsion

motors are fed through power electronic converter systems. Depending on the required power level,

propulsion motor could be chosen as either an induction motor (up to 5 MW) or a synchronous

motor (above 5 MW) [13]. Permanent magnet (PM) motors are also increasingly being used in electric

ship applications [15]. Irrespective of the type of the motor, its dynamics are affected by the rotor

time constant. A typical fixed-pitch, variable speed, propulsion drive system in an ac ship includes

a back-to-back converter structure for rectification of the ac power to dc and then inversion to produce

variable voltage and variable frequency output to the motors. The rectifier stage is not required in

dc ships and thus only the inverter stages are used to control the propulsion motors. The typical

time constants of the propulsion drive system based on industrial drives up to 20 MW is identified

in [17]. The propeller run-up time depends on the size and inertia of the propulsion system and can

be found to be within the range of 1–60 s. Following propeller run-up, the ship run-up time is from

60 to 500 s [17]. While these are comparatively longer time transients, the short-term transient that

impact the power system include the dynamics of the machine and the pulse width modulation (PWM)

drive. The PWM switching transients in the range of 100 ns to 1 µs are filtered within the power

electronic converter itself. However, the dynamics of electrical machines are in the range of 1 ms to 1 s

and thus they will significantly influence the ship power quality depending on the ability to supply

rapid changes in power demand.

In electric ship technologies, the propulsion load is accommodated via the electrical power

system. As a result, the propulsion system dynamics significantly impact the ship microgrid and

its power quality. The priorities to deliver power to each of these loads differ depending on their

functionality. For example, the propulsion load demand may have high priority due to manoeuvring

requirements as the inability to achieve the rapid response may result in momentary loss of ship control.

However, the simultaneous delivery of a pulsed power load requires rapid delivery of power with

a low time constant, and momentary shift of power for the pulsed power load will not significantly

impact the high time constant loads, such as propulsion motors. Therefore, control strategies for

coordinated control of different loads with differentiation of their response is found to be an essential

feature in modern marine power systems, especially those that are equipped with high energy detection

systems and pulsed power weapons.
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The pulsed loads in ships are generally defense equipment such as electromagnetic weapons and

high energy detection systems [21,22]. The authors of [22] have examined the impact of pulse loads on

the power system. In this study, pulse loads of 30 MW × 0.1 s and 50 MW × 1 s are simulated and

it is shown that the system performance and transient conditions under pulsed power loads heavily

depend on the system control parameters, power system topology and the location of the pulsed power

load. A generic pulsed power load is studied in [21,22] and is modelled as a current sink. The time

constants are in the order of 100 µs. (e.g., 76.9 µs used in the system studied in [21]).

2.3. Power Sources in Ship Power Systems

The power sources applied in electric ships vary with size and application and the power levels

may vary from 60 kW [18] to 120 MW range. Moreover, the use of energy storage is shown to reduce

the generator capacity requirement. In [23], the authors investigate a full electric ship in simulation

capable of 1.16 MW power output out of which 500 kW is generated by gas turbine (GT) generators and

the remaining power is managed with the use of solid oxide fuel cell (SOFC) and ESSs. On the other

extreme, the authors of [16] investigate shipboard power systems for an aircraft carrier “capital ship”

with generation capacity of 120 MW. In contrast, the power sources include diesel generator and gas

turbine engines [24,25]. Medium power applications such as electric ferry ships may involve the power

generation capacities in the order of 10 MW, e.g., 12 MVA system in [26]. Such examples demonstrate

that the maritime power requirements significantly vary depending on the functionality of the ship.

Due to the high-power demands in naval and commercial shipping, nuclear power for

marine power has been of interest since mid-20th century and has been applied for propulsion

in the past [27,28]. However, nuclear powered IPSs have not appeared to have achieved popularity

to date. In contrast, diesel electric and gas turbine electric systems have been widely adopted for

power generation in ships. Integration of renewable energy sources has also been investigated in

the past. For example, in [29,30] approximately 1% of power is generated by PV in the electric ship.

In order to increase the penetration of renewable energy sources in marine power systems and also to

accommodate the rapid varying loads, ESS based solutions found to be the key enabling technology.

The use of ESS in ship microgrids is discussed in detail in Section 4.

3. Power Quality Issues and Regulations Applicable to Ship Microgrids

According to IEC standard 61000-4-30 power quality is defined as “characteristic of the electricity at

a given point on an electrical system, evaluated against a set of reference technical parameters” [31], and this

definition could be equally applicable for ship power systems. The main power quality issues in

ship microgrids are listed in Table 2. According to Table 2, majority of the power quality issues

can be attributed to the changes in voltage waveforms which are due to cyclic or non-cyclic load

transients in the ship microgrid. In addition, frequency variations and harmonics are also becoming

important power quality issues due to the increasing trend in deploying power electronically interfaced

loads and generation sources in ship microgrids. It must be noted that both the frequency variations

and the harmonic issues are present only in ac microgrids; however, voltage variations present

in both ac and dc microgrids. With the growing more-electric trend, these power quality issues

in ships are becoming an important area that requires standardization. In response to this need,

ship classification societies have taken initiatives to define regulations for power quality in order to

minimize the associated risk for ships, crew, cargo and seas. Table 3 shows the regulations imposed

by classification societies for voltage and frequency variations for ac ship distribution systems [3].

Electrical equipment on-board supplied from the main or emergency systems should be able to operate

satisfactorily under these variations in voltage and frequency. The values in Table 3 are unified and

unchanged for many years.



Inventions 2017, 2, 4 8 of 19

Table 2. Classification of Power Quality Issues in Ship Power System/Microgrid.

Power Quality Issue Possible Cause(s)

Voltage Sag/Dips Bow Thruster [32], Electronic Rapid-Response Weapons [33]
Voltage Variations (Flicker) Radar Systems [34]
Voltage Swell Radar Systems [34]
Frequency Drop Switching of Large Loads [35]
Harmonics Power Electronically Interfaced Loads and Generators [36]

Table 3. Acceptable ranges of voltage and frequency variations in ac distribution systems.

Quantity in Operation
Variations

Permanent Transient (Recovery Time)

Frequency ±5% ±10% (5 s)
Voltage +6% to −10% ±20% (1.5 s)

Until recently, waveform distortion has not been taken seriously compared to voltage and

frequency variations which changed after accident on-board of Queen Mary II. QMII is an all-electric

cruise vessel with four diesel engines (4× 16.8 MW) and two gas turbines (2× 25 MW). The propulsion

system consists of four pods each rated at 21.5 MW. In addition, there are three thrusters, 3.2 MW each,

which are used to support manoeuvring of the ship. A thyristor based load commutated inverter

(LCI) system is used to drive the high-power motors. Harmonics generated by these converters

are suppressed by two passive harmonic filters (HFs) [5]. The accident on-board QMII occurred in

September 2010, caused by the catastrophic failure of an aged capacitor and explosion in the aft

harmonic filter room. According to the report of Marine Accident Investigation Branch, after several

seconds the vessel blacked. It was concluded that “most likely that the disruption within the aft HF at

the time of the accident caused general instability in the electrical network which could not be contained and led

to the generators shutting down” [6]. As a result of accident, the importance of regulations on waveform

distortion was highlighted and thus classification societies imposed an 8% limit for the total voltage

harmonic distortion (THDV) in ship electrical distribution systems. Some classification societies,

for instance DNV GL [7] or ABS [3], added additional requirements related to single harmonic content

in the voltage waveform. According to these requirements, no single order voltage harmonic shall

exceed 5%.

In addition to the standards and rules for civil or commercial ships, there are rules concerning

navy vessels as well. For example, STANAG 1008 applies for the electrical power plants in NATO

naval vessels. According to the STANAG 1008 the THDV factor should be less than 5% (up to voltage

harmonic of 40th order) and no single order voltage harmonic shall exceed 3%. Moreover, the effect

of operation of user equipment and resulting minimum harmonic distortion in the electrical power

system is also taken into consideration in STANAG 1008. If rectifiers or power electronic converters

are connected to the shipboard power system, power of the largest single distorting load Pdistort and

the sum of the power of all loads ∑Pdistort which distort the current waveform should be determined

and compared with the short circuit power of the generation capacity approximated as:

Ssc = 100 × Sn/x
′′

d % (1)

where Ssc represents the equivalent short circuit power of the supply system in kVA, Sn is the nominal

apparent power of the feeding generators in kVA. x
′′

d % is the equivalent sub-transient reactance of

the feeding generators as a percentage. The subsequent actions depend on results of the comparison

which is shown in Table 4. If harmonics would be above permitted values, then measures should be

taken to reduce the harmonics (multi-pulse rectifiers, filters, etc.).
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Table 4. The STANAG 1008 requirements regarding maximum power of distorting loads, which does

not require further detailed analysis.

Power Distortion Limits Notes
{

∑ Pdistort < 1%Ssc

Pdistort < 0.5%Ssc
No Measures are to be taken

{

∑ Pdistort < 2%Ssc

Pdistort < 0.1%Ssc
No Measures are to be taken

Pdistort ≥ 0.5%Ssc or

∑ Pdistort ≥ 2%Ssc or
{

1%Ssc ≤ ∑ Pdistort < 2%Ssc

Pdistort ≥ 0.1%Ssc

Conduct analysis to ensure STANAG 1008 requirements
are still valid with respect to voltage harmonics

4. Energy Storage Solution for Power Quality Improvement

4.1. Energy Storage Systems (ESSs) for Ship Microgrids

Different energy storage technologies are presently integrated into ship microgrids to manage

the energy balance and provide auxiliary services to the ship power system. These energy storage

technologies could be mainly categorised into four types: electrochemical devices (e.g., batteries,

fuel cells), electrostatic devices (e.g., supercapacitors), electro-mechanical devices (e.g., flywheels),

and electromagnetic devices (e.g., superconducting magnetic energy storage (SMES) systems).

The energy density and power density are the two key features that could be used to characterise

an energy storage system. The energy density is defined as the energy stored per-unit weight, hence

energy density signifies the relative size of the storage system. The power density is defined as

the amount of power that could be obtained for a per-unit weight. Figure 4 illustrates the power and

energy density characteristics of different energy storage technologies suitable for ship microgrids.
























 









 

Figure 4. Power Density vs. Energy Density for Different Storage Technologies.

According to Figure 4, each technology has unique characteristics in terms of the power density

and energy density and hence the technology selection should be carefully conducted considering

the key performance requirement of the microgrid. Table 5 lists the advantages and challenges

associated with each energy storage technology.
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Table 5. Advantages and Disadvantages of Different Storage Technologies.

Energy Storage Type Advantages Disadvantages/Challenges

Batteries
Low maintenance, high energy
density (Li-ion)

Relatively low power density, relatively short cycle life

Supercapacitors
Longer life-spam, fast charge and
discharge capability

High cost per watt, low energy density

Flywheels
Anti-humid characteristic,
high power density

Low energy density, mechanical issues

SMES
High Storage Efficiency,
rapid response

Expensive, cooling issues

Hybrid ESS
Can exploit the advantages of
two or even more technologies

Expensive, require complex control algorithms

In addition to the energy storage technologies listed in Table 5, there are other storage technologies

used in terrestrial microgrids such as compressed-air energy storage (CAES) systems and hydrogen

generation and storage. In ships CAES systems are mainly used for powering hydraulic systems

and engine start-up, but rarely used for storing electrical energy. This is mainly due to the large

volume required. Fuel cells are currently being used as power generation sources in ship microgrids.

Nevertheless, hydrogen generation through electrolysis as a way of energy storage and subsequent

use in fuel cells has not drawn much attention and thus not explicitly discussed in this paper.

4.1.1. Battery Energy Storage Systems

Battery energy storage is the most commonly used energy storage technology in ship microgrids.

The lead-acid, Li-ion, NiCad and NiMH are the most commonly used battery types in battery energy

storage systems. However, the lead-acid batteries are rarely being used in energy storage system

applications mainly due to their low energy density and low power density. Similarly, NiCad batteries

also have low energy density and low power density and thus rarely being used in battery energy

storage systems [34].

The most commonly used battery technology is the Li-Ion technology, which has high power

density and high energy density in comparison to the other battery technologies available in the market.

The Li-Ion batteries are maintenance free and also have the highest lifetime (at 80% depth-of-discharge

(DoD)) over other battery types available in the market [37]. The battery technology continues to

evolve with the help of nanotechnology, hence more power and energy dense batteries are likely

to be manufactured in the future [35]. It must be noted that much higher current could be drawn

beyond the rated current, however, it will degrade the battery performance and ultimately the lifespan.

Therefore, ESSs based on battery systems are not suitable for providing rapid power response to

mitigate the adverse effects from loads with high ramp rates.

4.1.2. Supercapacitors

Supercapacitors (also known as ultracapacitor) have the capability to release or absorb a large

amount of power instantaneously than battery energy storage systems. In supercapacitors energy

is stored in an electrostatic field and hence the charging and discharging cycles can be repeated

without any limit and also it could be charged within a very short time span as oppose to batteries.

The supercapacitor structure is different to a conventional capacitor due to its electrostatic double-layer

and thinner carbon electrodes. These properties increase the capacitance of supercapacitor compared to

conventional capacitor [38]. Even though Supercapacitors are widely used in automotive applications,

they are not being heavily deployed in ship microgrids mainly due to relatively high cost and the low

energy density. Supercapacitors are commonly used together with batteries in hybrid ESSs, which will

be discussed in Section 4.1.5.
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4.1.3. Flywheels

In fly-wheel ESSs the energy is stored as kinetic energy within its rotating mass and typically it

has high power density than any other energy storage technology used at present. The flywheel is

typically coupled with a generator/motor configuration to store and extract energy from the flywheel.

At the charging stage, the flywheel is accelerated to store energy as the kinetic energy (usually rotated

at 10,000–100,000 rpm) [39], while at the discharging phase it is decelerated to extract the kinetic energy

and subsequently converted to the electrical energy. Typically, a power electronic frequency converter

is used for advanced flywheel based ESSs to integrate with the microgrid, and it will enable flywheel

to operate at a wide speed range. Flywheel-based ESSs can respond rapidly, and its respond time is

typically 4–5 ms. Hence, they can be used for mitigating power quality issues emanating from large

pulse loads in ships. The main disadvantage being the low energy density, flywheel based ESSs cannot

be used for delivering power quality and ancillary services for longer durations.

4.1.4. Superconducting Magnetic Energy Storage (SMES) Systems

In SMESs energy is stored in a magnetic field created by the superconducting coil. The superconducting

coil is maintained below the critical superconducting temperature, by using an external cooling pump.

This will make the resistance of the superconducting coil to zero, hence once the potential difference

is removed, the current in the superconducting coil keep circulating in the coil without any losses.

As the superconducting coil carries the dc current, it also requires a power electronic interface to

integrate with the ac network of the ship. Therefore, SMESs are also a flexible energy storage option for

mitigating power quality issues in ship microgrids. The SMESs are also capable of delivering power

rapidly, hence can be used for mitigating power quality issues due to high pulsed loads. The SMESs

are becoming very popular as an energy storage option for naval ships, hence it is vital to further

investigate their usage in the context of mitigating power quality issues in ship microgrids.

4.1.5. Hybrid Energy Storage Systems

The hybrid energy storage systems are also proposed and developed in recent years to exploit

the advantages of multiple energy storage technologies to fulfil various needs of microgrids [40–42].

The most commonly proposed hybrid ESS uses batteries and supercapacitors, hence this ESS has

the benefits from high energy density of batteries and high power density of supercapacitors [40,41].

Therefore, supercapacitor will provide a transient power response for a short duration to mitigate

the transient power quality issues, while the battery energy storage system will provide power quality

support long durations.

In comparison to any other single ESS, the hybrid ESS requires complex control architectures [43],

since different energy storage technologies have different characteristics, hence they should be

optimally controlled to extract the maximum benefit from both energy systems. For example,

energy storage system with high power density should be used to compensate for the transient

compensation while energy-intensive component should be used for compensating low-frequency

component. Various power architectures have also been proposed for hybrid ESSs and these

architectures are discussed in [40].

4.2. Managing Power Quality Issues

In terrestrial microgrids, most of the generation sources are based on inverter-interfaced

generation sources, and ESSs are also interfaced through power electronic converter systems.

Therefore, the output current could be controlled instantaneously to mitigate power quality

issues in microgrids. Nevertheless, the rapid response capability of inverter systems is limited by

the characteristics of the energy storage devices. As discussed earlier, high power density and rapid

response are vital characteristics of ESSs to provide rapid energy needs dictated by the inverter.

Therefore, based on nature of the power quality disturbance, appropriate ESS should be selected for
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the inverter system. This section delineates various strategies used in terrestrial microgrids to mitigate

power quality issues.

4.2.1. Managing Voltage Sags/Dips

The voltage sags are also closely related to the low-voltage ride-through (LVRT) or fault

ride-through (FRT) studies in microgrids; hence relevant literature reports strategies that can be used to

mitigate voltage sags [44–48], as well as LVRT strategies for microgrids [49–51]. Therefore, both voltage

sag mitigation strategies and LVRT strategies are discussed here.

Reactive power control is the most commonly used strategy for mitigating voltage sags in

microgrids, and will also allow microgrid to ride-through faults [46]. This strategy is commonly known

as Q/V droop control. Reactive power control/injection could be achieved either using existing power

electronics based sources or additional dynamic reactive power devices, such as static synchronous

compensators (STATCOMs) [44,51]. STATCOM is a system that can combine both active and reactive

power capabilities into a single converter to achieve both frequency and voltage regulation and thus

becoming popular in modern power systems. In Q/V droop control strategy, the error between actual

and reference voltage is calculated (see Figure 5) and then processed through a droop constant (Kv_droop)

to generate the reactive power reference (Qref), and ultimately based on the voltage error, the STATCOM

will inject reactive power to the microgrid to compensate the voltage sag [51].

 

Figure 5. Q/V droop control strategy.

A unified power quality conditioner proposed in [47] also adopted a similar control strategy for

mitigating voltage sags in microgrids. Thus, a similar reactive power control strategy could be also

adopted for power electronic interfaced ESSs in microgrids [45]. However, the ESS should be able to

release large transient energy for mitigating large voltage sags in the microgrid. Thus, it is essential

to select the appropriate energy storage technology (i.e., energy storage technology with high power

density) if the ESS is dictated to mitigate voltage sags in the microgrid network. For example, in [50],

a supercapacitor-based ESS is proposed for improving FRT capability of the microgrid.

However, effectiveness of the reactive power control strategy for voltage sag mitigation depends

on the X/R ratio of the network, since the network voltage becomes less sensitive to reactive power

when the network is predominantly resistive. Typically, if the network voltage is less than 11 kV,

the X/R ratio becomes less than unity and hence active power becomes more dominant over reactive

power when controlling the network voltage. Therefore, it is vital to assess the network impedance

characteristics before implementing voltage sag mitigation through power electronic interfaced ESSs.

As delineated in [50], the voltage sags could be symmetrical or asymmetrical, therefore under

asymmetrical voltage sags both positive and negative sequence voltage should be compensated in

order mitigate the voltage sag and improve the LVRT capability to the microgrid. A negative and

positive sequence droop based control method is proposed in [34] to mitigate the asymmetrical voltage

sags in microgrids. In this sequence/droop based strategy appropriate proportions of positive and
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negative sequence active and reactive power are injected to the network to mitigate the voltage sag in

the network. As this strategy is developed for a 3-phase voltage source inverter (VSI) based distributed

generation (DG) systems, similar strategy could be adopted for an ESS interfaced with 3-phase VSI.

4.2.2. Managing Voltage Unbalance

The voltage unbalance is another major power quality issue reported in ac microgrids.

The excessive voltage unbalance could cause induction motor driven pumps to overheat and ultimately

lead to immature failure of the motor. The voltage unbalance is mainly caused by the unevenly

distributed single-phase loads in the microgrid. Load reconfiguration is one option, however due to

the stochastic nature of the loads, load reconfiguration does not always guarantee a perfect distribution

of load in all three phases in the microgrid.

Various voltage unbalance mitigation strategies have been proposed for microgrids [52–55] and

strategies are mainly implemented at the power electronic converter of the distributed generator.

In every strategy, positive and negative sequence voltages are extracted and subsequently positive

and negative sequence components are controlled separately to mitigate the voltage unbalance in

the microgrid.

In [52], voltage unbalance mitigation strategy was implemented for DGs and active power filter

in a microgrid. The hierarchical control strategy is used in [52] in which primary control was used for

power sharing among DGs, while at the secondary control voltage unbalance mitigation strategy was

implemented. Furthermore, this strategy only activates when the microgrid violates the maximum

voltage unbalance factor (VUF) allowed for the microgrid. Voltage unbalance mitigation strategy

proposed in [53] deploys a direct voltage unbalance compensation scheme by controlling the negative

sequence reactive power in the synchronous reference frame. The advantage of this strategy is that it

can continuously control voltage unbalance in the microgrid. Authors in [54] have proposed to control

the active and reactive power ripple in order to attenuate the voltage unbalance in the microgrid.

A factor called “K” was defined by the authors in order to command active and reactive power ripple

from the DG. Therefore, by varying the K factor based on the network characteristics (i.e., X/R ratio)

and the unbalance level, voltage unbalance could be mitigated in the microgrid. Since all these

strategies are implemented in 3-phase VSIs, these strategies could be adopted for ESSs interfaced with

3-phase VSIs.

4.2.3. Managing Harmonics and Resonance Issues

Due to non-linear power electronic loads connected on-board, ship power network may contain

significant harmonics in their network and subsequently may lead to detrimental resonance issues

in the network. The most common method of eliminating harmonics is connecting passive filters in

series with the harmonic emission source, which could be either a non-linear power electronic load or

power electronic based distributed generator. However, the main focus here being reviewing the active

harmonic elimination techniques used in microgrids.

A range of harmonic and resonance elimination techniques has been proposed, mainly focusing

on terrestrial microgrids [55–62]. The harmonic mitigation strategies are proposed for both voltage

and current harmonics in microgrids. The most commonly proposed methods are selective

harmonic current injection for current harmonic mitigation [55,56,61], virtual grid impedance [31,32],

resistive active power filter [59], repetitive control methods [60], and using additional devices such as

D-STATCOM [35].

In selective harmonic current injection, it is required to have a good understanding of the nature

of the harmonic currents to inject opposing currents by the VSI to cancel out the harmonics in

the microgrid [55–58]. Therefore, in addition to the main load current reference an additional harmonic

current is added to the current reference of the battery inverter as stated in [55]. A similar selective

harmonic compensation scheme has been proposed in references [56] for the DGs in the microgrid.
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In order to share the harmonic current injections equally among all the DG inverters a virtual

impedance has also been proposed in this paper.

A virtual impedance is added to the control loop in [58] to attenuate the harmonic current

injections by DGs due to voltage distortions present in the network. Since larger the voltage distortion,

higher the harmonic current injections by inverter interfaced DGs. In addition, a capacitive virtual

impedance has been proposed in order to share the harmonic compensation load equally among all

DGs. In [58], a virtual impedance method has also been used for the damping harmonic voltages due

to the adverse effect of the grid-side inductor of the LCL filter.

In addition, resistive active filter methods are also proposed in the literature to suppress harmonics

in small grids, similar to the size of microgrids. In this proposed active filter, harmonic voltages are

extracted in synchronous reference frame and subsequently drive the current regulator to produce

a voltage command to suppress harmonic voltages [59]. Furthermore, repetitive control methods

have also been proposed for voltage harmonic suppression, and also used D-STATCOMs to suppress

harmonics in the network.

4.2.4. Managing Frequency Excursions

In terrestrial microgrids, ESSs play an important role in maintaining the power balance in

the microgrid. The ac network frequency is considered as the main indicator for the power balance in

ac microgrids, hence the ESSs can be primarily controlled based on the microgrid ac network frequency.

When the ac network frequency increases the ESS could be charged, while ac system frequency

decreases it could be discharged to balance the power. The system response during frequency

variations can be mainly divided into three types: primary, secondary and tertiary. During the primary

response, conventional generators will release the stored kinetic energy within first few seconds,

and subsequently the generator governor increases the power output based on the error between

the actual frequency and reference frequency. The primary response is vital in maintaining

the frequency stability of the ac grid, as the failure to maintain the frequency within a defined

frequency band would cause failure in the entire network. However, microgrids are typically

comprised of inverter-interfaced generation sources; hence they would not respond naturally to

system frequency variations.

In the published literature, various strategies have been proposed to emulate inertial response or

frequency response for power electronics based wind generation systems [63–66]. As the ESSs are also

interfaced through power electronic converter systems, the emulated frequency response strategies

can also be applied to ESS control scheme. This could be achieved by adding an additional control

loop to the main active power control loop of the energy storage system to increase the power output

in order to mitigate the frequency drop [64].

The use of energy storage technologies for mitigating voltage and frequency fluctuations is well

explored in the recent literature [67–69]. In majority of the ac systems, where the grid is considered to

be predominantly inductive, the ESSs are designed to exchange active power to regulate the frequency.

If there is a sudden change of the load, ESS can acts fast to supply the power deficit or absorb

the surplus power and thus the system frequency stays within a predefined range. This approach is

commonly known as P/f control.

4.3. Challenges of Incorporating Power Quality Mitigation Strategies to ESSs

Although there is a range of energy storage technologies available for ship microgrids, the main

challenge being the accurate selection and design of the energy storage system to counteract the specific

power quality issue in the ship microgrid. Traditionally ESSs are chosen based on emergency

energy needs and economic considerations, hence the characteristics associated the ESS is treated

as a secondary requirement. For example, if a battery based ESS is chosen to mitigate voltage sags

caused by high pulsed loads, then the ESS could fail over time due to its incapability to deliver high

power at fast ramp rates. Thus, the main challenge is the selection of the appropriate technology to
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suit power quality issues and other traditional requirements. Perhaps the ESS designer should make

a trade-off between the traditional needs and power quality needs when designing ESSs for future

ship microgrids. The hybrid energy storage is one of the viable option to fulfil this requirement.

The abovementioned P/f and Q/V control approach is suitable only for more inductive

systems [70], which are generally high voltage systems. Nevertheless, low voltage ac power systems,

which are commonly found in ships, are more resistive than inductive, and thus a different approach

should be used. In such systems, active power has a greater influence on the voltage and thus ESSs are

needed to exchange active power for voltage regulation with reactive power exchange being controlled

to regulate frequency. In dc ship power systems, the ESSs are used to regulate the voltage by supplying

the deficit of power or absorbing the surplus of power. The control of the interfacing power converter

is straight forward, as it does not involve synchronization of frequency control. In summary, it is

clear that irrespective of the type and characteristics of the power system, ESS should act fast to keep

the voltage and frequency within a permissible range.

Power levels of the converters used to drive propulsion motors or other large motors in pumps, fans or

thrusters are very high and they work relatively at low frequencies. Consequently, waveform distortion,

commonly known as harmonic distortion produced by these converters are very high. A common solution

used to reduce harmonic distortion is the use of passive filters which are heavy, bulky, and less reliable,

mainly due to the capacitors in these filters. As an alternative, ESS interfacing power converters can be

used as an active filter as well and thereby mitigate harmonics produced by large motor drives.

5. Concluding Remarks

With the extensive use of power electronic converters and range of high power rapid response

loads in ship microgrids, issues related to power quality are becoming significant. Thus, this review

paper categorically analysed the range of power quality issue in ship microgrids and subsequently

discussed mitigation strategies using different types of ESSs and various control mechanisms.

The majority of ESSs are dc in nature and low in operating voltage levels and thus interfacing dc-dc or

dc-ac converters are essential for integrating them to the ship power systems. Since the ESSs are used

only as a supporting system their power levels are relatively low and thus high frequency switching is

possible in these converters. This allows them to respond fast and reduce waveform distortions.

The mitigation strategies are primarily based on strategies proposed for terrestrial microgrids,

as the same strategies could be implemented at the power electronic converter interfaced energy

sources. This paper highlights that when implementing these strategies, characteristics of the ESSs

should be carefully analysed as the power density and energy density greatly affect the effectiveness

of the mitigation strategy. Thus, it is important to select the appropriate energy storage technology

considering the type of power quality issue(s) being addressed.
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