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Stereo vision is a flourishing field, attracting the attention of many researchers. Recently, leveraging on the development of deep
learning, stereo matching algorithms have achieved remarkable performance far exceeding traditional approaches.0is review presents
an overview of different stereo matching algorithms based on deep learning. For convenience, we classified the algorithms into three
categories: (1) non-end-to-end learning algorithms, (2) end-to-end learning algorithms, and (3) unsupervised learning algorithms. We
have provided a comprehensive coverage of the remarkable approaches in each category and summarized the strengths, weaknesses, and
major challenges, respectively. 0e speed, accuracy, and time consumption were adopted to compare the different algorithms.

1. Introduction

Stereo disparity estimation is one of the most important
problems in computer vision. 0e disparity map has a wide
range of applications, including robotics [1], object detection
[2], remote sensing [3], and autonomous driving [4].
Finding corresponding pixels from two viewpoints is the key
point of stereo matching, which is similar to optical flow
estimation. Owing to the epipolar constraint based image
rectification, the search space for the matching can be
limited to a 1D horizontal line, as compared to a 2D plane in
optical flow [5]. Namely, depth can be estimated by
matching corresponding pixels on the two rectified images
along the same scan line. As shown in Figure 1, a point P1 in
one image plane may have arisen from any of the points in
the line C1 P1 andmay appear in the alternate image plane at
any point on the so-called epipolar line E2. 0us, the search
is theoretically reduced within a scan line, since corre-
sponding pair points reside on the same epipolar line. 0e
difference on the horizontal coordinates of these points is the
disparity. 0en the depth of this pixel is calculated by fB/d,
where f is the camera’s focal length and B is the distance
between two camera centers.

As a classical research topic for decades, stereo matching
was traditionally formulated as a multistage optimization
problem [6, 7], including matching cost computation, cost
aggregation, disparity optimization, and postprocessing [8].
Matching cost computation is the first step of stereo
matching, which provides initial similarity measurements
for left image patches and possible corresponding right
image patches. Traditional stereo matching methods usually
utilize the low-level features of image patches around the
pixel to measure the dissimilarity. Some common local
descriptors, such as absolute difference (AD), CENSUS [9],
BRIEF [10], normalized cross-correlation (NCC) [11], or
their combinations (e.g., AD-CENSUS), are often employed.
0e cost aggregation and optimization steps incorporate
contextual matching costs and regularization terms to obtain
more robust disparity predictions. Traditional stereo
matching algorithms can be grouped into three categories:
(1) local methods, (2) global methods, and (3) semiglobal
methods. Local methods are done by selecting the disparity
with the lowest matching cost, that is, the “winner takes all”
strategy. It runs very fast but suffers from low quality. Some
global methods, such as graph cut [12] or belief propagation
[13], skip the cost aggregation step and define a global energy
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function. 0e disparity is obtained with a high quality by
minimizing the energy function step by step; however, the
method is time consuming. Semiglobal methods [6] ap-
proximately solve the NP-hard 2D graph partitioning by
optimizing a pathwise form of the energy function in many
directions. 0is method achieves a fair trade-off between the
complexity of the computations needed and the quality of
the results obtained. However, performance of the tradi-
tional stereo matching methods is severely limited by the
handcrafted features adopted by cost functions. As shown in
Figure 2, it is obvious that the traditional SGM methods
suffer from poor depth map quality compared to the GC-
Net, which is an end-to-end deep learning method. 0e
SGM-method suffers from obvious bad pixels while the GC-
Net provides a much smoother and more consistent depth
map. A detailed review of the traditional stereo matching
algorithms could be found in [14, 15]. In this article, we will
focus on the algorithms based on deep learning.

Recently, stereo matching algorithms have become a
deep learning task resorting to the development of con-
volutional neural networks (CNN). For convenience, we
classify the algorithms into three categories: (1) non-end-to-
end learning algorithms, (2) end-to-end learning algorithms,
and (3) unsupervised learning algorithms. For non-end-to-
end stereo methods, CNN is introduced to substitute one or
more components in the legacy stereo pipeline. Zbontar and
LeCun [16] first successfully substituted handcrafted
matching cost metrics with deep metrics and achieved
considerable gain compared to traditional approaches in
terms of both accuracy and speed. 0ey introduced a deep
Siamese network to measure the similarity between two 9-
by-9 image patches. Later, Luo et al. [17] accelerated
matching cost calculation by introducing an inner-product
layer and treated the patch matching as multilabel classifi-
cation problem. Shaked et al. [18] designed a new highway
network architecture for computing the matching cost at
each possible disparity. Chen et al. [19] employed multiscale
features for matching cost calculation. Some works focus on
the cost aggregation and postprocessing unit. Seki and

Pollefeys [20] proposed SGM-Nets to provide learned penalties
for SGM. Knobelreiter et al. [21] learned smoothness penalties
through a CRF and combined it with a CNN-predicted cor-
relation matching costs to integrate long-range interactions.
Gidaris and Komodakis [22] substituted handcrafted disparity
refinement functions with a three-stage network that detects,
replaces, and refines erroneous predictions.

All these methods have achieved great gains, compared
with the traditional ones. However, limitations of these
stereo networks are obvious [23]: (1) high computational
burden from multiple forward passes for all potential dis-
parities; (2) limited receptive field and the lack of context
information to infer reliable correspondences in ill-posed;
(3) still using postprocessing functions which are hand-
engineered with a number of empirically set parameters.

By carefully designing and supervising the network, a
fine disparity could also be obtained by end-to-end deep
learning methods without postprocessing. With the success
of Mayer et al. [24], end-to-end stereo matching networks
become more and more popular in stereo matching algo-
rithms. Tons of algorithms based on this have been pro-
posed. 0ese methods could roughly be categorized into two
groups: 2D encode-decoder structures [23–27] and regu-
larization modules composed of 3D convolutions [28–31].
DispNetC [24] computes a correlation volume from the left
and right image features (encoding) and utilizes a CNN to
directly regress (decoding) disparity maps. Pang et al. [26]
proposed a two-stage architecture called cascade residual
learning (CRL), and each of the stages adopts the DispNet
structure. 0e first stage gives initial predictions, and the
second stage learns the residuals. Liang et al. [23] extended
DispNet and designed a different disparity refinement
subnetwork, in which two stages are combined for joint
learning based on the feature constancy. Xiao et al. [32]
proposed a network composed of a backbone disparity
network and an edge subnetwork to integrate additional
information. GC-NET [29] first employed 3D convolution
module to regularize the cost volume and incorporate more
context from the disparity dimension. Inspired by GC-Net,
Chang and Chen [28] employed a spatial pyramid pooling
module to extract multiscale representations and incorpo-
rate a stacked 3D CNN to aggregate contextual features. Lu
et al. [5] proposed the sparse cost volume net (SCV-Net)
based on GC-Net to achieve speed acceleration. Some works
focus on designing specific functional modules. Lidong et al.
[30] proposed a learning-based cost aggregation method for
the better generation and selection of cost aggregation. Jie
et al. [33] proposed a novel left-right comparative recurrent
(LRCR) model to perform left-right consistency checking
jointly with and end-to-end disparity estimation.

Modern deep learning-based algorithms are able to
generate highly accurate depth estimates from stereo image
pairs. However, state-of-the-art stereo methods still have
difficulties finding correct correspondences in textureless
regions, detailed structures, small objects, and near
boundaries. Moreover, end-to-end stereo matching net-
works-based approaches basically require huge memory and
are relatively time consuming. And of course, this kind of
end-to-end stereo matching network needs corresponding
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Figure 1: Geometry of epipolar lines, where C1 and C2 are the left
and right camera lens centers, respectively. Point P1 in one image
plane may have arisen from any of the points in the line C1P1 and
may appear in the alternate image plane at any point on the
epipolar line E2.
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ground truth depth data for training, which means a huge
amount of work of data labeling.

Over the past few years, based on spatial transformation
and view synthesis, several unsupervised learning methods
have been proposed for stereo matching [34–38]. 0e
Deep3D network [37] involves an unsupervised framework
to address the problem of novel view synthesis. It can
generate the corresponding right view from an input left
image, i.e., the reference image. Garg et al. [35], like in
Deep3D, trained a network for depth estimation using a not
fully differentiable image reconstruction loss derived from
Taylor expansion. Godard et al. [36] extended the image
reconstruction loss by using bilinear sampling to generate
images, resulting in a fully differentiable training loss. 0e
loss also incorporated consistency between the disparities
produced relative to both the left and the right images,
leading to improved performance and robustness, making it
a popular end-to-end unsupervised structure. Based on this
architecture, Zhong et al. [39] proposed an unsupervised
self-adaptive stereo matching network combining two GC-
Nets together. Smolyanskiy et al. [40] slightly changed the
architecture and proposed a semisupervised approach. Other
methods focusing on the optical flow estimation by incorpo-
rating the pose information [38, 41] have also been studied.
However, extending these monocular methods to stereo
matching is nontrivial. To date, unsupervised depth solutions,
while yielding encouraging preliminary results, are still not at
the point where reliable information can be expected from.

To assist future researchers in developing their own
stereo matching algorithms, we herein provide a compre-
hensive coverage of the top approaches belonging to these
three kinds of algorithms. 0e performance of these algo-
rithms such as speed, accuracy, time consumption, was
analyzed and compared with each other. 0e whole com-
parison is conducted based on the KITTI datasets including
KITTI 2012 and KITTI 2015. 0e performance comparison
of stereo matching framework is listed in Table 1, including
the advantage and disadvantage of each framework.

0e KITTI stereo dataset is a collection of grayscale
image pairs taken from two video cameras mounted on the
roof of a car, roughly 54 centimeters apart. 0e images are
recorded while driving in and around the city of Karlsruhe,
in sunny and cloudy weather, at daytime. It consists of
KITTI2012, which contains 194 stereo pairs at the resolution

of 1240× 376 for training with sparse ground truth disparities
and 195 testing pairs without ground truth, and KITTI2015,
which contains 200 training pairs and 200 testing pairs. Each
image pair is rectified, i.e., transformed in such a way that an
object appears on the same vertical position in both images. A
rotating laser scanner, mounted behind the left camera,
provides ground truth depth. 0e true disparities for the test
set are withheld, and an online leaderboard is provided where
researchers can evaluate their method on the test set.

All the performance data of these methods is listed in
several tables to provide a comprehensive comparison. 0e
evaluation metric is usually the end-point error (EPE),
which is the mean average disparity error in pixels. For
KITTI 2012, percentages of erroneous pixels and average
end-point errors for both non-occluded (Non-occ) and all
(All) pixels are reported. For KITTI2015, the percentage of
disparity outliers D1 is evaluated for background, fore-
ground, and all pixels. 0e outliers are defined as the pixels
whose disparity errors are larger than max (3px, 0.05d∗),
where d∗ denotes the ground truth disparity. 0e perfor-
mance of the unsupervisedmethods is listed in Table 2,where
the absolute relative error (Abs Rel), square relative error (Sq
Rel), root mean square error (RMSE), and the δ < 1.25 error
provide a comprehensive comparison among themethods.0e
δ < 1.25 error means the percent of pixels that satisfy δ < 1.25,
where δ is calculated by the following equation:

δ � max
Disppred

Dispgt
,

Dispgt

Disppred
( ), (1)

where the Dispgt means the ground truth disparity and
Disppred means the predicted disparity.

2. Non-End-To-End Stereo Matching

For non-end-to-end stereo methods, CNN has been in-
troduced to replace one or more components in the legacy
stereo pipeline. Zbontar and LeCun [16] first proposed to
compute matching costs using neural networks and named it
MC-CNN. A deep Siamese network composed by several
CNN and DNN layers was adopted to measure the similarity
between two 9-by-9 image patches, as shown in Figure 3(a).
0en, the similarity, i.e., the cost, was refined by cross-based
cost aggregation and semiglobal matching, followed by a
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Figure 2: Depth map comparison between SGM (a) and GC-Net (b).
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left-right consistency check to eliminate errors in the oc-
cluded regions. 0is method achieved the state-of-the-art
results on the KITTI stereo dataset. 0e success of this
method firmly demonstrated that the image features
extracted by CNN are much more precise compared to the
handcrafted ones. As a consequence, many of the other top
ranked methods either are inspired by MC-CNN or directly
use it to compute the matching cost [22, 43–48]. Zagoruyko
and Komodakis [49] explored and proposed a variety of
different neural network models (Siamese, pseudo-Siamese,
2-channel) to represent the similarity function that accounts
for a broader set of appearance changes and can be used in a
much wider and more challenging set of applications. 0e
conclusions are obvious and intuitive: (1) the more complex
the network, the better the performance; (2), the larger the
training dataset, the better the performance.

While these methods [16, 49] achieved great gains in
challenging benchmarks such as KITTI [50], they suffer
from high time consumption due to the fact that they exploit
a Siamese architecture followed by concatenation and fur-
ther processing via a few more fully connected layers (DNN)
to compute the final score [17], as shown in Figure 3(a). For
instance, suppose the image size is M-by-N, the max dis-
parity is D, and the inference time of the Siamese network is
T; it will take M∗N∗ (D+ 1)∗T to conduct the cost
computation step. 0erefore, if T is very large, the time
consumption will become unbearable. It took 67s for the
MC-CNN [16] method to predict a single image pair (KITTI
data, 1226∗ 370), which is far beyond a practical expecta-
tion. To address this problem, Chen et al. [19] proposed an
embedding model fusing multiscale features in matching
cost calculations. Given the feature vectors (corresponding
to the left-right patches in a stereo pair) output by the CNN,
the similarity was directly computed in the Euclidean space
by a dot product, as shown in Figure 3(b). In these methods
[16, 49], feature vectors require further fully connected DNN
to obtain the final similarity. 0is change achieves 100x
speed-up compared to MC-CNN [16]. Luo et al. [17] also
employed an inner-product layer and proposed to learn a

multilabel classification model over all possible disparities.
0e inner-product layer greatly decreases the computation
burden while the multilabel classification thought enhances
the matching performance. 0is is because the multilabel
model is able to capture correlations between the different
disparities implicitly by learning a probability distribution
over all disparity values using a smooth target distribution.

In these approaches, several unlearned postprocessing
functions are followed after obtaining the cost volume
through CNN, including cross-based cost aggregation,
semiglobal matching, left-right consistency check, subpixel
enhancement, and filtering. 0e performance of the ap-
proaches [16, 17, 19] is listed in Table 3 to give a compre-
hensive exploration of the methods employing CNN to
replace handcrafted features. 0e OCV-SGBM provided by
the OpenCV community was introduced as a standard,
because all the other methods share the same postprocessing
functions except for the cost calculation step. 0e OCV-
SGBM adopts the handcrafted features while the other
methods exploit the CNN-based features. From Table 3, we
can find that the CNN-based features greatly improved the
accuracy; however, they also greatly increased the time
consumption. 0e Siamese network could greatly improve
the performance of the cost computation step, making it
more precise; however, it needs much more computation
resources compared to the handcrafted feature SAD, which
is adopted by OCV-SGBM. It is noted that the other
methods are conducted on the Nvidia Titan X while the
OCV-SGBM is conducted only on CPU at 2.5 GHz, which
means that the standard OCV-SGBM is approximately 100x
faster than the other methods listed in Table 3.

Of course, there are some other researchers focusing on
designing a more complex network to solve the patch
matching problem, because the original simple convolu-
tional layers are limited to generate rich semantic repre-
sentations. As Zagoruyko and Komodakis [49] has already
proved that the more complex networks could enhance the
model performance, these kinds of work could present us
some new designs of the network. Park and Lee [51]

Table 1: Comparison of the three frameworks.

Framework Inst. Advantage Disadvantage

Non-end-to-
end

MC-CNN, content-
CNN, SGM-Net

(1) Simple; (2) better performance
compared to traditional methods

(1) High computational burden; (2) limited receptive field
and the lack of context information; (3) still using

postprocessing

End-to-end PSMNet, GC-Net
(1) Disparity image quality; (2) easy

to design
(1) Huge cost burden and large memory footprint; (2) long

time cost; (3) needing ground truth data

Unsupervised
LR-consistency-

check [36]
(1) Not needing ground truth data (1) Poor performance

Table 2: Comparison of unsupervised stereo matching methods on the KITTI stereo 2015 benchmark.

Method Abs rel Sq rel RMSE RMSE log δ< 1.25 (%) δ < 1.252 (%) δ < 1.253 (%) Runtime (s) Environment

Luo et.al [42] 0.094 0.626 4.252 0.177 0.891 0.965 0.984 — —
Garg et al. [35] 0.169 1.080 5.104 0.273 0.740 0.904 0.962 — —
Godard et al. [36] 0.068 0.835 4.392 0.146 0.942 0.978 0.989 0.035 Nvidia Titan X
Zhou et al. [41] 0.208 1.768 6.856 0.283 0.678 0.885 0.957 — —
Yin and Shi [38] 0.155 1.296 5.857 0.233 0.793 0.931 0.973 0.015 Nvidia Titan X
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proposed a per-pixel pyramid pooling layer which can cover
a large area without losing resolution or details to enlarge the
perception window size. Shaked et al. [18] designed a new
highway network architecture for computing the matching
cost at each possible disparity based on multilevel weighted
residual shortcuts. All these methods focus on the calcula-
tion of the cost and achieve great gain in performance
compared to traditional algorithms.

Deep neural networks could also be employed to sub-
stitute other components in the legacy stereo pipeline. Based
on the observation that disparity images are generally
piecewise smooth, some existing works impose smoothness
constraints in the learning process. Seki and Pollefeys [20]
raised the SGM-Net framework that predicts SGM penalties
for regularization. It takes a gray scale image patch of 5× 5
pixels and its normalized position as input and then gives the
prediction of SGM penalties. A novel loss consisting of path
cost and neighbor cost was introduced in this network to
enable the usage of sparsely annotated disparity maps such
as the ones captured by a LiDAR sensor in real environ-
ments. 0e SGM-NETachieves the state-of-the-art accuracy
on KITTI benchmark datasets. However, due to the fact that
SGM penalties could not be labeled explicitly, the network
has to employ a three-step procedure to generate weak labels

of the SGM penalties for training, making the whole process
complicated and time consuming.

Knobelreiter et al. [21] learned smoothness penalties
through a hybrid CNN+CRF model for energy function
optimization. Unary-CNN and pairwise-CNN were used to
extract expressive features, based on which unary cost and
binary cost of CRF were calculated. A theoretically sound
method based on the structured output support vector ma-
chine (SSVM) was proposed to train the hybrid CNN+CRF
model on large-scale data end-to-end. 0is method achieved
comparable results compared to the state-of-the-art methods.
0is method is similar to the traditional global methods such
as GC (graph cut) and belief propagation. However, in tra-
ditional global methods, the features are known and the
disparity is calculated by iteratively minimizing the energy
function composed of features and disparity, while in this
method, the feature is unknown and the disparity is known,
so the feature could be calculated by the SSVM and then work
as the label to train the CNN+CRF network.

Some studies focus on the postprocessing of the disparity
map. Gidaris and Komodakis [22] substituted handcrafted
disparity refinement functions with a three-stage network
that detects, replaces, and refines erroneous predictions. 0e
network architecture improves the labels by detecting

Disparity refinement

Disparity calculation

Cost aggregation

Similarity

Final feature

Series of DNN

Feature concatenation

Left features Right features

Series of CNN Series of CNN

Le� image patches Right image patches

(a)

Series of CNN

Le� image patches Right image patches

Series of CNN

Le� features Right features

Similarity

Inner
product

Disparity refinement

Disparity calculation

Cost aggregation

(b)

Figure 3: Two Siamese network structures: (a) the basic Siamese network structure to estimate the similarity between two image patches; (b)
the accelerated Siamese network by employing a dot layer.

Table 3: Comparison of stereo matching methods using CNN for cost calculation on the KITTI stereo 2015 benchmark.

Methods
>2 pixels >3 pixels >4 pixels >5 pixels Mean error

Runtime (s) Environment
Non-occ All Non-occ All Non-occ All Non-occ All Non-occ All

Deep Embed
[19]

5.05 6.47 3.10 4.24 2.32 3.25 1.92 2.68 0.9 px
1.1
px

3
Nvidia GTX Titan
(CUDA, Caffe)

MC-CNN-acrt
[16]

3.90 5.45 2.43 3.63 1.90 2.85 1.64 2.39 0.7 px
0.9
px

67
Nvidia GTX Titan

(CUDA, Lua/Torch7)
Content-CNN
[17]

4.98 6.51 3.07 4.29 2.39 3.36 2.03 2.82 0.8 px
1.0
px

0.7
Nvidia Titan X

(CUDA)

OCV-SGBM 9.47 10.86 — — — — — — — —
1.1s at 2.5
GHz CPU

2.5 GHz CPU (C++)
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incorrect labels, replacing them with new ones, and refining
the renewed labels (DRR). Based on this three-stage
structure, they achieved state-of-the-art results in the KITTI
2015 test. However, discarding unreliable disparities with
new ones resulted in a wasted computation resource. 0e
Displets [52] aims to address the problem that reflective and
textureless surfaces cannot be recovered easily using tra-
ditional local regularizers. 0e method was proposed based
on the fact that objects generally exhibit regular structures
and are not arbitrarily shaped. In the Displets method,
regularization over larger distances using object-category
specific disparity proposals, i.e., Displets, is used to resolve
matching ambiguities in reflective and textureless regions.
0is approach embeds a 3D model of vehicles and ranks first
across all KITTI stereo leaderboards. However, the intro-
duction of the models greatly improves the computation
burden, as shown in Tables 4 and 5.

0ese non-end-to-end methods, a number of hand-
crafted regularization functions or postprocessing stages, are
still necessary to achieve comparable results. And they may
suffer from high computational burden, limited receptive
field, and lack of context information and still use post-
processing functions more or less. As is explicitly demon-
strated in Tables 4 and 5, all the methods achieved great
performance while suffering from the time consumption.
DDR [22] achieved the best time performance due to the fact
that the network was designed for the whole image while the
networks in other methods were designed for image patch.
As a result, the DDRmethod only needs one time calculation
of the network while other methods need M∗N (M is the
number of rows of the image, N is the number of columns of
the image) times of calculations of the network.

3. End-To-End Stereo Matching

0e end-to-end disparity estimation networks seamlessly
integrate all steps in the stereo matching pipeline for joint
optimization [24], producing dense disparity maps from
stereo images directly. Since the first success of Mayer [24],
end-to-end stereo matching networks have become more
and more popular in stereo matching algorithms. A lot of
algorithms based on this have been proposed. 2D encoder-
decoder structures with cascaded refinement and regulari-
zation modules composed of 3D convolutions are two most
popular structures among current end-to-end stereo
matching networks. As shown in Figure 4(a), 2D encoder-
decoder structure is composed of a series of stacked 2DCNN
with some skips to bring detailed or, in other words, residual
information for the final prediction, thus improving the
performance.0e key point of the 3D structure is the exploit
of the disparity dimension by using 3D CNN.

Critically speaking, Dosovitskiy et al. [53] are the first to
employ an end-to-end network to solve the stereo matching
problem. Appropriate end-to-end CNN including FlowNet
and FlowNetC have been proposed to solve the optical flow
estimation problem. 0e FlowNet provides the basic 2D
encoder-decoder structure. Later, a lot of networks
[23, 24, 26, 27, 32] have been proposed based on this. Optical
flow estimation requires precise per-pixel localization, and it

also depends on finding correspondences between two input
images. 0e critical difference between optical flow esti-
mation and stereomatching is the search space. Owing to the
epipolar constraint, the search space for the matching can be
limited to the 1D horizontal line, as compared to a 2D search
in optical flow.0us, technically speaking, the solution to the
optical flow [53–59] problem could be easily applied to the
stereo matching problem with a bit change.

Inspired by FlowNet [53], Mayer et al. [24] proposed
DispNet, which combines a flow and a disparity estimation
network together. A 1D correlation layer along the disparity
line was proposed for the cost calculation, and an encoder-
decoder structure with shortcut connections was designed
for disparity regression. 0is method became the first end-
to-end network for the disparity estimation and reaches the
state-of-the-art results in disparity estimation. 0e end-to-
end structure makes the disparity estimation problem much
easier. All you need to do is designing a network which takes
the image pair as input and predicts the disparity directly.
And as the network takes the entire image as input, it is
much more efficient compared to Siamese network
adopted by the non-end-to-end methods. As shown in
Table 6, the speed of DispNet is much faster. Despite this,
it is still difficult to find the correct correspondence at
inherently ill-posed regions, such as object occlusions,
repeated patterns, or textureless regions. 0erefore, a lot
of works have been focused on addressing this problem by
verifying DispNet.

Inspired by DispNet, Pang et al. [26] proposed a two-
stage architecture called cascade residual learning (CRL)
where the first stage gives initial predictions, and the second
stage performs further refinement/rectification by produc-
ing residual signals across multiple scales. 0e main
structures of both stages share similar spirits with DispNetC
[24] and the summation of the outputs from the two stages
gives the final disparity. 0e more complex structure results
in a more powerful representation capability, and the two-
stage architecture is beneficial to capturing the refinement
information. As a result, this method achieved a great
performance improvement and reached state-of-the-art
performance for matching stereo correspondence. However,
the more complex structure means a higher calculation
burden, and as a consequence, this method is 8x slower than
DispNet, as shown in Table 7.

Liang et al. [23] extended DispNet and designed a dif-
ferent disparity refinement subnetwork, in which two stages
are combined for joint learning based on the feature con-
stancy. 0is method incorporates all the four steps of stereo
matching together. 0e adoption of feature correlation and
reconstruction error makes the network easy for optimi-
zation. 0is architecture achieved a great performance gain
with only a little sacrifice of the speed compared to DispNet.
0e CRL [26] method and iResNet [23] share similar
thoughts. One network predicts the initial disparity, while
the other predicts the residual. However, the CRL method
does not share sufficient information between the two
subnetworks. Only the disparity information predicted by
the first stage subnetwork was passed to the second stage
subnetwork, while the iResNet [23] shares much more
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Table 4: Comparison of non-end-to-end stereo matching methods using CNN for cost aggregation and postprocessing on the KITTI stereo
2012 benchmark.

Methods
>2 pixels (%) >3 pixels (%) >4 pixels (%) >5 pixels (%) EPE NOC

(px)
Runtime

(s)
Environment

Non-occ All Non-occ All Non-occ All Non-occ All

SGM-NET
[20]

3.60 5.15 2.29 3.50 1.83 2.80 1.60 2.36 0.7 px 67 Nvidia (R) Titan X (Torch7)

Displets [52] 3.90 4.92 2.37 3.09 1.97 2.52 1.72 2.17 0.7 px 265
8+ cores at 3.0 GHz
(Matlab +C/C++)

Table 5: Comparison of non-end-to-end stereo matching methods using CNN for cost aggregation and postprocessing on the KITTI stereo
2012 benchmark.

Methods

All pixels Nonoccluded pixels

Runtime (s) EnvironmentD1-bg
(%)

D1-fg
(%)

D1-all
(%)

D1-bg
(%)

D1-fg
(%)

D1-all
(%)

Displets [52] 3.00 5.56 3.43 2.73 4.95 3.09 265
8+ cores @ 3.0 GHz
(Matlab +C/C++)

SGM-Net [20] 2.66 8.64 3.66 2.23 7.44 3.09 67 Nvidia (R) Titan X (Torch7)
DRR [22] 2.58 6.04 3.16 2.34 4.87 2.76 0.4 Nvidia (R) Titan X (--)
CNN+CRF [21] — — 5.50 — — 4.84 1.3 s C++/CUDA

Skips

Le� image

Right image

Disparity
Decoder

series of 2D CNN
Encoder:

series of 2D CNN

(a)

Le� image

Right image

Feature
extraction

Feature
extraction

Cost
volume

Regularization
series of 3D

CNN
Disparity

(b)

Figure 4:0e two popular basic architectures for end-to-end disparity estimations: (a) 2D encoder-decoder structure; (b) 3D regularization
structure.

Table 6: Comparison of end-to-end stereo matching methods on the KITTI stereo 2012 benchmark.

Methods
>2 pixels (%) >3 pixels (%) >4 pixels (%) >5 pixels (%) EPE

NOC
Runtime

(s)
Environment

Non-occ All Non-occ All Non-occ All Non-occ All

PSMNet [28] 2.44 3.01 1.49 1.89 1.12 1.42 0.90 1.15 0.5 px 0.41 Nvidia Titan Xp (CUDA)
SegStereo [25] 2.66 3.19 1.68 2.03 1.25 1.52 1.00 1.21 0.5 px 0.6 Caffe
iResNet [23] 2.69 3.34 1.71 2.16 1.30 1.63 1.06 1.32 0.5 px 0.12 Nvidia Titan
X (Caffe)
GC-Net [60] 2.71 3.46 1.77 2.30 1.36 1.77 1.12 1.46 0.6 px 0.9 Nvidia Titan
X (--)
PDSNet [61] 3.82 4.64 1.92 2.53 1.38 1.85 1.12 1.51 0.9 px 0.5 Nvidia Titan X
L-ResMatch [18] 3.64 5.06 2.27 3.40 1.76 2.67 1.50 2.26 0.7 px 48 Nvidia Titan X
DispNet [24] 7.38 8.11 4.11 4.65 2.77 3.20 2.05 2.39 0.9 px 0.06 Nvidia Titan X

EdgeStereo [32] 2.32 2.88 1.46 1.83 1.07 1.34 0.83 1.04 0.4 px 0.32
Nvidia GTX 1080Ti

(Caffe)
GwcNet-gc [31] 2.16 2.71 1.32 1.70 — — 0.80 1.03 0.5 px 0.32 Nvidia Titan Xp (-)
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information between the two subnetworks. 0is is the main
reason that the performance of iResNet is much better even
though CRL method employs a more complex network
structure.

Other methods try to integrate additional information to
enhance the performance on these difficult regions. Xiao
et al. [32] proposed a network composed of a backbone
disparity network and an edge subnetwork. 0is model
integrates edge cues by featuring embedding and edge-aware
smoothness loss regularization and thus results in state-of-
the-art performance on both KITTI stereo and scene flow
benchmarks. Guorun et al. [25] proposed a model that
integrates semantic features from segmentation and intro-
duced the semantic softmax loss. 0e incorporation of the
semantic cues greatly improved the prediction in disparity
estimation and achieved state-of-the-art results on KITTI
stereo benchmarks.

Unlike DispNet and its variants, several methods focus
on designing a powerful regularization module based on 3D
convolution [5, 28, 60, 61], as shown in Figure 4(b). Kendall
et al. proposed the GC-Net [60] and were the first to use 3D
convolution networks to aggregate context for cost volumes.
Instead of collapsing the feature dimension when computing
the cost volume, they formed a 4D cost volume with con-
catenated features from the image pairs along the disparity
dimension followed by 3D convolution networks to give the
disparity prediction. 0e usage of the disparity dimension
greatly improved the performance and achieved state-of-
the-art performance. Inspired by GC-Net, Chang and Chen
[28] proposed the pyramid stereo matching network
(PSMNet) to exploit the global context information. 0is net-
work consists of spatial pyramid pooling and stacked 3D CNN
modules. 0e spatial pyramid pooling extracts multiscale rep-
resentations, and stacked 3D CNN regularizes the 4D cost
volume to give the disparity prediction.0ismethod ranked first
in the KITTI 2012 and 2015 leaderboards beforeMarch 18, 2018.

0ough these end-to-end deep learning networks re-
cently demonstrated extremely good performance for stereo
matching, they may suffer from the memory usage and low
speed due to the 3D convolution process. Take GC-Net as an
example: it takes about 10.4G GPU memory when pro-
cessing a 1216× 352 image pair [5]. To address this problem,

Lu et al. proposed the sparse cost volume net (SCV-Net) [5]
based on GC-Net. A stride was introduced when generating
cost volume from features of image pair and the batch size
and disparity dimensions were merged to make a 4D cost
volume. 0is design greatly reduces the memory usage
without compromising the performance. Tulyakov et al. [61]
designed a practical deep stereo (PDS) network. 0e
memory footprint was reduced by introducing a novel
bottleneck matching module, which compresses left-right
concatenated image descriptors into compact matching
representations.

Besides these two popular structures, some works focus
on designing specific functional modules. Lidong et al. [30]
proposed a learning-based cost aggregation method for
better generation and selection of cost aggregation proposals
from cost volumes by a novel subarchitecture in the end-to-
end trainable pipeline.0is two-stream network offers global
view guidance for the cost aggregation and reaches state-of-
the-art performance on KITTI benchmarks. Jie et al. [33]
proposed a novel left-right comparative recurrent (LRCR)
model to perform left-right consistency checks jointly with
an end-to-end disparity estimation network using stacked
convolutional LSTM, upon which disparity maps are pro-
gressively improved. 0is approach achieves state-of-the-art
result on KITTI benchmarks. However, the LSTM structure
is much more time consuming compared to traditional
CNN. As a result, this method is very time consuming as
shown in Table 7. Poggi et al. [62] proposed a confidence
measurement network to estimate the reliability of the
predicted disparity. Slossberg et al. [63] introduced a densely
connected conditional random field (CRF) which provides
the a priori knowledge of interpixel interactions to regularize
the cost volume. Kim et al. [64] present a deep architecture
that estimates a stereo confidence.

End-to-end architectures achieve state-of-the-art results
in disparity estimation, as listed in Tables 6 and 7. However,
these methods still have difficulties finding correct corre-
spondences in textureless regions, detailed structures, small
objects, and near boundaries. Moreover, end-to-end stereo-
matching-networks-based approaches generally require
huge memory use, especially for the regularization modules
composed of 3D convolutions. Even though several

Table 7: Comparison of end-to-end stereo matching methods on the KITTI stereo 2015 benchmark.

Methods
All pixels Non-occluded pixels

Runtime (s) Environment
D1-bg (%) D1-fg (%) D1-all (%) D1-bg (%) D1-fg (%) D1-all (%)

PSMNet [28] 1.86 4.62 2.32 1.71 4.31 2.14 0.41 Nvidia Titan Xp (CUDA)
SegStereo [25] 1.88 4.07 2.25 1.76 3.70 2.08 0.6 Caffe
iResNet [23] 2.25 3.40 2.44 2.07 2.76 2.19 0.12 Nvidia Titan X (Caffe)
GC-Net [29] 2.21 6.16 2.87 2.02 5.58 2.61 0.9 Nvidia Titan X (--)
PDSNet [61] 2.29 4.05 2.58 2.09 3.68 2.36 0.5 Nvidia Titan X
L-ResMatch [18] 2.72 6.95 3.42 2.35 5.74 2.91 48 Nvidia Titan X
EdgeStereo [32] 1.84 3.30 2.08 1.69 2.94 1.89 0.32 Nvidia GTX 1080Ti (Caffe)
CRL [26] 2.48 3.59 2.67 2.32 3.12 2.45 0.47 Nvidia GTX 1080
LRCR [33] 2.55 5.42 3.03 2.23 4.19 2.55 49.2 --
DispNet [24] 4.32 4.41 4.34 4.11 3.72 4.05 0.06 Nvidia Titan X
GwcNet-gc [31] 1.74 3.93 2.11 1.61 3.49 1.92 0.32 Nvidia Titan Xp (--)
SCV-Net [5] 2.22 4.53 2.61 2.04 4.28 2.41 0.36 Nvidia GTX 1080Ti
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techniques have been employed, such as group-wise [31] and
sparse technique [5], to address this problem, there is still a
long way to go before a practical solution is developed. And
of course, this kind of end-to-end stereo matching network
needs corresponding ground truth depth data for training,
which is a challenging problem.

4. Unsupervised Stereo Matching

Unsupervised stereo matching approaches rely on mini-
mizing photometric warping error to drive the network in an
unsupervised way. Over the past few years, based on spatial
transformation and view synthesis, several unsupervised
learning methods have been proposed.

Flynn et al. [34] introduced a novel image synthesis
network called DeepStereo that generates new views by
selecting pixels from nearby images. 0e Deep3D network
by Xie et al. [37] also addressed the problem of novel view
synthesis. In their method, the right view is generated from
an input left image (i.e., the source image) in the context of
binocular pairs by minimizing pixel-wise reconstruction
loss. Again, using an image reconstruction loss, their method
produces a distribution over all the possible disparities for
each pixel. 0ese view synthesis networks provide great
support to unsupervised stereo matching. Based on Deep3D,
Luo et al. reformulated the problem of monocular depth
estimation into two subproblems, namely, a view synthesis
procedure followed by a standard stereo matching.0emain
structure of the network is a combination of a Deep3D and a
DispNet. 0e Deep3D provides the other view and DispNet
predicts disparity from the initial image and the new view.

Garg et al. [35] proposed the first unsupervised network
for single-view depth estimation using an image recon-
struction loss. 0e network explicitly generates an inverse
warp of the target image using the predicted depth to re-
construct the source image. Taylor expansion is employed to
make the inverse warping differentiable and to make the
training objective suboptimal. Even so, the network gives
performance comparable to that of the state-of-the-art su-
pervised methods for single-view depth estimation. How-
ever, due to the overall scale ambiguity from a single image,
this monocular depth is not only inaccurate in an absolute
sense, but also inaccurate in recovering details.

Ren et al. [65] adopted a bilinear sampling net to gen-
erate images, resulting in a fully differentiable training loss.
Yu et al. [66] extended the image reconstruction loss to-
gether with a spatial smoothness loss for unsupervised
optical flow learning. However, neither of them takes the
advantage of geometric consistency among predictions until
Godard et al. [36]. Godard et al. demonstrated that the
solvation of image reconstruction alone results in poor
quality depth images. To address this problem, they pro-
posed a network architecture with a novel training loss that
enforces left-right depth consistency inside the unsupervised
end-to-end network. 0e consistency constraint greatly
improves the performance, even outperforming supervised
methods that have been trained with ground truth depth.
0is work marked the maturity of the unsupervised stereo
matching approaches which rely on minimizing

photometric warping error. Several other approaches have
been proposed based on this structure [36]. 0e standard
pipeline of the unsupervised stereo matching is shown in
Figure 5: (1) given an image pair, the network module
outputs the left and right disparity maps; (2) warped image
pair was generated based on the disparity maps and the
origin image pair; (3) image reconstruction loss and LR-
consistency loss are generated by the disparity maps, origin
image pair, and warped image pair, making an end-to-end
training framework. After training, the disparity prediction
procedure is conducted as the black block pipeline shown in
Figure 5. Based on this standard pipeline, Zhong et al. [39]
proposed an unsupervised self-adaptive stereo matching
network by combining two GC-Nets together, each of which
produces a disparity estimation. 0e training loss in this
network is similar to [36]. Smolyanskiy et al. [40] slightly
changed the architecture and proposed a semisupervised
approach where ground truth depths and unsupervised
binocular alignment losses are both used to train the
monocular depth estimation network

0ere are other methods focusing on the optical flow
estimation by incorporating the pose information. Zhou
et al. [41] presented an unsupervised learning framework for
the task of monocular depth and camera motion estimation.
By using an end-to-end learning approach with view syn-
thesis as the supervisory signal, the approach predicts the
monocular depth and ego-motion in a coupled way. Simi-
larly, Vijayanarasimhan et al. [67] proposed a geometry-
aware neural network for motion estimation in videos that
could learn depth, segmentation, camera, and rigid object
motions together. Yin et al. [68] also proposed a jointly
unsupervised learning framework for monocular depth,
optical flow and ego-motion estimation. However, extend-
ing these monocular methods to stereo matching is non-
trivial. When feeding the networks with stereo pairs, their
performances are not even comparable to traditional stereo
matching methods.

LR disparity

Network

Image pair

Warped image pair

Loss

Figure 5: Standard pipeline of unsupervised stereo matching
algorithms.
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5. Conclusion

0is article provides a comprehensive coverage of the re-
markable stereo matching approaches based on deep
learning. For convenience, we grouped these approaches
into three categories: (1) non-end-to-end learning algo-
rithms, (2) end-to-end learning algorithms, and (3) unsu-
pervised learning algorithms.

0e non-end-to-end framework has been thoroughly
studied by previous researchers. Several works focus on
calculating the similarity between two image patches to form
cost volumes, while others try to substitute other components
in the legacy stereo pipeline. Both of these fields achieved great
success but still suffer from high computational burden, limited
receptive field, and lack of context information, and they still
use postprocessing functions more or less.

End-to-end approaches could achieve the state-of-the-
art results due to their powerful representation ability.
Moreover, end-to-end approaches provide a very convenient
way to calculate disparity. Some works focus on designing
new architecture and try their best to incorporate more
context information to improve the quality of the disparity,
especially in the textureless and occlusion region. A small
group of researchers start to care about the speed and
memory usage problem. And this problem will attract more
and more researchers as the problem is ubiquitously existent
in end-to-end usage methods, and it severely prevents these
algorithms from practical usage in embedded devices.

0e unsupervised methods aim to solve the label burden
and achieved great progress. However, the existing methods
still suffer from low quality of the results. 0is is mainly
because the image reconstruction error could not provide a
very powerful strength to let the network converge to the
ground truth disparity. And the left-right consistency error
intrinsically damaged the correctness around the occlusion
area. 0erefore, it is attracting more and more researchers,
making it a hot topic in the stereo matching field.
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