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Abstract

Fisheries science is concerned with the management and understanding of the raising
and harvesting of fish. Fish stocks are assessed using biological and fisheries data
with the goal of estimating either their total population or biomass. Stock assessment
models also make it possible to predict how stocks will respond to varying levels of
fishing pressure in the future. Such tools are essential with overfishing now reducing
stocks and employment worldwide, with in turn many serious social, economic and
environmental implications. Increasingly, a state-space framework is being used in
place of deterministic and standard parametric stock assessment models. These efforts
have not only had considerable impact on fisheries management but have advanced the
supporting statistical theory and inference tools as well as the required software. An
application of such techniques to the North Sea cod stock highlights what should be
considered best practices for science-based fisheries management.

Keywords: fish stock assessment; population dynamics; random effects prediction; state-space as-

sessment model

1 Introduction

The Food and Agriculture Organization of the United Nations (FAO) describes a fishery as a
unit determined by an authority (or other entity) that is engaged in raising and/or harvesting
fish. These fish are often grouped into stocks as defined by the species or type of fish, geo-
graphic area, method of fishing and people involved. Fisheries science is concerned with the
management and understanding of fisheries and is multidisciplinary: biology, conservation,
ecology, economics, limnology, management, oceanography and statistics all play important
roles.

Fisheries scientists collect biological and fisheries data in order to perform stock assess-
ments (typically annually) that provide fisheries managers with information required to reg-
ulate fish stocks. Biological data describing the stock include the age structure, age at
first spawning, fecundity, ratio of males to females, natural mortality (M), fish growth rate,
spawning behavior, critical habitats, migratory habits and food preferences. Fisheries data
often include the type of fishery (e.g. commercial versus recreational), gear type (longline,
rod and reel, nets, etc.), pounds of fish caught, fishing effort and the time and geographic
location of the best catches. Stock assessment models combine both biological and fish-
eries data to estimate either the total population or total biomass of the stock. These models
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make it possible to assess the current status and condition of the stock as well as predict
how stocks will respond to varying levels of fishing pressure in the future. The rationale is
that if one can reliably estimate the biomass of the stock and understand its biology then
one can estimate how many fish can be safely removed from the stock in order to ensure a
sustainable resource.

Overfishing, including the taking of fish beyond sustainable levels, is a global problem
that is reducing fish stocks and employment, with many serious social, economic and envi-
ronmental implications. The goal of fisheries management is to reduce the level of overfishing
that occurs and restore stocks that have been overfished. Costello et al. (2016) report that
the general state of global fish stocks is poor and declining. Of 4,714 fisheries assessed in
the year 2012, only 32% remained at or above the biomass target that supports maximum
sustainable yield, the rest have slipped below that critical threshold. Meanwhile, among
the major stocks the FAO estimates that 29% currently are overexploited or depleted (Food
and Agriculture Organization of the United Nations, 2014). A 2014 report by the Prince of
Wales’s International Sustainability Unit and the New York-based Environmental Defense
Fund (Holmes et al., 2014) estimated that while global fisheries were adding $270 billion a
year to global gross domestic product, the full implementation of sustainable fishing could
increase this figure by an estimated $50 billion.

Stock assessment models are required for prediction purposes, to integrate a variety of
data sources, and to provide the best advice possible. Stationary, single-stock models have
long been viewed as overly simplistic (Larkin, 1977) and there has been increasing emphasis
on ecosystem-based management (e.g. Link et al., 2011). Amongst other factors, multi-
species and ecosystem interactions, as well as temporal and spatial variation, are often found
to be important. Assumptions of stationarity are highly questionable in light of impacts of
greenhouse gas emissions and other anthropogenic forcing factors. Furthermore, all models
are only approximations of reality and fisheries data are often noisy such that one should
consider stochasticity (i.e. an error term) not only when describing the dynamics of a fish
stock or ecosystem but also in linking such dynamics to actual observed data. Doing so
can provide more realistic predictions of the impacts of future management actions. In fact,
models that allow for both process error in the population dynamics and observation error
in the data used to estimate model parameters are increasingly used in fisheries science.
Such models are generally referred to as state-space models (SSMs), since they combine
stochastic assumptions about both observed quantities and unobserved states driving a dy-
namic system under study (such as a fish stock), and are considered by many to be the best
practice for fish stock assessment (e.g. Aanes et al., 2007; Gudmundsson and Gunnlaugsson,
2012) and more generally for ecological modelling (e.g. Buckland et al., 2007; Minto et al.,
2013; Pedersen et al., 2011).

In Section 2 we review how fisheries scientists have so far developed tools for stock as-
sessment in order to fully utilize the SSM framework. These efforts have had considerable
impact not only on fisheries management but also on general SSM theory and inference tools
as is evidenced in Section 3. In Section 4, particular attention is paid to fisheries science
requirements, including the prediction of nonlinear functions of fixed and random effects as
well as supporting software. In Section 5 we provide a real data example highlighting what
we consider to be best practices for science-based fisheries management. We conclude with
a discussion of the current challenges facing fisheries science globally.
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2 Evolution of Stock Assessment Models

Basic fisheries research began in North America and Northern Europe in the 1850s motivated
by beliefs that fisheries resources had significantly declined (Royce, 1988). At the time
fisheries were vital for providing food and employment much like they still are today in many
developing countries. The United States Commission on Fish and Fisheries was created in
1871. The International Council for the Exploration of the Sea (ICES; www.ices.dk) was
formed in Europe and in 1901 it endorsed scientific inquiry. The Biological Board of Canada
was established in 1912.

Fedor Baranov is considered by many to have laid the foundation for quantitative fisheries
science with his Baranov catch equation (Baranov, 1918):

C =
F

F +M
(1− e−(F+M)T )N0. (1)

The catch equation describes the situation where an initial cohort of N0 fish is subject to
two constant mortality rates: fishing mortality F and natural mortality M (all causes except
fishing). The surviving cohort size will develop over time according to dN

dt
= −(F + M)N ,

which means that at time T the surviving size of the population is e−(F+M)TN0 and the dead
population size is (1− e−(F+M)T )N0. The resulting catch C is the fraction F

F+M
of the dead

population, which died from fishing mortality.
Derzhavin (1922) applied the Baranov catch equation (1) to catch-at-age data in order

to assess population size while assuming negligible mortality from sources other than fishing.
A similar method was used in Fry (1949), where a “virtual population” was introduced to
represent the initial population size (assumed to be at least as big as what was later caught).
Notice that this concept of a virtual population size is reminiscent of state-space terminology,
as it refers to an unobserved random variable.

Beverton (1954) and Beverton and Holt (1957) partitioned the fishing mortality into
(yearly) fishing effort and fishing selectivity for the different age groups. The latter is referred
to as the separability assumption (Doubleday, 1976), where the age- and year-specific fishing
mortality Fa,t is expressed as the products of a yearly component ft and an age specific
component Sa, as Fa,t = ftSa.

In Murphy (1965) and Gulland (1965) an iterative approach was used to solve the non-
linear equations describing the fish population dynamics. At the time the iterative solver
required considerable manual effort, so the methods became more tractable when Pope (1972)
presented a simple analytic approximation for solving systems of non-linear equations.

The early algorithms were deterministic, as the catches (at age) were simply subtracted as
known values, step-by-step within each cohort. This yielded flexible estimates that matched
the data. However these deterministic methods did not provide any measure of uncertainty,
or a consistent way of predicting stock sizes in future years (known as forecasts).

A standard parametric statistical model (without random effects) must be formulated
with fewer model parameters than observations in order to be identifiable. The deterministic
iterative procedures had one Fa,t and one Na,t “parameter” for each catch observation. To
cast the fish stock assessment problem into a standard parametric statistical framework it was
necessary to reduce the number of parameters. Incorporating a separability assumption led to
many different parametric statistical assessment models (e.g. Fournier and Archibald, 1982;
Lewy, 1988; Paloheimo, 1980; Pope and Shepherd, 1982). These models used deterministic
population dynamics equations with all stochasticity attributed to observation error.

The separability assumption was easy to work with and reduced estimation to a stan-
dard minimization problem with a clear convergence criterion. It also made the standard
toolbox for statistical inference and model validation available. The down side was that the
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assumption was not always valid. The fishing gear could evolve as could regulative measures
(e.g. mesh size) and spatial fish availability. These in turn could change the relative selection
pattern of the fishery. Within the parametric statistical model framework this was dealt
with by dividing the time period into time blocks of constant separability (e.g. Methot and
Wetzel, 2013), using splines to obtain a more flexible selection (e.g. Aarts and Poos, 2009;
Butterworth, Ianelli, and Hilborn, 2003; Jardim et al., 2015) while keeping the number of
parameters low, or allowing penalized deviances with fixed penalties (e.g. Methot and Wetzel,
2013).

The penalized deviance approach assumes a parametric structure for fishing mortalities
(e.g. separability), but extends the structure by allowing the fishing mortalities to deviate
according to extra parameters (e.g. Fa,t = ftSae

δa,t). The deviance parameters δa,t are then
penalized (e.g. by assuming that δa,t ∼ N (0, σ2

δ )). The key is that the penalty parameter
(here σ2

δ ) is fixed and entirely subjective. Similar subjectivity is applied to the degree of
smoothness in the spline approaches.

SSMs for stock assessment were introduced by Sullivan (1992) and Gudmundsson (1994).
State-space assessment models (SSAMs) are based on the same basic equations as earlier
stock assessment models, but incorporate the idea of dynamic unobserved states. Their main
advantage is that they avoid subjectivity with respect to time-varying selectivity (e.g. choice
of time blocking, choice of spline smoothing degree, or choice of deviance penalties). SSAMs
further partition the stochasticity into process error and observation error, which is particular
useful for fishery management, as an important part of the managing process is to predict
the stock size for future years.

Recently, SSAMs have received renewed attention (e.g. Brinch, Eikeset, and Stenseth,
2011; Cadigan, 2015; Nielsen and Berg, 2014), because new software (Fournier et al., 2012;
Kristensen et al., 2016) has made it possible to use the Laplace approximation to implement
and estimate these models efficiently. In fact these recent implementations have finally made
SSAMs fully operational and they are now routinely used to manage important fish stocks
around the world.

3 State-Space Framework

The origins of the SSM and related hidden Markov model can be traced back to the works
of Kalman (1960) and Kalman and Bucy (1961). Motivated by engineering applications,
the focus was mainly on “online” computations where live stream data required efficient
implementation of recursive predictions and updates. In this section, we formally define
SSMs in a general setting, but deliberately restrict ourselves to “offline” estimation and
prediction as most applications in fisheries science posit the full data to be available at once.
We defer to Künsch and Fearnhead (this issue) for a detailed discussion about the online
methods of filtering and smoothing.

3.1 Observation and process equations

A SSM is defined by two stochastic processesX t and Y t, with the index t = 1, 2, . . . denoting
distinct time steps. The q-dimensional X t process is often referred to as the unobserved
state sequence since it represents dynamic features of the system under study (such as a fish
stock) which are not directly observed. Closely related concepts include latent variables (e.g.
Jöreskog, 1969) and random effects (e.g. McCulloch and Searle, 2000). X t takes values in a
state space X which we will consider uncountable, i.e. X ⊆ Rq, since in fisheries applications
X t typically involves the fish stock biomass, its abundance and the fishing mortality rate
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F . Note that by considering F as unobserved (random) states, its original deterministic
connection to the observed catch C in Equation (1) does not hold anymore; F now realistically
relates to the unobserved probability of a fish getting caught, whereas C represents the actual
observed catch with potential error and misreporting. We will not cover the “discrete”
case where X is countable, commonly referred to as a hidden Markov model and generally
studied separately (see MacDonald and Zucchini, 1997). The r-dimensional Y t process is
directly observed and plays the role of a (vector) response variable. We will assume that
the observation space Y ⊆ Rr since in fisheries applications Y t often includes the reported
total commercial catch and survey indices corresponding to a standardized fishing effort. In
addition to Y t and X t, other variables may be observed; they usually play the role of fixed
covariates and thus will be omitted in our notation.

Let the subscript i : j denote the inclusive range of indices between i and j, so that
X1:t = (X1,X2, . . . ,X t), with the convention that X t:t = X t. The SSM relies on two
main structural assumptions. The first assumption is that X t is a Markov process of a given
finite order k > 0. This means that the conditional distribution of X t|X(t−1):1 equals that
of X t|X(t−1):(t−k). Hereafter, we set k = 1 for simplicity of notation. The second main
assumption is that the observations are conditionally independent: Y t|X1:∞ is independent
of Y s|X1:∞, for t 6= s. This implies that any (marginal) dependence between the responses
is entirely due to the unobserved states.

The SSM is a hierarchical model, and it can thus be conveniently represented by a set
of equations, each representing a different level of hierarchy. The top level is represented
by an observation equation (also known as a measurement equation) that links the
response to the unobserved states. The second level is represented by a process equation
that specifies the underlying dynamics of the states. Deeper levels of hierarchy can be
added, such as prior distributions of model parameters if the SSM is to be cast in a Bayesian
framework; we discuss this further in Section 3.4. If the observation and process equations
characterize conditional expectations, as is most often the case in fisheries applications, the
SSM can then be written as:

E[Y t|X t] = g(X t,θ), (2)

E[X t|X t−1] = h(X t−1,θ), (3)

for functions g and h satisfying some regularity conditions, t = 1, 2, . . . with the initial states
X0 to be estimated (or predicted, see below), and where θ ∈ Θ ⊆ Rp is the vector of all
unknown model parameters. These parameters are sometimes called fixed, to contrast them
with X t seen as a random effect; in the same mixed effects terminology, θ is said to be
estimated while X t is to be predicted.

3.2 The joint likelihood

The system of Equations (2)–(3) only specifies some deterministic features of the system
(in terms of conditional expectations), while the whole model includes stochasticity as well.
Hence, the SSM is better represented by the (conditional) distribution at each level:

Y t|X t ∼ Pθ(yt|xt) with density pθ(yt|xt),
X t|X t−1 ∼ Pθ(xt|xt−1) with density pθ(xt|xt−1),

where, by a slight abuse of notation, we respectively use P and p to denote any distribution
and probability density function, with the arguments lifting any ambiguity. A notable special
case is the linear Gaussian SSM, going back to Kalman (1960), in which both functions g and
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h, respectively in (2) and (3), are linear and both Pθ(yt|xt) and Pθ(xt|xt−1) are Gaussian
distributions with covariance matrices depending only on elements of θ.

For a sample y1:T of size T , the two main assumptions allow us to write the joint den-
sity function of Y 1:T and X0:T , also known as the joint likelihood or the complete data
likelihood, as:

Ljoint(θ,y1:T ,x0:T ) = pθ(x0)
T∏
t=1

pθ(yt|xt)pθ(xt|xt−1). (4)

The joint likelihood is the main starting point for estimation, inference and prediction as
it gives a comprehensive picture of the SSM. However it is not practical on its own, since
the states sequence X0:T is unobserved. This motivates the construction of other objective
functions; in the next two subsections, we present the two most popular alternatives in the
fisheries science literature, namely the marginal likelihood as used in a frequentist approach
and the posterior density in a Bayesian approach.

3.3 Frequentist approach and the marginal likelihood

In a frequentist approach, that is, considering θ as a fixed unknown parameter at the popu-
lation level, the marginal likelihood is defined as

Lmarginal(θ,y1:T ) =

∫
Ljoint(θ,y1:T ,x0:T ) dx1:T , (5)

where the unobserved states have been integrated out, leaving a function depending only on
the observed y1:T and the unknown parameter θ. The maximum likelihood estimator (MLE)
for θ is then defined as

θ̂ML = arg max
θ∈Θ

logLmarginal(θ,y1:T ).

Its consistency has been recently demonstrated to hold in a general setting by Douc et
al. (2011); however, to the best of our knowledge, its asymptotic normality has only been
formally proved in the “discrete” case of the hidden Markov model (Bickel, Ritov, and Ryden,
1998) and for SSMs with Gaussian observation and process distributions.

The evaluation (and maximization) of Lmarginal(θ,y1:T ) requires the computation of the
integral in (5), whose dimension increases with the sample size T . Apart from the linear
Gaussian case, where the well-known Kalman filter (Harvey, 1989; Kalman, 1960) gives a
recursive formula for evaluating the marginal likelihood, this high-dimensional integral needs
to be approximated, yielding approximated MLEs; see Section 3.5.

As a second step, the prediction of the unobserved states is typically done by maximizing
the joint log-likelihood (4), given a consistent estimate for θ such as the MLE:

x̂1:T,ML = arg max
x1:T∈XT

logLjoint(θ̂ML,y1:T ,x1:T ), (6)

where x0 is estimated and thus part of θ̂ML. This maximization is performed as if x1:T was
an ordinary parameter and Ljoint(θ,y1:T ,x1:T ) was an ordinary likelihood with a known θ;
this is related to the hierarchical (h-)likelihood of Lee and Nelder (1996) and is analogous
to the pseudo maximum likelihood estimation of Gong and Samaniego (1981). Although
θ̂ML appears to be “plugged-in”, its estimation variability can be taken into account in the
prediction of the unobserved states: Thorson and Kristensen (2016) propose a first-order
bias correction for the prediction of non-linear functions of random effects. This correction,
based on the Laplace approximation of the moment generating function suggested by Tierney,
Kass, and Kadane (1989), is particularly useful in fisheries management since harvest control
strategies often require quantities derived as non-linear functions of fixed and random effects.
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3.4 Bayesian approach and the posterior density function

The Bayesian paradigm posits that θ is itself a random variable, with its distribution rep-
resenting uncertainty independent of the sampling variability inherent to data. Any a priori
knowledge about θ (i.e. before collecting data) is represented by the prior distribution
π(θ) specified by the data analyst. As data are collected, new information becomes available
through the joint likelihood Ljoint(θ,y1:T ,x0:T ), and the posterior density

p(θ,x0:T |y1:T ) =
Ljoint(θ,y1:T ,x0:T )π(θ)∫ ∫

Ljoint(θ,y1:T ,x0:T )π(θ) dx0:Tdθ
(7)

represents the updated knowledge about θ and X0:T . Note that in the Bayesian approach
X0:T and θ are not qualitatively different, as they are both random variables; considering
them together is related to data augmentation (Tanner and Wong, 1987).

The denominator of (7) involves high-dimensional integrals that again are not tractable in
general and need to be approximated. This is a noteworthy feature of SSMs: both frequentist
and Bayesian approaches face the same computational challenges of approximating non-
trivial integrals of large dimensions. However, contrary to the frequentist ML approach,
the approximation here will not be carried out with a maximization in mind: the Bayesian
paradigm does not rely on point estimates, but rather uses the whole posterior density for
inference. This is why Bayesian SSMs are invariably fitted by simulation techniques that yield
draws from the posterior density function; see Section 3.5. We note the converse is not true:
simulation-based approximations to integrals are not restricted to a Bayesian framework.

3.5 Approximations to high-dimensional integrals

This section presents an overview of the methods most commonly used in fisheries science
for dealing with the high-dimensional integrals inherent to the fitting of SSMs. They can be
roughly classified as simulation-based methods and direct approximations of the integrand.

Simulation-based approximation methods have been of central interest in the implementa-
tion of non-linear and non-Gaussian SSMs since the 1960s. The reason is that the conditional
density of the states given the observations

pθ(x0:T |y1:T ) =
Ljoint(θ,y1:T ,x0:T )∫

Ljoint(θ,y1:T ,x0:T ) dx0:T

and in particular the filtering density pθ(xT |y1:T ) played an important role in the early
engineering applications of SSMs, where θ was either assumed known or its estimation of
secondary importance. Standard Markov chain Monte Carlo (MCMC; Gilks, Richardson,
and Spiegelhalter, 1995; Robert and Casella, 2005), while a general method for drawing from
posterior distributions in a Bayesian context, is not well suited for such high-dimensional
problems and was quickly superseded by more efficient methods tailored for recursive esti-
mations (e.g. Kantas et al., 2015). We defer to Doucet, de Freitas, and Gordon (2001) for
an overview of the evolution of importance sampling into sequential importance sampling
and the advent of modern sequential Monte Carlo methods, which are also known as parti-
cle filters (see Fearnhead and Künsch, 2018); see also Hürzeler and Künsch (2001) and Liu
and West (2001). That said, variants of MCMC were developed in parallel; the ones based
on Hamiltonian dynamics (see Neal, 2011) proved to be highly efficient with SSMs and are
available in contemporary MCMC software such as Stan (Stan Development Team, 2016).
More recently, particle MCMC (Andrieu, Doucet, and Holenstein, 2010) was introduced as
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a hybrid between a particle filter and a standard MCMC algorithm and was successfully ap-
plied in ecology (see e.g. Knape and de Valpine, 2012) and fisheries science (Hosack, Peters,
and Ludsin, 2014).

Direct approximations of the integrand are mostly based on Laplace’s method for approx-
imating general integrals (see Barndorff-Nielsen and Cox, 1989, Ch. 6.2). Assuming a global
maximum exists (e.g. over X1:T in the case of the marginal likelihood), a second-order Taylor
expansion of the logarithm of the integrand about this maximum yields the density kernel
of a multivariate Gaussian distribution, which can be conveniently integrated following a
standardization involving the Hessian determinant. The marginal likelihood in (5) can thus
be approximated by

L̃marginal(θ,y1:T ) = Ljoint(θ,y1:T , x̂1:T )(2π)qT
∣∣−H(x̂1:T ,θ)

∣∣−1/2,
where

x̂1:T = x̂1:t(y1:T ,θ) = arg max
x1:T∈XT

logLjoint(θ,y1:T ,x1:T ),

and

H(x1:T ,θ) =
∂2 logLjoint(θ,y1:T ,x1:T )

∂x1:T∂x>1:T
,

with | · | and > denoting matrix determinant and transpose, respectively. An interesting
byproduct of the Laplace approximation is the ML prediction for the unobserved states
x̂1:t(y1:T ,θ), for a given value of θ. The maximization of this approximated marginal likeli-
hood with respect to θ is not trivial as the dependence of x̂1:T upon θ needs to be accounted
for. Furthermore, standard errors of the resulting (Laplace-approximated) MLE of θ are
typically obtained by (a generalized version of) the delta method and require derivatives
of L̃marginal (Kristensen et al., 2016; Skaug and Fournier, 2006, see). It is the development
of automatic differentiation (AD; e.g. Griewank and Walther, 2008) that made the imple-
mentation of this procedure possible. Many popular statistical software packages in fisheries
science make use of the Laplace approximation with built-in AD, such as AD Model Builder
(ADMB; Fournier et al., 2012; Skaug and Fournier, 2006) and the R (R Core Team, 2017)
package Template Model Builder (TMB; Kristensen et al., 2016). The integrated nested
Laplace approximation approach (Rue, Martino, and Chopin, 2009), with the corresponding
R package R-INLA, utilizes Laplace’s method for similar goals but within a Bayesian frame-
work, although it does not employ AD. In being limited to low dimensions of non-linear fixed
effects because of a grid search algorithm, this approach is not much used in fisheries science.
As a final remark, we note here that Laplace’s method is the simplest case of the family of
adaptive Gaussian-Hermite approximations; more sophisticated versions (with more than one
node) seem to be limited to small dimensions (see e.g. Huber, Ronchetti, and Victoria-Feser,
2004) and are thus not readily suitable for the fitting of SSMs.

4 Evolution of Software

Available software and computational power has long dictated the capabilities and limits
of assessment models. However, the need for more realistic models has also pushed the
development of software tools forward, notably in order to handle general non-linear, high
dimensional, mixed effects models like SSAMs.

Early algorithms for performing fish stock assessments were calculated by hand, and later
via desk calculators. The development of general-purpose programming languages (e.g. FOR-
TRAN, PASCAL, C/C++) then allowed for automation and thus unlocked the possibility to
test and compare various modelling approaches or variants of the same model (Pope, 1972).
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The first formal statistical fitting procedures to be programmed for fish stock assessments
were based on linearizations of desired models (e.g. Gulland, 1961; Schnute, 1977). Lineariza-
tion was convenient as it involved closed-form formulas, but was clearly problematic from a
modelling point of view because of the unrealistic mechanisms it implied. Hence, efficient
and stable non-linear optimization of objective functions was needed to express standard
parametric statistical fish stock assessment models.

AD Model Builder (Fournier et al., 2012; Skaug and Fournier, 2006) was developed in the
fish stock assessment community by David A. Fournier in the late 1980s. It was the first model
development environment to combine the technique of AD (Griewank and Walther, 2008)
with a quasi-Newton optimizer, and a simplified template language for model development.
The combined result was that non-linear models with hundreds and even thousands of model
parameters could be easily expressed and, more importantly, optimized in a fast and robust
way (Bolker et al., 2013).

Hundreds of peer-reviewed publications cite ADMB, and almost all general-purpose stock
assessment tools are written in its framework (e.g. Methot and Wetzel, 2013; Miller and
Legault, 2015; Williams and Shertzer, 2015). Most of these are not SSMs, but strictly
parametric fixed effects models. The influence of AD Model builder in the fish stock assess-
ment community cannot be exaggerated. In 2008 David A. Fournier received the William
E. Ricker Award from the American Fisheries Society. Two quotes from the support letter,
that underline the importance of ADMB are:

If Ricker is considered the grandfather of modern fisheries stock assessment,
then Fournier should be considered the father. — Ray Hilborn, Prof., University
of Washington.

It is no exaggeration to state that Dr. Fournier’s development of AD Model
Builder has empowered an entire generation of fishery stock assessment scientists.
— Richard D. Methot, Jr., NOAA Fisheries.

Although prior to the work of Skaug and Fournier (2006) AD Model builder did not
include automatic features to deal with SSMs, it was nonetheless tremendously successful
at providing the fisheries community with a suitable tool for expressing their parametric
models. In 2008 AD Model Builder was then, via a grant from the Gordon and Betty Moore
Foundation, transferred to the non-profit ADMB-Foundation (admb-foundation.org) who
continues to provide it as open-source software.

Standard parametric models require a trade-off between maintaining a reasonably small
number of model parameters while still expressing sufficiently flexible models. More flexible
models (whether Bayesian or frequentist) can also be obtained via the introduction of random
effects in order to allow for the expression of complex time-varying processes. This approach
requires the addition of relatively few model parameters.

With the advent of faster computers, MCMC techniques (e.g. Gilks, Richardson, and
Spiegelhalter, 1995) became a practical option with which to formulate models with random
effects. Fish stock assessment models were developed with custom code (e.g. Virtala, Kuikka,
and Arjas, 1998) and in specialized tools for MCMC simulations (e.g Meyer and Millar, 1999).
The early implementations (e.g. Fryer, 2002; Gudmundsson, 1994; Sullivan, 1992) of SSAMs
were based on the Kalman filter and required linearization of the equations, and custom code
to setup the filtering algorithms. Later approaches used sampling and MCMC algorithms
(e.g. McAllister et al., 1994; Meyer and Millar, 1999).

Tools for MCMC simulation, BUGS/WinBUGS (Lunn et al., 2000), and later OpenBUGS
(www.openbugs.net) and JAGS (Plummer, 2003), allow the user to specify their model in
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an intuitive model language. The common language BUGS (Bayesian inference Using Gibbs
Sampling) is more flexible than the standard formula interfaces used to specify linear models
in standard statistical packages, but less flexible than a general purpose programming lan-
guage. A model is specified simply by assigning distributions to parameters and observations.
Non-linear functions can relate different quantities. The BUGS language and model fitting
via MCMC has become very popular in many fields (e.g. Bolker et al., 2013). However, for
estimating model parameters these tools have not become widely used in fish stock assess-
ments. This is because these approaches may still take hours or days to run in a realistic
assessment setting, and convergence is more difficult to judge than for a simple optimization.

Early frequentist SSAMs (e.g. Fryer, 2002; Gudmundsson, 1994; Sullivan, 1992) were
implemented in a general purpose programming language (FORTRAN) with changes to the
model requiring changes to the filtering equations in the code.

AD Model Builder was later extended to allow for random effects (Skaug and Fournier,
2006). Random effects are integrated out via the Laplace approximation, and the Laplace
approximation is made efficient by using automatic differentiation. This extension of AD
Model Builder made it possible to formulate SSAMs without considering the details of the
filtering algorithms (Brinch, Eikeset, and Stenseth, 2011; Nielsen and Berg, 2014).

TMB (Kristensen et al., 2016) is a later implementation of the same ideas upon which
AD Model Builder is based, and is developed and maintained by Kasper Kristensen. TMB
builds on well-supported open-source software projects such as CppAD (Bell, 2012), Eigen
(Guennebaud et al., 2010) and CHOLMOD (Chen et al., 2008). TMB has been rigorously
tested against AD Model Builder for a wide set of example models and shown to yield
identical results. However, it is much faster for models that include random effects, such as
SSAMs. The use of sparseness, matrix libraries, and the way in which the computational
graph is stored and optimized, allows for much faster computation (Kristensen et al., 2016).

SSAMs are now being increasingly applied. More than twenty official fish stock assess-
ments in ICES are now conducted with variations of the model described in Nielsen and
Berg (2014) and in the next section. In Canada, the SSAM described in Cadigan (2015)
is now used to assess the northern cod stock. The availability of software to easily express
and efficiently estimate these models has made all the difference. For example, the model in
Nielsen and Berg (2014) can be optimized in 3 seconds in TMB and 3 minutes in AD Model
Builder.

5 Application to the North Sea Cod Stock

We present here a contemporary application of SSMs for fish stock assessments, namely the
SSAM for cod (Gadus morhua) in the North Sea, the Skagerrak and the English Chan-
nel; see Figure 1 for a map of the assessment area defining the stock. This model is
now the main one used by ICES for its management advice and predictions for North
Sea cod (ICES, 2015, p. 703–792); see Nielsen and Berg (2014) for additional details and
variants of this SSAM. The full data are freely available on www.stockassessment.org

and in the R package “stockassessment” available on the GitHub page of the third author
(https://github.com/fishfollower/samex).

The response vector Y t consists of the total commercial catches (Ca,t)a=1,...,6+ (as num-

bers) and indices of relative abundance (unitless) coming from two surveys (I
(1)
a,t )a=1,...,5+ and

(I
(2)
a,t )a=1,...,4+. All three variables are indexed by the age class a (with the largest class being

a “plus group” including older fish), and the time index t refers to the year ranges 1963–2014,
1983–2015, and 1992–2014, corresponding to the commercial catch, first, and second surveys,
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Figure 1: The assessment area for the North Sea cod stock, corresponding to Sub-area IV, the
northern section of Division IIIa and Division VIId as defined in ICES (2015).

respectively. The first survey is conducted in the first quarter of the year while the second
one is conducted in the third quarter of the year. The dimension of Y t is thus r = 15 for
the overlapping years. Missing values are not of concern here as only the available data con-
tribute to the joint likelihood; in effect logCa,t, log I

(1)
a,t and log I

(2)
a,t are assumed independent

conditional on the unobserved states.
The random effects vector X t is composed of the abundance of fish of age a in the stock,

denoted Na,t, and the fishing mortality rate (seen as an instantaneous hazard rate) Fa,t. Here,
both a and t span their entire range, a = 1, . . . , 6+ and t = 1963, . . . , 2015, i.e. six age-classes
over 53 years, so that the dimension of X t is q = 12.

Other variables enter the model as fixed covariates, see the Appendix for further details
and equations. The model can be summarized as follows: additive Gaussian error appears
on the log scale in both observation and process equations; the Gaussian error terms are
all independent except between age classes for fishing mortality at any given time point t,
where a first order autoregressive-like covariance structure is assumed across ages; both g
and h functions, respectively from the observation and process equations (2) and (3), are
non-linear with components of X t appearing in various places; θ is of dimension p = 34
with location and scale parameters of the Gaussian distribution; finally, the dimension of the
integral defining the marginal likelihood in (5) is qT = 636.

In this exposition, we take a frequentist approach and fit the model by maximizing the
Laplace-approximated marginal log-likelihood using the R package TMB. We deliberately
omit a full Bayesian analysis here since such stock assessments rarely assume the existence
of prior knowledge. However we note that MCMC runs with uninformative priors (not
reported here) yield posterior distributions whose modes agree with our point estimates and
generally confirm our results. Simulation studies (also not reported here) show that all model
parameters are identifiable and estimable given the amount of data.

The estimates and standard errors of the model parameters are given in Table 1. We
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notice that estimated variances pertaining to the recruits (a = 1) are systematically larger
than the other variances, potentially hinting that some processes such as the assumed random
walk for logN1,t are too simplistic. We also note that some of the catch scaling parameters τt
(see the Appendix for details) definitely seem useful for accounting for unexplained variability
in the catches in the years 1993–2005.

The random effects are predicted by maximizing the joint log-likelihood given the Laplace-
approximated MLE for θ, as in (6). Figure 2 presents quantities derived from the predicted
X t which are of direct interest to stock managers: the spawning stock biomass (SSB) is the
aggregated biomass of mature fish, obtained by a weighted sum of the predicted abundance;
the average fishing mortality F̄2−4 is computed as the empirical mean of the predicted Fa,t
for age classes 2, 3 and 4 at each time point t; and the number of recruits is the predicted
abundance for age class 1. The error bars represent out-of-sample predictions with pointwise
95% confidence intervals. The fishing pressure has steadily increased until reaching a plateau
between the 1980s and late 1990s, driving the stock to an all-time low SSB in the mid 2000s.
Since then, the stock seems to gradually recover along with a decreasing fishing mortality.
The early spikes in the recruits indicate episodic changes in the productivity of the stock, a
phenomenon observed at the ecosystem level (ICES, 2015, p. 703). Since the early 2000s, the
cod stock seems to have stabilized at a low productivity regime. Out-of-sample predictions
indicate a rather constant number of recruits, but thanks to fairly stable fishing mortality
the SSB may well continue this upward trend.

The TMB package allows one to compute one-observation-ahead (or out-of-sample pre-
diction) residuals, which are displayed in Figure 3. These residuals are computed as the
standardized difference between an observed value and the corresponding fitted value based
on all past observations, i.e. for past t and a indices. Contrary to residuals based on the
overall fit, these should not be auto-correlated if the model fits the data well (see Thygesen
et al., 2017). The residuals for all three response components are shown as bubbles in Figure
3: no clear trend or variability pattern emerges, indicating an overall satisfactory fit.

The SSAM for North Sea cod is simple, yet realistic enough, to show how the SSM
framework is successfully used in contemporary fisheries applications. In particular, the
hierarchical structure which identifies multiple sources of error seems crucial to appropriately
quantify uncertainty. The dimensionality and the intricacies of nested optimizations may be
daunting at first, but the active development of modern statistical softwares, such as the
R package TMB, definitely alleviates some problems by efficiently running computations
in the background while remaining completely transparent thanks to its open-source code.
As an example, fitting the above model to the cod data takes about 15 seconds on a 2.3
GHz 6-year-old laptop computer, only requires basic R programming skills, and the one-
observation-ahead residuals are built-in since the latest major release.

6 Current Challenges

The complex SSMs required in the field of fish stock assessment make it an interesting and
fruitful field for applied statisticians. In fact there is a pressing need for further development
of both the underlying theory and supporting statistical software. It is notable that fisheries
science has pushed the limits of existing statistical software packages, developed exciting new
ones, and is to the best of our knowledge among the only academic disciplines wherein the
very useful combination of automatic differentiation and Laplace approximation is routinely
used.

Goodness-of-fit statistics, including residual analysis, remain a challenge. It is now possi-
ble to compute the classical one-observation-ahead residuals, which are independent and have
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a standard Gaussian distribution for a correct model, by successively including observations
to predict the following observation (Thygesen et al., 2017). This procedure can be fully
automated and is now available in TMB. The recent development of goodness-of-fit statistics
for mixed models (Nakagawa and Schielzeth, 2013) may be adaptable to the more general
state-space framework.

Many assumptions required by state-space models are unverifiable in practice, poten-
tially casting doubt on any inference drawn from stock assessment models. In response to
this concern, robust estimation techniques which remain reliable even when distributional
assumptions are not entirely satisfied have been recently developed (Aeberhard et al., 2017;
Xu et al., 2015).

Fully parametric fish stock assessment models (not state-space models) often struggled
to express sufficiently flexible models. Often the models were only borderline identifiable.
To guard against drawing incorrect conclusions it has become standard practice to validate
identifiability of models. This is done using simulation studies with jittering (starting the
optimization from, say, 100 different initial values and confirming that they reach the same
minimum). SSAMs have fewer model parameters, but identifiability can still be an issue,
so it is important to continue this validation practice. Data cloning (Lele, Nadeem, and
Schmuland, 2012) is certainly one avenue worth exploring further.

The approximation of high-dimensional integrals, regardless of the estimation method,
involves a computational cost and additional assumptions that need to be assessed. In partic-
ular, the accuracy of the Laplace approximation used by ADMB/TMB should be rigorously
studied. Validating the Laplace approximation can be done by comparing to more computa-
tional demanding methods, such as MCMC, particle filtering, or importance sampling, but
often this is only practical in scaled down versions of the models.

What is considered data (or observations) in fish stock assessment models are not al-
ways data, but rather output from other models. Consider for instance an index of stock
abundance. It is not possible to measure abundance directly, so it is based on catches from
scientific survey vessels. These catches are then processed via a model accounting for a num-
ber of factors (e.g. gear type, time of day, spatial changes in fishing) which are expected to
affect catchability. The goal is to distill the most precise yearly index of abundance. The
resulting index of abundance, and possibly its estimated uncertainty, are then used as ob-
servations in the model. A lot of information is potentially lost in this process. It should be
the goal of future assessment models to include the raw observations directly.

An important part of fish stock assessment and management is to be able to predict
future stock sizes and catches given certain management actions. Deterministic and fully
parametric assessment models require new model parameters for each year, so predictions
require additional assumptions external to the model. A key feature of SSAMs is that their
prediction mechanism (the process equation and its respective stochastic assumptions) is
directly estimated, and can be used to give model-consistent predictions. This convenient
ability could be extended to the biological parameters (e.g. weights, maturity proportions,
natural mortality), which are currently treated as fixed covariates in the models. Extending
current assessment models to include states and prediction models for these quantities would
make these predictions (and associated uncertainties) more objective and realistic.

Appendix: North Sea Cod Data and Model Specification

In addition to the response variable

Y t = (logCa=1,t, . . . , logCa=6+,t, log I
(1)
a=1,t, . . . , log I

(1)
a=5+,t, log I

(2)
a=1,t, . . . , log I

(2)
a=4+,t)

>
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and the random effects

X t = (logNa=1,t, . . . , logNa=6+,t, logFa=1,t, . . . , logFa=6+,t)
>,

an estimate of the natural mortality rate Ma,t enters the model as a fixed covariate. Ma,t

is often derived from stomach sampling, or from additional knowledge about the ecosystem.
Moreover, for computing derived quantities such as the spawning stock biomass, other aux-
iliary covariates are needed such as the mean weight of fish in the stock and the proportion
of mature females at a given age.

The process equation describes the dynamics in the unobserved states, and is based on
the conditional expectation of the current states given the previous states:

E[X t|X t−1] =


logN1,t = logN1,t−1
logNa,t = logNa−1,t−1 − Fa−1,t−1 −Ma−1,t−1, 2 ≤ a < A
logNA,t = log

[
NA−1,t−1 exp(−FA−1,t−1 −MA−1,t−1)
+NA,t−1 exp(−FA,t−1 −MA,t−1)

]
logFa,t = logFa,t−1, 1 ≤ a ≤ A,

where A denotes the largest age class. These equations assume a random walk for logN1,t

and for the whole vector (logF1,t, . . . , logFA,t)
>, a survival process for logNa,t where the

combination of F and M represents total mortality, and a modified survival process for
the “plus group” in logNA,t. The corresponding distribution Pθ(xt|xt−1) is a multivariate
Gaussian with zero mean vector. The first A Gaussian error components are independent,
while we enforce an AR(1)-like correlation structure for the others:

Cor
[

log(Fa,t), log(Fã,t)
]

= ρ|a−ã|,

where the between-age correlation ρ is an element of θ. Other fixed parameters include
five separate variances: one for recruitment (σ2

Na=1
); one for survival (σ2

Na>1
); one for fishing

mortality at age 1 (σ2
Fa=1

); and one for fishing mortality at older ages (σ2
Fa≥2

).
The observation equation relates the unobserved states to the observed response variables

through a conditional expectation:

E[Y t|X t] =

 logCa,t = log
[
Fa,t

Za,t
(1− exp(−Za,t))Na,t

]
log I

(s)
a,t = log

[
Q

(s)
a exp(−Za,t D

(s)

365
)Na,t

]
,

1 ≤ a ≤ A,

where s = 1, 2 identifies the surveys, the largest age class A is 5+ for s = 1 and 4+ for
s = 2, Za,t = Ma,t + Fa,t is the total mortality rate, D(s) is the number of days into the year

when survey (s) was conducted, Q
(s)
a are so-called catchability coefficients which scale the

survey relative indices to the stock abundance. The catchabilities are unknown parameters
that need to be estimated, there are nine of them as they are distinct for each age class
and each survey. Auxiliary information and expertise from fisheries scientists cast doubt on
the reliability of the absolute level of the catches between 1993 and 2005, hence extra catch
scaling parameters τt are added (and estimated) for these years:

logCa,t = log
[ 1

τt

Fa,t
Za,t

(1− exp(−Za,t))Na,t

]
, t ∈ {1993, . . . , 2005}.

The corresponding distribution Pθ(yt|xt) is multivariate Gaussian with zero mean vector,
all components are conditionally independent. Distinct variances are specified for different
age groups for the three data sources: commercial catch has a variance for age 1 (σ2

Ca=1
), for

14



age 2 (σ2
Ca=2

), and a common one for older ages (σ2
Ca≥3

); the two surveys have a variance for

age 1 (σ2

I
(s)
a=1

for s = 1, 2) and another one for older ages (σ2

I
(s)
a≥2

for s = 1, 2). This amounts

to a total of seven observation variance parameters. We can finally summarize all fixed
parameters which need to be estimated:

θ = (ρ, σ2
Na=1

, σ2
Na≥1

, σ2
Fa=1

, σ2
Fa≥1

, σ2
Ca=1

, σ2
Ca=2

, σ2
Ca≥3

, σ2

I
(1)
a=1

, σ2

I
(1)
a≥1

, σ2

I
(2)
a=1

, σ2

I
(2)
a≥1

,

τ1993, . . . , τ2005, Q
(1)
a=1, . . . , Q

(1)
a=5+, Q

(2)
a=1, . . . , Q

(2)
a=4+)>.
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Table 1: North Sea cod data, estimates and standard errors of fixed parameters.

Parameter Estimate S.E.

Q
(1)
a=1 0.0076 0.0007

Q
(1)
a=2 0.0352 0.0018

Q
(1)
a=3 0.0661 0.0033

Q
(1)
a=4 0.0664 0.0038

Q
(1)
a=5+ 0.0910 0.0065

Q
(2)
a=1 0.0279 0.0025

Q
(2)
a=2 0.0502 0.0034

Q
(2)
a=3 0.0653 0.0046

Q
(2)
a=4+ 0.0656 0.0054

σFa=1 0.1572 0.0361
σFa≥2

0.0944 0.0125
σNa=1 0.7483 0.0849
σNa≥2

0.1113 0.0169
σCa=1 0.6169 0.0707
σCa=2 0.2411 0.0320
σCa≥3

0.0644 0.0170
σ
I
(1)
a=1

0.4731 0.0649

σ
I
(1)
a≥2

0.2278 0.0164

σ
I
(2)
a=1

0.3727 0.0639

σ
I
(2)
a≥2

0.2586 0.0255

ρ 0.8862 0.0596
τ1993 0.9388 0.0850
τ1994 1.0344 0.1008
τ1995 1.1744 0.1172
τ1996 1.0155 0.1012
τ1997 0.8589 0.0840
τ1998 0.7148 0.0701
τ1999 0.8573 0.0862
τ2000 0.9437 0.0947
τ2001 1.2900 0.1270
τ2002 0.8660 0.0846
τ2003 1.4899 0.1484
τ2004 1.1323 0.1117
τ2005 0.9627 0.0878
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Figure 2: North Sea cod data, derived quantities of direct interest to the stock management:
(A) spawning stock biomass; (B) average fishing mortality for age 2–4 (solid line and envelope)
with the predicted fishing mortalities overlaid for all six age classes (numbers and dashes); (C)
predicted number of recruits Na=1,t. All shaded envelopes are (interpolated pointwise) 95% confi-
dence intervals, while the error bars are out-of-sample predictions with respective 95% confidence
intervals.
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Figure 3: North Sea cod data, one-observation-ahead residuals for the three components of the

response: (A) Ca,t; (B) I
(1)
a,t ; (C) I

(2)
a,t . The magnitude of the residual is proportional to the area of

the bubble. Blue bubbles represent positive residuals while red ones represent negative residuals.
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