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Review of Som
22. Review of Some Fundamentals of Data Processing

This chapter is devoted to reviewing some fun-
damental transforms and analysis procedures
commonly used for both signal and data process-
ing in fluid mechanics measurements. The chapter
begins with a brief review of the Fourier transform
and its digital counterpart the discrete Fourier
transform. In particular its use for estimating
power spectral density is discussed in detail. This
is followed by an introduction of the correlation
function and its relation to the Fourier transform.
The Hilbert transform completes the introductory
topics. The chapter then turns to a rigorous pre-
sentation of the proper orthogonal decomposition
(POD) in the context of the approximation theory
and as an application of singular value decompo-
sition (SVD). The relationship between POD and SVD
is discussed and POD is described in a statistical
setting using an averaging operation for use with
turbulent flows. The different POD approaches are
briefly introduced, whereby the main differences
between the classical POD and the snapshot POD
are highlighted. This section closes with a presen-
tation of the POD as a generalization of the classical
Fourier analysis to inhomogeneous directions. The
chapter continues with a discussion of conditional
averages and stochastic estimation as a means of
studying coherent structures in turbulent flows be-
fore moving in a final section to a comprehensive
discussion of wavelets as a combination of data
processing in time and frequency domain. After
first introducing the continuous wavelet transform
and orthogonal wavelet transform their applica-
tion in experimental fluid mechanics is illustrated
through numerous examples.
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22.1 Fourier Transform

The Fourier transform (FT) is an integral transform with

orthogonal sinusoidal basis functions of different fre-

quencies. The result represents the frequency spectrum

of the signal. Depending on the characteristics of the

original (time) signal, different variants of the transform

are defined.

A continuous periodic signal x(t) = x(t + T ) with

the period T can be decomposed into an infinite series
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1338 Part D Analysis and Post-Processing of Data

of sinusoidal functions (Fourier series), whose linear

combination reproduces the original function

x(t) = x(t + T )

=
∞∑

k=−∞
ak cos

(
2πkt

T

)
+

∞∑

k=−∞
bk sin

(
2πkt

T

)
.

(22.1)

The Fourier coefficients ak and bk are given by

ak = 1

T

T∫

0

x(t) cos

(
2πkt

T

)
dt ,

bk = 1

T

T∫

0

x(t) sin

(
2πkt

T

)
dt . (22.2)

Using

eix = cos(x)+ i sin(x) , (22.3)

the Fourier coefficients ak and bk can be combined

to a complex value ck and the Fourier series can be

extended easily for complex function x(t) yielding

x(t) = x(t + T ) =
∞∑

k=−∞
ck exp

(
2πikt

T

)
(22.4)

with

ck = 1

T

T∫

0

x(t) exp

(
−2πikt

T

)
dt . (22.5)

Note that, even for a real function x(t), the Fourier

coefficients are complex values. The real part is asso-

ciated with the cosine function and the imaginary part

with the sine function. Thus, the real part represents

contributions to the signal, which are symmetric about

zero and the imaginary part describes the asymmetric

contributions.

By using T → ∞, for a continuous complex signal

x(t) with finite energy content the superposition of the

Fourier series becomes

x(t) =
∞∫

−∞

X( f ) exp(2πi ft)d f (22.6)

with

X( f ) =
∞∫

−∞

x(t) exp(−2πi ft)dt . (22.7)

Signal with finite energy fulfill
∫∞
−∞ |x(t)|dt < ∞. This

implies that the signal is nonperiodic.

The result of the decomposition X( f ) is called the

continuous Fourier transform (CFT). It is a continu-

ous, infinite, non-periodic, complex frequency spectrum,

which fulfills the Plancherel theorem
∞∫

−∞

|X( f )|2 d f =
∞∫

−∞

|x(t)|2 dt , (22.8)

indicating the conservation of energy by the Fourier

transform. Note that upper- and lower-case notation will

be used for the frequency and time domains, respec-

tively.

A finite series of complex values xn = x(t = n∆ts)

with n = 0, 1, . . . , N −1, sampled at equal time inter-

vals and over the time duration 0 ≤ t < T = N∆ts can

be decomposed into a finite sum of complex Fourier

coefficients Xk, yielding the discrete Fourier transform

(DFT). The DFT is defined as

Xk = X( f = k∆ f )

= FT(xn) =
N−1∑

n=0

xn exp

(
−i

2πnk

N

)

k = 0, 1, . . . , (N −1) (22.9)

and its inverse transform as

xn = FT−1{Xk} = 1

N

N−1∑

k=0

Xk exp

(
+i

2πnk

N

)
,

n = 0, 1, . . . , (N −1) , (22.10)

where n is the data sample index at time intervals of

∆ts and with the corresponding sample frequency of fs.

The spectral coefficients are computed for the equally

spaced frequencies given by

fk = k

N∆ts
= k fs

N
, k = 0, 1, . . . , (N −1) .

(22.11)

The frequency spacing of the resulting Fourier coef-

ficients is therefore

∆ fs = 1

N∆ts
= 1

T
= fs

N
. (22.12)

This is also the lowest frequency that can be resolved.

The power spectral density (PSD) is given by the

squared magnitude of the spectral coefficients

Sk = S( f = fk) = 1

N fs
X∗

k Xk = 1

N fs
|Xk|2 ,

k = 0, 1, . . . , (N −1) . (22.13)

This function represents the distribution of the to-

tal signal power between the frequencies 0 and fs. The
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Review of Some Fundamentals of Data Processing 22.1 Fourier Transform 1339

term density is used because power per frequency band-

width ∆ fs is being considered. The PSD is symmetric

about k = N/2 and has a periodicity every N samples.

Therefore, an alternative representation is the use of

negative and positive frequencies. For this case, all val-

ues of k ≥ N/2 are interpreted as negative frequency

values and the spectrum is symmetric about k = 0. In this

case, the function is known as the two-sided spectrum.

The one-sided PSD simply considers the symmetry of

the two-sided spectrum around 0 and yields the spectral

distribution between k = 0 and k = N/2. It is given by

Gk = G( f = fk) = 2

N fs
X∗

k Xk = 2

N2∆ fs
X∗

k Xk ,

k = 0, 1, . . . ,
N

2
. (22.14)

Note that the total power of this spectrum is not the

same because f = 0 and f = fs/2 are also doubled.

The maximum resolvable frequency is half the

sampling frequency fmax = fs/2 = fN/2 (the Nyquist
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Fig. 22.2a,b Aliasing error in a spectrum due to signal frequencies occurring above the Nyquist frequency. (a) Original

signal and spectrum, (b) sampled signal and falsified spectrum

��&'�(����%

)"#����������	����������)���

���
�����

�*&'�( (
�

'���

��
'

*�
�����
��
�����

����( (
�

�

��
�

�

Fig. 22.1 The power spectral density and the sampling parameters

frequency) and the resolution is determined by the

data set duration ∆ fs = 1/T . Graphically the PSD and

the parameters involved in computing it are shown in

Fig. 22.1.
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1340 Part D Analysis and Post-Processing of Data
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Fig. 22.3a–c Elimination of the aliasing error by use of a low-pass, anti-aliasing filter. (a) Original signal and spectrum,

(b) low-pass filtered signal and spectrum, (c) sampled signal and non-aliased spectrum

Two properties of the DFT deserve particular atten-

tion. Since the time between the sample points is not

infinitely small, the power in the signal at frequencies

above fmax will appear in the PSD at lower frequencies,

an effect known as aliasing. This falsifies the spectrum

at the lower frequencies. An example of aliasing is given

in Fig. 22.2. The signal in Fig. 22.2a contains two fre-

quency peaks at 2.4 Hz and 9.5 Hz, as can be seen in the

correct spectrum illustrated in Fig. 22.2a. By sampling

the signal at 15 Hz, the maximum resolvable frequency

is 7.5 Hz and thus, the Nyquist criterion is not fulfilled

for the signal power at 9.5 Hz. The spectral portion

above 7.5 Hz is mirrored about the Nyquist frequency

and results in an additional peak at 5.5 Hz (Fig. 22.2b).

Furthermore the signal noise at frequencies above fmax

also increases the noise level at frequencies below fmax.

P
a
rt

D
2
2
.1

Springer Handbook of Experimental Fluid Mechanics
Tropea, Yarin, Foss (Eds.) • ! Springer 20071



Review of Some Fundamentals of Data Processing 22.1 Fourier Transform 1341

Aliasing errors in estimates of PSD are avoided by

applying an analog anti-aliasing, low-pass filter with

a sharp cut-off at half the sampling frequency. This pro-

cedure is illustrated in Fig. 22.3, using the same signal as

used in Fig. 22.2. Before sampling the signal, a low-pass

filter removes the frequencies higher than the Nyquist

frequency fmax (Fig. 22.3b). The spectrum of the filtered

and sampled signal in Fig. 22.3c contains no additional

frequency peak. Furthermore, the noise level is reduced

to the same as in the original signal in Fig. 22.3a.

Besides the periodicity after every N samples of the

DFT in (22.9) and the PSD in (22.13), the inverse DFT in

(22.10) also has a period of N samples. This effectively

means that the DFT perceives and acts on an infinite jux-

taposition of the input data record and the inverse DFT

effectively transforms an infinite juxtaposition of the

spectrum. This is illustrated in Fig. 22.4 for a time series.

If the beginning and end of the record do not merge

smoothly into one another, sudden amplitude jumps

are perceived, which give rise to additional frequency

components in the spectrum. These end effects are unim-

portant for records of long duration; however, they

deserve attention with short records. These effects are

diminished by applying window functions in the time
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Fig. 22.5a–c A multiplication of

two signals in the time domain is

equivalent to a convolution in the fre-

quency domain. This can be used

to explain spectral broadening due

to finite record lengths. (a) Infinite

sine function and related spectrum,

(b) rectangular function and related

spectrum, (c) finite sine function and

related spectrum
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Fig. 22.4 Implicit periodicity of acquired signal when processing

using the finite-length DFT

domain. Window functions scale the input data ampli-

tude and force a tapering to zero at the beginning and

end of the signal [22.1].

A further consequence of a finite input record dura-

tion is spectral broadening. A spectrum of an infinitely

long sine wave is a delta function at the signal frequency.

A finite-length sine wave yields however a broadened

peak, in which the peak width is inversely proportional

to the input signal duration. This process is graphi-

cally illustrated in Fig. 22.5. The spectrum of an infinite

sine wave is a delta function at the signal frequency

(Fig. 22.5a). A finite duration sine wave can be viewed

as the product of an infinite sine wave with a rectangu-

lar window of duration T (Fig. 22.5b). The spectrum of
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1342 Part D Analysis and Post-Processing of Data

the finite sine wave will therefore be the convolution of

the delta function with the magnitude of a sinc function,

the transform of a rectangular window (Fig. 22.5c).

This can be easily illustrated using the following

relations. If a signal y(t) is given in the time domain as

the product of two other signals, x(t) and h(t)

y(t) = x(t)h(t) (22.15)

then the Fourier transform of y(t) is given by the convo-

lution of the Fourier transforms of x(t) and h(t) [22.2].

Y ( f ) = X( f )⊗ H( f ) =
∞∫

−∞

X(α)H( f −α)dα .

(22.16)

The power spectral density of y(t) is then

Sk = 1

N fs
Y∗

k Y k , k = 0, 1, . . . , (N −1) . (22.17)

An obvious consequence of spectral broadening is

that the resolution of distinct signal frequencies in the

PSD can be improved by sampling a longer portion of

the signal.

In practical implementations of the DFT, (22.9) is

not used directly but rather a recursive form known

as the fast Fourier transform (FFT) is used. There are

many realizations of the FFT, but they share one fea-

ture in common, namely, that they normally operate on

2n points: sample records are restricted to values such

as 16, 32, 64, 128, . . . The calculation time of the DFT

implemented with (22.9) increases with N2. The FFT

algorithm reduces the computation time to the order of

N log N . Algorithms exist for FFTs using other record

lengths, especially prime number decompositions; how-

ever, these are not in widespread use.

A commonly used technique with the FFT is that

of zero padding. Without changing the spectral content

of the signal, zero padding forces the FFT algorithm to

estimate the spectrum at additional frequencies between

zero and fmax, thus improving the resolution. This is

easily seen by examining a signal doubled in length by

adding zeros. Instead of (22.9) the transform becomes

Xk =
2N−1∑

n=0

xn exp

(
−i

2πnk

2N

)
,

k = 0, 1, . . . , (2N −1) . (22.18)

However, since xn = 0 for n = N, N +1, . . . , (2N −
1), this can be written as

Xk =
N−1∑

n=0

xn exp

(
−i

2πn (k/2)

N

)
,

k = 0, 1, . . . , (2N −1) (22.19)

which is identical to the N-point transform for every

other k value. However now Xk is also computed at in-

termediate k values. The spectral content of the signal

has in no way been altered, but with the intermediate

estimates, interpolation of peak locations can be im-

proved. Zero padding can also be used to extend input

data records up to a length of 2n values, in preparation

for an FFT.

22.2 Correlation Function

The (temporal) autocorrelation function of a signal x(t)

is defined as

R(τ) = E[x(t)x(t + τ)] . (22.20)

It is a symmetric function. Principally, the infor-

mation available in spectral domain is also available in

the correlation domain, since the autocorrelation func-

tion R(τ) forms a Fourier transform pair with the power

spectral density (Wiener–Khinchine relation).

S( f ) = FT{R(τ)} =
∞∫

−∞

R(τ)dτ , (22.21)

R(τ) = FT−1{S( f )} =
∞∫

−∞

S( f )d f . (22.22)

In digital form this can be expressed as

Rn = R(τ = n∆τ) = fs

N

N−1∑

k=0

Sk exp

(
+i

2πnk

N

)
,

n = 0, 1, . . . , N −1 , (22.23)

Sk = S( f = fk) = 1

fs

N−1∑

n=0

Rn exp

(
−i

2πkn

N

)
,

k = 0, 1, . . . , N −1 , (22.24)

where ∆τ = ∆ts is the time lag interval. The autocorre-

lation function is by definition symmetric about τ = 0,

as the auto spectral density is about f = 0, yielding the
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Review of Some Fundamentals of Data Processing 22.2 Correlation Function 1343

alternative expressions

Rn = R(τ = n∆τ)

= fs

2N

N/2−1∑

k=−N/2

G|k| exp

(
+i

2πnk

N

)

= fs

2N

[
G0 + (−1)nG N/2

+2

N/2−1∑

k=1

Gk cos

(
2πnk

N

)]
,

n = 0, 1, . . . ,
N

2
, (22.25)

Gk = G( f = fk)

= 2

fs

N/2−1∑

n=−N/2

R|n| exp

(
−i

2πkn

N

)

= 2

fs

[
R0 + (−1)k RN/2

+2

N/2−1∑

n=1

Rn cos

(
−2πkn

N

)]
,

k = 0, 1, . . . ,
N

2
. (22.26)

With the mean removed, the autocorrelation func-

tion is known as the autocovariance function; however,

these two terms will be used interchangeably, always

assuming a mean-free input signal.

A computation of Rn using the FFT, first to com-

pute the PSD and then to transform to the correlation

domain, exhibits a speed advantage that increases with

increasing data record length N log N compared to N2

for a direct calculation of the correlation function shown

below. However, there are some subtle drawbacks of

using the estimate of (22.25). The most important of

these is the so-called wrap-around error [22.2], which

has its origins in the finite-length DFT, (22.9). The in-

herent periodicity in time, which is implied by (22.9) and

illustrated in Fig. 22.4, essentially means that the corre-

lation function computed according to (22.25) assumes

an infinite juxtaposition of the input signal in time. The

derived autocorrelation function will also be based on

this assumption and is, therefore, known as the circular

autocorrelation. This error is avoided by first padding

the input signal with zeros at the beginning and end of

the original signal to double its length.

The autocorrelation function will exhibit a periodic-

ity at the same period as the original signal. For instance,

the autocorrelation of an infinite sine wave will be an
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Fig. 22.6a–c Input signal and autocorrelation function. (a) Sine

wave, (b) noise-free Doppler signal, (c) noisy Doppler signal

infinite cosine wave, as illustrated in Fig. 22.6a. Thus,

the signal frequency can be estimated by measuring the

elapsed time over one or more zero crossings of the

autocorrelation function (period timing).

The autocorrelation of a Gaussian-windowed sine

wave centered around t = 0, as shown in Fig. 22.6b, will

yield as a correlation function a cosine wave with an

amplitude decay directly related to the window width.

Of particular interest is the effect of signal noise on

the correlation function. As illustrated in Fig. 22.6c, the

contribution of signal noise can be found entirely in the

first coefficient of the autocorrelation function, i. e., at

τ = 0. This is because the signal noise has no inherent

time scale, meaning that it is completely random and not

correlated with itself over any length of time. This last

property of the autocorrelation function is particularly

interesting for signal processing, because it provides

a means of separating the noise effects from the sig-

nal, thus, improving the estimation of signal frequency

and other signal parameters.

The correlation function can also be computed di-

rectly. The estimator

Rn = R(n∆τ) = 1

N

N−1∑

i=0

xi xi+n ,

n = 0, 1, . . . , (N −1) (22.27)

with periodic boundary conditions (xn±N = xn) yields

the same estimate of the correlation function as obtained
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1344 Part D Analysis and Post-Processing of Data

with the FFT. Due to the assumption of the periodicity of

the signal, it has systematic errors, as described above.

The estimator

Rn = R(n∆τ) = 1

N

N−n−1∑

i=0

xi xi+n ,

n = 0, 1, . . . , (N −1) (22.28)

is equivalent to the FFT-based estimation with zero

padding (doubling the signal length). This estimator has

systematic errors due to the decreasing number of prod-

ucts in the sum for increasing time lags n∆τ , while the

sum is always divided by N . Dividing the sum by the

number of products in the sum yields the estimator

Rn = R(n∆τ) = 1

N −n

N−n−1∑

i=0

xi xi+n ,

n = 0, 1, . . . , (N −1) , (22.29)

which is unbiased. On the other hand, this estimator

has a time-lag-dependent estimation variance, which

increases with time lag. The alternative estimator

Rn = R(n∆τ) =

N−1∑
i=0

x2
i

N−n−1∑
i=0

xi xi+n

√
N−n−1∑

i=0

x2
i

√
N−n−1∑

i=0

x2
i+n

,

n = 0, 1, . . . , (N −1) (22.30)

first calculates the correlation coefficient using a nor-

malization with estimates of the variance based on the

same xi as used for the summation with products xi xi+n .

Then the correlation coefficient is denormalized to a cor-

relation function using a variance estimate based on all

available signal samples. This estimator has a small

estimation variance. However, this estimator is only

asymptotically bias-free for a sufficiently large N .

22.3 Hilbert Transform

The Hilbert transform of a function x(t) is defined by

y(t) = HT{x(t)} = 1

π

∞∫

−∞

x(τ)

t − τ
dτ (22.31)

and is an integral transform, where the Cauchy principal

value is taken in the integral. The function y(t) is pro-

duced by passing x(t) through a filter with the transfer

function

H( f ) = −isgn( f ) . (22.32)
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Fig. 22.7 A sample signal and its Hilbert transform illus-

trating the −90◦ phase shift

A singularity exists at the value f = 0, which, how-

ever, does not cause any computational problems. On

the other hand, the infinite integral causes problems for

signals that are not mean-free. Thus, when processing

signals with the Hilbert transform, it is necessary first to

remove the mean.

The magnitude and phase of H( f ) are

|H( f )| = 1 , (22.33)

arg{H( f )} = −π

2
sgn( f ) . (22.34)

The inverse of the Hilbert transform is given by

x(t) = HT−1{y(t)} = −HT{y(t)} = 1

π

∞∫

−∞

y(τ)

τ − t
dτ .

(22.35)

Table 22.1 Some sample Hilbert transform pairs

x(t) y(t) = HT{x(t)}

Const. Defined as 0

ax1(t)+bx2(t) ay1(t)+by2(t)

x(at) y(at)

x(t − t0) y(t − t0)∫∞
−∞ x(t)x(t − τ)dt

∫∞
−∞ y(t)y(t − τ)dt

a sin bt −a cos bt

a cos bt a sin bt

δ(t −a) 1
π

1
t−a
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Fig. 22.8 (a) Input signal and computed envelope amplitude, (b) instantaneous phase of the input signal
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Fig. 22.9 (a) Fourier coefficients

modified for the Hilbert transform,

(b) modified coefficients for analytical

signal

Some typical examples of Hilbert transform pairs

are given in Table 22.1.

A sample signal and its Hilbert transform are shown

in Fig. 22.7. For a given input signal x(t) the Hilbert

transform is the signal y(t) shifted by −90◦ in phase for

all frequencies.

An analytical (complex) function for a given input

signal x(t) can be defined as

z(t) = x(t)+ iHT{x(t)} , (22.36)

which has spectral values only for frequencies larger

than or equal to zero ( f ≥ 0). Its Fourier transform is zero
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for all negative frequencies, or in the discrete case for all

frequencies f ≥ N/2. This analytical signal can be used

to derive the signal envelope A(t) and the instantaneous

signal phase ϕ(t),

A(t) = |z(t)| , (22.37)

ϕ(t) = arg{z(t)} . (22.38)

The envelope and phase of the Doppler-like signal

from Fig. 22.7 are shown in Fig. 22.8.

The calculation of the Hilbert transform for a discrete

signal of finite length xn = x(t = tn), tn = n/ fs, n =
0, 1, . . . , (N −1) can be performed in the frequency

domain using the discrete Fourier transform or its fast

implementation, the FFT

ℵ{xn} = FT−1{bnFT{xn}} (22.39)

with

bn =

⎧
⎨
⎩

−i for 0 ≤ n < N/2

i for N/2 ≤ n < N .
(22.40)

The analytical signal defined in (22.36) can be ob-

tained as

zn = z(t = tn) = FT−1{bnFT{xn}} (22.41)

with

bn =

⎧
⎨
⎩

2 for 0 ≤ n < N/2

0 for N/2 ≤ n < N
. (22.42)

These expressions are illustrated graphically in

Fig. 22.9, in which the real and imaginary Fourier coef-

ficients of a real input signal are shown. The modified

coefficients used in the inverse transform to obtain the

Hilbert transform (22.39) are shown in Fig. 22.9a, and

the modified coefficients used in the inverse transform

to obtain the analytical function (22.41) are shown in

Fig. 22.9b. From this figure it becomes apparent that the

Hilbert transform can be implemented using very simple

operations in combination with the Fourier transform.

22.4 Proper Orthogonal Decomposition: POD

22.4.1 Basics

Collecting very large amounts of data by numerical

simulations or experimental approaches is a com-

mon situation in almost any scientific field. There is

therefore a great need to have specific postprocessing

techniques able to extract from these large quanti-

ties of high-dimensional data, synthetic information

essential to understand and eventually to model the

processes under study. The proper orthogonal decom-

position (POD) is one of the most powerful method

of data analysis for multivariate and non linear phe-

nomena. Essentially, POD is a linear procedure that

takes a given collection of input data and creates an

orthogonal basis constituted by functions estimated

as the solutions of an integral eigenvalue problem

known as a Fredholm equation (22.60). These eigen-

functions are by definition (22.58) characteristic of the

most probable realizations of the input data. More-

over, it can be shown that they are optimal in terms

of representation of the energy present within the data

(Sect. 22.4.3).

Historical Background of POD
Historically, the proper orthogonal decomposition was

introduced in the context of turbulence by Lumley [22.3]

as an objective definition of what was previously called

big eddies by Townsend [22.4] and which is now

widely known as coherent structures (CS, see [22.5]

for a detailed discussion of CS and an overview of their

detection methods). According to Yaglom [22.6], the

POD is a natural idea to replace the usual Fourier de-

composition in nonhomogeneous directions. The POD

method was then introduced for different purposes

independently by several scientists, in particular, by

Kosambi [22.7], Loève [22.8, 9], Karhunen [22.10],

Pougachev [22.11], and Obukhov [22.12, 13]. This

technique then became known under a variety of

names: Karhunen–Loève decomposition or expansion,

principal component analysis [22.14] or hotelling ana-

lysis [22.15], and singular value decomposition [22.16].

Naturally, the proper orthogonal decomposition has

been used widely in studies of turbulence but other

popular applications involve random variables [22.17],

image processing such as characterization of human

faces [22.18], signal analysis [22.19], data compres-

sion [22.20], and more recently optimal control [22.21,

22].

From a mathematical point of view, the proper or-

thogonal decomposition is just a transformation that

diagonalizes a given matrix A and brings it to a canonical

form A = UΣV †, where Σ is a diagonal matrix (see the
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paragraph on singular value decomposition for a com-

plete description). The mathematical content of POD is

therefore classical and is based on the spectral theory

of compact, self-adjoint operators [22.23]. Two geomet-

ric interpretations of this mathematical procedure are

discussed later.

POD and Turbulent Flows
A complete literature review on applications of POD

to turbulence is far beyond the scope of this handbook:

good reviews can be found in Holmes et al. [22.24],

Delville et al. [22.25] and in the appendix of

Gordeyev [22.26]. In the following, we provide a brief

reminder of the insight that can be gained from the

use of POD for eduction and modeling of the coherent

structures observed in most turbulent flows.

For our purposes, it is sufficient to bear in

mind [22.27] that CS identification has to be done for at

least two reasons: firstly, from an energetic point of view

because the relative energy content of the CS compared

with the total turbulent energy can be from 10% (for

boundary layers, far jets) up to 20% (far wakes, plane

mixing layers) or 25% (near wakes or jets) [22.28]; sec-

ondly, because the dynamical properties of CS play an

essential role in mixing processes, drag, noise emission,

etc. For these reasons, the idea of controlling turbulent

flows by means of influencing their coherent structures

seems promising [22.29, 30].

Several characteristics of the proper orthogonal de-

composition technique, as introduced by Lumley [22.3],

are quite attractive in terms of CS identification. Firstly,

compared to many other classical methods used for

large-scale identification (flow visualization, conditional

methods, VITA (Variable Integration Time Average),

pattern recognition analysis), no a priori is needed for

the eduction scheme. CS are defined in an objective and

unique manner as the flow realization that possesses the

largest projection onto the flow field (22.58). Secondly,

the POD yields an optimal set of basis functions in the

sense that no other decomposition of the same order cap-

tures an equivalent amount of kinetic energy. Up to now,

POD is only presented as a data analysis method that

takes as input an ensemble of data, obtained from physi-

cal experiments or from detailed numerical simulations,

and extracts basis functions optimal in terms of the repre-

sentativeness of the data. For illustrative purposes of the

ability of the proper orthogonal decomposition to educe

CS, POD is applied in Cordier and Bergmann [22.31]

to a database obtained by large-eddy simulation of

a three-dimensional plane turbulent mixing layer. How-

ever, proper orthogonal decomposition can also be used

as an efficient procedure to compute low-dimensional

dynamical models of the CS. Reduced-order modeling

by POD is based on projecting the governing equation

of motion onto subspaces spanned by the POD basis

functions (Galerkin projection) yielding a simple set of

ordinary differential equations (ODEs). Finally, due to

the optimality of convergence in terms of kinetic en-

ergy of the POD functions, only a small number of POD

modes are necessary to represent the dynamical evolu-

tion of the flow correctly. Reduced-order modeling based

on POD has recently received an increasing amount of

attention for applications to optimal control problems

for partial differential equations [22.32–35]. In Cordier

and Bergmann [22.31], a low-order model based on POD

is developed for the incompressible unsteady wake flow

behind a circular cylinder at a Reynold’s number of 200.

In particular, it was demonstrated how the control action

could be incorporated into the low-dimensional model.

22.4.2 POD: An Approximation Method

In this chapter, we decide to follow the view of

Chatterjee [22.36] and to introduce the singular value

decomposition and its generalization, the proper orthog-

onal decomposition (Sect. 22.4.3), in the general context

of approximation theory [22.37].

Suppose we want to approximate a possibly vector-

valued function u(x, t) over some domain of interest

D = Ω × [0; T ] as a finite sum in the separated-variables

form:

u(x, t) ≃
K∑

k=1

a(k)(t)φ(k)(x) . (22.43)

For simplicity and because it will be the case in fluid

mechanics applications, x can be viewed as a spatial

coordinate and t as a temporal coordinate.

Our expectation is that this approximation becomes

exact as K −→ +∞. The representation (22.43) is

clearly not unique. A classic way to solve this approxi-

mation problem is to use for the basis functions φ(k)(x),

functions given a priori, for example Fourier series,

Legendre polynomials or Chebyshev polynomials. An

alternative approach could be to determine the functions

φ(k)(x) that are naturally intrinsic for the approxima-

tion of the function u(x, t). As will be explained in the

following, this particular approach corresponds to the

proper orthogonal decomposition (POD).

An additional difficulty is that a different sequence

of time functions a(k)(t) corresponds to each choice of

basis functions φ(k)(x). So, given φ(k)(x), how can we de-

termine the coefficients a(k)(t)? Suppose we have chosen
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1348 Part D Analysis and Post-Processing of Data

orthonormal basis functions, i. e.,

∫

Ω

φ(k1)(x)φ(k2)(x)dx = δk1k2
, (22.44)

where

δk1k2
=

⎧
⎨
⎩

0 for k1 
= k2,

1 for k1 = k2

is the Kronecker delta symbol, then:

a(k)(t) =
∫

Ω

u(x, t)φ(k)(x)dx .

Therefore for orthonormal basis functions, a(k)(t)

depends only on φ(k)(x) and not on the other φ. So for

selecting the function φ(k)(x), it would be useful to use

the orthonormality condition.

Moreover, while an approximation to any desired

accuracy can always be obtained if K can be chosen

large enough, we may like to find, once and for all, a se-

quence of orthonormal functions φ(k)(x) in such a way

that the approximation for each K is as good as possi-

ble in a least-squares sense. Now consider that we can

measure (experimentally or numerically) at Nt different

instants of time, M realizations of u(x, t) at M different

locations x1, x2, . . . , xM . The approximation problem

(22.43) is then equivalent to finding the orthonormal

functions {φ(k)(x)}K
k=1 with K ≤ Nt that solve:

min

Nt∑

i=1

‖u(x, ti )−
K∑

k=1

[
u(x, ti ), φ

(k)(x)
]
φ(k)(x)‖2

2 ,

(22.45)

where ‖ ·‖2 define the norm associated with the usual L2

inner product (., .). Remind that, for any vector y ∈ �
M ,

we have

y =

⎛
⎜⎜⎝

y1

...

yM

⎞
⎟⎟⎠
⇒ ‖y‖2 = (y, y)1/2 =

√
yT y

=
√

y2
1 + . . .+ y2

M . (22.46)

The practical method of solving the minimiza-

tion problem (22.45) is to arrange the data set

U = {u(x, t1), . . . , u(x, tNt )} in an M × Nt matrix A

called the snapshot data matrix

A =

⎛
⎜⎜⎜⎜⎝

u(x1, t1) u(x1, t2) · · · u(x1, tNt )

u(x2, t1) u(x2, t2) · · · u(x2, tNt )
...

...
...

...

u(xM, t1) u(xM, t2) · · · u(xM, tNt )

⎞
⎟⎟⎟⎟⎠

,

A ∈ �
M×Nt . (22.47)

Each column A:,i ∈ �
M of the snapshot data matrix

represents a single snapshot u(x, ti ) of the input ensem-

ble U. We note that, if the snapshot data are assumed to

be linearly independent (this will be the case in particu-

lar for the snapshot POD method for reasons explained

in Sect. 22.4.6), the snapshot data matrix has full column

rank.

The solutions of the minimization problem (22.45)

are given by the truncated singular value decomposition

of length K of the matrix A. For this reason, the singular

value decomposition of a matrix is reviewed below. The

relationship between the proper orthogonal decomposi-

tion and the singular value decomposition is addressed

later in Sect. 22.4.2.

Singular Value Decomposition (SVD)
Definition of SVD. Let A be a general complex M × Nt

matrix. The singular value decomposition (SVD) of A

is the factorization [22.16]:

A = UΣV † , (22.48)

where U and V are (non-unique) unitary M × M and Nt ×

Nt matrices, respectively, i. e. UU† = IM and VV † =
INt , and Σ = diag(σ1, . . . , σr , ) with σ1 ≥ σ2 ≥ . . . ≥
σr ≥ 0 where r = min(M, Nt). The rank of A equals

the number of nonzero singular values it has. Here, V †

denotes the adjoint matrix of V defined as the conjugate

transpose of V . Remind that for a unitary matrix A−1 =
A†. If A ∈ �

M×Nt then V † = V T, and V is said to be

orthogonal.

The σi are called the singular values of A (and of

A†), the first r columns of V = (v1, v2, . . . , vNt ) are the

right singular vectors, and the first r columns of U =
(u1, u2, . . . , uM) are the left singular vectors. Since the

singular values are arranged in a specific order, the index

i of the i-th singular value will be called the singular

value number.

Geometric Interpretations of SVD.
Geometric Structure of a Matrix. By definition of a ma-

trix, an M × Nt matrix A is a linear operator that maps
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vectors from an Nt-dimensional space, say ENt , to an M-

dimensional space, say EM . Imagine the unit sphere in

ENt (the set of vectors of unit magnitude). Multiplication

of these vectors by the matrix A results in a set of vectors

that defines an r-dimensional ellipsoid in EM , where r is

the number of nonzero singular values. The singular val-

ues σ1, σ2, . . . , σr are the lengths of the principal radii of

that ellipsoid (Fig. 22.10). Intuitively, the singular values

of a matrix describe the extent to which multiplication by

the matrix distorts the original vector. Moreover, since

the matrix V is unitary, (22.48) becomes AV = UΣ. The

consequences are that the directions of these principal

radii are given by the columns of U and the pre-images

of these principal radii are the columns of V . A second

geometric interpretation is given in the next section.

��

�'

2
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���������:������4���

Fig. 22.10 Geometric interpretation of the SVD of the ma-

trix A: image by A of a unit sphere
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Fig. 22.11 Geometric interpretation of the SVD of the ma-

trix A: phase-space rotation

Due to the interpretation of the matrix A in terms of

linear algebra, it is now obvious that the 2-induced norm

of A is σ1

‖A‖2 = max
‖x‖=1

‖Ax‖2 = σ1 . (22.49)

SVD as a Phase-Space Rotation. A second geometric

interpretation may be attributed to SVD applications.

We now view the M × Nt matrix A as a list of coor-

dinates of M points denoted P1, P2, . . . , PM in an

Nt-dimensional space. Each point Pi is represented in

Fig. 22.11 by a diamond. For any k ≤ Nt, we seek a

k-dimensional subspace for which the mean square dis-

tance of the points, from the subspace, is minimized,

i. e., we search a vector Φ(1) (Fig. 22.11) such that∑M
i=1 |Hi Pi |2 is minimized, where Hi are the orthog-

onal projection of Pi onto the line of direction vector

Φ(1). This mathematical procedure can be geometrically

interpreted (Fig. 22.11) as a rotation of the phase space

from the original basis into a new coordinate system

whose orthogonal axes coincide with the axes of inertia

of the data. This formulation of the SVD problem corre-

sponds exactly to the way principal component analysis

is commonly introduced in the literature [22.14].

When the singular value decomposition is used for

data analysis, the SVD algorithm is generally applied to

a matrix deduced from the snapshot matrix A by sub-

tracting from each column of A the mean of that column.

This mean shift ensures that the M-point cloud is now

centered around the origin of the coordinate (Fig. 22.11).

Relationships Between SVD
and Eigenvalue Problems

In this section, we present how the singular values and

the right and left singular vectors of a rectangular matrix

A can also be computed by solving symmetric eigen-

problems with, e.g., the matrices A†A or AA†, instead

of computing the SVD of A. In this case, A†A and AA†

represent a finite-dimensional version of the two-point

space–time correlation R introduced in Sect. 22.4.3. The

results of this section will be used later.

Let A = UΣV † be a singular value decomposition

of A ∈ �
M×Nt . Then A†A = VΣU†UΣV † = VΣ2V †,

where Σ2 is a diagonal matrix. Since A†A is an Hermi-

tian matrix, its eigenvalue decomposition can be written:

A†A = WΛW−1 = WΛW†, where W is an Nt × Nt uni-

tary matrix. By comparing the two expression of A,

we conclude that Σ2 = Λ, and W = V . In other words

σi =
√

λi , and (V,Λ) is the eigenvector–eigenvalue de-

composition of A†A ∈ �
Nt ×Nt .
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The same development applied to the matrix AA†

leads to AA† = UΣV †VΣU† = UΣ2U† = WΛW†, so

(U,Λ) is the eigenvector–eigenvalue decomposition of

AA† ∈ �
M×M .

At this point, we remark that the eigenvalue problem

associated with A†A is more practical to solve than the

eigenvalue problem associated with AA† in cases where

the input collection Nt is significantly smaller than the

number of coefficients needed to represent each item of

the collection M. This remark explains why two different

POD approaches exist: the classical POD (Sect. 22.4.5)

and the snapshot POD (Sect. 22.4.6).

Lower-Rank Approximation to A
Given A ∈ �

M×Nt , the computation of a matrix

X ∈ �
M×Nt with rank(X) = k < rank(A) such that an ap-

propriate norm of the error E = A − X is minimized is

a classical problem. This problem can be solved explic-

itly if we take as the norm the Frobenius norm, defined as

the square root of the sums of squares of all the elements

and denoted by ‖ ·‖F or any unitarily invariant norm. The

solution is given by the Eckart–Young theorem [22.38]

which states that

min
rank(X)≤k

‖A − X‖F = ‖A − Ak‖F =

√√√√
r∑

i=k+1

σ2
i (A) ,

(22.50)

where

Ak = U

(
Σk 0

0 0

)
V † = σ1u1v

†
1 + . . .+σkukv

†
k

where Σk is the matrix obtained by setting

σk+1 = σk+2 = . . . = σr = 0 in Σ.

For example, the 2-norm defined by (22.49) can be

used. In this case, the Eckart–Young theorem (22.50)

yields [22.39]:

min
rank(X)≤k

‖A − X‖2 = ‖A − Ak‖2 = σk+1(A) .

Remark: This theorem establishes a relationship be-

tween the rank k of the approximant, and the (k +1)-th

largest singular value of A. Therefore, if the singular

values decrease is fast, we can hope to find an approx-

imant with small rank (see the section on Examples of

Image Processing by SVD below).

Relationship Between POD and SVD
Here, we discuss the close relationship between POD

and SVD. Our presentation follows the view of

Fahl [22.34] but similar treatments can be found in

Atwell and King [22.40]. The reader is referred to Volk-

wein [22.41] for the mathematical demonstrations.

Suppose that each member of the input collection

U defined in Sect. 22.4.2 can be written in terms of

n-th-order finite-element basis functions {ϕ( j)(x)}n
j=1,

i. e.,

u(x, ti ) = un(x, ti ) =
n∑

j=1

u( j)(ti )ϕ
( j)(x) ,

where the superscript n denotes a high-order finite-

element discretization.

The inner product can then be defined by:

(u, v)M = uT
Mv , (22.51)

where M ∈ �
n×n is the finite-element mass matrix

and u, v ∈ �
n are the finite-element coefficient vec-

tors for a given ti . Employing a Cholesky factorization

M = M
1/2(M1/2)T, the M inner product (22.51) can

be transformed to the standard Euclidean inner product

(22.46) such that the condition

‖u‖M = (u, u)
1/2
M

= ‖(M1/2)Tu‖2

holds. The minimization problem (22.45) can then be

reformulated for the M inner product as

min

Nt∑

i=1

‖un(x, ti )

−
K∑

k=1

[
un(x, ti ), φ

(k)(x)
]
M

φ(k)(x)‖2
M

, (22.52)

where the POD basis functions {φ(k)}K
k=1 are assumed

to be in the linear space spanned by the finite-element

basis functions {ϕ( j)(x)}n
j=1, i. e.,

φ(k)(x) =
n∑

j=1

φ
(k)
j ϕ( j)(x) .

To reformulate the minimization problem (22.52)

in a matrix approximation context, let Φ ∈ �
n×K de-

note a matrix collecting the finite-element coefficients

of the unknown POD functions. Since for any matrix

Â ∈ �
n×Nt ,

∑Nt

i=1 ‖ Â:,i‖2
2 = ‖ Â‖F, where ‖ · ‖F denotes

the Frobenius norm defined earlier (22.50), the problem

(22.52) is equivalent to solving:

min
Z∈� n×K

‖ Â − Z ZT Â‖2
F s.t. ZT Z = IK (22.53)
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with Â = (M1/2)T A and Z = (M1/2)TΦ, where

Z ∈ �
n×K .

Equation (22.53) indicates that we are looking for

a K dimensional subspace with orthogonal matrix Z

such that X = Z ZT Â is the best approximation to Â

compared to all subspaces of dimension K . According

to the Eckart–Young theorem (22.50), the solution to

problem (22.53) is given by a truncated singular value

decomposition of Â of length K

ÂK = UK ΣK V T
K , (22.54)

where UK and VK correspond to the first K columns of

U and V , respectively. Finally, comparing ÂK and the

form of X, we find that the matrix Φ solves

(M1/2)TΦ = UK ∈ �
n×K . (22.55)

The finite-element coefficients of the POD basis

functions can then be computed by solving the linear

system (22.55) where the left singular vectors U of

Â = UΣV T can be obtained directly as the eigenvalues

of the previous Â ÂT matrix. However, as was previously

remarked at the end of Sect. 22.4.2, when Nt is signif-

icantly smaller than n it is more practical to solve the

eigenvalue problem ÂT Â. It follows that, in this case,

the right singular vectors V of Â are obtained and U

must be deduced from V by the equation U = Σ−1 ÂV .

Remark: The eigenvalue problems can be solved

with the library LAPACK [22.42] and efficient al-

gorithms for POD computations based on Lanczos

iterations can be found in Fahl [22.34].
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Fig. 22.12 Singular values for the clown image (crosses)

and the trees image (open circles)

Examples of Image Processing by SVD
As an illustration of the SVD process for computing low-

rank approximations to data matrices, consider a time-

independent problem where the input collection consists

of greyscale images. In Fig. 22.14a and Fig. 22.15a the

clown picture and the trees picture from MatLab are

considered. These images can be represented by means

of a 200×330, and a 128×128 matrix, respectively, each

entry (pixel) having a value between 0 (white) and 1

(black) in 64 levels of gray. Both matrices have full

rank, i. e., 200 and 128, respectively. Their numerical

ranks however are much lower. The singular values of

these two images are shown in Fig. 22.12 on a semi-log

scale; both sets of singular values fall off rapidly, and

hence low-rank approximations with small errors are

possible.

By comparing the spectrum of the two singular value

plots, we can determine that the relative error for approx-

imants of the same rank is greater for the clown image

than for the trees image. Thus the trees image is easier

to approximate.

The Eckart–Young theorem states that, for any ma-

trix A of rank N , an approximation of rank k ≤ N of the

matrix A can be obtained by

A = σ1u1v
†
1 +σ2u2v

†
2 + . . .+σkukv

†
k .

Thus using the singular value decomposition, one

can obtain a high-fidelity model, perhaps with large k.

In order to obtain a lower-rank representation of these

images, singular modes corresponding to small singular

values are neglected. So if the spectrum of the singu-
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Fig. 22.13 Relative information content for the clown image

(crosses) and the trees image (open circles)
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Fig. 22.14a–d Approximations of the clown image from

MatLab by images of lower rank. (a) Original picture.

(b) Rank 6 approximation. (c) Rank 12 approximation.

(d) Rank 20 approximation

lar values decays fast, one can choose a cutoff value

M ≪ N and carry out an approximation of A with a re-

duced number of singular modes. To make this idea more

precise, one can define the relative information content

(RIC) of the singular value decomposition of A by

RIC(M) =

M∑
i=1

σi

N∑
i=1

σi

. (22.56)

If the low-rank approximation is required to contain

δ% of the total information contained in the original

image, the dimension M of the subspace DSVD
M spanned

by the M first singular modes is determined by

M = argmin{RIC(M); RIC(M) ≥ δ} . (22.57)

Another way to measure the degree of order of the

signal u contained in the snapshot data matrix A is to

define a global entropy [22.43] as

H(u) = − 1

log N

N∑

k=1

pk log(pk)

with

pk = σk

N∑
i=1

σi .

If the information is uniformly distributed among all

the modes, the entropy is maximal and equal to one.

�� �����������#���� �� ���*�%�����!+�����!�

�� ���*�
������!+�����!� �� ���*��������!+�����!�

Fig. 22.15a–d Approximations of the trees image from

MatLab by images of lower rank. (a) Original picture.

(b) Rank 6 approximation. (c) Rank 12 approximation.

(d) Rank 20 approximation

Similarly, if there is only one nonzero singular value,

then the entropy is zero. At intermediate states, H(u)

keeps increasing as more modes become necessary to

represent the data.

In Fig. 22.13, the relative information content for the

clown image and the trees image are shown. The same

result as previously mentioned for the two images when

the singular values spectrum was discussed is evidenced.

For a given number of singular modes, say M = 20,

respectively, 60% and 70% of the information content of

the original clown image and trees image are contained

in the approximation. This clearly demonstrates that the

trees image is easier to approximate by a lower-rank

image than the clown image.

Lastly, we present in Figs. 22.14 and 22.15, clock-

wise from the top, the original picture, and approximants

of rank 6, rank 20, and rank 12, for the clown image and

trees image, respectively.

22.4.3 The Proper Orthogonal
Decomposition (POD)

This section introduces the proper orthogonal decompo-

sition in the spirit of Holmes et al. [22.24], as a technique
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that can contribute to a better understanding of turbulent

flows. Here, POD is not reduced to an advanced pro-

cessing method that allows the extraction of coherent

structures from experimental or numerical data. Rather,

POD is used to provide a set of basis functions with

which to identify a low-dimensional subspace on which

to construct a dynamical model of the coherent struc-

tures by projection on the governing equations. This

idea was first applied in Aubry et al. [22.29] to model

the near-wall region of a turbulent boundary layer and

more recently by Ukeiley et al. [22.30] to study the dy-

namics of the coherent structures in a plane turbulent

mixing layer.

The Fredholm Equation
Let {u(X), X = (x, tn) ∈ D = �

3 ×�
+} denote the set

of observations (also called snapshots) obtained at Nt

different time steps tn over a spatial domain of inter-

est Ω (x = (x, y, z) ∈ Ω). These snapshots could be

experimental measurements or numerical solutions of

velocity fields, vorticity fields, temperatures, etc. taken

at different time steps and/or different physical pa-

rameters, for example Reynolds number [22.44]. The

underlying problem is to extract from this ensemble

of random vector fields a coherent structure. Following

Lumley [22.3], a coherent structure is defined as the de-

terministic function which is best correlated on average

with the realizations u(X). In other words, we look for

a function Φ that has the largest mean square projection

onto the observations |(u,Φ)|2. Since it is only the paral-

lelism between Φ and the observations that is of interest,

the dependence on the amplitude of Φ must be removed.

One way is to normalize the amplitude of Φ. It is then

natural to look at a space of functions Φ for which the

inner product exists, i. e., to impose Φ to be an element

of L2(D), the collection of square-integrable functions

defined on the flow region D . Finally, in order to include

the statistics, we must maximize the expression:

〈|(u,Φ)|2〉
‖Φ‖2

in some average sense (temporal, spatial, ensemble, or

phase average), denoted here by 〈·〉, to be specified for

each application. The choice of the average operator is at

the heart of the different POD approaches and a detailed

discussion of this point is postponed to Sect. 22.4.4.

Hence, mathematically, the function Φ corresponds

to the solution of the constrained optimization problem:

max
Ψ∈L2(D)

〈|(u,Ψ )|2〉
‖Ψ‖2

= 〈|(u,Φ)|2〉
‖Φ‖2

(22.58)

with respect to

(Φ,Φ) = ‖Φ‖2 = 1 .

Here (., .) and ‖ · ‖ denote the usual L2 inner product

and L2 norm over D:

(u,Φ) =
∫

D

u(X) ·Φ∗(X)dX

=
nc∑

i=1

∫

D

ui (X)Φ∗
i (X)dX ; ‖u‖2 = (u, u) ,

where the superscript asterisk indicates the complex con-

jugate and nc is the number of vectorial components of

u(X). Note that L2 seems to be a natural space in which

to do fluid mechanics since it corresponds to flow having

finite kinetic energy, but the choice of other norms for

the POD basis computation is possible, see Sect. 22.4.4

for a discussion.

The maximization problem (22.58) can be cast in an

equivalent eigenvalue problem. To see this, let us define

the operator R : L2(D) −→ L2(D) by

RΦ(X) =
∫

D

R(X, X′)Φ(X′)dX′ ,

where R(X, X′) = 〈u(X) ⊗u∗(X′)〉 is the two-point

space–time correlation tensor (⊗ is the dyadic product).

Then, straightforward calculations reveal that

(RΦ,Φ)

=

⎛
⎝
∫

D

〈u(X)⊗u∗(X′)〉Φ(X′)dX′,Φ(X)

⎞
⎠

=
∫

D

∫

D

〈u(X)⊗u∗(X′)〉Φ(X′)dX′Φ∗(X)dX

=
〈∫

D

u(X)Φ∗(X)dX

∫

D

u∗(X′)Φ(X′)dX′
〉

= 〈|(u,Φ)|2〉 ≥ 0

Furthermore, it follows that:

(RΦ,Ψ ) = (Φ,RΨ ) for any (Φ,Ψ ) ∈ [L2(D)]2 .

We suppose that the probabilistic structure of the en-

semble of observations is such that the average and

integrating operations can be interchanged [22.45].

Then R is linear and self-adjoint, i. e., R
† = R,

where the adjoint of R, R
†, is defined by

(Ru, v) = (u,R†v)

for all u ∈ L2(D) and v ∈ L2(D) .
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nonnegative operator on L2(D), i. e. (Ru, u) ≥ 0

for all u ∈ L2(D). Consequently, spectral theory ap-

plies [22.23, 46] and guarantees that the maximization

problem (22.58) admits a solution, equal to the largest

eigenvalue of the problem

RΦ = λΦ , (22.59)

which can be written as a Fredholm integral eigenvalue

problem

nc∑

j=1

∫

D

Rij (X, X′)Φ j (X′)dX′ = λΦi (X) . (22.60)

The properties of the empirical eigenfunctions

Φi (X) obtained by solving the Fredholm equation

(22.60) are fully discussed in Sect. 22.4.3. Here, it is

sufficient to make some comments shedding light on the

constraints linked to the POD method.

In (22.60), the integral
∫
D

.dX′ is over the entire

domain of interest D . The consequence is that the two-

point correlation tensor Rij has to be known over all

D . Therefore, the data volume to handle can be very

important (several gigabytes are not rare) and sometimes

data compression is necessary to reduce the data storage

requirements (see [22.31] for an example). Due to the

important size of the data sets necessary to apply POD,

renewed interest in POD only appeared in the 1990s,

explained by the great advances in numerical simulation

capability and measurement techniques.

Remark: An alternative approach for finding the so-

lution to maximization of (22.58) is by directly solving

a classical problem in the calculus of variations. Since

(RΦ,Φ) = 〈|(u,Φ)|2〉, the problem (22.58) is equiva-

lent to determining the Φ that maximizes λ, where

λ = 〈|(u,Φ)|2〉
(Φ,Φ)

= (RΦ,Φ)

(Φ,Φ)
. (22.61)

Using the calculus of variations, Φ is determining

by imposing the condition dF(ǫ)/dǫ|ǫ=0 = 0 with

F(ǫ)

= [R(Φ + ǫΥ ), (Φ + ǫΥ )]
[(Φ + ǫΥ ), (Φ + ǫΥ )]

= (RΦ,Φ)+ ǫ(RΦ,Υ )+ ǫ(RΥ ,Φ)+ ǫ2(RΥ ,Υ )

(Φ,Φ)+ ǫ(Φ,Υ )+ ǫ(Υ ,Φ)+ ǫ2(Υ ,Υ )
.

This leads one to verify for any Υ the condition

(RΦ,Υ ) = λ(Φ,Υ ) ,

which is equivalent to finding the eigenvalue of the

eigenvalue problem (22.59).

Properties of the POD Basis Functions
Eight main properties can be derived.

1. For a bounded integration domain D , Hilbert–

Schmidt theory applies [22.46] and assures us that

there is not one, but a denumerable infinity of so-

lutions of (22.60). Then, the Fredholm equation

(22.60) has a discrete set of solutions satisfying:

nc∑

j=1

∫

D

Rij (X, X′)Φ(n)
j (X′)dX′ = λ(n)Φ

(n)
i (X) ,

(22.62)

where λ(n) and Φ
(n)
i denote, respectively, the POD

eigenvalues and POD eigenvectors or eigenfunctions

of order n = 1, 2, 3, . . . ,+∞. Each new eigen-

function is sought as the solution problem of the

maximization problem (22.58) subject to the con-

straint of being orthogonal to all previously found

eigenfunctions. Hence, by construction, the eigen-

functions are mutually orthogonal but they can be

chosen orthonormal (see item 4). Any d-fold de-

generate eigenvalue is associated with d linearly

independent eigenfunctions.

2. If R is a self-adjoint and nonnegative operator then

all eigenvalues are real and positive:

λ(1) ≥ λ(2) ≥ λ(3) ≥, . . . λ(+∞) ≥ 0 (22.63)

and the corresponding series converges:

+∞∑

n=1

λ(n) < +∞ .

3. The eigenfunctions Φ(n) form a complete orthogonal

set, which means that almost every member (except

possibly on a set of measure zero, see [22.47]) of

the snapshots can be reconstructed in the following

way:

ui (X) =
+∞∑

n=1

a(n)Φ
(n)
i (X) . (22.64)

4. The eigenfunctions Φ(n) can be chosen to be mutu-

ally orthonormal:

nc∑

i=1

∫

D

Φ
(m)
i (X)Φ

∗(n)
i (X)dX = δmn

where δmn =

⎧
⎨
⎩

0 for m 
= n ;
1 for m = n .

(22.65)
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Since R is a self-adjoint operator, orthogonality is

verified necessarily. On the other hand, the choice

of orthonormality for the eigenfunctions is rather

arbitrary because they are determined relative to

a real multiplicative constant. Hence, it is numer-

ically equivalent to impose:
nc∑

i=1

∫

D

Φ
(m)
i (X)Φ

∗(n)
i (X)dX = λ(m)δmn (22.66)

for the eigenfunctions Φ
(m)
i (X) and the condition

〈a(n)a∗(m)〉 = δmn for the projection coefficient a(n)

or to impose for the eigenfunctions the orthonormal-

ity condition (22.66) and the orthogonality condition

(22.69) for the coefficients. For numerical reasons,

it is easier to use (22.66) for classical POD, and

(22.65) for snapshot POD [22.48].

5. The random coefficients a(n), projections of u onto

Φ, are then calculated by using the orthonormality

of the eigenfunctions Φ:

a(n) = (u,Φ) =
nc∑

i=1

∫

D

ui (X)Φ
∗(n)
i (X)dX .

(22.67)

6. The two-point space–time correlation tensor Rij

can be decomposed as a uniformly convergent se-

ries [22.23]:

Rij (X, X′) =
+∞∑

n=1

λ(n)Φ
(n)
i (X)Φ

∗(n)
j (X′) .

(22.68)

This result is known as Mercer’s theorem.

7. The diagonal representation of the tensor Rij

combined with the decomposition of u onto the

eigenfunctions Φ and their orthogonality assure that

the coefficients a(n) are mutually uncorrelated and

that their mean square values are the eigenvalues

themselves.

〈a(n)a∗(m)〉 = δmnλ(n) . (22.69)

Proof : This assertion derives directly from the rep-

resentation of Rij (X, X′), given in equation (22.68):

Rij (X, X′)

=
〈
ui (X)u∗

j (X′)
〉

=
〈+∞∑

n=1

a(n)Φ
(n)
i (X)

+∞∑

m=1

a∗(m)Φ
∗(m)
j (X′)

〉

=
+∞∑

n=1

+∞∑

m=1

〈a(n)a∗(m)〉Φ(n)
i (X)Φ

∗(m)
j (X′) .

But we know from the Mercer’s theorem that

Rij (X, X′) =
+∞∑

n=1

λ(n)Φ
(n)
i (X).Φ

∗(n)
j (X′) ,

and so, since the Φ(n)(X) are an orthonormal family

in L2(D), we see that 〈a(n)a∗(m)〉 = δmnλ(n).

8. Finally, Mercer’s theorem and the orthonormality of

Φ(n) lead to
nc∑

i=1

∫

D

Rii (X, X)dX =
+∞∑

n=1

λ(n) = E . (22.70)

If u(X) is a velocity field, then E corresponds to

the turbulent kinetic energy (TKE) integrated over

the domain D . In the same way, if u(X) is a vor-

ticity field, as in Sanghi [22.49], this relation leads

to the system enstrophy. So, whatever variable is

considered for the POD, the eigenvalues λ(n) ob-

tained by solving the Fredholm equation (22.60) are

always homogeneous to energy but are not strictly

speaking energy. Thinking of the POD eigenvalues

as energy in a general mechanical context is incor-

rect in principle and may lead to misleading results.

The interpretation of this equation is that every struc-

ture of order (n) makes an independent contribution

to the TKE. Then, the amplitude of the eigenvalues

λ(n) measure the relative importance of the different

structures present within the flow.

Optimality of the POD Basis
Suppose that we have a signal u(X) with u ∈ L2(D) and

an approximation ua of u with respect to an arbitrary or-

thonormal basis Ψ (n)(X), n = 1, 2, . . . ,+∞. One can

write:

ua
i (X) =

+∞∑

n=1

b(n)Ψ
(n)
i (X) .

Equations (22.70) and (22.69) clearly state that, if

the Ψ
(n)
i (X) have been nondimensionalized, 〈b(n)b∗(n)〉

represents the average energy in the n-th mode. The fol-

lowing lemma establishes the notion of the optimality

of the POD approach.

Lemma. Let {Φ(1)(X),Φ(2)(X), . . . ,Φ(∞)(X)} denote

an orthonormal set of POD basis elements, and

{λ1, λ2, . . . , λ∞} denote the corresponding set of eigen-

values. If

u P
i (X) =

+∞∑

n=1

a(n)Φ
(n)
i (X)
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denotes the approximation to u with respect to this basis,

then for any value of N [22.24]:

N∑

n=1

〈a(n)a∗(n)〉 =
N∑

n=1

λ(n) ≥
N∑

n=1

〈b(n)b∗(n)〉 .

Proof : It is straightforward [see the proof of (22.69)]

to show that the kernel Rij can be expressed in terms of

Ψ (n), n = 1, . . . ,+∞ as

Rij (X, X′) =
+∞∑

n=1

+∞∑

m=1

〈b(n)b∗(m)〉Ψ (n)
i (X)Ψ

∗(m)
j (X′) .

Therefore, the projection of the kernel Rij in an N-di-

mensional space spanned by {Ψ (n)}N
n=1 can be written in

matrix form as

R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

〈b(1)b∗(1)〉 · · · 〈b(1)b∗(N)〉 0 · · · 0

〈b(2)b∗(1)〉 · · · 〈b(2)b∗(N)〉 0 · · · 0
...

...
...

...
...

...

〈b(N)b∗(1)〉 · · · 〈b(N)b∗(N)〉 0 · · · 0

0 · · · 0 0 0 0
...

...
...

...
...

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The proof finally relies on a result for linear op-

erators [22.50, p. 260] that states that the sum of the

first N eigenvalues of a self-adjoint operator is greater

than or equal to the sum of the diagonal terms in any

N-dimensional projection of it:

N∑

n=1

λ(n) ≥ Tr(R) =
N∑

n=1

〈b(n)b∗(m)〉 .

This lemma establishes that, among all linear de-

compositions, the POD is the most efficient, in the sense

that, for a given number of modes, N , the projection on

the subspace spanned by the N leading eigenfunctions

will contain the greatest possible kinetic energy on av-

erage. The reader must remember that optimality of the

POD functions is obtained only with respect to other

linear representations.

Model Reduction Aspects
The energetic optimality of the POD basis functions

suggests that only a very small number of POD modes,

say M, may be necessary to describe any signal u(X)

of the input data efficiently. The choice of M is then

an important and critical task and adequate criteria for

choosing M must be introduced.

Let NPOD denote the number of POD modes ob-

tained by solving the Fredholm equation (22.60). The

truncation error ǫ(M) due to the use of M instead of

NPOD POD basis functions in representing the input

data is given by

ǫ(M) =
∥∥∥∥∥u(X)−

M∑

n=1

[u(X),Φ(n)(X)]Φ(n)(X)

∥∥∥∥∥

2

=

∥∥∥∥∥∥

NPOD∑

n=M+1

[u(X),Φ(n)(X)]Φ(n)(X)

∥∥∥∥∥∥

2

.

(22.71)

It is immediate to deduce from (22.71) the equiva-

lent forms for the two particular approaches of POD

described in Sect. 22.4.4. The reader is referred to

Fahl [22.34], where ǫ is defined for the snapshot POD.

The quantity ǫ(M) measures the accumulated

squared error in representing the input snapshots, due

to neglecting the POD basis elements that correspond to

small POD eigenvalues.

However, in practice, this criterion is never used and

the choice of M is rather based on heuristic consider-

ations. As indicated in point 8 of Sect. 22.4.3 on the

properties of the POD basis functions,
∑M

i=1 λ(i) rep-

resents in some sense the average energy contained in

the first M POD modes. For turbulent flows, it corre-

sponds exactly to the average turbulent kinetic energy.

Therefore, to capture most of the energy contained

in the NPOD POD modes, it suffices to choose M so

that
∑M

i=1 λ(i) ≃
∑NPOD

i=1 λ(i). By definition, the ratio∑M
i=1 λ(i)/

∑NPOD

i=1 λ(i) yields the percentage of the total

kinetic energy in the NPOD POD modes that is contained

in the first M POD basis functions. For a predefined per-

centage of energy, δ, the dimension M of the subspace

spanned by the M first POD functions is chosen such

that the condition

M∑
i=1

λ(i)

NPOD∑
i=1

λ(i)

≥ δ (22.72)

holds [22.22,31,34]. The criterion (22.72) is equivalent

to the one based on the relative information content

used in Sect. 22.4.2 for the singular value decomposition

(22.57). The POD reduced basis subspace is defined as

DPOD
M = span{Φ(1),Φ(2), . . . ,Φ(M)}.

To this point we have only discussed the model

reduction associated with using POD basis functions

in the approximation of the input collection. Dynam-

ical models based on POD have not been discussed.
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Nevertheless, the optimal energetic convergence of

the POD basis functions suggests that only a very

small number of modes may be necessary to de-

scribe the dynamics of the system. Therefore, starting

from data issued from high-dimensional models (ex-

perimental data or detailed simulations), it seems

conceivable that POD modes can be efficiently used

in Galerkin projections that yield low-dimensional

dynamical models. Even though there are no theoret-

ical guarantees of optimality in dynamical modeling,

this method was already used in many cases, for

turbulent flows or optimal control of fluids and

reasonable to excellent models were obtained. The pre-

sentation of this approach can be found in Cordier

and Bergmann [22.31]. For turbulent flows, POD

is used to build low-dimensional models that ad-

dress the role of coherent structures in turbulence

generation [22.29, 30]. For the optimal control of flu-

ids, POD is used to obtain reduced-order models

of dynamics that reduce the computational complex-

ity associated with high-complexity models such as

the Navier–Stokes equations [22.21, 22, 32, 34]. In

the control literature [22.40], several philosophies ex-

ist for using a reduced basis obtained by applying

POD in low-order control design. A reduce-then-

design approach involves reduction of the system model

before control design, and the design-then-reduce ap-

proach, in which full-order model design is followed

by full-order control design, and then control order

reduction.

As a partial conclusion, note that the reduced-

order models based on POD belong to a wider class

of approximation methods, called singular-value-based

methods by Antoulas and Sorensen [22.51]. These au-

thors recently reviewed the state of the art in the area

of model reduction of dynamical systems and distin-

guish three broad categories of approximation methods:

singular-value-based methods, Krylov-based methods,

and iterative methods combining aspects of both the

SVD and Krylov methods. Since, the strengths and

weaknesses of these methods are different, new insights

can certainly be gained by applying these approximation

methods to fluid flow control. For example, the reader is

referred to Allan [22.52] for an application of the Krylov

subspace method to derive an optimal feedback control

design for driven cavity flow.

22.4.4 The Different POD Approaches

Except for the inner product, defined as the standard L2

inner product for simplicity of presentation, the POD

was derived in Sect. 22.4.3 in a general setting. The

fundamental questions of the choice of

• the input collection

• the inner product

• the averaging operation 〈·〉 (spatial or temporal)

• the variable X (spatial x = (x, y, z) or temporal t)

were not discussed. This section demonstrates that

different orthogonal decompositions can be obtained de-

pending, for example, on the way the averaging operator

〈·〉 is defined to calculate the kernel of the Fredholm

equation (22.60). In what follows, only two meth-

ods, classical POD (Sect. 22.4.5) and snapshot POD

(Sect. 22.4.6), will be fully described. The reader is re-

ferred to Aubry et al. [22.53] for a presentation of the

generalization of these two methods called the biorthog-

onal decomposition.

Choice of Input Collection
Choosing an input collection is a vital part of the proper

orthogonal decomposition process since the POD basis

only reflects information provided by the input col-

lection. Indeed, the POD algorithm tries to remove

redundant information (if any) from the database. As

a consequence, the ability of POD modes to approximate

any state of a complex system is totally dependent on the

information originally contained in the snapshot set used

to generate the POD basis. The POD eigenfunctions are

intrinsically linked to the input data used to extract them.

This is the source of the method’s strengths as well as its

limitations: extrapolation of the POD functions to differ-

ent geometries or control parameters (Reynolds number,

. . . ), can be difficult to undertake (see [22.54, Chap. 4.6,

p. 254] for a discussion).

When the POD basis is used for model reduction,

an input collection of time snapshots is frequently cho-

sen (Sect. 22.4.6). Typically, this data set comes from

experimental measurement or numerical computations.

Hence the data have some error associated with them.

Therefore it is important to study the effect of these er-

rors, assimilated to infinitesimal perturbations, on the

outcome of the POD model-reduction procedure. This

fundamental question has only recently been investi-

gated theoretically, by Rathinam and Petzold [22.55].

These authors introduced the POD sensitivity factor as

a nondimensional measure of the sensitivity of the re-

sulting projection to perturbations in data. They found

that the POD sensitivity is relevant in some applica-

tions while it is not in others. These theoretical results

still need to be illustrated by realistic examples issued

from fluid mechanics, for example. Now, consider the
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ideal case with no perturbations in the input collection.

Choosing a time snapshot input collection relevant for

dynamical system description remains a difficult task

because there is no definitive way to decide how many

snapshots are necessary to capture the information con-

tent of the system, how long numerical simulations or

experiments should be run to generate sufficiently re-

solved snapshots, and which initial conditions should be

used. The reader should remember that the input collec-

tion corresponds to solutions belonging to the attractor

of a dynamical system such as the Navier–Stokes equa-

tion in fluid mechanics. If this attractor is ergodic, the

initial conditions are forgotten as time proceeds [22.24].

For control problems based on reduced-order

models, an open question is how to incorporate control

information in the model implicitly. A simple solution,

and one that is generally used, is to generate snapshots

using a variety of control inputs to excite system dy-

namics that arise when a control is applied [22.56].

Recently, Burkardt et al. [22.57] demonstrate that cen-

troidal Voronoi tessellations could be one method of

intelligent sampling in the control parameter space that

can be employed for generating good snapshots set.

Choice of Inner Product and Norm
So far, POD was described in the context of the standard

L2 inner product for reasons of simplicity and, more

importantly, because it corresponds to the general case

for fluid flow applications for reasons explained later in

Sect. 22.4.4. However, in a few cases it may be useful to

use a different inner product to obtain different notions

of optimality.

L2 Inner Product. Let L2(Ω) be the Hilbert space of

square-integrable complex-valued functions defined on

Ω. Square-integrable means that the functions f (x)

belonging to L2(Ω) satisfy

‖ f ‖ = ( f, f )1/2 =

⎡
⎣
∫

Ω

| f |2 dx

⎤
⎦

1/2

< +∞ .

For vector-valued functions u, such as the velocity field

in a fluid flow, the inner product on L2(Ω) is defined by

(u, v) =
∫

Ω

(
u1v

∗
1 +u2v

∗
2 +u3v

∗
3

)
dx ;

‖u‖2 = (u, u) , (22.73)

where Ω denotes the spatial domain occupied by the

fluid. Moreover, its kinetic energy is proportional to

‖u‖2. Therefore, L2 is a natural space in which to do

fluid mechanics since it corresponds to flow having fi-

nite kinetic energy. This is the reason why the L2 inner

product is the most commonly used to define the proper

orthogonal decomposition.

H1 Inner Product. Let H1(Ω) be the Sobolev space of

functions that, along with their first derivatives, belong

to L2(Ω).

In Iollo [22.58], it is found that the low-order model

developed for the Euler equations by a straightforward

Galerkin projection (see Sect. 22.4.10 for a descrip-

tion of the method) was unstable. Therefore, Iollo

et al. [22.59] proposed a way to improve the numerical

stability of the low-order model developed by Galerkin

POD by redefining the norms involved in the POD

definition as

(u, v)ǫ =
∫

Ω

uvdx+ ǫ

∫

Ω

(∇u ·∇v)dx , (22.74)

where ǫ is a parameter to take into account different

metrics. Numerical experiments demonstrate the definite

benefit of employing the H1 formulation in the POD.

Even though the use of the H1 inner product seems

beneficial for the robustness of the reduced-order model,

we believe that it has not been given sufficient attention

in the literature.

Inner Product for Compressible Flow. For compress-

ible flow configurations, the velocity u = (u, v,w) and

thermodynamic variables (e.g., density ρ, pressure p,

enthalpy h) are dynamically coupled. This introduces

questions of whether to treat the thermodynamic vari-

ables separately from the velocity, or together as a single

vector-valued variable (e.g., q(x) = (ρ, u, v,w, p)(x)).

For a scalar-valued POD, where separate POD modes

are computed for each flow variable, the standard L2

inner product defined by (22.73) can be used [22.60].

For vector-valued POD, where all the flow variables are

written as a single vector q, the standard inner product:

(q1, q2)

=
∫

Ω

(ρ1ρ2 +u1u2 +v1v2 +w1w2 + p1 p2)dx

may not be a sensible choice for dimensional rea-

sons. Of course, one could simply nondimensionalize

the variables, but then the sense in which projections

are optimal is rather arbitrary and depends on the

nondimensionalization. Rowley [22.60] sought an inner

product for compressible flow, which makes intuitive
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sense in that the energy defined by the induced norm is

a meaningful physical quantity. For a two-dimensional

configuration, Rowley introduced a vector-valued vari-

able q = (u, v, a), where u and v are the velocities and

a is the local sound speed, and defined a family of inner

products as

(q1, q2)ǫ =
∫

Ω

(
u1u2 +v1v2 + 2ǫ

γ (γ −1)
a1a2

)
dx ,

(22.75)

where γ is the ratio of specific heats and ǫ is a parameter.

If ǫ = γ then the induced norm gives ‖q‖2 = 2h0, i. e.,

twice the total enthalpy of the flow, and if ǫ = 1 then the

induced norm gives twice the total energy of the flow.

In spite of the proposals made by Rowley, the choice

of the inner product best adapted to aeroacoustics still

remains an open question.

To summarize: a POD approach is linked first to

the definition of an inner product, which depends on

the quantity to be investigated. When very different pa-

rameters have to be considered at the same time in this

decomposition, weighting or proper normalization has

to be considered in such a way that the behavior of these

parameters is properly taken into account.

22.4.5 Classical POD or Direct Method

This approach was originated by Lumley [22.3]. In this

case, the average 〈·〉 is temporal:

〈·〉 = 1

T

∫

T

·dt

/
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Fig. 22.16 Schematic view of the classical POD

and is evaluated as an ensemble average, based on the

assumptions of stationarity and ergodicity. On the other

hand, the variable X is assimilated to the space variable

x = (x, y, z) defined over the domain Ω.

Figure 22.16 describes schematically the principle

of the classical POD.

The corresponding eigenvalue problem is easily

deduced from (22.62) by replacing the domain of in-

tegration D by Ω and the variable X by x. The integral

Fredholm equation to be solved is then given by

nc∑

j=1

∫

Ω

Rij (x, x′)Φ(n)
j (x′)dx′ = λ(n)Φ

(n)
i (x) ,

(22.76)

where Rij (x, x′) is the two-point spatial correlation

tensor defined as

Rij (x, x′) = 1

T

∫

T

ui (x, t)u j (x
′, t)dt

=
NPOD∑

n=1

λ(n)Φ
(n)
i (x)Φ

(n)∗
j (x′)

with T being a sufficiently long period of time for

which the space–time signal u(x, t) is known and with

NPOD being the number of POD modes, i. e., the size

of the eigenvalue problem (22.76). Note that the eigen-

functions arising from this decomposition are purely

spatial.

Discussion of the Size
of the Eigenvalue Problem

Given M, the number of spatial points of the snap-

shots data, and nc, the number of components of the

variable u used for the decomposition, NPOD = M × nc,

M = Nx × Ny × Nz , where Nx , Ny and Nz are the number

of nodes of the experimental or numerical grid, respec-

tively, in the X, Y and Z directions. Now, suppose one

performs a detailed numerical simulation or one employs

a modern measurement technique such as particle im-

age velocimetry in fluid mechanics. In each case, a large

number of grid points M can be obtained and the size

of the POD problem can then quickly become too large

to be solved with a good numerical precision even with

numerical library dedicated to this kind of problem, like

the ARPACK library [22.61].

Nevertheless, as will be demonstrated in Sect. 22.4.8,

the POD method can be viewed as the generalization

of the harmonic decomposition to the inhomogeneous

directions. So one way to take into account this size con-

straint with the classical POD approach is to decompose
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the flow directions in homogeneous and inhomoge-

neous directions as was done in general in experimental

approaches [22.25, 30].

Now, suppose that the number of ensemble mem-

bers deemed adequate for a description of the process is

Nt with Nt ≪ M (the question of determining Nt is not

addressed), then even if the eigenvalue problem can be

accurately solved, time can be saved in solving an eigen-

value problem of size Nt. This remark is at the heart of

the method of snapshots.

22.4.6 Snapshot POD

The snapshot POD method, suggested by Sirovich

[22.62–64], is the exact symmetry of the classical POD.

The average operator 〈.〉 is evaluated as a space average

over the domain Ω of interest:

〈·〉 =
∫

Ω

·dx

and the variable X is assimilated to time t.

The principle of the snapshot POD method is

schematically described in Fig. 22.17.

The Discrete Eigenvalue Problem
To derive the discrete eigenvalue problem corresponding

to the snapshot POD, we assume that Φ has a special

form in terms of the original data:

Φ(x) =
Nt∑

k=1

a(tk)u(x, tk) , (22.77)

where the coefficients a(tk), k = 1, . . . , Nt are to be de-

termined so that Φ given by (22.77) provides a maximum
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Fig. 22.17 Schematic view of the snapshot POD

for (22.58), i. e., is the solution of equation (22.76),

written here for convenience as

∫

Ω

R(x, x′)Φ(x′)dx′ = λΦ(x) . (22.78)

More exactly, the properties of the span of the POD

eigenfunctions guarantee that such a development ex-

ists [22.24].

The two-point spatial correlation tensor R(x, x′) is

estimated under stationarity and ergodicity assumptions

as:

R(x, x′) = 1

T

∫

T

u(x, t)⊗u∗(x′, t)dt

= 1

Nt

Nt∑

i=1

u(x, ti )⊗u∗(x′, ti ) .

Substituting this expression of R and the decompo-

sition (22.77) of Φ into (22.78), we obtain

Nt∑

i=1

⎡
⎣

Nt∑

k=1

1

Nt

⎛
⎝
∫

Ω

u(x′, tk) ·u∗(x′, ti )dx′

⎞
⎠ a(tk)

⎤
⎦

× u(x, ti )

= λ

Nt∑

k=1

a(tk)u(x, tk)

and we conclude that a sufficient condition for the co-

efficients a(tk) to be a solution of (22.78) is to verify

that

Nt∑

k=1

1

Nt

[
u(x′, tk), u∗(x′, ti )

]
a(tk) = λa(ti ) ,

i = 1, . . . , Nt . (22.79)

This can be rewritten as the eigenvalue problem

CV = λV , (22.80)

where

Cki = 1

Nt

∫

Ω

u(x, tk) ·u∗(x, ti )dx and

V = [a(t1), a(t2), . . . , a(tNt )]T .
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Note that, in order for (22.79) to be a necessary

condition, one needs to assume that the observations

u(x, ti ), i = 1, . . . , Nt are linearly independent.

Since C is a nonnegative Hermitian matrix, it has

a complete set of orthogonal eigenvectors

V(1) =
[
a(1)(t1), a(1)(t2), . . . , a(1)(tNt )

]T
,

V(2) =
[
a(2)(t1), a(2)(t2), . . . , a(2)(tNt )

]T
, . . . ,

V(Nt) =
[
a(Nt)(t1), a(Nt)(t2), . . . , a(Nt)(tNt )

]T

along with a set of eigenvalues λ(1) ≥ λ(2) ≥ . . . ≥
λ(Nt) ≥ 0. Now, for reasons of simplicity, we can impose

that the projection coefficients a(tk), k = 1, . . . , Nt ver-

ify the same orthogonality conditions as for the classical

POD. Then we can normalize the temporal eigenfunc-

tions V(i) by requiring that

1

Nt
(V(n), V(m)) = 1

Nt

Nt∑

k=1

a(n)(tk)a(m)∗(tk)

= λ(n)δnm .

It is now easy to check that, if the POD eigenfunc-

tions Φ(n)(x) are not estimated via (22.77) but as

Φ(n)(x) = 1

Ntλ(n)

Nt∑

k=1

a(n)(tk)u(x, tk) , (22.81)

then the spatial modes are orthonormal

∫

Ω

Φ(n)(x) ·Φ(m)(x)dx = δnm .

The Continuous Eigenvalue Problem
So far, the snapshot POD method was presented as by

Sirovich in his original work [22.62–64]. Therefore the

eigenvalue problem (22.80) is discrete and not contin-

uous, as was defined the eigenvalue problem (22.76)

derived for the classical POD. However, deducing an in-

tegral Fredholm equation from (22.80) is immediate; we

obtain

∫

T

C(t, t′)a(n)(t′)dt′ = λ(n)a(n)(t) , (22.82)

where C(t, t′) is the two-point temporal correlation

tensor defined as

C(t, t′) = 1

T

∫

Ω

ui (x, t)ui (x, t′)dx

= 1

T

NPOD∑

n=1

a(n)(t)a(n)∗(t′) .

where in this definition, the summation over i is implicit.

The main properties of the snapshot POD are the

following:

1. The eigenfunctions are purely time dependent.

2. No cross-correlations appear in the kernel.

3. The homogeneity hypothesis is not required to lower

the size of the eigenvalue problem.

4. Linear independence of the snapshots is assumed.

5. The size of the eigenvalue problem (22.82) is

NPOD = Nt. Then, as was mentioned in Sect. 22.4.5,

the snapshot POD drastically reduces the computa-

tional effort when M, the number of spatial points

in the snapshots data, is much greater than Nt. For

this reason, whenever this condition is fulfilled, the

snapshot POD is preferred.

22.4.7 Common Properties
of the Two POD Approaches

General Properties
Whatever the particular method used to determine the

spatial and temporal POD eigenfunctions, they fulfil the

following properties:

1. Each space–time realization ui(x, t) can be expanded

into orthogonal basis functions Φ
(n)
i (x) with uncor-

related coefficients a(n)(t):

ui (x, t) =
NPOD∑

n=1

a(n)(t)Φ
(n)
i (x) .

2. The spatial modes Φ(n)(x) are specified to be or-

thonormal:
∫

Ω

Φ(n)(x) ·Φ(m)(x)dx = δnm .

3. The temporal modes a(n)(t) are orthogonal:

1

T

∫

T

a(n)(t)a(m)∗(t)dt = λ(n)δnm .

P
a
rt

D
2
2
.4

Springer Handbook of Experimental Fluid Mechanics
Tropea, Yarin, Foss (Eds.) • ! Springer 2007 1



1362 Part D Analysis and Post-Processing of Data

Incompressibility and Boundary Conditions
The spatial basis functions Φ

(n)
i (x) can be calculated

from the velocities ui (x, t) and the coefficients a(n)(t)

by integrating over a sufficiently long period of time T

and normalizing by the eigenvalues λ(n):

Φ
(n)
i (x) = 1

Tλ(n)

∫

T

ui (x, t)a(n)∗(t)dt . (22.83)

The POD basis functions are then represented as linear

combinations of instantaneous velocity fields. All the

properties of the snapshots that can be written as linear

and homogeneous equations pass directly to the POD

basis functions. For example, if the snapshots are diver-

gence free, then we obtain divergence-free POD basis

functions

∇ ·u = 0 
⇒ ∇ ·Φ(n) = 0 ∀n = 1, . . . , NPOD .

If the snapshots satisfy homogeneous Dirichlet

boundary conditions then we also obtain POD basis

functions satisfying homogeneous boundary conditions.

Snapshot or Classical POD?
As presented in Sect. 22.4.5, 4.6, two different POD

approaches exist: the classical POD and the snapshot

POD; how then can we choose the pertinent method

for each practical configuration? The answer is mainly

determined by the particular data set available for the

evaluation of the kernels.

On the one hand, data obtained by numerical sim-

ulations like direct numerical simulation or large-eddy

simulation can be highly resolved in space and time but

due to cost considerations only a very short time sample

is simulated. In the same vein, a good spatial resolu-

tion can be obtained by particle image velocimetry, but

associated with a poor temporal resolution. These two

configurations, characterized by a moderate time history

and high spatial resolution, correspond to situations for

which the two-point temporal correlation tensor C(t, t′)
is statistically well converged.

On the other hand, experimental approaches such

as hot-wire anemometry or laser Doppler anemometry

provide a well-defined time description but with lim-

ited spatial resolution. These measurements techniques

enabled long time histories and moderate spatial resolu-

tion. Therefore, the two-point spatial correlation tensor

Rij (x, x′) is statistically well converged.

In conclusion, the data issued from an experimental

approach will generally be treated using the classical

method and data issued from numerical simulations by

the snapshots method. An exception is the case of data

sets obtained from particle image velocimetry.

22.4.8 POD and Harmonic Analysis

As long as the domain D defined in (22.60) is bounded,

the Hilbert–Schmidt theory applies [22.46], and all the

properties stated in Sect. 22.4.3 hold. It is thus necessary

to pay special attention to flow directions assumed to be

homogeneous, stationary or periodic.

A First Approach:
Homogeneity in One Direction

As a first approach, we can assume, for example, that the

spatial direction OX3 is homogeneous (a generalization

including other directions is straightforward). If OX3

is homogeneous then the two-point correlation R(x, x′)
depends only on the difference r3 = x′

3 − x3 of the two

coordinates in the OX3 direction:

Rij

(
x1, x′

1, x2, x′
2, x3, x′

3, t, t′
)

= Rij

(
x1, x′

1, x2, x′
2, t, t′; r3

)
.

Splitting the space–time variable X = (x1, x2, x3, t) into

a homogeneous variable x3 and an inhomogeneous

variable χ = (x1, x2, t), the integral Fredholm equation

(22.60) is written

nc∑

j=1

∫

D ′

+∞∫

−∞

Rij

(
χ,χ′; x3 − x′

3

)
Φ j

(
χ′, x′

3

)
dχ′ dx′

3

= λΦi (χ; x3) . (22.84)

Under the homogeneity hypothesis, we may de-

velop the spatial eigenfunction Φl in a Fourier series

decomposition as:

Φl(χ; r3) =
+∞∑

k3=−∞
Φ̂l(χ; k3) exp(2πik3r3) (22.85)

and introduce Πij , the Fourier transform of Rij in the

direction OX3:

Πij

(
χ,χ′; k3

)

=
+∞∫

−∞

Rij

(
χ,χ′; r3

)
exp(−2πik3r3)dr3

=
+∞∫

−∞

Rij

(
χ,χ′; −r3

)
exp(2πik3r3)dr3 , (22.86)

where k3 is the spatial wavenumber associated to r3.
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Substituting expression (22.85) in (22.84), we first

obtain

nc∑

j=1

+∞∑

k3=−∞

∫

D ′

+∞∫

−∞

Rij

(
χ,χ′; −r3

)
Φ̂ j

(
χ′, k3

)

× exp[2πik3(x3 +r3)]dχ′ dr3

=
+∞∑

k3=−∞
λ(k3)Φ̂i (χ; k3). exp(2πik3x3) . (22.87)

Then, replacing the two-point correlation Rij by his

Fourier transform Πij defined by (22.86), the Fredholm

equation becomes

+∞∑

k3=−∞

⎡
⎣

nc∑

j=1

∫

D ′

Πij

(
χ,χ′; k3

)
Φ̂ j

(
χ′, k3

)
dχ′

⎤
⎦

× exp(2πik3x3)

=
+∞∑

k3=−∞
λ(k3)Φ̂i (χ; k3). exp(2πik3x3) . (22.88)

Finally, the uniqueness of the Fourier series coef-

ficients implies that the Fredholm equation (22.60) is

equivalent to:

nc∑

j=1

∫

D ′

Πij

(
χ,χ′; k3

)
Φ̂ j

(
χ′, k3

)
dχ′

= λ(k3)Φ̂i (χ; k3) . (22.89)

The conclusion is that the homogeneity hypothesis

in the OX3 direction decouples the initial POD prob-

lem into a set of lower-dimensional problems. For each

Fourier wavenumber k3 the eigenvalue problem to solve

is:

nc∑

j=1

∫

D ′

Πij (χ,χ′)Φ̂ j (χ
′)dχ′ = λΦ̂i (χ) ∀k3 .

(22.90)

Another key result is that, in each homogeneous

(or stationary) direction, harmonic functions are so-

lutions of the integral Fredholm equations. Then,

as a first approximation, the proper orthogonal de-

composition can be viewed as the generalization of

the harmonic decomposition to the inhomogeneous

directions.

This result is especially useful in systems where

the domain D is of higher dimension. For example,

in the study of the three-dimensional turbulent plane

mixing layer realized via the classical POD in Delville

et al. [22.25] and Ukeiley et al. [22.30], we appeal to

homogeneity in the spanwise (x3) and streamwise (x1)

directions. Selecting the finite domain [0, L1]× [0, L3]
in these variables, we use a mixed Fourier–empirical

decomposition of the form:

u(x, t)

=
√

L1L3

+∞∫∫

−∞

NPOD∑

n=1

a
(n)
k1,k3

(t)Φ(n)(x2; k1, k3)

× exp[2πi(k1x1 + k3x3)]dk1 dk3 .

As detailed in Delville et al. [22.25], time is mapped to

the streamwise direction through Taylor’s hypothesis.

The vector-valued eigenfunctions Φ(n)(x2; k1, k3)

are obtained by solving a Fredholm equation analo-

gous to (22.60) in which the kernel Rij is replaced

by the cross-spectral tensor Ψij (x2, x′
2; k1, k3) defined

as the streamwise and spanwise transform of the

cross-correlation tensor. More details are given in

Cordier [22.65]; see also Delville et al. [22.25] and

Ukeiley et al. [22.30].

Phase Indetermination
The phase indetermination is one of the most important

limitations of the POD. This indetermination is due to

the use of two-point correlations and, as will be demon-

strated in the following, appears only for directions

where an harmonic decomposition is used.

Suppose that the eigenfunction Φ̂ j (χ
′; k3) is a so-

lution of (22.89). Then it can easily be proven that

every function Φ̂ j (χ
′; k3)θ(k3), where θ(k3) is a ran-

dom phase function, will also be a solution. The phase

information between the different modes is lost, and

the eigenfunctions Φ̂i (χ; k3) are known up to an ar-

bitrary function θ(k3), which needs to be determined.

In particular, for classical POD, it is impossible to ob-

tain directly a description of the preferred modes in

the physical space. However, a description of the domi-

nant modes can be obtained by using a complementary

method called the shot-noise theory fully described in

Herzog [22.66], and Moin and Moser [22.67]. The reader

is referred to Delville et al. [22.25] for an application of

the shot-noise theory to recover the dominant modes

of a three-dimensional turbulent mixing layer from the

POD eigenfunctions determined by classical POD.

An alternative way is to build, from the domi-

nant POD eigenfunctions, a low-order model by use

of a Galerkin projection of the governing equations onto
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1364 Part D Analysis and Post-Processing of Data

the POD modes, leading to a low-order dynamical sys-

tem described by a set of ordinary differential equations.

In this case, these equations themselves drive the miss-

ing spectral phase information. This approach has been

successfully addressed for the wall region of a turbulent

boundary layer in Aubry et al. [22.29] and for a plane

turbulent mixing layer in Ukeiley et al. [22.30]. Natu-

rally, this kind of low-order model is particularly suited

for active flow control studies.

22.4.9 Typical Applications
to Fluid Mechanics

POD in the Mixing Layer
In this section, we briefly present a few results obtained

from the application of classical POD to experimen-

tal measurements obtained in a two-dimensional plane

turbulent mixing layer [22.68]. The streamwise and

transverse instantaneous velocity components are deter-

mined by using a rake of 12 equally spaced X-wires

uniformly distributed according to the transverse y-

direction of the flow. In the present study, only the spatial

direction y (mean gradient, inhomogeneous) and the

time delay τ are considered. The flow being stationary,

a Fourier transform has to be used in the time direction

before applying POD (Sect. 22.4.8). Of course, this ap-

proach is limited by the fact that the three-dimensional

aspect of the flow cannot be assessed; only one slice of

the flow is viewed here. Hence the full three-dimensional

behavior of the flow is not analyzed. However, useful in-

formation on the global organization of the flow can be

outlined.

Following the classical POD method described in

Sect. 22.4.5, the dominant structure of the flow can be

determined from the following Fredholm equation:

nc∑

j=1

∫

Ω

Ψij (y, y′; f )Φ
(n)
j (y′; f )dy′

= λ(n)( f )Φ
(n)
i (y; f ) , (22.91)

where nc is the number of velocity components on which

POD is performed, and where the cross-spectrum Ψij ( f )

is the temporal Fourier transform of the two-point space–

time correlations

Rij (y, y′; τ) =
〈
u′

i (y, t)u′
j (y′, t + τ)

〉
.

The Fourier transform of the velocity can be re-

trieved from the eigenfunctions Φi

û′
i (y; f ) =

NPOD∑

n=1

a(n)( f )Φ
(n)
i (y; f ) ,
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Fig. 22.18a–f Example of POD application in a turbulent

plane mixing layer. A rake of 12 X-wire probes is used

to measure the instantaneous distribution of two velocity

components across the mixing layer. (a) Original measure-

ments. (b) First POD mode. (c) Second POD mode. (d) Third

POD mode. (e) Contribution of the first three POD modes.

(f) Energy spectrum of the transverse velocity component.

Original corresponds to the hot-wire measurements, Co-

herent to the contribution of the first three POD modes and

Incoherent to the remaining POD modes

where a(n)( f ) is found from

a(n)( f ) =
∫

Ω

û′
i (y; f )Φ

(n)
i (y; f )dy . (22.92)

In terms of structure identification, the participation

of any POD mode in the instantaneous flow field can be

P
a
rt

D
2
2
.4

Springer Handbook of Experimental Fluid Mechanics
Tropea, Yarin, Foss (Eds.) • ! Springer 20071



Review of Some Fundamentals of Data Processing 22.4 Proper Orthogonal Decomposition: POD 1365

considered. Figure 22.18 shows, for a selected sample,

an example of the instantaneous velocity field plotted

in a frame moving with a constant convection veloc-

ity Uc using a Taylor hypothesis based on Uc for the

longitudinal direction. Here, this convection velocity is

chosen arbitrarily as the average of the two velocity

streams of the mixing layer. The organization, which

can be visually detected from the original velocities

(Fig. 22.18a), is relatively well reconstructed by the first

POD mode (Fig. 22.18b). However, the spatial extent of

the events in the y direction is generally underestimated,

and higher modes (Fig. 22.18c,d) are needed to improve

this (Fig. 22.18e).

The power spectra deduced from the original, co-

herent, and incoherent contributions to the transverse

velocity field are superimposed on Fig. 22.18f). The co-

herent flow field has a similar spectral distribution to the

original (total) flow until the frequency 500 Hz, while

the incoherent flow is uncorrelated and exhibits a flat

energy spectrum in this frequency domain. We then see

that the POD coherent component captures the strongest

frequency peak, lying at around 400 Hz and associated

with the two-dimensional Kelvin–Helmholtz instability.

At high frequencies, the spectral slope obtained for the

incoherent spectrum is similar to that deduced from the

original spectrum, while the coherent spectrum exhibits

a different slope. The spectral content of the small scales

has then been well reconstituted with the POD incoher-

ent field. Finally, the background fluctuations exhibit

a spectrum corresponding to a quasihomogeneous equi-

librium turbulence. This figure also shows that POD

coherent structures are not localized in the spectral do-

main. They correspond to multiple scales and differ from

the usual approaches of Fourier filtering in time or space.

The Complementary Technique
in the Mixing Layer

In order to perform the projection required to obtain the

random coefficients a(n)( f ) from the POD, it is neces-

sary to have knowledge of the flow field at all points

in space (22.92). Depending on the measurement ap-

paratus, this is not always possible. For example, it is

sometimes difficult to operate several hot-wire probes

simultaneously. On the other hand, the determination of

the correlation tensor used for applying POD only re-

quires a two-point measurement procedure. In this case,

the linear stochastic estimation (see Sect. 22.4.6 for fur-

ther details), also based on two-point correlations, allows

the estimation of the raw data on which POD can be

used as a structure identification process (by retaining

only a small number of modes). This approach, called

��

��

��

Fig. 22.19a–c Application of the complementary tech-

nique to the plane mixing layer. (a) Original measurements.

(b) Direct application of POD. (c) Application of the com-

plementary technique (two points of reference were used

for the linear stochastic estimation)

a complementary method, was introduced by Bonnet

et al. [22.69].

Mathematically, the stochastic estimates of the ran-

dom coefficients are now calculated from:

a
(n)
est ( f ) =

∫

Ω

u′
i,est(y; f )Φ

(n)
i (y; f )dy ,

where u′
i,est(y; f ) is either a single or multipoint linear

stochastic estimate of the velocity field and Φ
(n)
i (y; f )

is obtained from the original POD eigenvalue problem.

The estimated velocity can be reconstructed in Fourier

space by

û′
i (y; f ) =

NPOD∑

n=1

a
(n)
est ( f )Φ

(n)
i (y; f ) ,

and then inversely transformed to obtain û′
i (y, t). The

example plotted in Fig. 22.19 illustrates this procedure

applied to the same data as used in Fig. 22.18.

22.4.10 POD Galerkin

General Methodology
Before going into the details of the application of the

Galerkin projection for the POD eigenfunctions, we first

recall the basic ideas of Galerkin projection.

Galerkin projection is a special case of weighted

residual methods [22.70]. These methods are dedicated
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1366 Part D Analysis and Post-Processing of Data

to solve functional equations, such as ordinary (ODE)

or partial (PDE) differential equations, or integral equa-

tions. For example, consider the equation

L(u) = 0 (22.93)

defined in a domain Ω, where L is some differential

operator. The Galerkin method is an approximation to

the true solution of (22.93) sought by weighting the

residual of the differential equation. Assume that U is

an approximate solution to (22.93). Substitution of U for

u in (22.93) results in a nonzero residual r = L(U) 
= 0.

The best approximation for U is that which reduces

the residual r to the least value at all points in the domain

Ω. The weighted residual method enforces the condition

R j =
∫

Ω

w jr dΩ = 0 , (22.94)

where the R j are the weighted residual integrals and

w j are the weighting functions. In the Galerkin method,

the weighting functions are chosen to be the same as the

basis functions used in the expansion of the approximate

solution. Hence, if U is approximated by the expansion

U(x) =
∞∑

i=1

χiϕi (x) , (22.95)

where ϕi (x) are the basis functions and χi are the coef-

ficients to be determined, then the weighting functions

are selected as w j = ϕ j (x), j = 1, . . . ,+∞. The fact

that the unknown u solution of (22.93) is a member

of an infinite-dimensional space is a practical difficulty.

The discretization of the Galerkin procedure then con-

sists of truncating the sum in (22.95) at a finite index

imax, thus rendering the problem a finite dimensional

one. Therefore, (22.94) becomes
∫

Ω

ϕ j (x)L(U)dΩ = 0 , j = 1, . . . , imax .

(22.96)

If the definition (22.73) of the inner product is

introduced, then equation (22.96) further simplifies to

{
L

[
imax∑

i=1

χiϕi (x)

]
,ϕ j

}
= 0 , j = 1, . . . , imax .

(22.97)

Finally, the Galerkin Projection is equivalent to im-

pose the imax scalar products defined by equation (22.97)

to vanish.

For such an approach to work [22.71], the two

following requirements should be satisfied:

1. the function space {ϕi} of the basis functions ϕi (x)

must be complete and for practical reasons to be-

come clear in the next section, an orthonormal basis

is especially desirable.

2. the basis functions ϕi (x) must meet the boundary

conditions of the problem.

Reduced Order Models Based on POD
From the properties of the POD eigenfunctions Φm(x)

as described in Sect. 22.4.3 one can immediately see that

these eigenfunctions are particularly suited for Galerkin

projection.

The Navier–Stokes equations for incompressible

flows can be written symbolically as

∂u

∂t
= F(u) with u = u(x, t)x ∈ Ω and t ≥ 0 ,

(22.98)

where F is a differential operator that contains only spa-

tial derivatives and where Ω is the spatial domain under

study. The differential equation (22.98) is mathemati-

cally well posed if the system is completed by initial

conditions:

u(x, t = 0) = u0(x) (22.99)

and boundary conditions. Here, we decide to follow the

viewpoint of Fahl [22.34] and to formulate the differen-

tial equation (22.98) in the general context of boundary

control problem for fluid flows. Hence, we assume that

the boundary of the domain Γ , can be split into two parts

such that Γc denotes that part of the boundary where the

control is applied and Γ \Γc is the part of the boundary

that is not controlled. Then, we can complete the (22.98)

with the Dirichlet boundary conditions:

u(x, t) = h[x, t; d(t)] with x ∈ Γ and t ≥ 0 ,

(22.100)

where d is the control input. More precisely, the bound-

ary conditions can be written as

h[x, t; d(t)] =

⎧
⎨
⎩

γ (t)c(x) x ∈ Γc, t ≥ 0 ,

g(x) x ∈ Γ \Γc, t ≥ 0 ,

(22.101)

where γ (t) can be interpreted as the temporal variation of

a prescribed control action defined by c(x), x ∈ Γc. For

example, this formulation corresponds to flow control
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by blowing and suction along a portion of the boundary

as considered in Joslin et al. [22.72].

The reduced-order model is then derived by Galerkin

projection of the PDE (22.98) onto the POD subspace

of dimension NPOD. The first step is to insert in (22.98)

the development of u on the POD basis Φ(m):

u(x, t) =
NPOD∑

m=1

a(m)(t)Φ(m)(x)

to obtain (using the notation ȧ = da/dt)

NPOD∑

m=1

ȧ(m)(t)Φ(m)(x) = F

(
NPOD∑

m=1

a(m)(t)Φ(m)(x)

)
.

(22.102)

The set of spatial eigenfunctions Φ(m)(x) being a ba-

sis, the right-hand side of (22.102) can be written as

a linear combination of Φ:

F

(
NPOD∑

m=1

a(m)(t)Φ(m)(x)

)

=
∑

n

F
(n)
(

a(1), a(2), . . .
)

Φ(n)(x) .

Finally, the Galerkin projection of (22.98) onto the

POD eigenfunctions is evaluated as(
Φ(n),

∂u

∂t

)
=
(
Φ(n), F(u)

)

for n = 1, . . . , NGal ,

where NGal is the number of Galerkin modes kept in the

projection. From the orthonormality of the eigenfunc-

tions Φ(m)(x), the PDE (22.98) is replaced by a set of

ODEs defined by

ȧ(n)(t) = F
(n)
(

a(1)(t), . . . , a(n)(t)
)

,

with n = 1, . . . , NGal , (22.103)

where

F
(n) =

⎡
⎣Φ(n), F

⎛
⎝

NGal∑

m=1

a(m)(t)Φ(m)(x)

⎞
⎠
⎤
⎦ .

(The left-hand side of (22.103) is estimated as(
Φ(n),

∑

m

ȧ(m)Φ(m)(x)

)

=
∑

m

ȧ(m)(t)
(
Φ(n),Φ(m)

)
.

Hence, as previously noted at the beginning of this

section, an orthonormal basis is especially desirable be-

cause we avoid inverting an NGal × NGal matrix to solve

for ȧ(n)(t))

The functions F
(n) are linear if F is a lin-

ear operator and, in our case, due to the convective

terms in the Navier–Stokes equations, F
(n) are usu-

ally quadratic functions of a(n). In Aubry et al. [22.29]

and Ukeiley et al. [22.30], the low-order dynami-

cal system (22.103) have cubic terms because the

velocity field is decomposed into mean and fluctu-

ating components (u = 〈u〉+u′), where the mean is

slowly varying in time. The mean may then be de-

scribed in terms of the fluctuations u′, which give

rise to Reynolds stresses and then to cubic equations

for (22.103). Another enhancement to the basic the-

ory described so far is the modeling of energy transfer

to the higher modes (corresponding to the dissipa-

tive scales of the flow) neglected in the Galerkin

projection procedure. In Aubry et al. [22.29], the in-

fluence of the missing scales is simply parameterized

by a generalization of the Heisenberg spectral model

in homogeneous turbulence [22.73] and in Ukeiley

et al. [22.30] the mean velocity is split into a steady

and time-dependent part by choosing cutoff wavenum-

bers. Other methods for improving the accuracy of the

POD reduced-order model are discussed at the end of

this section.

To obtain a well-posed mathematical problem, one

needs to add a set of initial conditions to the reduced-

order model (22.103) and to make sure that the problem

(22.103) matches the original boundary conditions

(22.100). The initial conditions can be directly inferred

from the conditions (22.99) imposed to the original

problem

a(n)(t = 0) = a
(n)
0 , where a

(n)
0 =

(
u0(x),Φ(n)

)
.

For the boundary conditions, the answer is not so

direct because it depends mainly of the type of boundary

conditions applied, homogeneous or nonhomogeneous

boundary conditions. For this reason, this question is

postponed to the next subsection.

To sum up, combining the Galerkin projection

methodology and the optimality of convergence of POD

eigenfunctions (Sect. 22.4.3), we demonstrate that high-

dimensional models represented by partial differential

equations (PDE) can be replaced by low-dimensional

dynamical models of nonlinear ordinary differential

equations (ODE).

Problem of Boundary Conditions
According to (22.83), when the Navier–Stokes equations

(NSE) are subjected to homogeneous Dirichlet bound-

ary conditions (for example, h(x, t; c(t)) = 0), the POD
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basis functions inherit these boundary conditions. There-

fore, the reduced-order models developed by Galerkin

projection of the NSE on the POD subspace are equiva-

lent to the original NSE. More precisely, we can only

argue that the system of ODEs (22.103) are mathemati-

cally equivalent to the original problem (22.98). We are

sure that there exists a solution of the reduced-order

model (22.103) that lies on the manifold that is de-

fined by the boundary conditions of the original problem.

However, the fundamental question if whether a flow can

be represented exactly by a finite-dimensional basis of

POD eigenfunctions and the question of stability of that

manifold are still not fully answered. Issues concerning

the stability and the accuracy of a Galerkin projection

are discussed in Iollo [22.58] and Iollo et al. [22.59]. The

possible connections between the stability properties of

the manifold and the stability properties of the physi-

cal phenomenon are addressed in Rempfer [22.71]. The

expansion coefficients a
(n)
DS(t), n = 1, . . . , NGal that are

solutions of the dynamical system (22.103) can then be

used to compute the reduced-order solution

uDS(x, t) =
NGal∑

n=1

a
(n)
DS(t)Φ(n)(x) ,

where the subscript DS denotes the dynamical system

approximation to the original solution u(x, t) of the NSE.

Now we consider the NSE with nonhomogeneous

Dirichlet boundary conditions defined by (22.101). As-

sume that the snapshots data u(x, ti ), i = 1, . . . , Nt of

the input ensemble U satisfy the required (nonhomo-

geneous) boundary conditions. Due to (22.83), the POD

basis functions are no longer suitable to use in a Galerkin

projection. The solution of this problem is to trans-

form the actual problem to a problem with homogeneous

boundary conditions.

When h(x, t; d(t)) does not depend on time t, for

example h(x, t; d(t)) = g(x) for all x ∈ Γ and t ≥ 0,

Sirovich [22.62] suggests overcoming this difficulty by

computing the POD basis functions for the fluctuations

around the mean flow field. Given Nt time snap-

shots, the mean velocity 〈u(x, t)〉 = 1
Nt

∑Nt

i=1 u(x, ti )

is first computed as an ensemble average. The POD

eigenfunctions are then estimated using the modified

input data U
′ = {u(x, t1) −〈u(x, t)〉, . . . , u(x, tNt ) −

〈u(x, t)〉} (see [22.35] for an example). Due to its con-

struction, the mean flow 〈u(x, t)〉 is a solenoidal field

and satisfies the prescribed nonhomogeneous bound-

ary conditions. Furthermore, each modified snapshot

u(x, ti )−〈u(x, t)〉 is also divergence free, but satisfies

homogeneous Dirichlet boundary conditions. In the case

of time-independent nonhomogeneous boundary con-

ditions, the reduce- order solution can be computed

as

uDS(x, t) = 〈u(x, t)〉+
NGal∑

m=1

a
(m)
DS (t)Φ(m)(x) ,

where the coefficients a
(n)
DS(t), n = 1, . . . , NGal are the

solutions of the dynamical system (22.103).

For boundary control problems, the more interesting

case is the one where the Dirichlet boundary condi-

tions h(x, t; d(t)) defined by (22.101) depend on time t.

In order to match these boundary conditions, Graham

et al. [22.56], Ravindran [22.21, 22] and Fahl [22.34]

propose searching for the reduced-order solution of the

low-order dynamical system (22.103) as

uDS(x, t) = 〈u(x, t)〉+γ (t)uc(x)

+
NGal∑

m=1

a
(m)
DS (t)Φ(m)(x) ,

where uc(x), x ∈ Ω is a reference flow field, describing

how the control action γ (t)c(x), x ∈ Γc, t ≥ 0 influ-

ences the flow and satisfying the following boundary

conditions

γ (t)uc(x) =

⎧
⎨
⎩

γ (t)c(x) , x ∈ Γc, t ≥ 0 ,

0 x ∈ Γ \Γc, t ≥ 0 .

Similar to the procedure presented for the time-

independent case, a mean velocity 〈u(x, t)〉 is first com-

puted as the ensemble average of the modified input data

defined as U
′ = {u(x, t1)−γ (t1)uc(x), . . . , u(x, tNt )−

γ (tNt )uc(x)}. Afterward, the POD basis func-

tions are estimated with the input collection

U
′′ = {u(x, t1)−γ (t1)uc(x)−〈u(x, t)〉, . . . , u(x, tNt )−

γ (tNt )uc(x)−〈u(x, t)〉}.
Since (u(x, ti )−γ (ti )uc(x))|Γc

= 0 and 〈u(x, t)〉
matches all other nonhomogeneous boundary condi-

tions, the POD basis functions satisfy homogeneous

boundary conditions on the whole domain. This ap-

proach is used in Bergmann et al. [22.35] to incorporate

the boundary control for the cylinder wake into the

POD-based reduced-order model.

Accurate Model Reduction
When the POD-based reduced-order model (22.103)

is integrated in time, it yields a set of predicted

time histories for the mode amplitudes a(i)(t), which

can be compared with the POD temporal eigenfunc-

tions. However, it is now well known that, when the
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equations (22.103) are integrated in time with initial con-

ditions obtained from corresponding direct numerical

simulations, a gradual drift from the full-state solu-

tion to another erroneous state may arise, prohibiting

a correct description of the long-term dynamics [22.74].

Even worse, in some cases, the short-term dynamics of

the POD model may not be sufficiently accurate to be

used as a surrogate model of the original high-fidelity

models. Essentially, two sources of numerical errors can

be identified. First, the pressure term is often neglected

in the Galerkin projection. In many closed flows, it can

be demonstrated rigorously that the contribution of the

pressure term is exactly zero. For convectively unsta-

ble shear layers, as the mixing layer or the wake flow,

Noack et al. [22.75] proved that neglecting the pressure

term may lead to large-amplitude errors in the Galerkin

model, requiring the introduction of a pressure-term

representation [22.75, 76]. The second source of nu-

merical errors is the truncation involved in the POD

Galerkin approach. Indeed, since only the most en-

ergetic POD modes are kept, the POD model is not

sufficiently dissipative to prevent erroneous time ampli-

fications of its solution. This problem is similar to that

of large-eddy simulation, where the energy transfers be-

tween the resolved scales and the subgrid scales have

to be modeled [22.77]. Recently, Karniadakis employed

the same dissipative model, called the spectral vanish-

ing viscosity model (SVVM), to formulate alternative

Large Eddy Simulation (LES) approaches [22.78] and

to improve the accuracy of POD flow models [22.74].

In Bergmann et al. [22.35], the POD model is stabilized

by the introduction of a time-dependent eddy-viscosity

model estimated for each POD mode as the solu-

tion of an auxiliary optimization problem (see [22.79]

for a description). This approach can be viewed as

a calibration procedure of the POD-Galerkin system

similar to the methods recently introduced in Galletti

et al. [22.76] for the pressure model or in Couplet

et al. [22.80] for the polynomial coefficients of the

system.

22.4.11 Evaluative Summary
of the POD Approach

The proper orthogonal decomposition is a powerful and

elegant method of data analysis aimed at obtaining

low-dimensional approximations of high-dimensional

processes. For turbulent flows, the POD approach by

itself is neither a theory nor a closure method. However,

a better understanding of the role of coherent structures

in turbulence generation can be gained with low-order

dynamical systems developed by Galerkin projection of

the governing equations onto the POD basis functions

(see [22.29], for example). On the other hand, the recent

invention of microelectromechanical systems has gen-

erated substantial interest for control methods for fluid

dynamics. The design of reduced-order controllers for

fluid system is essential for real-time implementation

and the POD method is particularly suited for deriving

reduced-order models [22.21, 22, 34, 40].

Among the advantages related to the proper or-

thogonal decomposition, the following points can be

underlined.

• The method is objective, methodic, and rigor-

ous: a mathematical framework is provided by the

Hilbert–Schmidt theory.

• The POD is a linear method but no linear hypoth-

esis is imposed on the process. The fact that this

approach always looks for linear or affine subspaces

instead of curved submanifolds makes it computa-

tionally tractable. However the POD does not neglect

the nonlinearities of the original vector field. If the

original dynamical system is nonlinear, then the re-

sulting reduced-order POD model will also typically

be nonlinear.

• The POD basis functions are optimal in terms of

energy.

• The efficiency of POD increases with the level of in-

homogeneity of the process. This method is therefore

particularly suited to the analysis of turbulent shear

flows. Moreover, as the generalization of Fourier

methods to inhomogeneous directions, POD is com-

plementary to harmonic methods.

• Combined with the Galerkin projection procedure,

POD provides a powerful method for generating

lower-dimensional models of dynamical systems

that have a very large or even infinite-dimensional

space.

Among the disadvantages related to POD are the

following.

• The technique requires knowledge of a two-point

correlation tensor over a large number of points. Its

use is therefore limited by the size of the data sets,

which can quickly becomes huge [22.31].

• Due to the use of two-point correlations, phase

indetermination appears for directions where an har-

monic decomposition has to be used. For classical

POD, in particular, complementary techniques are

necessary to obtain a description of the preferred

modes in the physical space.
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• By definition, POD selects structures that are best

correlated with the entire fluctuating velocity field.

It is therefore not helpful if we want to study

a region S that contains only a small fraction of

the total kinetic energy. Fortunately, in this type

of situation, it is then possible to use the ex-

tended POD (EPOD) approach recently introduced

by Borée [22.81]. Using POD modes computed in

the subdomain S only, this method provides a decom-

position of the velocity field in the whole domain.

This decomposition is such that the extended mode

of order p gives the only local contribution to the

velocity field that is correlated with the projection

of the velocity field onto mode POD of order p

in S.

• The nature of the POD basis functions is intrinsically

linked to the flow configurations from which they

have been derived. The same argument can be used

to explain the energetic optimality of the POD basis

functions. Therefore, a POD basis determined with

a set of realizations of the flow model for a specified

control input can perfectly reproduce the dynamics

of the flow for a fixed system and may not be suffi-

cient when the system is under the action of a control.

In these cases, the POD basis needs to be improved

by an adaptive procedure [22.21, 34].

22.5 Conditional Averages and Stochastic Estimation

22.5.1 Conditional Averages

Conditional averaging is a natural way of refining av-

erages to pertain to a more precisely defined set of

conditions. It is used extensively in the study of coherent

structures in turbulent flow. In this section the con-

cepts underlying conditional averaging will be presented

briefly, coherent structure concepts will be reviewed, and

the method of conditional eddies will be explained.

Conditional Averaging Concepts
Let q̃ be any random quantity, and denote the mean value

of q̃ by 〈q̃〉, where the brackets denote an averaging

operation. As usual, we separate q̃ into a sum of its

mean and its fluctuation about the mean:

q̃ = 〈q̃〉+q . (22.104)

The conditional average of q̃ given that a set of events

E = {E1, . . . , EM} occurs is denoted by 〈q̃|E〉. The con-

ditional average of the total is equal to the unconditional

average plus the conditional average of the fluctuation,

〈q̃|E〉 = 〈q̃〉+〈q|E〉 . (22.105)

Hereafter, we shall deal mostly with fluctuations, bear-

ing in mind that the mean component can always be

incorporated.

Suppose that q̃ and E are random functions over

time. The unconditional time average of q̃ would be

found by integrating over its values at all times and

dividing by the total time. (Ideally, this would be done

in the limit of the total time approaching infinity, but in

practice the total time is merely large.) The conditional

average for a given E can be found by summing over all

points in time at which the event E occurs, and dividing

by the fraction of the total time for which E occurs. That

is, we would restrict attention to just the set of times for

which E occurs. To illustrate this further, suppose that

q̃ is the heat flux at a point on a surface and E1 is the

event {w(x, t) ≥ 0}, where w is the vertical velocity at

a location x above the surface. The conditional average

would be found by sampling the heat flux whenever the

vertical velocity is positive. To normalize the average of

these samples properly, the averaging time would have

to be the fraction of the total time during which the

vertical velocity is positive.

As another example, suppose that q̃ is the weight of

an individual, E1 = h is the individual’s height, and the

averaging brackets represent an ensemble average over

a large population of individuals. Then, the conditionally

averaged weight given the height would be found first by

selecting all of the individuals having a certain height,

then finding the average of that group’s weight. If the

total population in the ensemble were N , and if a group

equal to 10% of N had a height of (1.8±0.01) m, then

the conditional average would be found by summing

the heights of all individuals in the group and dividing

by 0.1N . The conditional averaging processes for area

averages, line averages, or combinations of any of the

various averages are analogous.

By specifying that random events have certain val-

ues, conditional averages diminish uncertainty, and by

specifying more event information, the uncertainty di-

minishes further. For example, by specifying the height

of an individual, the conditional weight becomes more

representative than the average over all individuals. By
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specifying the height and age, the group becomes even

more specific, and the conditional average becomes even

more representative. One expects the variance about the

conditional average to continue to diminish as more data

are added, but this is only true if the data are correlated

with the quantity being averaged. Thus, the conditional

weight of an individual is more likely to be represen-

tative if the events are genetic or dietary in nature, but

not if they are astronomical or otherwise unrelated to

a person’s weight.

In the context of fluid mechanics, one way we use

conditional averages is to improve measurements in the

presence of uncontrolled random variations. For exam-

ple, suppose that laminar flow moves over a surface

whose position with respect to a fixed sensor is slowly

changing. Let the distance from the surface to the sen-

sor be ys(t) and the velocity measured by the sensor be

ũ. One could represent the velocity at distance y above

the surface by the unconditional average, 〈ũ〉, but the

measurement would be contaminated by the motion of

the surface. By sampling the velocity at the sensor only

when ys(t) = y, the conditional average 〈ũ|ys(t) = y〉
could be formed, and it would represent the velocity at

y more accurately.

Coherent Structures
A second way we use conditional averages is to evaluate

the average behavior of flow fields during certain impor-

tant events, such as the occurrence of strong Reynolds

stresses or strong pressure fluctuations. These averages

then tell us something about the state of the flow that cre-

ates these strong events. In the study of turbulent shear

flows, the best-known conditional averaging method is

quadrant analysis. One uses this method to explore the

mechanisms by which Reynolds shear stresses 〈u1u2〉
are created in shear flows such as wall turbulence. (u1 is

streamwise and u2 is wall-normal.) The flow is classi-

fied according to the quadrant in which the instantaneous

values (u1, u2) fall

E1 = {u1 > 0, u2 > 0} ; E2 = {u1 < 0, u2 > 0} ;
E3 = {u1 < 0, u2 < 0} ; E4 = {u1 > 0, u2 < 0} .

(22.106)

By taking conditional averages given these events

one can find the mean fraction of the total Reynolds

stress associated with each quadrant, the mean veloc-

ity in each quadrant, the mean rate of turbulent energy

transport associated with each quadrant, etc. Events

in the second quadrant are ejections that move low-

streamwise-momentum fluid away from the wall, and

events in the fourth quadrant are called sweeps, which

transport high-momentum fluid towards the wall. Both

types of events contribute to a negative value of 〈u1u2〉,
so knowing the conditional average values of other flow

properties during these events is useful.

Associating the occurrence of a conditional event

with a physical structure in the flow is a more-

challenging problem. This problem arises when one

wishes to determine the physical form of coherent

structures. These structures are characteristic, three-

dimensional, vortical motions that occur repeatedly and

contribute substantially to the mean behavior of the

flow. They are random, but not so random as to make

them unrecognizable – they are the order within the

chaos. Coherent structures are often large scale, but

they need not be. Examples of large-scale structures

are the spanwise roll vortices that occur in turbulent

shear layers. Within the rolls smaller coherent struc-

tures occur in the form of braids that have smaller

vortex cores and a significant component of vorticity

in the direction of the mean flow. In turbulent bound-

ary layers the bulges are large-scale coherent structures,

and the near-wall quasi-streamwise vortices are small

scale. Even isotropic turbulence, which is the least

structured of all turbulent flows, contains small coher-

ent structures in the form of worms – slender vortices

whose diameters are of the order of 10 Kolmogorov

lengths.

Coherent structures are important because they pro-

vide a conceptual means of reducing the complexity of

turbulence to manageable units. To implement the con-

cept one would like to be able to decompose a flow

field into its various coherent structural elements so as

to study their various forms, functions, and interactions.

To do so, one must have a mathematically unambigu-

ous definition by which the coherent structures can be

recognized and isolated. Unfortunately, there is no such

definition. The properties of coherent structures listed

above may be common to coherent structures, but they

do not constitute a complete definition. For example, the

quadrant events in (22.106) cannot be associated with

a single coherent structure because many different co-

herent structures could contain regions whose velocity

vectors fall in a given quadrant. Sometimes, it is mis-

takenly asserted that coherent structures are defined by

their coherence in space. However, the continuity of fluid

motion virtually guarantees that any continuous fluid

motion is spatially coherent, so spatial coherence can

only be one aspect of coherent structures, not a defining

property.

It is more useful to define coherent structures as mo-

tions that have a spatial pattern that persists in time,
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as measured by temporal coherence functions having

long time scales. Long temporal coherence implies that

the patterns would be characteristic because they would

contribute significantly to the mean statistics of the flow

by virtue of dominating long segments of the time av-

erages. Unfortunately, a definition based on temporal

coherence would require analysis of the flow patterns in

space and time, and this is too difficult for current ex-

perimental methods, and too data-intensive for current

computational simulations.

For the time being, one is forced to return to the idea

of defining coherent structures by conditional averages

using intelligently selected events that recognize the co-

herent structure. This was the basic idea of quadrant

analysis. Quadrant 2 events were associated with ejec-

tions of low-momentum fluid upwards, and quadrant 1

events were associated with sweeps of high-momentum

fluid towards the wall. If these statements are taken to

be the definitions of ejection and sweep, then there is

-!��!�����"���

Fig. 22.20 Conditional eddy 〈u(x, t)|u(x1, t)〉 in turbulent channel flow given a second quadrant event vector. The

colored surfaces are contours of constant magnitude of the vorticity of the conditional eddy ∇ × 〈u(x, t)|u(x1, t)〉 =
〈∇ × u(x, t)|u(x1, t)〉. The event vector is located y1 = 49 viscous wall units above the lower wall of the Reτ = 180

channel flow. The carpet map on the wall depicts the wall shear stress associated with the conditional eddy. The

conditional average is found by an approximation that will be discussed later

no ambiguity. But, to go further and attribute detailed

structural behavior to the occurrence of such events,

one needs much more evidence. For example, quad-

rant 2 ejections need not coincide with the turbulent burst

phenomenon, which is defined in terms of a rapid erup-

tion of dye in flow visualizations of near-wall low-speed

streaks. Eddies of many different forms could possess

regions in which the velocity vector falls into one quad-

rant or another, without qualifying as bursts or sweeps.

The root cause of this ambiguity is that there are many

possible conditional events, and no guarantees that any

of them unambiguously identifies coherent structure of

a particular type.

Conditional Eddies
One approach to resolving the conundrum outlined

above is to employ conditional averages, but to refrain

from attempting identification using ad hoc events. In-

stead, one concentrates on events that occur naturally
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in the fundamental equations governing the statistics of

turbulent flow [22.82]. These equations depend on the

particular form of statistical theory one is interested in,

but for a broad class of theories it can be shown that the

equations governing the probability density function for

an event E naturally involve conditional averages of the

form 〈u(x, t)|E〉. From the probability density function

equation one can derive equations for any statistical mo-

ment of E, so understanding velocity fields defined by

〈u(x, t)|E〉 is fundamental to understanding the closure

problem for the E-theory.

The quantity 〈u(x, t)|E〉 defines a velocity vector

field that we refer to as the conditional eddy. An im-

portant class of conditional eddies is the set defined by

events of the form

EN = {c1 ≤ u(x1, t) < c1 +dc1

and c2 ≤ u(x2, t) < c2 +dc2 and . . .

and cN ≤ u(xN , t) < cN +dcN } . (22.107)

This event occurs in the Lundgren–Monin equation for

the probability density function (PDF) of the velocities at

N points. The simplest equation in the Lundgren–Monin

hierarchy is the one-point PDF from which equations

for all one-point moments (mean, root mean square,

and higher-order moments) are derivable. This equation

involves the simplest conditional eddy

〈u(x, t)|c1 ≤ u(x1, t) < c1 +dc1〉 .

Note that quadrant analysis is a special case of this condi-

tional eddy, found by averaging the event velocity vector

over each of the quadrants in the (u1, u2) plane and all

values of u3. This conditional eddy is quite powerful as

a means of recognizing structure. In isotropic turbulence,

it takes the form of a vortex ring centered on the event

vector [22.83]. In wall turbulence, if the event vector is

given values corresponding to the most probable second-

quadrant ejection event, the conditional eddy takes the

form of the hairpin vortex, shown in Fig. 22.20. This

velocity pattern corresponds quite well with patterns

observed in experimental flows.

Another type of conditional eddy is the conditional

eddy given local kinematics. The event defining this

eddy consists of the velocity at x1 and the velocity

gradient tensor ∇u at x1, which completely specifies

the kinematics at that point. In particular, from the ve-

locity gradient tensor, one can specify the vorticity. In

isotropic turbulence, the conditional eddy found by spec-

ifying the vorticity looks like a slender vortex whose

diameter is of the order of the Taylor microscale and

whose length is of the order of the integral length scale,

corresponding in shape and dimensions to a turbulent

worm. In homogeneous turbulent shear flow the con-

ditional eddy given the vorticity resembles a hairpin

vortex [22.84].

22.5.2 Stochastic Estimation

In general, the analysis of data by the process of stochas-

tic estimation refers to the approximation of one or more

random variables in terms of available data, which may

also be random. We shall see that it is intimately re-

lated to conditional averaging, and that it will ultimately

provide a powerful practical tool for determining con-

ditional eddies from data produced by physical and

numerical simulation experiments. To clarify the dif-

ferences between conditional averaging and stochastic

estimation the development of stochastic estimation con-

cepts in this section will begin with a fresh problem

statement.

Estimation of Random Processes
In the context of structure in flows that are turbulent or

otherwise random, the estimated variable is typically the

velocity vector field, which we decompose into the sum

of its mean U(x, t) and its fluctuating part u(x, t). As

in our discussion of conditional averaging, suppose that

the data are associated with the occurrence of certain

events at one or more points in the field. Their totality is

referred to as the event data vector E. We shall denote

the estimate of u(x, t) in terms of the event data by

û = F(E, x, t).

The data can take many forms, but in the simplest

case E is one or more components of the velocity vec-

tor at a single point in the flow, u1 = u(x, t). Then the

estimate would represent a best representation of the ve-

locity field that occurs around the point x1 when the

velocity at x1 is equal to the value specified for u1. Note

that this value can be varied to explore different states

of the flow. Note also that the estimate of the total ve-

locity field is just the mean velocity plus the estimate of

the fluctuating velocity field.

It can be proven that, in general, the least mean-

square error estimate of u(x, t) given the data E is

the conditional average of u(x, t) given E, denoted by

〈u(x, t)|E〉. That is, of all possible estimates in terms

of the event data, F(E, x, t), the mean-square error

e = 〈|u− F|2〉 is a minimum when F = 〈u|E〉.
This result is so important that it is derived here in

detail. The condition for the error to be a minimum is

that the first variation δe = 0. Taking the variation δFi
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with respect to all possible functions of the event data

gives

δe = 〈2(ui − Fi )(−δFi )〉 (22.108a)

= −2〈〈(ui − Fi )|E〉δFi〉 . (22.108b)

Equation (22.108b) follows from (22.108a) by writ-

ing the average as the average over the random event data

E of the conditional average given E. Since E is fixed

inside the conditional average, δFi (E) is also fixed, and

it can be taken outside of the conditional average. [The

conditional average given E averages over fluctuations

in u, while the unconditional (outer) average averages

over fluctuations in E.] In order for (22.108b) to van-

ish for arbitrary variations δFi , the conditional average

must vanish identically, leading to

Fi = 〈ui |E〉 (22.109)

or

û = best estimate of u given the data E = 〈u|E〉 .

(22.110)

This simple but elegant result is quite general. We could

replace the velocity field u with any quantity q and arrive

at the same result.

An estimate of u in terms of event data E must be-

come increasingly erroneous as the location x is moved

away from the locations of the event data, because u

will become uncorrelated with the event data for large

�
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Fig. 22.21 Comparison of a random realization of the streamwise

velocity u(x′) measured in grid turbulence (dashed line), the condi-

tional average of the velocity given the value at x′ = x (solid line),

and the linear stochastic estimate (open circles)

spatial (or temporal) separations. The conditional aver-

age 〈u(x, t)|E〉 manifests this property by reducing to

the unconditional average 〈u〉 (which equals zero if u is

a fluctuation) as x is removed from the vicinity of the

event data.

Linear and Nonlinear
Mean-Square Estimation

In general, 〈u|E〉 is a nonlinear function of the com-

ponents of E. However,, under the condition that the

components of u and E are joint normally distributed, it

is well known that 〈u|E〉 is a linear function of E [22.85].

Often, this property is applied approximately to non-

normal random variables by postulating an estimate

of u in the form of a linear combination of the event

data. Then one speaks of linear mean-square estimation.

This subject is discussed thoroughly in the literature of

stochastic theory [22.85, 86]. Let

ˆ̂ui = linear estimate of ui =
M∑

j=1

L ij E j . (22.111)

The mean-square error of this estimate is

〈⎛
⎝ui −

M∑

j=1

L ij E j

⎞
⎠

2〉
= min ,

i = 1, 2, 3 and j = 1, . . . , M . (22.112)

The mean-square error of the linear estimate must be

greater than or equal to the error of the conditional av-

erage. The necessary condition for minimization of the

mean-square error is the orthogonality principle which

states that the errors ui −
∑M

j=1 L ij E j are statistically

orthogonal to the data

〈⎛
⎝ui −

M∑

j=1

L ij E j

⎞
⎠ Ek

〉
= 0 ,

i = 1, 2, 3 and j, k = 1, . . . , M . (22.113)

Equation (22.113) follows from (22.112) by setting the

derivative with respect to L ik of the mean-square error

equal to zero. Simple manipulation of (22.113) leads to

an M × M system of linear algebraic equations for the

coefficients for each value of i

M∑

j=1

〈E j Ek〉L ij = 〈Ekui〉 ,

j, k = 1, . . . , M , i = 1, 2, 3 . (22.114)

P
a
rt

D
2
2
.5

Springer Handbook of Experimental Fluid Mechanics
Tropea, Yarin, Foss (Eds.) • ! Springer 20071



Review of Some Fundamentals of Data Processing 22.5 Conditional Averages and Stochastic Estimation 1375

The coefficients in these equations are the correlations

between each pair of event data and between each event

datum and the quantity being estimated.

Figure 22.21 illustrates the behavior of the condi-

tional average and the linear estimate. In this example,

the quantity being estimated is the streamwise velocity

component in an experimental grid turbulence flow field.

The event is that the velocity component is equal to 1.5σ1

at x′ = x, where σ1 is the root mean square of u. A single

realization of u(x′) that satisfies this event is plotted as

a dashed line, and the conditional average and the linear

estimate are shown as a solid line and round symbols,

respectively. At x′ = x the realization and the estimates

each equal the given event. As x′ − x increases, the con-

ditional average and the linear estimate decay to zero

because they lose correlation with the event. The condi-

tional average must approach the unconditional average,

which vanishes, and the linear estimate follows suit. As

they vanish, the root-mean-square error increases with

increasing x′ until it asymptotes to the unconditional

root-mean-square value σ1.

This illustrates the general rule that estimation of

a random variable does not significantly reduce the error

unless the variable being estimated is highly correlated

with the data, e.g., in the vicinity of the data and corre-

lated with it. Providing information about data that have

little physical relationship to the process will not reduce

the error, nor will providing physically relevant data that

are too far removed from the point of estimation in space

or time.

Estimation of Conditional Averages
In addition to estimating u as a function of E, one can

also estimate the conditional average 〈u|E〉. The con-

ditional average is a deterministic function of random

data E, so it toe is a random variable. It is natural

to expand 〈u|E〉 in a Taylor series about E = 0, and

truncate at some order [22.82,83]. When the series con-

tains only first-order terms, we refer to this as a linear

stochastic estimation (LSE) to distinguish it from lin-

ear mean-square estimation. The equations for linear

stochastic estimation of the i-th component of 〈u|E〉
are

ŭi = linear stochastic estimate of 〈ui |E〉

=
M∑

j=1

L̆ ij E j , (22.115)

where M is the number of event data, and L̆ ij is a function

of x and the positions of the event data. The estima-

tion coefficients L̆ ij are chosen so that the mean-square

error

〈⎛
⎝〈ui |E〉−

M∑

j=1

L̆ ij E j

⎞
⎠

2〉
= min ,

i = 1, 2, 3 and j = 1, . . . , M . (22.116)

As above, the necessary condition for minimization is

the orthogonality principle, which states that the errors

〈ui |E〉−
∑M

j=1 L̆ ij E j are statistically orthogonal to the

data
〈⎛
⎝〈ui |E〉−

M∑

j=1

L̆ ij E j

⎞
⎠ Ek

〉
= 0 ,

i = 1, 2, 3 and j, k = 1, . . . , M . (22.117)

The resulting equations for L̆ ij ,

M∑

j=1

〈E j Ek〉L̆ ij = 〈Ekui〉 ,

j, k = 1, . . . , M , i = 1, 2, 3 , (22.118)

are identical to those for L ij in (22.114). Thus, the linear

stochastic estimate of 〈u|E〉 and the linear mean-square

estimate of u are numerically equal. The principal dif-

ference is one of interpretation. In particular, while the

mean-square error of the linear mean-square estimate of

u must be large when u is uncorrelated with E, (due, for
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Fig. 22.22 Comparison of conditionally averaged streamwise veloc-

ity on the centerline of the shear layer in a round turbulent jet with the

linear stochastic estimate of the conditional average. (After Adrian

et al. [22.87])
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1376 Part D Analysis and Post-Processing of Data

example, to a large separation between x and the loca-

tion of the event data), the error of the linear stochastic

estimate of 〈u|E〉 may be small because 〈u|E〉 also van-

ishes as the separation becomes large. The results in

Fig. 22.21 illustrate this behavior clearly if we consider

the linear estimate to be an estimate of the conditional

average.

The linear estimate of the conditional average is

surprisingly good for a variety of different types of tur-

bulent flows, including isotropic turbulence, pipe flow,

and jet flow [22.88], and for a variety of different types

of variables, including velocity, pressure and Reynolds

stresses [22.87]. As an example, conditional averages of

the streamwise velocity at t + τ in a turbulent jet given

the value of the velocity at t are compared to the linear

stochastic estimate in Fig. 22.22. For this simple case

the reader can verify that the linear estimate is

ŭ1(τ) = lin. est.〈u1(t + τ)|u1(t)〉

= 〈u1(t)u1(t + τ)〉〈
u2

1(t)
〉 u1(t) . (22.119)

The averages are conditioned on three different val-

ues of the velocity at zero time and the linear estimate

is calculated from the time-delayed autocorrelation.

Usually, the accuracy of linear estimation is good,

even for large values of the event data. In situations

where the linear estimate falls short of the accu-

racy required, the estimation can be improved by

postulating F(E) to be a nonlinear function such as

a quadratic or a higher-order polynomial. Often, higher-

order terms have little effect on probable values of the

events, but sometimes they improve accuracy [22.89–

91]. Interestingly, Brereton [22.92] has also suggested

a Laurent-type expansion that contains negative pow-

ers of the event data and showed improved estimation

for low-amplitude events. Ultimately, the accuracy of an

estimate must rest in direct comparison of the estimate

with the conditional average.

It was noted earlier that the most basic conditional

eddy in the hierarchy of conditional averages in the

PDF equations is 〈u(x, t)|u(x1, t)〉. The field shown in

Fig. 22.20 was presented as an approximation to a con-

ditional eddy of this type. It can now be explained that

the approximation was found by the stochastic estimate

lin. est.〈ui |u1〉 = L̆ iju1 j , i, j = 1, 2, 3 (22.120)

in which L̆ ij is found by solving

〈u1 ju1k〉L̆ ij (x1, x) = Rik(x1, x) , i, j, k = 1, 2, 3 ,

(22.121)

where

Rik(x1, x) = 〈ui (x1, t)uk(x, t)〉 (22.122)

is the two-point spatial correlation with a fixed reference

point x1. In matrix form
⎛
⎜⎝

〈u11u11〉 〈u11u12〉 〈u11u13〉
〈u12u11〉 〈u12u12〉 〈u12u13〉
〈u13u11〉 〈u13u12〉 〈u13u13〉

⎞
⎟⎠

⎛
⎜⎝

L̆ i1

L̆ i2

L̆ i3

⎞
⎟⎠

=
(

Ri1(x1, x) Ri2(x1, x) Ri3(x1, x)

)
(22.123)

A common and useful procedure is to use event data

consisting of velocity vectors uα = uα(xα, t) at a set of

N space points {xα}, α = 1, . . . , N . Then, E contains

M = 3N data,

E = {u11, u12, u13, u21, . . . , uN1, uN2, uN3} ,

(22.124)

and
〈
E j Ek

〉
involves only second-order two-point spatial

correlations.

R jk(xα, xβ) ≡ 〈u j (xα, t)uk(xβ, t)〉 ,

α, β = 1, . . . , N . (22.125)

The correlation on the right-hand side of (22.118)

involves correlations of the form

〈Ekui〉 = 〈ul(xα, t)ui (x, t)〉 = Rli (xα, x) ,

k = 1, . . . , M ; i, l = 1, 2, 3 . (22.126)

Thus, when the event data consist of velocity vectors,

knowledge of the two-point spatial correlations of the

velocity suffices to determine the linear estimate.

Given the estimate of a conditional eddy velocity

field, the estimate of a derivative of the conditional eddy

can be found by differentiating the estimate with respect

to x. We have seen this already for the vorticity field

in Fig. 22.20. A more-complex application that also il-

lustrates the use of multipoint velocity data is shown in

Fig. 22.23. The data consist of a grid of velocity vec-

tors lying in a plane located above a wall in channel

flow. The linearly estimated velocity field, given these

data, is differentiated at the wall to get the viscous wall

shear stress, shown in color contours. Comparison with

the actual viscous wall shear stress shows close agree-

ment, although the estimate is smoothed somewhat with

respect to the actual stress field.

If the event vector contains derivatives of the velocity

field, (∂ui/∂x j ) at the points xα the resulting two-point

correlations that appear in (22.122) contain correlations

between velocities and derivatives, and derivatives and
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Fig. 22.23 (a) Instantaneous streamwise wall shear stress and velocity vectors on a plane y+ = 20 viscous wall units

above the wall in direct numerical simulation of turbulent channel flow. (b) Linear estimate of the conditional average of

the wall shear stress given the same set of velocity vectors on the y+ = 20 plane. (After Bagwell et al. [22.93])

derivatives. Since each type of correlation can be ex-

pressed in terms of Rij and its derivatives, it follows that

knowledge of the two-point spatial correlation function

again suffices to determine fully the linear estimate of

u in terms of velocity data and derivatives of any order.

This is a powerful result, as it states that very compli-

cated conditional averages can be approximated once

Rij is known.

Conditional averages play three important roles.

First, they are used in the study of coherent flow struc-

tures in turbulence. Second, they appear naturally in

PDF theories. These theories define conditional eddies

in the form 〈u(x, t)|E〉, where E consists of a set of

velocities at N points. Third, conditional averages play

a fundamental role in estimation theory by virtue of

being the best least mean-square estimate given the

available data. Linear and nonlinear stochastic estima-

tion can be used to estimate either the random variable

u or its conditional average. Estimation of the random

variable produces a mean-square error that increases as

the correlation of the variable with the data decreases.

However, estimation of the conditional average does not

suffer from this problem. Thus, one must be careful

to distinguish clearly between estimation of the vari-

able or the conditional average. The linear estimate of

a conditional average is exact for joint normal ran-

dom variables, but this should not be taken to imply

that joint normal distribution is a necessary condition

for accuracy, or that accuracy implies that the variable

must be joint normal. Experimental evidence shows that

stochastic estimation works well for non-joint-normal

variables.
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1378 Part D Analysis and Post-Processing of Data

Stochastic estimation offers two huge advantages

over conditional averaging. First, calculating the con-

ditional average requires finding realizations of the

variable and the data in which the data assume the pre-

scribed values of interest. When the event vector has

high dimension, the occurrence of the event is highly

improbable, and one must take immense amounts of

data to build up a stable conditional average. For exam-

ple, if an N-point conditional eddy is to be evaluated

for a single set of velocity vector values, one would

have to sift through an N-dimensional space of events

to find the realizations in which the prescribed values

of the events occur. In contrast, the stochastic estimate

requires evaluation of the correlations between the data

and the variable being estimated, and it is straightfor-

ward to calculate such two-point correlations, especially

from data produced by direct numerical simulations or

particle image velocimetry. Secondly, once the correla-

tions have been found, the stochastic estimate, linear or

nonlinear, gives the conditional average for any set of

event values. Evaluation for new values only requires

plugging them into the linear form. In contrast, evaluat-

ing the conditional average for a new event vector would

require sorting through all of the data to find realizations

that satisfied the new event.

The linear estimate of a conditional eddy offers

a third attractive feature. Namely, it involves only

the two-point second-order spatial correlation tensors.

These are fundamental quantities in the statistical de-

scription of turbulent structure, but the correlation tensor

in not easily interpreted in terms of the underlying eddy

structure. The linear estimate repackages the correlation

tensor information into a vector field that is much more

readily interpreted.

22.6 Wavelet Transforms

22.6.1 Introduction to Wavelets

Conventional data processing is performed in either

the time domain (moments, correlations, etc.) or the

frequency domain (power spectra, etc.). Wavelet pro-

cessing combines the two, allowing the definition of

local spectral properties and the ability to zoom in on

local features of the signal. To simplify notations, we

use time-frequency, with an implied reference to time

series for the data; the alternative use of data is straight-

forward. Similarly, the signal is simple terminology for

scalar or vector field.

A wavelet is a basis function (an elementary building

block to analyze or synthesize the signal) characterized

by

• its shape and its amplitude, to be selected by the user

• its scale (frequency or size) and location (time or

location) relative to the signal, spanning a range of

interest to study a given phenomenon.

Wavelet coefficients are the scalar products of the sig-

nal with all dilated and translated wavelets. The set of

wavelet coefficients thus obtained is indexed by position

and scale (always positive) in the wavelet half-plane.

We will first present the continuous wavelet

transform, then the discrete and orthogonal wavelet

transforms. Additional details can be found in standard

references [22.94–96]. We will discuss their implemen-

tation and how to use them to analyze signals measured

in laboratory experiments or generated numerically. We

will also explain how the wavelet transform can be used

to extract coherent structures form a velocity or vorticity

field. An overview of techniques can be found in [22.97]

and in the archival literature.

22.6.2 Continuous Wavelet Transform

Definition of a Wavelet
Let us assume that a wavelet ψ(t) is given.

Notations: Fourier Transform. For reference and to es-

tablish notation, we define the Fourier transform of ψ(t)

as

ψ̂(ω) =
∞∫

−∞

ψ(t)e−2iπωt dt ,

with its inverse

ψ(t) =
∞∫

−∞

ψ̂(ω)e2iπωt dω .

The energy spectrum is defined on the basis of the

Parseval relation

1

2

∞∫

−∞

| ψ(t) |2 dt =
∞∫

−∞

EF(ω)dω .
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The subscript ‘F’ refers to Fourier, to distinguish it from

wavelet spectra; in the applications, we will also use the

compensated spectrum ω · E to display dominant scales.

Regardless of its scale and magnitude, a function ψ

is admissible as a wavelet if and only if

cψ =
∞∫

0

| ψ̂(ω) |2 dω

| ω | < ∞ , (22.127)

for which it is sufficient that its mean vanishes

∞∫

−∞

ψ(t)dt = 0 . (22.128)

Optionally, higher moments
∫

tnψ(t)dt may also vanish.

In addition, it is required that ψ asymptote to zero fast

enough for large t

|ψ(t)| <
C

1+|t|p
(22.129)

with C > 0 and p ∈ � . Other desirable properties in-

clude good localization (steep decay) in both the time

and frequency domains. These conditions are not very

restrictive, and many different wavelets have been used

in the literature; only a few examples (and reasons for

their selection) can be treated here, but the rationale for

wavelet selection can be inferred from the applications

discussed in Sect. 22.6.4.

Concerning the Choice of Wavelet. Some of the trade-

offs implied by the choice of wavelet are apparent from

a few examples. A difference of two Dirac functions

separated by a time τ , used to build structure functions,

5������!����������

5������!�������������
�

���� ���
 � ��
 ���

Fig. 22.24 Three wavelets of similar scale (with arbitrary

vertical offsets). From top to bottom: Haar, Morlet (real

(solid) and imaginary (dashed) parts), and Mexican hat

has an extended Fourier spectrum. The Haar function

also has compact support (Fig. 22.24) (compact support

means that the subset of the time domain over which

the function is nonzero is closed and bounded), and an

extended oscillatory spectrum (1/ω2 decay) (Fig. 22.25)

as a consequence. The Mexican-hat and Morlet wavelets

(formulae in next section) have an exponential drop-off

in both time and frequency, and are preferred in many

cases. The trade-off between them is that the Morlet

wavelet has narrow spectral bandwidth and an extended

time domain, while the Mexican-hat wavelet is more lo-

calized in the time domain at the expense of a wider

spectral content. Perfect localization in both time and

frequency is impossible (due to the Heisenberg uncer-

tainty principle): each wavelet represents a compromise,

the pros and cons of which should be reflected in the

interpretation of the results.

General Formulae
The continuous wavelet transform of a function u(t)

(assumed to have zero mean and finite energy) is defined

as a convolution

ũ(a, t) =
∞∫

−∞

[
u(t′)

1√
a
ψ∗
(

t − t′

a

)]
dt′ , (22.130)

where the asterisk superscript denotes complex conju-

gation; ũ(a, t) is the wavelet coefficient at time t and

scale a. The integral measures the comparison of the lo-

cal shape of the signal and the shape of the wavelet. The

dilation factor a acts as a zoom, so large features of the

original signal appear at large values of a, while short-

duration events appear at small a. By centering the scaled


�


5������!������ ��6���#7

5������!���������#��������������#����


�� 
��

Fig. 22.25 The Fourier spectra EF(ω) of the three wavelets

of Fig. 22.24 (arbitrary vertical offsets). From top to bottom:

Haar, Morlet, and Mexican hat
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1380 Part D Analysis and Post-Processing of Data

wavelet at time t, some time localization around t and

some spectral localization around scale a is achieved.

Two interpretations of the variables t and a are con-

sistent with t/a being dimensionless. We can assume

that both t and a have dimensions of time; alternatively,

t can be nondimensionalized by the wavelet’s centroid

frequency ωψ for a = 1,

ωψ =
∫∞

0 ω|ψ̂(ω)|dω
∫∞

0 |ψ̂(ω)|dω
.

in which case the dilation factor a is also dimensionless.

We use them indifferently.

The value of the wavelet transform as an analytical

tool rests on the next two formulae. First, the inverse

transform

u(t) = 1

cψ

∞∫

−∞

∞∫

0

[
ũ(a, t′)

1√
a
ψ

(
t − t′

a

)]
da

a2
dt′

(22.131)

requires a convolution in time as well as integration over

a. It expresses the fact that no information is lost in the

transform, and that the signal can be interpreted as made

of a linear combination of wavelets. Second, there is

a Parseval relation

∞∫

−∞

[u(t)v∗(t)]dt = 1

cψ

∞∫

−∞

∞∫

0

ũ(a, t)ṽ∗(a, t)
da

a2
dt ,

(22.132)

and in particular

∞∫

−∞

| u(t) |2 dt = 1

cψ

∞∫

−∞

∞∫

0

| ũ(a, t) |2 da

a2
dt ,

(22.133)

which shows that the energy of the signal is conserved in

the time–frequency domain. Thus, the squared wavelet

coefficients ũ provide an instantaneous power spectrum,

useful for studying transient or intermittent signals.

The Energy Distribution. For statistically stationary sig-

nals, one classically considers the modulus of its Fourier

transform [i. e., the spectrogram or energy spectrum

EF(ω)]. Since the phase of the Fourier coefficients is

thus lost, no information on the local structure of the

signal can be retrieved, as the time or space informa-

tion is encoded by the phases of all Fourier coefficients.

Therefore the classical energy spectrum, based on the

Fourier transform, is not ideal to analyze statistically

nonstationary or inhomogeneous signals. The wavelet

transform extends the concept of energy spectrum so

that one can define a local energy spectrum. Several

related algorithms are illustrated in Sect. 22.6.4.

Variants. Wavelets can be normalized in such a way

as to have unit energy at all scales. This option is fa-

vored by many authors, and is associated with the
√

a

and cψ factors in the formulae above. Alternatively,

changes in variables and different normalizations (as

used later) give simpler expressions of inverse trans-

forms and spectra. It is recommended that the user verify

the consistency of formulae and software of different

provenance by performing wavelet transforms of simple

test signals.

Examples: Continuous Wavelet
Transforms and Interpretation

In the examples illustrated below, the wavelet transform

will be applied to an artificial signal (Fig. 22.26), so that

specific experimental conditions need not be described.

The signal combines features encountered in various

applications in fluid mechanics. We superpose a modu-

lated wave, isolated events in the same frequency range,

and continuous and intermittent wave and noise packets

(some of the latter correlated to the phase of the primary

wave, e.g., at times 2, 7, and 13 of the primary wave).

Implementation: Convolution. Since the wavelet trans-

form at each scale a is a convolution of the signal with the

scaled wavelet, the operation is efficiently implemented

as a multiplication in Fourier space, i. e.,

ũ(a, t) =
√

a

∞∫

∞

[
e2iπωtψ̂∗(aω)û(ω)

]
dω ,

which involves the Fourier transform of the signal, mul-

tiplication by the (precalculated) transform of the scaled

wavelet, and inverse Fourier transform. This relation

also shows that the wavelet transform is a band-pass

filtered signal, with ψ̂(aω) describing the shape of the

filter. Each wavelet coefficient combines the information

in a temporal vicinity (weighted by the wavelet shape)

and in a spectral vicinity (weighted by its Fourier spec-

trum); it is this time–frequency compromise that makes

wavelets so versatile with intermittent data.

Discretization. In practice, the signal u(t) of dura-

tion T is sampled at constant intervals on a grid

ti = iT/N , i ∈ [0, N −1] with N = 2J . This corresponds

to a Nyquist frequency ωmax = N/2T , and a spectrum

P
a
rt

D
2
2
.6

Springer Handbook of Experimental Fluid Mechanics
Tropea, Yarin, Foss (Eds.) • ! Springer 20071



Review of Some Fundamentals of Data Processing 22.6 Wavelet Transforms 1381

of discrete decreasing frequencies, for which a logarith-

mic progression ω j = ωmaxa
− j

0 is typically used. The

frequency ratio a0 is 2 (one per octave) for orthogonal

wavelets; for continuous wavelets, a ratio a0 = 21/3 was

used for most figures, with a finer resolution a0 = 21/9

where required. The lowest Fourier frequency ω0 = 1/T

does not necessarily apply to the wavelet transform, al-

though it has been adopted in the figures. The Fourier

frequencies vary linearly, with ωk = kω0. For a signal

u, the transform is sampled in the wavelet half-plane

according to the expression

ũ(a j , ti ) = √
a j

N/2∑

k=−N/2

[
e2iπωk ti ψ̂∗(a jωk)û(ωk)

]
,

where a j = a
j

0 and û(ωk) = ∆t
∑N−1

n=0 u(tn)e−2πitnωk

and can be efficiently computed using the FFT. Note

that frequencies ωk have been centered around ω = 0

and that û(−ω) = û∗(ω) since u is real-valued.

Discretization Error. Sampling of the continuous

wavelet transform at discrete points entails some loss

of information. This loss can be treated in practice as

an approximation for which errors can be kept as small

as desired on a suitably fine grid. Bounds on the er-

rors can be found in the mathematical theory of frames.

Generally, using the time-series sampling interval and

a frequency ratio of 2–5 per octave yields sufficient

accuracy for many applications.

Mexican-Hat Wavelets. Starting from the normalized

Gaussian filter

Fσ (t) = 1

2
√

πσ
e− t2

4σ , (22.134)

in which σ = a2/2, its derivative with respect to σ

(second time derivative) gives the Mexican-hat wavelet:

ψ2(σ, t) = dFσ

dσ
=
(

t2

4σ2
− 2

σ

)
Fσ (t) = d2 Fσ

dt2
.

(22.135)

It is a difference of Gaussian filters of different scales

(band-pass filtering), divided by the scale difference.

Rather than energy normalization, this variant favors the

relation to Gaussian filtering and the simple formulae

below, including the compatibility equation. The Fourier

transform of ψ2 is

ψ̂2(σ, ω) = −4π2ω2 e−4π2ω2σ . (22.136)

�
����
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Fig. 22.26 The signal u(t) used in examples (bottom), and its various

contributions (top); arbitrary offsets and magnitude

For a signal u, the Mexican-hat wavelet transform is

written

ũ2(σ, t) =
∫

u(t′)ψ2(t − t′, σ)dt′ = d2

dt2
(Fσ ∗u) .

(22.137)

Then the energy of the signal is given by

∫ | u |2
2

dt =
∫∫

2 | σ ũ2 |2 dσ

σ
dt (22.138)

and the inverse transform by either one of the relations

u(t) = −
∞∫

0

σ ũ2(σ, t)

[
dσ

σ

]
(22.139)

= 4

∫∫
σ ũ2(σ, t′)ψ2(t − t′, σ)dσ dt′ .

(22.140)

The relations show that σ ũ2 is physically relevant.

For plotting purposes, the conversion from σ to

an equivalent frequency is needed. Taking the wavelet

transform of cos(2πωt), two simple conversions can be

adopted: the peak of the compensated energy spectrum

corresponds to ω
√

σ = 1/π
√

8, or the centroid of the

spectrum coincides with ω
√

σ = 1/2π. The second al-

ternative is adopted here, with the largest ω equal to the

Nyquist frequency of our discrete signal.

The example signal (Fig. 22.26) and its Mexican-hat

wavelet map are shown in Fig. 22.27.

The largest wavelet coefficients (red for minima,

blue for maxima) identify individual extrema of the
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Fig. 22.27 Mexican hat wavelet map σ s̃2 (bottom) and signal (top).

The cone of influence of end-points is also shown

signal. The near-periodicity of one contribution to the

signal is visible in the energetic contributions along

a horizontal strip of the map. The noise is intermittently

distributed in the top third of the map, corresponding to

larger frequencies. Additional features are discussed in

connection with the Morlet transform.

Cone of Influence and End Effects. For a wavelet lo-

cated at a fixed time, increasing its scale from some very

small value gradually brings a larger part of the signal

into the wavelet’s view, generating the cone of influence

of the wavelet. Signal values within the cone of influence

affect the wavelet coefficient at that scale. If the wavelet

is located near either end of a signal, it will see what-

ever information is located beyond the end-points, or

the lack of information; the corresponding wavelet co-

efficients are of questionable value. Various techniques

such as wrap-around (implied periodicity of the sig-

nal), mirror symmetry or zero padding do not entirely

eliminate this problem, and results should be interpreted

accordingly. Periodicity is used throughout the exam-

ples below. The cone of influence is the envelope, for

some suitably low threshold (2% of maximum in this

case), of the wavelet coefficients ũ of a Dirac function

located at position t0 or tN−1. It is recommended that the

cone of influence of end-points be shown as a reminder

that the wavelet coefficients within the cone should be

used with caution.

Morlet Wavelet. The Morlet wavelet is complex-valued,

and consists of a Fourier wave train inside a Gaussian

envelope of width z0/π:

ψM,z0
(t) =

(
e2iπt − e− z2

0
2

)
e−2π2t2/z2

0 . (22.141)

The envelope factor z0 controls the number of oscilla-

tions in the wave packet; a value of z0 = 5 is generally

adopted, with the result shown on Fig. 22.24. The cor-

rection factor e−z2
0/2, making the wavelet admissible, is

very small for z0 ≥ 5 and often neglected. The Fourier

transform is

ψ̂M,z0
= z0

2
√

π
e− z2

0
2 (1+ω2)

(
e−z2

0ω −1
)
. (22.142)

There is apparently no closed-form expression of cψ , but

numerical integration presents no difficulty and yields

the values shown in Table 22.1.

Instead of the usual dilation factor a, we adopt its

inverse ω = 1/a, which is its own equivalent frequency.

For normalization, we adopt

ΨM(tω) = ω
√

cψ

ψM,z0
(tω) . (22.143)

Then, the three basic formulae are, for the transform

ũM =
∫

u(t′)Ψ ∗
M[(t − t′)ω]dt′ , (22.144)

for the energy of the signal

∫
dt

u2

2
= 1

2

∫∫
| ũM |2 dω

ω
dt , (22.145)

and for the inverse transform

u(t) =
∫∫

ΨM[(t − t′)ω]ũM(t′, ω)
dω

ω
dt . (22.146)

Figure 22.28 shows the norm and phase of the Morlet

transform of our signal.

Comparison and Interpretation. Similarities and dif-

ferences between Figs. 22.27 and 22.28 are equally

informative.

The cone of influence of the end-points is wider

for the Morlet wavelet: this is not surprising, since

the wavelet captures several oscillations at a given fre-

quency, whereas the Mexican-hat wavelet only covers

one-and-a-half periods. The better frequency resolution

of Morlet is counterbalanced by its broader temporal

resolution. The wavelet coefficients within the cone of

influence of the end-points are necessary for energy

conservation and signal reconstruction, but should not
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blindly be interpreted as physical events (although the

presence of oscillations at time t > 40 and of a maximum

at t = 47 are not in doubt in the example).

Local spectral intensity (as measured by the wavelet

coefficients) is concentrated in the same frequency band

around ω ≈ 0.3. In the time–frequency resolution trade-

off, the Morlet wavelet gives a much narrower frequency

spread for the dominant wave, whereas the Mexican-

hat wavelet identifies individual extrema of the signal

in time. In the Morlet case, one weak energetic band

at lower frequency is associated with the signal mod-

ulation, and at yet a lower frequency with end-effects

(wrap-around creates periodicity).

At times 42 to 50, and frequencies larger than 0.6,

we see a scattering of events that is due to the inter-

play of random number generation and the wavelet’s

reproducing kernel (see the next paragraph).

Interpretation: Reproducing Kernel. The mapping of

u(t) from the time axis to the wavelet half-plane (time

and scale) shows that the continuous wavelet repre-

sentation is redundant, which implies that the wavelet

coefficients are not independent of one another. The

various patterns observed in the wavelet coefficients re-

flect a combination of the features of the signal and

of the wavelet used for the analysis. Mathematically,

this is shown by substituting the expression for the in-

verse transform in the direct transform relation; simple

rearrangement yields

ũ(a, t) =
∫∫

K (a, t, a′, t′′)ũ(a′, t′′)da′ dt′′ ,

where the reproducing kernel K is

K = 1

cψ

√
aa′5/2

×

∫ [
ψ

(
t′ − t′′

a′

)
ψ∗
(

t − t′

a

)]
dt′ .

The reproducing kernel provides structure to the field of

wavelet coefficients through the integral equation above,

by which the wavelet coefficient at any point captures

information from its vicinity as weighted by K , itself

dependent on the wavelet shape.

Alternatively, it can be shown that, in the case of

the Mexican-hat wavelet, the structure of the field of

coefficients is such that

∂σ ũ2 = ∂2
tt ũ2 .

This is a compatibility condition for ũ(σ, t) to be the

Mexican-hat transform of a signal u(t). (Note that we
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Fig. 22.28a,b Norm (a) and phase (b) of the Morlet transform of

our signal. Also shown is the cone of influence of the end-points

plot σ ũ2, which obeys a related partial differential equa-

tion.) The compatibility equation for the Morlet wavelet

is much more complicated.

Thinking of the analyzing wavelet as a template for

features of the signal, the main difference between the

Morlet and Mexican-hat shapes is the local periodic-

ity of the former as opposed to the central minimum

(with two side maxima for admissibility) of the latter.

Large wavelet coefficients are associated with a good

match of shape at the right scale and location, but the

pattern recognition is far from perfect. The Mexican-hat

wavelet responds to any local maximum or minimum of

the signal, and will do so over a range of scales; the Mor-

let wavelet is better suited to respond to a sequence of

maxima and minima, of which the location is harder to

pinpoint but the frequency is more narrowly determined.

22.6.3 Orthogonal Wavelet Transform

Discrete Wavelets
It is possible to obtain a discrete set of quasi-orthogonal

wavelets by sampling the dilation and time axes a and b.

For the scale a we use a logarithmic discretization, i. e.,

a is replaced by a j = a
− j

0 where a0 is the sampling rate

of the log a axis [a0 = ∆(log a)] and where j ∈ � is the

scale index. The position b is discretized linearly, i. e.,

b is replaced by t ji = ib0a
− j

0 , where b0 is the sampling

rate of the position axis at the largest scale and where

i ∈ � is the position index. Note that the sampling rate
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1384 Part D Analysis and Post-Processing of Data

of the position varies with scale, i. e., for finer scales

(increasing j and hence decreasing a j ) the sampling

rate increases. Accordingly we obtain discrete wavelets

ψ ji (t) = 1
√

a j

ψ

(
t − t ji

a j

)
(22.147)

and the corresponding discrete decomposition formula

is

ũ ji = 〈ψ ji , u〉 =
∞∫

−∞

u(t)ψ∗
ji (t)dt (22.148)

with 〈u, v〉 =
∫ +∞
−∞ u(t)v∗(t)dt being the scalar product

in energy norm, i. e., for signals of finite energy such as

those encountered in fluid mechanics.

The discrete reconstruction formula is

u(t) = C

+∞∑

j=−∞

+∞∑

i=−∞
ũ jiψ ji (t)+ R(t) , (22.149)

where C is a constant and R(t) is a residual, both of

which depend on the choice of the wavelet and the sam-

pling of the scale and position axes. For the particular

choice a0 = 2 (which corresponds to a scale sampling

by octaves) and b0 = 1 we have the dyadic sampling,

for which there exist special wavelets ψ ji that form an

orthonormal basis, i. e.,

〈ψ ji , ψ j ′i ′〉 = δ jj ′δii ′ , (22.150)

where δ denotes the Kronecker symbol. This means that

the wavelets ψ ji are orthogonal with respect to their

translates by discrete steps 2− j i and their dilates by dis-

crete steps 2− j corresponding to octaves. In this case the

reconstruction formula is exact with C = 1 and R = 0,

but the discrete wavelet transform has lost the invariance

by translation and dilation of the continuous one.

Orthogonal Wavelets
The construction of orthogonal wavelet bases and

the associated fast numerical algorithms are based on

the mathematical concept of multiresolution analysis

(MRA). The underlying idea is to consider approxima-

tions u j of the signal u(t) at different scales j. The

amount of information needed to go from a coarse ap-

proximation u j to a higher-resolution approximation

u j+1 is then described using orthogonal wavelets. The

orthogonal wavelet analysis can thus be interpreted as

decomposing the signal into approximations of the sig-

nal at coarser and coarser scales (i. e., for decreasing j)

where the differences between the approximations are

encoded using wavelets.

The coarse-graining at a given scale is done by fil-

tering the signal with the scaling function φ. As a filter,

the scaling function φ does not have vanishing mean but

is normalized
∫∞
−∞ φ(t)dt = 1. We construct translated

and dilated versions of φ

φ ji (t) = 2 j/2φ(2 j t − i) . (22.151)

This basis φ ji is orthonormal at a given scale j with

respect to its translates by steps i/2 j

〈φ ji , φ ji ′〉 = δii ′ (22.152)

but not to its dilates, in contrast to wavelets. In general

there is no explicit expression for the scaling func-

tion. However, the scaling function satisfies a so-called

refinement equation:

φ j−1,i (t) =
+∞∑

n=−∞
hn−2iφ jn(t) (22.153)

with the coefficients hi = 〈φ ji , φ j−1,0〉. These coef-

ficients determine the scaling function completely.

Equation (22.153) implies that the approximation of

a coarser scale can be described by linear combina-

tions of the signal at finer scales, which corresponds

to a nestedness of the approximation space.

The associated wavelet ψ is a linear combination of

the scaling function φ,

ψ ji (t) =
+∞∑

n=−∞
gn−2iφ jn(t) (22.154)

with coefficients gn = 〈φ jn, ψ j−1,0〉. These filter coef-

ficients gn are computed from the filter coefficients hn

using the relation

gn = (−1)1−nh1−n . (22.155)

As in the continuous case, the wavelets have at least van-

ishing mean, and also possibly vanishing higher-order

moments, i. e.,

+∞∫

−∞

tmψ(t)dt = 0 for m = 0, . . . , M −1 .

(22.156)

Now we consider approximations of the signal u(t)

at two different scales j

u j (t) =
+∞∑

i=−∞
u jiφ ji (t) (22.157)
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and j −1

u j−1(t) =
+∞∑

i=−∞
u j−1,iφ j−1,iq(t) (22.158)

with the scaling coefficients

u ji = 〈u, φ ji〉 (22.159)

which correspond to local averages of the signal u at

position i2− j and at scale 2− j . The difference between

the two approximations is described by the wavelets

u j (t)−u j−1(t) =
+∞∑

i=−∞
ũ j−1,iψ j−1,i (t) (22.160)

with the wavelet coefficients

ũ ji = 〈u, ψ ji〉 , (22.161)

which correspond to local differences of the signal at po-

sition (2i +1)2−( j+1) between approximations at scales

2− j and 2−( j+1).

Iterating the two-scale decomposition (22.160), any

signal u(t) of finite energy can be expressed as a sum

of a coarse-scale approximation at a reference scale j0,

and their successive differences (the details needed to

go from one scale j to the next smaller scale j +1 for

j = j0, . . . , J −1),

u(t) =
+∞∑

i=−∞
u j0iφ j0i (t)+

J∑

j= j0

+∞∑

i=−∞
ũ jiψ ji (t) .

(22.162)

In numerical applications the sums in theis equa-

tion have to be truncated in both scale j and position i.

The truncation in scale corresponds to a limitation of u

to a given finest scale J , which is in practice imposed

by the available sampling rate. Due to the finite length

of the available data the sum over i becomes also fi-

nite. The decomposition (22.162) is orthogonal, as, by

construction,

〈ψ ji , ψlk〉 = δ jlδik , (22.163)

〈ψ ji , φlk〉 = 0 for j ≥ l (22.164)

in addition to (22.152).

Fast Wavelet Transform
Starting with a signal u given at the finest resolu-

tion 2−J , i. e., we know u J and hence the coefficients

u Ji for i ∈ � , the fast wavelet transform computes its

wavelet coefficients ũ ji by successively decomposing

each approximation u J into a coarser-scale approxima-

tion u J−1, plus their differences, encoded by the wavelet

coefficients. The algorithm uses a cascade of discrete

convolutions with the filters hn (low pass filter) and gn

(band pass), followed by down-sampling, i. e., we retain

one coefficient out of two.

• Initialization: given u ∈ L2(� ) and u Ji = u
(

i
2J

)
for

i ∈ � .

• Decomposition: for j = J to 1, step −1, do

u j−1,i =
∑

n∈�
hn−2iu jn (22.165)

ũ j−1,i =
∑

n∈�
gn−2iu jn . (22.166)

The inverse wavelet transform is based on succes-

sive reconstructions of a fine-scale approximation u j

from the coarser-scale approximation u j−1, plus the dif-

ferences between approximations at scale j −1 and the

smaller scale j that are encoded by ũ j−1,i . The algorithm

uses a cascade of discrete convolutions with the filters hn

and gn , plus up-sampling. The up-sampling is obtained

by adding zeros between two successive coefficients.

• Reconstruction: for j = 1 to J , step 1, do

u ji =
+∞∑

n=−∞
hi−2nu j−1,n +

+∞∑

n=−∞
gi−2n ũ j,n .

(22.167)
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Fig. 22.29a,b Orthogonal quintic spline wavelets ψ j,i (t) =
2 j/2ψ(2 j t − i) at different scales and positions: ψ5,6(t), ψ6,32(t)

ψ7,108(t) (a) and corresponding wavelet coefficients (b)
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1386 Part D Analysis and Post-Processing of Data

Examples of Orthogonal Wavelets
Orthogonal wavelets (constituting an MRA) are typi-

cally defined by their filter coefficients hn and for most

no explicit expression for ψ is available. In the following

we give filter coefficients of hn for typical orthogonal

wavelets. The filter coefficients of gn can be obtained

using the quadrature relation between the two filters

(22.155).
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Fig. 22.30 Orthogonal wavelets Coiflet 12. Top: scaling function

φ(t) (left) and |φ̂(ω)|. Bottom: wavelet ψ(t) (left) and |ψ̂(ω)|
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Fig. 22.31 Absolute value of the orthogonal wavelet transform of

our signal using Coiflet 12 wavelets

• Haar D1 (one vanishing moment):

h0 = 1√
2

,

h1 = 1√
2

.

• Daubechies D2 (two vanishing moments):

h0 = (1+
√

3)

4
√

2
= 0.482962913145 ,

h1 = (3+
√

3)

4
√

2
= 0.836516303736 ,

h2 = (3−
√

3)

4
√

2
= 0.224143868042 ,

h3 = (1−
√

3)

4
√

2
= −0.129409522551 .

• Coiflets: coefficients, too numerous to appear here,

are listed in other sources [22.98]; wavelets are

shown on Fig. 22.30.

As an example (Fig. 22.31), we develop the sig-

nal u(t), sampled on N = 2J points, as an orthonormal

wavelet series from the largest scale amax = 20 to the

smallest scale amin = 2−J :

u(t) =
J−1∑

j=0

2 j−1∑

i=0

ũ jiψ ji (t) . (22.168)

Comparing the orthogonal wavelet transform

(Fig. 22.31) with the continuous versions (Figs. 22.27

and 22.28) shows qualitative agreement in the distri-

bution of coefficients. The cone of influence depends

on the filter length L of g and h (22.153, 155). On

the finest scale L/2−1 coefficients on the left and on

the right maybe be influenced by boundary effects. At

larger scales, the number of influenced coefficients in-

creases accordingly (22.165, 166). Note that for the Haar

wavelet (L = 2), no boundary effects are present.

We note two other differences. First, the orthogo-

nal wavelet uses very few coefficients to describe the

large-scale features. For a signal of N points, the high-

est resolution (Nyquist) requires N/2 points, the next

highest N/4, and so forth, so that a total of N wavelet

coefficients for all scales are needed for an exact re-

construction. This contrasts with the N Ṁ continuous

wavelet coefficients, where M is the number of dis-

cretized frequencies for an approximate reconstruction.

Although the N · M number can be improved upon, this

justifies the use of orthogonal wavelets whenever the
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economy of representation is critical (numerical simula-

tion, data storage and transmission). Second, the subtle

variations in frequency in the signal are not readily di-

agnosed from the orthogonal transform, because of the

scale discretization into octaves.

22.6.4 Applications
in Experimental Fluid Mechanics

In this section we describe some diagnostics based on the

continuous and orthogonal wavelet transform. The diag-

nostics can be local (properties of single coefficients) or

collective (properties of groups of coefficients or statis-

tics based on them). While our purpose is to illustrate

the strengths of wavelet-based methods, we also caution

about some possible misuses. We will illustrate the ideas

on our artificial signal which contains, by construction,

a number of the observed features that might be difficult

to isolate with other techniques; and mention a few pub-

lished results from a rapidly evolving archival list. This

is about data interrogation: from the selection of the

wavelet to the processing algorithms, each subsection

should be read as an example of a question made possible

by wavelet analysis, and the corresponding quantitative

answer.

Energy Distribution
Energy Maps. The total energy of the signal, normalized

per unit time, is

E = 1

T

T∫

0

u2

2
dt . (22.169)

The Parseval relations for Fourier and wavelets (Mexi-

can hat, Morlet, and orthogonal take the subscripts ‘F’,

‘2’, ‘M’, and ‘s’, respectively) give the expressions

E = 1

T

∫
EF dω = 1

T

∫
E2 dω

= 1

T

∫
EM dω = 1

T

∑

i, j

Es(ω j , ti ) . (22.170)

On this basis, we can define the local scalogram (or

energy distribution in time and frequency), and, after

time integration/summation, the global scalogram (or

mean energy spectrum) as an alternative to the Fourier

spectrum.

We remark that, for mean spectra or for local spec-

tra, many distinct distributions of energy are possible,

adding to the same total energy. The interpretation of

the various options, and their relation to the Fourier

spectrum, are discussed in the following subsections.

Local Spectra. Since each scale 2− j of the wavelet ψ j

is inversely proportional to the mean wavenumber ω j =
ωψ2 j . The local wavelet spectrum is then defined as

Es(ω j , ti ) = |ũ ji |2
2 j

ω j

. (22.171)

By measuring Es(ω j , ti ) at different positions ti , one can

study how the energy spectrum depends on local flow

conditions and estimate the contribution to the over-

all Fourier energy spectrum of different components of

the flow. For example, one can determine the scaling

of the energy spectrum contributed by coherent struc-

tures, such as isolated vortices, and the scaling of the

energy spectrum contributed by the unorganized part

of the flow. The spatial variability of the local wavelet

spectrum Es(ω j , ti ) measures the flow’s intermittency

and lends itself to conditional sampling.

A comparison of the Mexican-hat and Morlet com-

pensated spectra is shown on Fig. 22.32.

It was verified that the integral adds up to the sig-

nal’s energy for each case. While the spatial and spectral

energies are similar in some respects, the details reflect

the properties of the corresponding wavelets. The most

obvious common feature is that most of the energy is

concentrated in a small region of the wavelet half-plane:

most wavelet coefficients contribute negligible energy

to the signal. This is the basis for wavelet compression

algorithms.

Mean Spectra. When one integrates the local wavelet

spectrum over time, one gets the global wavelet spec-
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Fig. 22.32a,b Compensated local spectra of our test signal with the

Mexican-hat (ωE2, (a)) and Morlet (ωEM , (b)) wavelets
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Fig. 22.33 Fourier (EF, solid line), and mean Mexican-hat (E2,

dotted line) and Morlet (EM, dashed line) mean power spectra

trum. The Fourier spectrum (Fig. 22.33) appears very

noisy, which is due to the brevity of our signal (512

points) combined with its various intermittent features.

The power spectrum E(ω) shows the dominant mid fre-

quencies; at high frequencies, we have a combination of

noise and corrections for nonsinusoidal low-frequency

content and for intermittent events.

The Morlet spectrum is a smoother alternative to the

Fourier spectrum, obtained by squaring the wavelet co-

efficients, and summing them at each frequency. The

dominant lower frequencies stand out, but the famil-

iar Fourier scatter is absent: this is a consequence of

the wavelet coefficients being band-pass-filtered Fourier

coefficients, with the spectrum of the wavelet as the fil-

ter shape. Depending on the application, such drastic

smoothing can be an advantage or a weakness of the

mean wavelet spectra compared to the Fourier spectra.

The wider spectrum of the Mexican-hat wavelet

leads to further smoothing, so much that the low-

frequency peaks are no longer distinct, but merge into

a broader clump. This illustrates the time–frequency res-

olution compromise associated with wavelet selection.

Relation to Fourier Spectrum. Although the wavelet

transform analyzes the flow into wavelets rather than

complex exponentials, it has been shown that the global

wavelet spectrum converges to the Fourier spectrum

provided that the analyzing wavelets have enough can-

cellations. More precisely the global wavelet spectrum

(with Ẽ standing for either EF, E2 or EM) is

Ẽ(ω) =
+∞∫

0

Ẽ(ω, t)dt (22.172)

gives the correct Fourier exponent for a power-law

Fourier energy spectrum EF(ω) ∝ ω−β if the analyzing

wavelet has at least m > (β −1)/2 vanishing moments.

Thus, the steeper the energy spectrum, the more van-

ishing moments the analyzing wavelet should have. The

inertial range in turbulence has a power-law behavior.

The ability to correctly characterize power-law energy

spectra is therefore an important property of the wavelet

transform (which is related to its ability to detect and

characterize singularities).

The global wavelet spectrum Ẽ(ω) is a smoothed

version of the Fourier spectrum EF(ω). This can be seen

from the following relation between the two spectra

Ẽ(ω) = 1

Cψωψ

+∞∫

0

E(ω′)|ψ̂
(

ωψω′

ω

)
|2 dω′

(22.173)

which shows that the global wavelet spectrum is an aver-

age of the Fourier spectrum weighted by the square of the

Fourier transform of the wavelet ψ shifted at wavenum-

ber ω. Note that the larger ω is, the larger the averaging

interval, because wavelets are bandpass filters with ∆ω
ω

constant. This property of the global wavelet spectrum

is particularly useful for turbulent flows. Indeed, the

Fourier spectrum of a single realization of a turbulent

flow is too oscillatory to clearly detect a slope, but this

is not an issue for the smoother global wavelet spectrum.

For instance, the real-valued Mexican-hat wavelet

has only two vanishing moments and thus can cor-

rectly measure energy spectrum exponents up to β < 5.

In the case of the complex-valued Morlet wavelet

(22.141), only the zeroth-order moment is zero, but the

higher m-th-order moments are very small (∝
ω2m+1

0 e(−ω2
0/2)) provided that ω0 is larger than 5.

Therefore the Morlet wavelet transform gives accurate

estimates of the power-law exponent of the energy spec-

trum at least for approximately β < 7 (if ω0 = 6). There

is also a family of wavelets with an infinite number of

cancellations

ψ̂k(ω) = αk exp

[
−1

2

(
ω2 + 1

ω2k

)]
, k ≥ 1 ,

(22.174)

where αk is chosen for normalization. These wavelets

can therefore correctly measure any power-law en-

ergy spectrum, and detect the difference between

a power-law energy spectrum and a Gaussian energy

spectrum E(ω) ∝ e−(ω/ωψ )2
. For instance in turbulence

this wavelet can identify the changing spectral slopes

around the Kolmogorov microscale and into the dissipa-

tive range of the spectrum.
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Ridges. In some applications, the signal may be pri-

marily oscillatory, but with modulation of the frequency

and amplitude. Extracting these oscillations and quanti-

fying the modulation can be done from the continuous

wavelet map. One algorithm consists of identifying the

ridges of the energy distributions, i. e., the coordinates

of the points in time at which the compensated energy

spectrum has a local spectral maximum. In Fig. 22.34,

we plot the ridge lines of the Mexican-hat and Mor-

let energy distributions. The Morlet wavelet is a better

template for localized oscillations, and emphasizes the

locally periodic structure of the signal. In contrast, al-

though local periodicity is visible on the Mexican-hat

energy map, the ridge lines do not capture the continuity

of wave trains. While remedies exist for this shortcom-

ing of the Mexican-hat wavelet, the Morlet wavelet is

a more natural tool for this application.

Even when the frequency modulation is very small,

the relevant physics can be detected through related

modulations in the amplitude and or phase disconti-

nuities along the ridge line. This technique has been

successfully used to unravel the interactions between

modes in shear layers.

Lines of Modulus Maxima. A skeleton of the continu-

ous wavelet transform can also be obtained by mapping

its modulus maxima at each frequency. In the case of

real-valued wavelets, these alternate with the lines of

zero crossing (sign change). The skeleton combines in-

formation about the signal and the wavelet (reproducing

kernel), as shown in Fig. 22.35. For a given signal, the

particulars of the skeleton are clearly wavelet depen-

dent, and should be interpreted with caution. However,

statistically the skeleton provides useful partitions of the

wavelet half-plane.

While modulus maxima and zero-crossing lines are

topologically equivalent, the values of the extrema on

the former contain more information. At any given

frequency, the wavelet transform can be approximated

between extrema by interpolating a smooth monotonic

function. Thus, the knowledge of the wavelet coeffi-

cients along the lines of modulus maxima is sufficient

to reconstruct the wavelet map, and thereby the signal.

In conjunction with thresholding of the wavelet coef-

ficients, this can be used for data compression and for

computing multifractal statistics.

Intermittent Fluctuations. One of the advantages of

the time–frequency representation is the ability to define

and compute error bars to supplement the mean spectra.

In intermittent cases, the (squared) wavelet coefficients
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Fig. 22.34a,b Ridge lines of the Mexican-hat (a) and Morlet trans-

forms (b), showing the frequency modulation of the energetic

contributions to the signal
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Fig. 22.35a,b Lines of modulus maxima for the Mexican-hat (a) and

Morlet (b) wavelets

show considerable variability in time, and a correspond-

ing standard deviation can be calculated at each scale.

The result, using additive rather than logarithmic depar-

tures from the mean, is shown in Fig. 22.36.

The error bars are taken as covering the mean, plus

or minus three standard deviations. The lower end of

the error bars corresponds to negative energies, and is

assimilated to zero; the profile of the top of the error
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Fig. 22.36 Mean Morlet and Mexican-hat mean power spectra (solid

lines), as in Fig. 22.33, and their error bar profile as dashed line

(Mexican hat) and dotted line (Morlet); also the local spectra at

t = 45: Mexican hat (circles) and Morlet (crosses)

bars is shown. It is seen that the error bars can be

larger than the mean by a factor of 3–4 at low fre-

quencies, and considerably more at high frequencies, for

our signal. A larger bracket around the mean spectrum

has been interpreted as an indicator of intermittency in

homogeneous turbulence.

The superposition of the local spectra (scaled per

unit duration of signal) is also informative. First, there

is considerable difference between the Morlet and

Mexican-hat local energies Fig. 22.32) – as was obvi-

ous from the wavelet maps (Figs. 22.28 and 22.27).

At ω ≈ 0.15, the local energies contribute to one of

the dominant peaks: the smallest dominant frequency

is represented at this time. The larger Morlet energy is

indicative of an oscillation at this frequency. In contrast,

at ω ≈ 0.045, the larger Mexican-hat energy content

captures the large, single bump better than Morlet.

At ω ≈ 3–4, the double peak of Morlet coefficients is

matched by a much larger single peak of the Mexican-

hat coefficients: this combines the random noise and the

reproducing kernel for this particular instant, and is very

different at nearby points.

Also noteworthy is that the Mexican-hat energies

around ω = 4 lie outside the three-standard-deviation

bracket. In general, this can be attributed to several pos-

sible causes. First, the difference in magnitude between

Morlet and Mexican-hat energies indicates that an in-

dividual event, rather than an oscillation, is present in

this vicinity; such an event could be a statistical out-

lier. Second, in this instance, the mean spectrum and the

standard deviation are ensemble statistics, underestimat-

ing the (intermittent) noise energy content per unit time.

This points to the need for conditional statistics.

Intermittency Measures. We now turn to intermittency,

which is defined as localized bursts of high-frequency

activity. This means that intermittency is a phenomenon

localized in both physical space and spectral space,

and thus a suitable basis for representing intermittency

should reflect this dual localization.

To measure intermittency we use the space-scale in-

formation contained in the wavelet coefficients to define

scale-dependent moments and moment ratios. Useful di-

agnostics to quantify the intermittency of a signal u(t)

are the moments of its wavelet coefficients at different

scales j,

Mp, j (u) = 2− j
2 j−1∑

i=0

|ũ ji |p . (22.175)

Note that E j = 2 j M2, j .

The sparsity of the wavelet coefficients at each scale

is a measure of intermittency, and it can be quantified

using ratios of moments at different scales,

Q p,q, j (u) = Mp, j (u)

[Mq, j (u)]p/q
. (22.176)

Classically, one chooses q = 2 to define typical statisti-

cal quantities as a function of scale. Recall that for p = 4

we obtain the scale-dependent flatness F j = Q4,2, j . It is

equal to 3 for Gaussian white noise at all scales j, which

proves that this signal is not intermittent. The scale-

dependent skewness, hyperflatness, and hyperskewness

are obtained for p = 3, 5 and 6, respectively. For inter-

mittent signals Q p,q, j increases with j.
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Fig. 22.37 Scale dependence of the skewness (solid line)

and flatness (dashed line)
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On Fig. 22.37, we show the frequency-dependent

skewness and kurtosis of our test data, calculated based

on the Mexican-hat coefficients. The skewness hovers

around zero, and the kurtosis around 3 at low frequen-

cies. The larger kurtosis values at higher frequencies

confirms the intermittency of the noise interspersed in

the data.

Various techniques have been used to separate outlier

events from a background signal. One can mention the

local intermittency measure (LIM) and large dissipative

events.

Higher Moments and Scaling
The idea in this group of applications is that any line

in the wavelet transform matrix can be treated as a time

trace (band-pass-filtered data) with statistics in its own

right. Auto- and cross-correlations can be found in the

literature. The spectral error bars described already are

another example.

Scaling describes the relation between moments of

a signal at various scales. In particular, anomalous scal-

ing relates to departures from Kolmogorov scaling for

high-order moments of turbulent fields. Because of their

intermittent and spectral content, wavelet coefficients

can be used effectively to study anomalous scaling. By

comparing results before and after filtering certain types

of events, it has been possible to associate anomalous

scaling with certain classes of events, such as coherent

structures or highly dissipative eddies.

Relation to Structure Functions. Since its introduction

to turbulence by Kolmogorov, the second-order struc-

ture function has been a frequently used diagnostic tool

for the study of a turbulent signal u(t). It is easy to

measure and, moreover, Kolmogorov’s theory of ho-

mogeneous and isotropic turbulent predicts its scaling

exponent, which explains its wide use. It is defined as

S2(τ) =
∞∫

−∞

[u(t + τ)−u(t)]2 dt . (22.177)

In this paragraph we link the scale-dependent moments

of the wavelet coefficients to the structure functions and

show that the global wavelet spectrum corresponds to

the second-order structure function. Furthermore, we

prove that the structure functions are blind to some

scaling exponents and propose a way to overcome this

limitation.

We first remark that the increments of a signal,

also called the modulus of continuity, can be seen as

its wavelet coefficients using the difference of Diracs

(DOD) wavelet

ψδ(t) = δ(t +1)− δ(t) . (22.178)

We thus obtain

u(t + τ)−u(t) = ũtτ =
〈
u, ψδ

tτ

〉
(22.179)

with ψδ
tτ (t) = 1/τ{δ[(t − t′)/τ +1]−δ[(t − t′)/τ]}. Note

that in this case the wavelet is normalized with 1/τ nor-

malization rather than 1/
√

(τ). The p-th-order structure

function Sp(l) therefore corresponds to the p-th-order

moment of the wavelet coefficients at scale τ ,

Sp(τ) =
∞∫

−∞

[u(t + τ)−u(t)]p dt =
∞∫

−∞

(ũtτ )p dt .

(22.180)

As the DOD wavelet has only one vanishing moment (its

mean), the exponent of the p-th-order structure function

in the case of a self-similar behavior is limited by p,

i. e., if Sp(τ) ∝ τζ(p) then ζ (p) < p. To be able to detect

larger exponents one has to use increments with a larger

stencil, or wavelets with more vanishing moments, i. e.,∫
tmψ(t)dt = 0 for m = 0, 1, . . . , M −1.

We now concentrate on the case p = 2, i. e., the

energy norm. Equation (22.172) gives the relation be-

tween the global wavelet spectrum Ẽ(ω) and the Fourier

spectrum E(ω) for an arbitrary wavelet ψ. For the DOD

wavelet we find, since ψ̂δ(ω) = eιω −1 = eιω/2(eιω/2 −
e−ιω/2) and hence |ψ̂δ(ω)|2 = 2(1− cos ω), that

Ẽ(ω) = 1

Cψω

∞∫

0

E(ω′)

[
2−2 cos

(
ωψω′

ω

)]
dω′ .

(22.181)

Setting τ = ωψ/ω and comparing with (22.177) we see

that the wavelet spectrum corresponds to the second-

order structure function, i. e.,

Es(ω) = 1

Cψω
S2(τ) . (22.182)

These results show that, if the Fourier spectrum behaves

like ω−α for ω → ∞, Ẽ(ω) ∝ ω−α if α < 2M +1, where

M is the number of vanishing moments of the wavelets.

Consequently, we find for S2(τ) that S2(τ) ∝ τζ(p) =(ωψ

ω

)ζ(p)
for τ → 0 if ζ (2) ≤ 2M. In the present case we

have M = 1, i. e., the second-order structure function

can only detect slopes smaller than 2, corresponding to

an energy spectrum with slopes shallower than −3. Thus

we find that the usual structure function gives spurious

results for sufficiently smooth signals.
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1392 Part D Analysis and Post-Processing of Data

Wavelet-based calculation of structure functions and

their statistics (including anomalous scaling, above) has

been documented.

Nonlinear Filtering
Nonlinear filtering is the common approach to denois-

ing, data compression, coherent structure eduction, and

associated conditional statistics. It consists in separat-

ing from a wavelet map any event meeting a physically
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Fig. 22.38 The dominant oscillations (dashed line), its lo-

cal frequency (solid line) and its phase (dotted line). The

phase in (−π, π) is divided by 10 for plotting convenience
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Fig. 22.39 The signal obtained by subtracting the dominant os-

cillations (Fig. 22.38) from the original signal (Fig. 22.26) and its

Mexican-hat wavelet transform

relevant criterion, and reconstructing a filtered signal

suitable for further processing. The quality of the re-

sults depends on the choices of wavelet and of event

definition. In Fourier filtering, the presence of a spectral

gap is highly desirable. In the wavelet representation,

objective criteria for separating flow events need the

same careful formulation. Different events, with differ-

ent spectral and temporal signatures, might be captured

with different wavelets; but a wavelet coefficient is not

a flow structure, in the usual sense, unless the experi-

mental definition of the event is reflected in the filtering

algorithm.

Whether based on local intermittency measures, on

being surrounded by a temporal–spectral gap, or related

energy-based criteria, some thresholding is usually in-

volved in the filtering scheme, and threshold sensitivity

needs to be documented. One notable exception, which

has been used for coherent structure eduction, is the

mathematically proven optimality of some wavelets to

separate a coherent signal from Gaussian noise, without

adjustable thresholding parameters. This has been used

effectively in two- (2-D) and three-dimensional (3-D)

turbulence.

Modulated Oscillations. For our signal, the mean spec-

tra do not indicate a unique dominant periodicity, but

several weak mid-frequency peaks can be identified.

The Morlet wavelet, a template for local periodicity

(over a time frame of only a few periods), enables us

not only to extract the modulation, but also to quantify

the frequency shifts already visible on Fig. 22.34. The

algorithm consists of

1. searching, at each time, for the peak energy within

range of scales (excluding the noisy high frequency

band, for example)

2. recording the frequency and phase of the wavelet

coefficients

3. canceling the wavelet coefficients outside this domi-

nant mode (a spectral bracket of ±10% of peak local

frequency has been retained here)

4. performing the inverse wavelet transform of the

remaining coefficients to obtain a filtered signal. The

result is shown on Fig. 22.38.

Comparing with Fig. 22.26, we observe that the

clean part of the signal, between times 15 and 40, is

extracted together with amplitude corrections caused

by the isolated events of matching scale. The domi-

nant frequency is seen to vary slightly, matching one

of the ridge lines on Fig. 22.34, and increasing slightly

towards both ends of the plot. Thus, depending on
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the context, this oscillation could indicate a physi-

cal event. In contrast, in the first third of the signal,

the ridge lines are broken, and we also see phase

dislocations and erratic amplitude in Fig. 22.38. This

happens because of interference from the oscillations

at nearby frequencies, and from end-effects, so no car-

rier wave can be isolated unambiguously in this region.

Additional physical insight, different wavelets and/or

more-elaborate algorithms might modify this cautious

conclusion.

Noteworthy is the relatively complex nature of the

filter, made possible by the time–frequency representa-

tion. Furthermore, the small frequency shifts are easily

observed, a trademark of continuous (Morlet in partic-

ular) wavelet transforms; for actual anemometric and

acoustic traces, they have been associated, e.g., with

subtle shear layer resonances. Finally, the phase of this

nonperiodic signal is clearly defined away from disloca-

tions, and can be correlated with other features. Similar

ideas have been used in relation to vortex shedding and

atmospheric oscillations.

Selective Filtering. Complementing the above view-

point, the wavelet coefficients excluding the modulated

oscillation can be retained, and the inverse Morlet trans-

form removes the oscillation from the signal. A similar

procedure has been carried out to characterize back-

ground turbulence as distinct from coherent structures.

The result is shown on Fig. 22.39. The higher-frequency

wave packet, the isolated bumps, and the noise are left

intact, and only the faintest trace of the main oscilla-

tion is observed in the filtered signal. The difference

on the time trace is not huge (weaker low frequencies

between times t = 15 and 35, and the weaker bump at

t = 6, are the more visible differences), but is quite clear

on the Mexican-hat wavelet transform compared with

Fig. 22.27.

This filtered signal can be treated as any signal,

and its Mexican-hat wavelet transform is also shown

on Fig. 22.39. The isolated events, notably the disconti-

nuity at t = 34, stand out. Several points are illustrated

in this context.

1. The selective removal of groups of wavelet coef-

ficients meeting specific criteria designed by the

analyst amounts to local surgery on the signal.

2. Because of their different shapes, the Morlet and

Mexican-hat wavelets emphasize different features

(local periodicity and isolated extrema, respec-

tively). Other wavelets can be used, e.g., for edge

detection.

3. Physical events (e.g., the discontinuity at time

t = 34) can be multiscale events, extending spec-

trally over several orders of magnitudes; conversely,

events of similar shape, location and/or scale (as

were seeded in our signal on Fig. 22.26) may not

have distinct wavelet signatures. Spectrally or tem-

porally overlapping groups of coefficients should

not be interpreted as indicative of distinct physi-

cal objects without corroborating additional insight

specific to the signal at hand.

Several filtering variants can extract coherent struc-

tures. In addition to the denoising approach mentioned

above, several wavelet-based eduction schemes have

been used successfully. One example is shown in

Fig. 22.40 [22.99], for the decomposition of the vector

field in a mixing layer into coherent eddies and un-

structured turbulence. In this case, both coherent and

unstructured fields carried a significant fraction of the

turbulent energy and of the turbulent stresses.

Conditional Spectra. Statistics such as energy or kurto-

sis provide a global summary of the data. Conditional

statistics do the same for any subset of the data that meets

user-defined criteria. This approach has been used in the

case of unsteady flows encountered in turbomachinery,

where periodic wake passing affects the boundary-layer

development and transition and the relevant turbulent

time scales. Similar steps are taken here with our test

Fig. 22.40 A velocity field in a turbulent mixing layer (top), and its

decomposition into intermittent coherent (middle) and unstructured

fluctuations (bottom) (after [22.99])
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Fig. 22.41 Conditional power spectra over the first 15 units of test

data, separating the contributions from data with the phase of the

modulated oscillation between −π/5 and π/5 (‘part 1’), and the

other phases (‘part 2’). Mexican hat spectrum of part 1 (dashed line)

and part 2 (solid line); Morlet spectrum of part 1 (dash-dot line) and

part 2 (dotted line)
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Fig. 22.42 Dominant time scales of unsteady turbulence triggered

in the boundary layer over a curved plate by periodic wakes; s/s0

is the dimensionless chord coordinate; time is nondimensionalized

with the wake-passing half-period (after [22.100])

data. We restrict the computation of mean spectra to the

filtered signal (Fig. 22.39) subject to the condition that

the phase of the modulated oscillations over the first 15 s

of data is between −π/5 and π/5 (Fig. 22.38), called

part 1; other phases in the same time span contributed

to part 2. For comparison, all spectra are normalized to

a unit time of their respective samples. A statistical quan-

tity of interest might be the dominant time scale (peak

of compensated spectrum) associated with the condition.

Note that the (phase-related) condition and the (energy-

related) statistic can be obtained with different wavelet

transforms.

The result is shown in Fig. 22.41. As far as deter-

mining the dominant frequencies of part 1 of the signal,

the Mexican-hat and Morlet spectra agree both for the

low-frequency and noisy contributions, separated by

a spectral gap. For part 2 of the signal, they also concur

that there is no noise. This might serve as an indication

that noise is triggered in some way by the modulated

oscillation, or that they have a common driving mech-

anism. However, one should be careful that conditional

statistics imply the use of an indicator function (value 1

when the conditioning criterion is met, 0 otherwise),

which introduces a cone of influence for each transi-

tion. Therefore, quantitative spectral statistics would be

accurate only at frequencies higher than the dominant

frequencies of the indicator function.

These ideas have been implemented in the study of

unsteady boundary-layer transition (Fig. 22.42) [22.100].

The wakes of guide vanes are experienced as nearly

periodic disturbances traveling along the rotor blade sur-

faces, triggering transition. The characterization of three

types of turbulence (between wakes, in wakes, and in the

boundary layer) evolving along the blade surface, could

lead to better models of these complex flows.

Further Applications
Some general applications of wavelets overlap partially

with fluid dynamics, and can be mentioned briefly.

Multidimensional Wavelets. Beyond time series,

experimental and numerical data fields can be mul-

tidimensional, in space (e.g., PIV data) or space and

time. Multidimensional wavelet analysis has been used

in this context, and examples were presented above.

Distinct transforms are normally executed in space and

time; for 2-D or 3-D fields, multidimensional wavelets

have been used successfully. They can be constructed

as tensor products of one-dimensional wavelets, or as

derivatives of multidimensional (sometimes anisotropic)

filters. They have been successfully applied to the study

of scaling in isotropic turbulence, of anisotropy in tur-

bulent shear flows, to the eduction of coherent structures

in 2-D and 3-D numerical data, among others. Generally

speaking, many tools developed in the image processing

literature are potentially relevant.

Denoising. Denoising has been used to separate unstruc-

tured turbulence (the noise) from the coherent structures.

In this context, noise is not necessarily a loss in signal
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quality due to extraneous random interference. Depend-

ing on the context, the noise may be undesirable or

physically relevant: what matters here is that the two

contributions to the signal have different wavelet signa-

tures, either locally (e.g., the magnitude of the wavelet

coefficients) or statistically (e.g., Gaussian energy distri-

bution). Denoising is one particular instance of nonlinear

filtering.

Denoising and two-dimensional fields are combined

in Fig. 22.43. PIV data in the near wake of a circular

disk normal to the uniform flow were obtained in an ax-

ial plane, and the tangential vorticity was calculated by

finite difference. The combination of experimental and

numerical noise can be alleviated by denoising. The or-

thogonal wavelet denoising scheme [22.98] has been

adapted to the Mexican-hat wavelet, resulting in the

vorticity distribution shown on Fig. 22.43.

Data Compression. Most of the energy of the sig-

nal is concentrated in a relatively small number

of wavelet coefficients, as seen on Fig. 22.32. Inde-

pendently of the context-dependent interpretation of

energetic events as coherent structures, as in POD

(Sect. 22.5), the remaining weak fluctuations may be

ignored or modeled to yield a lower-dimensional sys-

tem. Further economy of representation is achieved

by keeping only modulus-maxima lines (the skeleton,

without the surrounding flesh). Because of the com-

mercial impact for data storage and transmission, this

subfield has evolved very rapidly. Dynamical system

modeling based on modulus maxima may be achiev-

able.

Detection of Transitions. Transitions come in various

guises, and several options should be considered. The

asymmetric first derivative of a Gaussian (related to the

Mexican hat, which is the second derivative) has been

used for edge detection; in nearly periodic signals, phase

dislocations (Morlet) have also been used successfully.

The image-processing literature is too extensive to cite.

Fig. 22.43 Contour lines of instantaneous tangential vorticity in an

axial section of the wake behind a circular disk, calculated from

PIV data. Right: raw data; left: after continuous wavelet denoising;

the same contour levels are used for both plots (data courtesy of

H. Higuchi and R. P. Bigger)

Resolution of Singularities, Fractal Signals. The abil-

ity of wavelets to zoom into ever-smaller domains of the

signal can also be used to characterize singularities. It

has been shown that the scaling exponent of the wavelet

coefficients is related to the strength of the singularity.

Additional Remarks. Nonuniform sampling intervals

in time series complicate the use of fast algorithms for

wavelet transforms. As for Fourier processing, methods

such as interpolation and resampling can be used.

As a pattern-recognition technique, the use of a sin-

gle wavelet shape and simple algorithms is usually not

satisfactory, because the value of the wavelet coefficients

is determined not only by the shape, but also the ampli-

tude of fluctuations. Some successful applications are

emerging in the flow control area. While wavelets are

usually too simple to serve as pattern-recognition tools,

a collection of wavelet-based diagnostics can decrease

the number of false-positive matches. Neural nets have

been used to process multiple wavelet-based criteria,

and applications to fluid mechanics appear likely in the

future.
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