
REVIEW ARTICLE
published: 13 July 2012

doi: 10.3389/fnins.2012.00055

Review of the BCI competition IV

MichaelTangermann1*, Klaus-Robert Müller 1,2, Ad Aertsen3, Niels Birbaumer 4,5, Christoph Braun6,7,
Clemens Brunner 8,9, Robert Leeb10, Carsten Mehring3,11,12, Kai J. Miller 13, Gernot R. Müller-Putz 8,
Guido Nolte14, Gert Pfurtscheller 8, Hubert Preissl 6,15, Gerwin Schalk 16,17,18,19,20, Alois Schlögl 21,
Carmen Vidaurre1, Stephan Waldert 3,6,22 and Benjamin Blankertz 23

1 Machine Learning Laboratory, Berlin Institute of Technology, Berlin, Germany
2 Department of Brain and Cognitive Engineering, Korea University, Seoul, Korea
3 Faculty of Biology, Bernstein Center Freiburg and University of Freiburg, Freiburg, Germany
4 Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
5 Ospedale San Camillo, Istituto di Ricovero e Cura a Carattere Scientifico, Venezia, Italy
6 MEG-Center, University of Tübingen, Tübingen, Germany
7 Center of Mind/Brain Sciences, University of Trento, Trento, Italy
8 Institute for Knowledge Discovery, Graz University of Technology, Graz, Austria
9 Swartz Center for Computational Neuroscience, Institute for Neural Computation, University of California San Diego, La Jolla, CA, USA
10 École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
11 Department of Bioengineering, Imperial College London, London, UK
12 Department of Electrical and Electronic Engineering, Imperial College London, London, UK
13 Physics, Neurobiology and Behavior, Medicine, University of Washington, Seattle, WA, USA
14 Institute for Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
15 Department of Obstetrics and Gynecology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
16 Brain-Computer Interface R&D Program, Wadsworth Center, New York State Department of Health, Albany, NY, USA
17 Department of Neurology, Albany Medical College, Albany, NY, USA
18 Department of Neurological Surgery, School of Medicine, Washington University, St. Louis, MO, USA
19 Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
20 Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, NY, USA
21 Institute for Science and Technology Austria, Maria Gugging, Austria
22 Sobell Department of Movement Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, UK
23 Neurotechnology Group, Berlin Institute of Technology, Berlin, Germany

Edited by:

Eilon Vaadia, The Hebrew University,
Israel

Reviewed by:

Kenji Kansaku, Research Institute of
National Rehabilitation Center for
Persons with Disabilities, Japan
Jose L. “Pepe” Contreras-Vidal,
University of Houston, USA

*Correspondence:

Michael Tangermann, Machine
Learning Laboratory, Berlin Institute
of Technology, FR 6-9, Franklinstr.
28/29, 10587 Berlin, Germany.
e-mail: michael.tangermann@
tu-berlin.de

The BCI competition IV stands in the tradition of prior BCI competitions that aim to pro-

vide high quality neuroscientific data for open access to the scientific community. As

experienced already in prior competitions not only scientists from the narrow field of BCI

compete, but scholars with a broad variety of backgrounds and nationalities. They include

high specialists as well as students.The goals of all BCI competitions have always been to

challenge with respect to novel paradigms and complex data. We report on the following

challenges: (1) asynchronous data, (2) synthetic, (3) multi-class continuous data, (4) session-

to-session transfer, (5) directionally modulated MEG, (6) finger movements recorded by

ECoG. As after past competitions, our hope is that winning entries may enhance the

analysis methods of future BCIs.
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1. INTRODUCTION

Brain-computer interfacing (BCI) is an approach to establish a

novel communication channel from men to machines. The cru-

cial idea is to directly tap the communication at its very origin:

the human brain. BCI technology is used to date primarily for

intentional control. This branch of BCI research aims at the

(partial) restoration and rehabilitation of lost functions in par-

alyzed patients (Kübler et al., 2001; Wolpaw et al., 2002). The

focus of the fourth BCI competition was on BCI systems that

are based on the motor and sensorimotor system of the brain.

In line with the past three BCI competitions, this fourth BCI

competition strives to help the field of BCI prosper by eliciting

solutions for hard data analysis problems appearing in current

BCI research.

Apart from communication and control, recently more and

more alternative applications of BCI technology are being explored

(Blankertz et al., 2010). These include enhancement of human

performance (Haufe et al., 2011) and assessing subconscious per-

ception (Porbadnigk et al., 2010, 2011). Data from those recent

developments have not yet been included in the BCI competi-

tions, but may pose interesting and novel challenges for future

competitions.

1.1. RELEVANCE OF BCI COMPETITIONS

The impact of the past three competitions on the field of BCI

research is manifold and thus worth a closer look. One indicator

of the overall relevance of the BCI competitions for the scien-

tific community is the number of citations. Figure 1 shows how
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FIGURE 1 | Citations of the overview articles on previous

competitions. The histogram shows how many times the editorial articles

on BCI competitions I (Sajda et al., 2003), II (Blankertz et al., 2004), and III

(Blankertz et al., 2006) have been cited in ISI-indexed journals. Data were

retrieved from the ISI Web of Knowledge on December 1st 2011.
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FIGURE 2 | Citations of the articles by the competition winners. The

histogram shows how many times the articles of the winning teams of BCI

competition II (describing the winning algorithms) have been cited in

ISI-indexed journals. Data were retrieved from the ISI Web of Knowledge

on December 1st 2011.

often the three overview articles on the past BCI competitions I

(Sajda et al., 2003), II (Blankertz et al., 2004), and III (Blankertz

et al., 2006) have been cited in ISI-indexed journals and confer-

ence proceedings. The overall sum is 255. From competition II

on, the concept was introduced to have publications of all win-

ning algorithms within one issue of a journal. This worked very

well in the BCI competition II where all winner articles have been

published in volume 51 of IEEE Trans Biomed Eng (Blanchard

and Blankertz, 2004; Bostanov, 2004; Kaper et al., 2004; Lemm

et al., 2004; Mensh et al., 2004; Wang et al., 2004; Xu et al., 2004).

Such concerted publication leads to good visibility, and as a con-

sequence to substantial citations, see Figure 2. (In competition III

only some winning algorithms were published spread cross sev-

eral journals; Wei et al., 2006; Galan et al., 2007; Zhang et al., 2007;

Rakotomamonjy and Guigue, 2008.)

Moreover, research groups that are relatively new to the field of

BCI can attract attention and get renowned if the performance of

their algorithms is independently validated through the competi-

tion process. This is an attractive opportunity even for researchers

who do not have access to an acquisition device for brain signals

or a fully running BCI system. Additionally, some researchers of

the better performing teams were hired or hosted by BCI groups

(in particular the one contributing data sets to the competition).

Most important, the results of the BCI competitions provide

an indication of what type of methods are effective. A good exam-

ple of such a lesson that can be learned from the competitions

is that common spatial pattern analysis (CSP/CSSD; Koles, 1991;

Ramoser et al., 2000; Blankertz et al., 2008b) and its variants are

a robust tool for exploiting ERD/ERS effects (Pfurtscheller and da

Silva, 1999): Almost all data sets throughout all BCI competitions

in which CSP was reasonably applicable (e.g., for multi-channel

recordings or for paradigms in which differential ERD/ERS effects

are expected) have been won by an algorithm involving a variant

of CSP: competition II (2a, 4); competition III (1, 3, 4a, 4c); com-

petition IV (1, 2a, 2b). The success of the CSP-based methods in

the BCI competitions may have a promoting factor for the flour-

ishing development of variants of CSP analysis (Lotte and Guan,

2011; Nikulin et al., 2011; Sannelli et al., 2011).

In contrast, the application of principle component analysis

(PCA) or independent component analysis (ICA), which are very

successful preprocessing methods in other application fields, seem

to be a less effective ingredient to improve the classification per-

formance in BCI (but note, that ICA was used in Xu et al., 2004).

This advance of CSP compared to PCA and ICA may to a large

extend be explained by the different strategies concerning the use

of class labels. While CSP exploits the information contained in

the labels in a supervised manner, ICA and PCA are unsupervised

methods.

In this context, we would like to stress that the competitions

are by no means a systematic evaluation of all available algorithms.

Therefore, we would still like to encourage to explore the full realm

of signal processing and pattern recognition algorithms for BCI.

1.2. THE ROLE OF OPEN DATA

BCI research is complex, and to design an online BCI experiment

or successfully run a BCI application involves the cooperation of

specialists from various disciplines. The availability of BCI data

from past competitions is an important contribution to stimu-

late the interdisciplinary engagement of students and researchers

from neighboring research areas, who can enrich the field of BCI.

This is especially true for scientists specialized in signal process-

ing, data analysis, and machine learning, but also for researchers

from the field of human-computer interaction (HCI). While these

specialists have the potential to improve the progress of BCI with

new algorithmic methods or improved usability of BCI applica-

tions, the field of BCI needs to provide the fuel, that is data. Data,

that on the one hand is typically noisy, high-dimensional, shows

non-stationary characteristics, and thus provides a challenging test

ground especially for the signal processing and machine learning

community. On the other hand, BCI data represents – if inter-

preted as a signal for communication and control – an inherently

unreliable and slow communication channel. From the viewpoint

of HCI, the field of BCI can be considered a challenge as it requires

highly robust interaction models in order to cope with the above

Frontiers in Neuroscience | Neuroprosthetics July 2012 | Volume 6 | Article 55 | 2

http://www.frontiersin.org/Neuroprosthetics
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/Neuroprosthetics/archive


Tangermann et al. Review of the BCI competition IV

mentioned challenges. Finally, any success story for the interaction

design in BCI might be transferable into the other fields like usabil-

ity of mobile devices or gesture controlled applications, which

share some of these interesting characteristics.

1.3. NOTES ON THE USE OF BCI-COMPETITION DATA

Despite of a number of high quality algorithmic solutions pro-

posed by the competition winners in the following sections, the

actual learning problems posed in this competition are surely

of interest in the future, and the proposal of new methods for

their solution can enhance the field of BCI. For this reason, the

competition data sets have been provided online as open data. Fur-

thermore, the labels of the test data, which have not been available

to the participants of the BCI competition IV, have been published

in addition.

We would like to encourage the use of this data and the publica-

tions of any results and insights. Upon publication of such results,

however, we would like to draw your attention to three important

aspects:

First, any performance improvement over the competition

results, should be reported with a note of caution,as it could merely

reflect random fluctuations. Ideally, the performance should be

reported for larger amounts of test data.

Second, a comparison with the performance of the competitors

should be drawn carefully only, as any post-competition work on

the same data has been performed under the advantage of know-

ing the competition outcome, knowing the specific shortcomings

of the submitted algorithms, and having insight into which classes

of algorithms perform better or worse on that data.

Third, even so the test data labels are publicly available now,

their use should be restricted to finally determine the performance

of a method. The test data should not be touched at all during the

algorithm design process and the determination of hyperparame-

ters, as this can lead to a substantial amount of overfitting (Lemm

et al., 2011).

1.4. RELEVANCE OF THE DATA SETS

For an overview, a list of data sets and the corresponding winning

teams is summarized in Tables 1 and 2.

The BCI competition fosters algorithmic solutions, which allow

for a single-trial assessment of mental states. For the neurosciences,

such developments in signal processing and machine learning are

Table 1 | Overview of the data sets of BCI competition IV.

# Lab # Channels Paradigm and challenge

1 Berlin 64 EEG 2-Class motor imagery, uncued

classifier application

2a Graz 22 EEG 4-Class motor imagery, continuous

classifier application

2b Graz 3 EEG Motor imagery, session-to-session

transfer and eye artifacts

3 Freiburg 10 MEG Decoding directions of

finger/hand/wrist movements

4 Seattle/Albany 64 ECoG Discrimination of movements of

individual finders

clearly relevant as these single-trial data analysis methods provide

a possibility to monitor the acting and behaving brain. This is a

prerequisite to study the dynamics of brain processes, and eventu-

ally develop new reactive experimental paradigms, that vary, e.g.,

stimulus conditions depending on the current state in a closed

loop.

The data sets of this competition all deal with motor paradigms,

and more specifically with oscillatory signals which are related to

imagined motor actions or motor execution. As an example, direct

clinical relevance of BCI technology can be expected for the sup-

port of rehabilitation training in patients suffering from stroke

(Silvoni et al., 2011) in cortical motor areas. However, as changes

of oscillatory processes are not uniquely observed during motor

activities, but represent a rather general high-level characteristic of

many brain processes, the benefit of this BCI competition should

extend from motor system research to other fields.

Data set 1 of the BCI competition IV addresses the challenge

to correctly deal with intended non-control periods and uncued

periods of control activity. This is of high clinical relevance, as any

practical application of a motor imagery BCI system will require

that the BCI system recognizes periods of resting and coming back

to active BCI control.

Data set 2a enlarges the number of control classes from two

to four. Compared to the simpler setting of only two motor

imagery classes, this enlargement contains the risk of a reduc-

tion in classification accuracy. However, it also offers the potential

of higher information transfer rates, and more natural interaction

paradigms between user and application. In combination with

the continuous classification setting, this is clearly of practical

relevance.

Data set 2b challenges the session-to-session transfer of clas-

sification models. Avoiding the time-consuming re-calibration of

the BCI system, such approaches are of high practical importance

for end-users, who want to use a BCI on a daily basis.

Data set 3 is a collection of magnetoencephalography (MEG)

signals. While most motor paradigms in non-invasive BCI make

use of the lateralization of motor-related signals (e.g., ERD/ERS

effects over the left hand and right hand cortex), this data set seeks

to extract a multi-class decision from a single hand only. Com-

parable to data set 2a, the expansion from two to more classes

has the potential to boost the information transfer rate of a BCI.

Furthermore the data set is an example for the possibility to infer

hand movement directions not only from single cell spiking activ-

ity (e.g., by intra-cortical single unit recordings; Georgopoulos

et al., 1982; Velliste et al., 2008), which are known to realize a

directional coding, but also from non-invasive measurements of

larger populations (Waldert et al., 2008). Despite of its practical

restrictions (an MEG system is neither practical nor affordable

for patients), this MEG-BCI could still be applied in conjunction

with online feedback, e.g., for stroke rehabilitation attempts (Buch

et al., 2008) or for prosthesis training.

The goal for data set 4 of the BCI competition IV was to infer

the flexion of individual fingers from signals recorded from the

surface of the brain via electrocorticography (ECoG). Determin-

ing the relationship of ECoG signals with finger flexion provides

new neuroscientific understanding, and may eventually lead to

improved brain-computer interface systems.
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Table 2 |ThisTable lists the winning teams for all competition data sets.

Data set Research lab Contributor(s)

1 Institute for Infocomm Research, Singapore Zhang Haihong, Ang Kai Keng, Guan Cuntai, Wang Chuanchu, Chin

Zheng Yang

2a Institute for Infocomm Research, Singapore Kai Keng Ang, Zheng Yang Chin, Chuanchu Wang, Cuntai Guan,

Haihong Zhang, Kok Soon Phua, Brahim Hamadicharef, Keng Peng

Tee

2b Institute for Infocomm Research, Singapore Zheng Yang Chin, Kai Keng Ang, Chuanchu Wang, Cuntai Guan,

Haihong Zhang, Kok Soon Phua, Brahim Hamadicharef, Keng Peng

Tee

3 Biomedical Signal and Image Processing Laboratory (BiSIPL), Sharif

University of Technology, Tehran, Iran

Sepideh Hajipour, Mohammad Bagher Shamsollahi

4 Cortex Team, Research Centre INRIA, France Nanying Liang, Laurent Bougrain

1.5. OVERVIEW OF THE ARTICLE

After some general remarks concerning the concept and the BCI

competitions in Section 2, the subsequent five sections, will char-

acterize each data set contained in the BCI competition IV in detail,

including an assessment of its relevance to the field, experimental

details, the data format, the applied evaluation criterion for sub-

missions, and a brief outcome. The article closes with a section

about the overall results of the competition and a discussion. The

latter includes prospective topics of subsequent competitions.

The winning labs published individual articles on their

approaches, see (Ang et al., 2012; Flamary and Rakotomamonjy,

2012; Sardouie and Shamsollahi, 2012; Zhang et al., 2012).

2. GENERAL STRUCTURE OF THE DATA SETS AND THE

MACHINE LEARNING TASK

Challenges posed within the BCI competition typically contain

a problem description, a training data set, a test data set, and a

description of the evaluation metric that is applied to determine

the performance of contributed algorithms.

2.1. TRAINING DATA

This collection of data (also called calibration data) comprises

the data epochs from EEG, MEG, or ECoG recordings, the labels

or markers that describe the tasks that were to be performed by

subjects at recording time, and the cues which had been pre-

sented to them. In addition, the groups providing the training data

describe the specific performance metric according to which any

participant’s competition entry will be rated. Participants used this

information to develop a processing method that was able to esti-

mate labels based on data. Any method could only be successful,

if it generalized well on new test data.

2.2. TEST DATA

This data set (also called evaluation data) contains data epochs,

but no labels or markers. The labels do exist but were secret to the

participants. The task of participants was to estimate the labels of

the test data and send them in. The data providing group evalu-

ated the labels according to the predefined performance metric,

that had been published together with the training data.

2.3. CAUSALITY OF METHODS

As the full test set is available to the participants from the begin-

ning and not (as in a real online experiment) incrementally, the

participants could in principle exploit the structure of the full

(unlabeled) data already in advance in order to improve their

label estimate even for the first trials. The organizers are aware

of the problem, that this use of data is non-causal and unreal-

istic. Consequently it was not allowed for participants to exploit

this unrealistic advantage, that they could gain compared to a BCI

practitioner.

However, the distribution of test data is simplified to a large

extend, if it can be provided en bloc. In order to ensure causal pro-

cessing despite of this distribution method, the participants had

to submit a short description of the developed data processing

routines. In case of unclear causality the participants had to prove

that their approach is causal by handing in the data processing

routines in addition to the labels.

3. DATA SET 1

Data set 1 Asynchronous Motor Imagery is provided by B. Blankertz,

C. Vidaurre and K.-R. Müller from Berlin (Germany). It can

be freely assessed via http://www.bbci.de/competition/iv/with the

only restriction that the present article is referenced upon any

publication of results.

3.1. MOTIVATION

Most demonstrations of algorithms on BCI data are evaluating

classification of EEG trials, i.e., segments of EEG signals of a fixed

length, where each trial corresponds to a specific mental state. But

in BCI applications with asynchronous feedback, e.g., cursor con-

trol, one is faced with the problem that the classifier has to be

applied continuously to the incoming EEG without having cues of

when the subject is switching her/his intention. This data set poses

the challenge of applying a classifier to continuous EEG for which

no cue information is given.

Another issue that is addressed in this data set is that the test

data contains periods in which the user has no control intention.

During those intervals the classifier is supposed to return to 0 (no

affiliation to one of the target classes).

As a special feature, some of the data sets were artificially gen-

erated. The idea was to have a means for generating artificial EEG
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signals with specified properties that are so realistic that they can

be used to evaluate and compare analysis techniques. The com-

petition is a possibility to verify whether the applied methods

perform comparably on artificial and real data. The only infor-

mation provided to the competitors was that there is at least one

real and at least one artificial data set, while the true distribution

remained undisclosed until the submission deadline. For compe-

tition purpose, only results for the real data set(s) were considered,

but results for artificial data were also reported for comparison.

See the subsequent Section 4 for a detailed description of the gen-

eration of the artificial data and a comparison of the competition

results obtained on real vs. artificial data.

3.2. MATERIALS AND SUBJECTS

These data sets were recorded exclusively for the purpose of the

competition. Four healthy participants served as experimental

subjects. In the whole session motor imagery was performed with-

out feedback. For each participant two classes of motor imagery

were selected from the three classes left hand, right hand, and foot

(side chosen by the individual; optionally also both feet).

3.2.1. Experimental paradigm

The recording was made using BrainAmp MR plus amplifiers

(Brain Products GmbH, Munich, Germany) and a Ag/AgCl elec-

trode cap (EASYCAP GmbH). Signals from 59 EEG positions were

measured that were most densely distributed over sensorimotor

areas. Signals were band-pass filtered between 0.05 and 200 Hz

and then digitized at 1000 Hz with 16 bit (0.1 µV) accuracy. Also

a version of the data was provided that was sub sampled at 100 Hz

[first low-pass filtering the original data (Chebyshev Type II filter

of order 10 with stop band ripple 50 dB down and stop band edge

frequency 49 Hz) and then calculating the mean of consecutive

blocks of 10 samples].

3.2.2. Protocol

The session was divided into two parts: recording of training

data and recording of test data. Training data were provided with

complete marker information such that it could be used by the

competitors for adapting the parameters of the methods/models.

In contrast, the test data which was provided to the competitor

only consisted of the EEG signals. The corresponding markers

have been kept secret until the submission deadline and have been

used to evaluate the submissions.

3.2.2.1. Training data. In the first two runs, arrows pointing

left, right, or down were presented as visual cues on a computer

screen. Cues were displayed for a period of 4 s during which the

subject was instructed to perform the cued motor imagery task.

These periods were interleaved with 2 s of blank screen and 2 s

with a fixation cross shown in the center of the screen. The fixa-

tion cross was superimposed on the cues, i.e., it was shown for 6 s,

see Figure 3. In each run 50 trials of each of the chosen two classes

have been presented, resulting in a total of 200 trials. After every

15 trials a break of 15 s was given for relaxation. Between the runs

there were longer breaks of 5–15 min.

FIGURE 3 | (Data set 1 – trial structure). Training data was collected in the

calibration runs. Arrows pointing left, right, or down have been presented as

cues for imagining left hand, right hand, or foot movements. After a fixation

cross was presented for 2 s, the directional cue was overlaid for 4 s. Then

the screen was blank for 2 s. In the test runs used for evaluation, spoken

words have been presented as cues.

3.2.2.2. Test data. Then 4 runs followed which were used for

evaluating the submissions to the competitions. Here, the motor

imagery tasks were cued by acoustic stimuli (words left, right, and

foot ) for periods of varying length between 1.5 and 8 s. The end of

the motor imagery period was indicated by the word stop. Intermit-

ting periods had also a varying duration of 1.5–8 s. The acoustical

cues were soft-spoken it order to avoid that acoustically evoked

potentials could be detected to segment the data into control and

no-control intervals (or even to decode the cue information). In

each run, 30 trials for each class have been recorded resulting in

a total of 240 trials. After every 30 trials a break of 15 s was given

for relaxation. Between the runs there were longer breaks of 5–

15 min. Competitors were informed that the number of trials from

each condition was not necessarily equal. Due to the experimental

design, there were twice as much periods of no control as periods

of each condition.

Additionally, we introduced a kind of non-stationarity into the

test data by changing the environmental conditions. Occasionally

during the runs music (2 times) or videos (2 times) have been

played, or the participant was instructed to close her/his eyes (2

times). Each of those periods (during which the cue presentation

was not paused) lasted about 2 min.

3.3. INVESTIGATION OF THE DATA SET

The most stable effect of motor imagery is a modulation of the

sensorimotor rhythms (SMRs), see (Pfurtscheller and da Silva,

1999). For hand motor imagery an attenuation of the SMR ampli-

tude over the contralateral motor area is expected. The effect of

foot imagery is more diverse. An attenuation of the SMR over the

foot area, which is on the midline of the motor cortex could be

expected, but is rarely observed and does not appear in the data

set. In most of the subjects, an increase of the SMR amplitude over

the hand areas is observed. This is also the case for the two par-

ticipants (a and f) of this data set, who performed foot imagery.

Figure 4 gives an overview, of how this effect is reflected in the
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FIGURE 4 | (Data set 1 – glance at the neurophysiology). The first row

displays the averaged spectra of the two chosen motor imagery tasks (red:

left hand, green: right hand; blue: foot) in the training data. A selected

subject-specific frequency band is shaded in gray. The second row shows the

average amplitude envelope of that frequency band with 0 being the time

point of cue presentation. The time interval which was used to calculate the

spectra shown above is shaded. The bottommost row displays the (signed)

r 2-difference in log band-power between the individually chosen motor

imagery tasks as scalp maps. Band-power was calculated in the frequency

band that is shown in the topmost row and averaged across the time interval

that is indicated in the middle row. Three of those seven data sets have been

artificially generated, see main text.

competition data set. For each participant, an individual channel,

time interval, and frequency band was selected to display the dif-

ferential modulations of the SMRs. Class-wise averaged frequency

spectra are plotted in the upper row. The second row shows the

time course of band-power averaged across all trials. The bottom-

most row displays the difference in log band-power between the

two motor imagery conditions as scalp topographies.

Data sets c, d, and e were artificially generated.

3.4. CHALLENGE

The submissions were evaluated in view of a one dimensional cur-

sor control application with range from −1 to 1. The mental state

of class one is used to position the cursor at −1, and the men-

tal state of class two is used to position the cursor near 1. In the

absence of those mental states (intermitting intervals) the cursor

should be at position 0. Note that it is unknown to the competitors

at which intervals the subject is in a defined mental state. Com-

petitors had to submit classifier outputs for all time points. To

measure the performance, the squared error with respect to the

target vector – that is −1 for class one, 1 for class two, and 0 other-

wise – averaged across time points was calculated. Since the mental

state of the user does not abruptly change with cue appearance,

time points during transient periods (1 s starting from each cue)

were discarded from evaluation.

As stated above, it was declared that for competition purpose,

only results for the real data sets were considered, but results for

artificial data were also reported for comparison.

Additionally, participants were asked to optionally judge which

of the data sets were the artificially generated ones.

3.5. OUTCOME IN BRIEF

There were 24 submissions to data set 1. The winning team is

Zhang Haihong and colleagues from the Institute for Infocomm

Research, Singapore. They approached the task as a three class

problem with the rest class being the third class. For classification,

CSP was combined with a filter bank. A criterion based on mutual

information was used to select those features that were to be

fed into a radial basis function based neural network. Using this

approach, they obtained a mean squared error (MSE) of 0.382

(averaged across the four real data sets). For further details of

their method see (Zhang et al., 2012). The winners are very closely

followed by Dieter Devlaminck and colleagues from the Uni-

versity of Ghent, from the Psychiatric Institute of Guislain and

from the University Hospital Ghent, who obtained an MSE of

0.383. They employed multi-class CSP with a subject-specific fre-

quency band and a multi-class support vector machine (SVM)

with ordinal regression. The results ranked 3rd to 5th have been

achieved by Kai Keng Ann and colleagues (Institute for Infocomm

Research, Singapore); Liu Guangquan and colleagues (Shanghai

Jiao Tong University, China), and Abdul Satti and colleagues (Uni-

versity of Ulster). All those three competitors also used CSP as

a pivotal step in combination with a filter bank (rank 3) or

with a subject-specific frequency band (ranks 4 and 5). Figure 5

shows histograms of the results of those five highest ranked

submissions.

To assess the results, it has to be taken into account that a clas-

sifier that gives the constant output zero has an MSE of about

0.5. The exact value varies between data sets since the length

of the motor imagery and no-control period was chosen ran-

domly. Figure 6 gives a more detailed view on the performance

of the winning algorithm. It shows for the four data sets (rows)

normalized histograms of the classifier outputs – separately for

periods of the three mental states. In the left column the true

label is −1 (first motor imagery class), in the middle column

the true label is 0 (no control intention), and in the right col-

umn the true label is 1 (second motor imagery condition). The

value of the true label is indicated by a blue triangle in each

subplot. This figure makes clear that this data set poses really a

big challenge. Even for the best method among 24 submissions,

the results are not very satisfying. Interestingly, the no-control
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state is quite well detected in the second data set (participant b).

The overall best performance was achieved in the forth data set

(participant g ).

Figure 7 gives a better intuition of how well the obtained con-

trol actually is. It shows for a selected segment of 100 s the true

rank 1 rank 2 rank 3 rank 4 rank 5

0.2

0.25

0.3

0.35

0.4

0.45

0.5
a

b

f

g

FIGURE 5 | (Data set 1 – histogram of results). Performance of the first

five ranked submissions is shown in terms of their mean squared error

(MSE) wrt. the true labels. Only results for the real (i.e., not artificially

generated) data sets are shown. The mean across the four data sets is

plotted as a horizontal red line. The MSE for constant prediction output of 0

are 0.507, 0.515, 0.491, 0.524 for data sets a, b, f, g, respectively.

mental state (blue bars) and the classifier output of the winning

algorithm (red line).

A guess on the question which data sets were artificially gen-

erated was submitted by 16 out of 23 competitors. The correct

categorization was revealed by two competitors (Astrid Zeman

and Manuel Moebius), 8 more competitors revealed 2 of the 3

artificial subjects, but one of those also considered one real data

set as artificial.

4. DATA SET 1 (ARTIFICIALLY GENERATED)

The subset of Data set 1 that was artificially generated is pro-

vided by C. Vidaurre and G. Nolte from Berlin (Germany). It can

be freely assessed via http://www.bbci.de/competition/iv/ with the

only restriction that the present article is referenced upon any

publication of results.

4.1. MOTIVATION

The BCI competition IV included an original ingredient compared

to past events: part of the data sets of the BBCI group were artifi-

cially generated. The motivation of this work was to check whether

or not EEG data can be created to have specific properties in order

to test new machine learning methods. If this was the case, the

algorithms applied to both, synthetic and real EEG, would pro-

duce comparable results. To test this hypothesis we analyzed the

ranking of the participants and the performance of the methods in

real and synthetic EEG. Brain data like EEG is often noisy and its

variables cannot be controlled easily. Synthetically generated data
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FIGURE 6 | (Data set 1 – distribution of classifier outputs). These

(normalized) histograms display the distribution of the classifier outputs of the

winning algorithm. Each row corresponds to one data set (a, b, f, g). The left

column is a histogram for those time points in which the true label is −1, for

the middle column it is 0 (no control), and for the right column it is 1. The true

label is indicated by the blue triangle.
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FIGURE 7 | (Data set 1 – trace of classifier outputs). The labels of

the true mental state are displayed in blue. The red line shows the

classifier outputs of the winning algorithm. This example is a

selected segment of 100 s taken from data set g in which the

classification is quite successful. The MSE in the shown segment

is 0.171.

may overcome these difficulties, and besides it is easy and cheap to

produce.

4.2. MATERIAL

In the following, the single components of (artificial) EEG are

described separately. We start with the generation of artificial

EEG noise, which we divided into background noise and base-

line drifts. Then we describe the generation of the µ (and β as

a first harmonic of µ) rhythm and its desynchronization (ERD)

due to the onset of motor imagery tasks. After that, we describe

the artifacts that have been added to the data (eye blinks and eye

movements) to include some more realistic noise in our signals.

Our synthetic EEG is computed as a superposition of potentials

from these three different systems (ongoing background noise,

task dependent rhythmic activity generated on the motor cortex

and eye related noise, eye blinks, and eye movements) which have

qualitatively different statistical and spatial properties.

4.2.1. Background noise

Background noise in EEG can reasonably be assumed to be Gauss-

ian distributed. The spatial and temporal characteristics, however,

are in general too complex to be adequately modeled using a sim-

ple parametric model (Huizenga et al., 2002; Bijma et al., 2003;

Freeman, 2004a,b, 2005, 2006). To solve this difficulty, we first

estimated the cross-spectrum from real EEG data in eyes open and

eyes closed conditions and then generated an arbitrary amount of

data according to the estimated (complex) cross-spectral matrix

in the following way:

Let xi(f ) be the Fourier transform of simulated white Gaussian

noise for N data points for channel i with i = 1. . .M. Since typ-

ically (and in the case of our data) the estimated cross-spectrum

C(fi) at discrete frequencies fi is based on averages of relatively

short time windows (duration: 1 s) and N denotes the length of

the complete data set, the frequency resolution of the measured

cross-spectra is much lower than the frequency resolution of xi(f).

We estimate C(f ) as a linear interpolation:

C
(

f
)

≡=
f − f1

f2 − f1
C

(

f1
)

+
f2 − f

f2 − f1
C

(

f2
)

(1)

with f1 (f2) being the largest (smallest) value of the set (fi)

lower (higher) than f. Then we scale x ≡ (x1(f ), x2(f ),. . .,xM(f ))T

with A(f ) defined by the decomposition1 C(f ) = A(f )A(f )
†

with
†denoting transpose and complex conjugation:

y(f) = A(f)x(f) (2)

Finally, the simulated noise data in the channel i is calculated as

the inverse Fourier transform of yi(f ). The resulting background

noise was a superposition of different amounts of each type of

noise, depending on the condition. Figure 8 depicts noise in con-

ditions eyes open and eyes closed at the 10-Hz frequency. One can

observe that the power at this frequency is varying in the occipital

region, as expected in real EEG data.

4.2.2. Baseline drifts

Baseline drifts are typically observable in unfiltered electroen-

cephalographic signals (cf. Simons et al., 1981; Henninghausen

et al., 1993) and this is also the case for the BCI-competition data.

After analyzing the real“raw”EEG of the competition, we observed

both, relatively fast and slow drifts of the signal (shown in Figure 9)

and accordingly created two types of artificial drifts. These drifts

were generated using the cross-spectrum of the background noise,

but simulating a higher sampling frequency, which had the effect of

producing a slower signal (noise) than the background itself. The

selected frequencies for this computation were 150 and 300 kHz,

respectively (the original sampling frequency was 1 kHz).

4.2.3. Event-related desynchronization

Forward calculation For the generation of ERD we assumed fixed

spatial patterns calculated as potential maps from dipolar sources

within left and right motor areas (Geselowitz, 1967). Again, we

assumed that the data is Gaussian distributed. The frequency con-

tent, however, was restricted to a single frequency (chosen to be

12 Hz) with a width δf = 1 Hz. We assumed that the generators of

this rhythm were radial dipoles with the origins to be 3 cm below

electrodes C3 and C4 for the left and right side activity, respec-

tively (see Figures 10 and 11). The directions “radial” and also

“below”were chosen according to the surface normals at electrodes

C3 and C4. For the forward calculation we assumed a realistic

volume conductor consisting of three shells (scalp, skull, brain)

1The decomposition is not unique but any will do.
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FIGURE 8 | (Data Set 1 – artificial). Left: spectra of the signal at all channel

locations for the two conditions, eyes open and eyes closed. Right: scalp

plot of the signal power at 10 Hz for the two conditions (eyes open and

closed). The actual noise of the artificial data varied linearly in time between

both conditions, depending of the task of the BCI user.
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FIGURE 9 | (Data Set 1 – artificial). Example of fast and slow baseline

drifts that are observable in unfiltered BCI competition IV data. The figure

depicts the time course of the amplitude of the EEG in one channel.

with conductivity ratios 1:0.02:1. The Maxwell equations were

solved using an analytic expansion of the EEG lead field (Nolte

and Dassios, 2005).

Both left and right rhythmic activity was present in all con-

ditions. However, during left hand movements the right side

rhythmic activity was reduced by at least 50% (it changed slightly

for each data set) and vice versa.

4.2.4. Harmonic oscillations in the beta band

A harmonic component of the subject-specific µ rhythm can often

be observed in the β band (Huber et al., 1971; Pfurtscheller, 1981;

Pfurtscheller et al., 1996; Pfurtscheller and Lopes da Silva, 1999;

Carlqvist et al., 2004; Nikulin et al., 2007). In our data sets we

have included such a harmonic component with different levels of

amplitude in relation to the µ rhythm, varying from 15 to 1% (see

Figure 12).

4.2.5. Asymmetry in the amplitude of the rhythms

Typically, one can observe some asymmetry in the strength of the

desynchronization in each of the hemispheres (McFarland et al.,

2000; Mazaheri and Jensen, 2008; Nikulin et al., 2010). In a pair of

data sets and in order to create a more realistic EEG we added this

asymmetry in the rhythms that we generated.

4.2.6. Generation of artifacts

Both for eye blinks and eye movements we assumed the generators

to be current dipoles placed within the eyes. The dipoles in the left

and right eye were activated simultaneously in a randomly chosen

superposition of a vertical and horizontal direction. The potentials

due to vertical dipoles were on average 10 times stronger than the

ones from horizontal direction. The topographies of vertical and

horizontal dipoles are shown in the upper panels of Figure 13.

While the spatial patterns were (on average) identical for eye

movement and eye blinks, the time courses were chosen differ-

ently. Time courses of eye movements were modeled as constants

with continuous on- and offsets as shown in the lower left panel of

Figure 13. The duration of the constant was set randomly between

0 and 2 s.

The time course of eye blinks was chosen as

x (t ) = (t + ξ) exp

(

−
t 2

2σ2
t

)

(3)

with a width set to σt = 31 ms according to real eye blinks and

with xi being a Gaussian distributed random variable with stan-

dard deviation equal to 20 ms. An example time course is given in

the lower right panel of Figure 13.

4.2.7. Combining the ingredients

For each data set, the final EEG was generated by the linear com-

bination of each element (background noise, baseline drifts, ERD,

and eye artifacts). The background noise was a superposition of

the cross-spectra in the conditions eyes open and eyes closed. The

amount of each type of cross-spectrum depended on the “envi-

ronmental” conditions in which the virtual user was supposed to

be immersed: visual load (large amount of eyes open condition

and small amount of eyes closed condition), auditive load (small

amount of eyes open condition and larger amount of eyes closed

condition).

The ERD frequency was randomly chosen between 10 and

12 Hz for each user and a harmonic in the beta band (by dou-

bling the µ rhythm frequency) was added as well. The position of

the dipoles generating the oscillatory activity could vary slightly

and randomly for each user. As already described, we also allowed

asymmetry of the µ rhythm amplitude in each hemisphere.
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FIGURE 10 | (Data Set 1 – artificial). Location and direction of selected dipoles in the head.

Then the eye movements and eye blinks were as well superim-

posed to the signal. One random time course was generated for

each of the data sets. Finally, the baseline drifts were added to the

total.

For the calculation, each element (ERD, background noise,

etc.) was normalized by its trace and the coefficient multiplying

each of them was manually selected, by computing the expected

performance using baseline methods (frequency band and time

interval subject-selected, then CSP computed using training data

and applied to test data). For more information please refer to

(Blankertz et al., 2008b).

4.3. CHALLENGE

As it was not revealed which of the data sets were real and which

were artificially generated. The challenge and evaluation criterion

was identical, see Section 3.4.

4.4. OUTCOME IN BRIEF

A comparison of the similarity of real and synthetic data

was performed based on the result ranking (available via

http://bbci.de/competition/iv/results/). First, we analyzed the

position of the participants in the ranking. We calculated the cor-

relation coefficient of the participants’ positions in both of the

data sets and obtained a result of 0.89, meaning that the position

of a participant in both rankings was highly correlated: a good

rank in the real data analysis yielded a good rank in the artificial

data analysis and vice versa. Also, we analyzed the performance

of the participants in the same way. We obtained a correlation

coefficient of 0.93, meaning that the performance of a participant

in both data sets was very similar. The linear fitting had a slight

FIGURE 11 | (Data Set 1 – artificial). Power topographies at the µ rhythm

frequency generated by the dipoles.

positive bias (0.02), which shows that the performance measure-

ment (mean squared error) was slightly higher for the synthetic

EEG (these data sets were a bit noisier than the real ones).

Summarizing, those algorithms doing well in the real data sets

also performed higher in the artificial data and vice versa.

4.5. DISCUSSION

In this section we gave a description of the generation of syn-

thetic EEG. We have described all its components, documented

our decisions, and detailed the calculation of each element.

We emphasize that more sophisticated EEG forward models

would include CSF as a fourth layer and that new research indicates

that the chosen conductivity ratio (1:50) might be too high. While

the simulation could be improved, almost all BCI methods work
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entirely in sensor space and the exact details of the topographies

will hardly affect the results of the BCI task.

We have analyzed the results of the BCI competition IV and

shown the high correlation between the ranking and the perfor-

mance measure in the real and artificial EEG in Figure 14. In this

specific context, the creation of synthetic EEG data sets has proven

to be useful.

Artificially generated EEG can be generated in large amounts.

Using it not only avoids performing real recordings, it can also be

fine-tuned, e.g., to contain a controlled amount of certain arti-

facts. Both characteristics are beneficial for an initial performance

evaluation of new algorithmic methods.

Although this was our first try to generate artificial data and the

methods can be further developed, we have shown a way to create

left

right
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FIGURE 12 | (Data Set 1 – artificial). Spectra of the EEG signal in two

discriminative channels. The discriminability between the classes is shown

at the bottom of each spectrum. This Figure illustrates an example of

asymmetry of the µ rhythm peak in each hemisphere. Also the harmonic of

the µ rhythm is observable in the beta band.

data under controlled conditions, in order to test new methods

before performing actual experiments and this way boosting the

probability of success of new analysis methods in neuroscience.

In the future we will work on the improvement of the artifact

generation methods and develop an automatic way to combine

all the components of our synthetic electroencephalogram. Addi-

tionally, more tests should be done with the artificially generated

data, to assure that the correlation between real and synthetic EEG

is as high as shown in this report.

5. DATA SET 2A

Data set 2a Continuous Multi-class Motor Imagery is provided

by C. Brunner, R. Leeb, G. R. Müller-Putz, G. Pfurtscheller, and

FIGURE 13 | (Data Set 1 – artificial). Top row: scalp plots of one eye

movement and one eye blink generated for the synthetic EEG data sets of

the BCI competition IV. Bottom row: corresponding time course of eye

movements and blinks.
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FIGURE 14 | (Data Set 1 – artificial). Linear regression of the rank position (left) and performance of the method (right). The x-axis corresponds to the results

submitted for the real EEG data sets, whereas y-axis corresponds to those of the synthetic EEG.
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A. Schlögl from Graz (Austria). It can be freely assessed via

http://www.bbci.de/competition/iv/ with the only restriction that

the present article is referenced upon any publication of results.

5.1. MOTIVATION

This data set challenges the session-to-session transfer of a three

class motor imagery task. Compared to other synchronous motor

imagery data sets, a continuous estimation of motor imagery class

labels is required. This represents a realistic setting for an online

control of a continuous output parameter.

5.2. MATERIALS AND SUBJECTS

This data set comprises electroencephalographic (EEG) data from

9 subjects.

5.2.1. Experimental paradigm

The cue-based BCI paradigm consisted of four different motor

imagery tasks, namely the imagination of movement of the left

hand (class 1), right hand (class 2), both feet (class 3), and tongue

(class 4). Two sessions on different days were recorded for each

subject. Each session is comprised of 6 runs separated by short

breaks. One run consists of 48 trials (12 for each of the four possible

classes), yielding a total of 288 trials per session.

5.2.2. Protocol

At the beginning of each session, we recorded approximately 5 min

of EEG data to estimate the EOG influence. This recording was

divided into 3 blocks: (1) 2 min with eyes open (looking at a fix-

ation cross on the screen), (2) 1 min with eyes closed, and (3)

1 min with eye movements. The timing scheme of one session is

illustrated in Figure 15. Note that due to technical problems, the

EOG block is shorter for subject A04T and contains only the eye

movement condition (see Table A1 in Appendix for a list of all

subjects).

All subjects were sitting in a comfortable armchair in front

of a computer screen. At the beginning of a trial (t = 0 s), a fix-

ation cross appeared on the black screen. In addition, a short

acoustic warning tone was presented. After 2 s (t = 2 s), a cue in

the form of an arrow pointing either to the left, right, down, or

up (corresponding to one of the four classes left hand, right hand,

foot, or tongue) appeared and stayed on the screen for 1.25 s.

This prompted the subjects to perform the desired motor imagery

task. No feedback was provided. The subjects were instructed to

carry out the motor imagery task until the fixation cross disap-

peared from the screen at t = 6 s. A short break with a black screen

followed. The paradigm is illustrated in Figure 16.

5.3. DATA FORMAT

Twenty-two Ag/AgCl electrodes (with inter-electrode distances of

3.5 cm) were used to record the EEG; the montage is shown in

FIGURE 15 | (Data Set 2a). Timing scheme of one session.

Figure 17, left. All signals were recorded monopolarly with the left

mastoid serving as reference and the right mastoid as ground. The

signals were sampled with 250 Hz and bandpass filtered between

0.5 and 100 Hz. The sensitivity of the amplifier was set to 100 µV.

An additional 50 Hz notch filter was enabled to suppress line noise.

In addition to the 22 EEG channels, 3 monopolar EOG channels

were recorded and also sampled with 250 Hz (see Figure 17, right).

They were bandpass filtered between 0.5 and 100 Hz (with the 50-

Hz notch filter enabled), and the sensitivity of the amplifier was

set to 1 mV. The EOG channels are provided for the subsequent

application of artifact processing methods (Fatourechi et al., 2007)

and must not be used for classification.

A visual inspection of all data sets was carried out by an expert

and trials containing artifacts were marked. Eight out of the total

of nine data sets were analyzed in Naeem et al. (2006) and Brunner

et al. (2007, 2011).

All data sets are stored in the general data format for biomed-

ical signals (GDF), one file per subject and session. However, only

one session contains the class labels for all trials, whereas the other

sessions are used to test the classifier and hence to evaluate the

performance. For details on the data set, the GDF files contained,

markers and functions provided for loading and evaluation, please

see Section A.1 in Appendix.

5.4. CHALLENGE

Participants were asked to provide a continuous classification out-

put for each sample in the form of class labels (1–4), including

labeled trials and trials marked as artifact. A confusion matrix was

then built from all artifact-free trials for each time point. From

these confusion matrices, the time course of the accuracy as well

as the kappa coefficient was obtained (Schlögl et al., 2007b). The

chance level was at κ = 0. The algorithm used for this evaluation

was provided in BioSig. The algorithm achieving the largest kappa

value was declared the winner.

Due to the fact that the test data sets were not distributed until

the end of the competition, software had to be submitted. It had

to be capable to process EEG data files of the same format as used

for all training sets2) and produce the aforementioned class label

vector.

Since three EOG channels were provided, the software was

required to remove EOG artifacts before the subsequent data pro-

cessing using artifact removal techniques such as high pass filtering

2One test data set is distributed from the beginning of the competition to enable

participants to test their program and to ensure that it produces the desired output.

FIGURE 16 | (Data Set 2a). Timing scheme of the paradigm.
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FIGURE 17 | (Data Set 2a). Left: electrode montage corresponding to the international 10–20 system. Right: electrode montage of the three monopolar EOG

channels.

or linear regression (Schlögl et al., 2007a). The use of other cor-

rection methods was possible, but it was requested that artifacts

had no influence on the classification results.

All algorithms had to be causal, meaning that the classifica-

tion output at time k was allowed only to depend on the current

and past samples xk,xk−1,. . .,x0. In order to check whether the

causality criterion and the artifact processing requirements were

fulfilled, all submissions had to be open source, including all

additional libraries, compilers, programming languages, and so

on (for example, Octave/FreeMat, C++, Python, etc.). Note that

submissions could also be written in the closed-source develop-

ment environment MATLAB as long as the code was executable in

Octave. Similarly, C++ programs could be written and compiled

with a Microsoft or Intel compiler, but the code had to compile

also with g++.

5.5. OUTCOME IN BRIEF

There were five submissions for this data set (see Table 3). All of

them used CSP features. The winning algorithm was submitted by

K. K. Ang, Z. Y. Chin, C. Wang, C. Guan, H. Zhang, K. S. Phua,

B. Hamadicharef, and K. P. Tee from the Institute for Infocomm

Research, Agency for Science, Technology and Research Singapore.

Details of their approach are described in Ang et al. (2012). The

performance measure kappa was 0.57 averaged over all nine sub-

jects. The other four submissions attained kappa values of 0.52,

0.31, 0.30, and 0.29 and thus were well above chance level of κ = 0.

The winning algorithm performed best in seven out of nine sub-

jects; in two subjects, the algorithm that overall ranked second best

reached even slightly higher kappa values.

The winning algorithm requires MATLAB, but also runs on

Octave. It uses the BioSig toolbox to load the data. The algorithm

Table 3 | (Data Set 2a). Contributions with final result (kappa).

Contributor Kappa Lab

K. K. Ang 0.57 Institute for Infocomm Research, Agency for

Science, Technology and Research Singapore

L. Guangquan 0.52 School of Mechanical Engineering, Shanghai

Jiao Tong University, China

W. Song 0.31 College of Inf. Science and Techn., Beijing

Normal University, China and National Key

Lab. or Cog. Neurosc. and Learning, Beijing

Normal Univ., China

D. Coyle 0.30 Intelligent Systems Research Centre, School

of Computing and Intell. Systems, Faculty of

Computing and Eng., Magee Campus,

University of Ulster, UK

J. Wu 0.29 National Key Lab. for Cogn. Neurosc. and

Learning, Beijing Normal Univ., China and

College of Inf. Science and Techn., Beijing

Normal University, China

is based on the filter bank common spatial pattern (FBCSP) vari-

ant (Ang et al., 2008). It was extended to the multi-class case

with one-versus-the-rest classifiers. First, artifacts were removed

by bandpass filters. Each classifier selected discriminative CSP

features using the Mutual Information Best Individual Features

(MIBIF4) algorithm (Ang and Quek, 2006) before Naive Bayes

Parzen Window classifiers (Ang and Quek, 2006) were used. The

classifier with the highest probability yielded the overall classi-

fication result. Due to the computationally intensive algorithms,

classification was performed every ten samples (in combination
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with a zero-order hold for the samples in between). As the algo-

rithm used 2 s of EEG data, the classification output was delayed

by 2 s.

5.6. DISCUSSION

All five submissions yielded results well above chance level. As

a side note, four contributions were submitted by Asian-Pacific

groups. As already mentioned above, all contributions used CSP

features.

There were two major challenges in this data set. First, the con-

tamination with eye movement artifacts could affect classification

accuracy; therefore we provided additional EOG channels. Second,

the classifiers trained on the training sessions should generalize on

unseen data recorded on a different day. The winning algorithm

addressed the first issue with a simple bandpass filter. Obviously,

the method is stable because it yielded good results on the test data.

However, the classification output is delayed by 2 s, which could

be a problem in online BCIs that incorporate real-time feedback.

6. DATA SET 2B

Data set 2b Session-to-Session Transfer of a Motor Imagery BCI

under Presence of Eye Artifacts is provided by R. Leeb, C. Brun-

ner, G. R. Müller-Putz, and G. Pfurtscheller from Graz (Austria).

It can be freely assessed via http://www.bbci.de/competition/iv/

with the only restriction that the present article is referenced upon

any publication of results.

6.1. MOTIVATION

This data set focuses on the classification of electroencephalogram

(EEG) signals affected by eye movement artifacts. Furthermore

the session-to-session transfer of the algorithms has to be taken in

consideration, because all training and test data sets are recorded

on five different days.

The data set 2b contains the electroencephalogram (EEG) and

electrooculogram (EOG) activity of nine subjects. Technically

speaking, each data set consists of single-trials of spontaneous

brain activity during motor imagery, one part labeled (training

data) and another part unlabeled (test data), and a performance

measure. The goal is to infer labels (or their probabilities) for the

test data sets from training data that maximize the performance

measure for the true (but to the competitors unknown) labels

of the test data (this information is now, after the competition,

available as well).

6.2. MATERIALS AND SUBJECTS

This data set consists of EEG data from 9 subjects of a study

published in Leeb et al. (2007). The subjects were right-handed,

had normal or corrected-to-normal vision and were paid for par-

ticipating in the experiments. All volunteers were sitting in an

armchair, watching a flat screen monitor placed approximately

1 m away at eye level. For each subject 5 sessions are provided,

whereby the first two sessions contain training data without feed-

back (screening), and the last three sessions were recorded with

feedback.

6.2.1. Experimental paradigm

Each session consists of several runs, illustrated in Figure 18. At

the beginning of each session, a recording of approximately 5 min

FIGURE 18 | (Data Set 2b). Timing scheme of one session (for screening

and feedback sessions).

FIGURE 19 | (Data Set 2b). Electrode montage of the three monopolar

EOG channels.

was performed to estimate the EOG influence. The recording was

divided into 3 blocks: (1) 2 min with eyes open (looking at a fix-

ation cross on the screen), (2) 1 min with eyes closed, and (3)

1 min with eye movements. The artifact block was divided into

four sections (15 s artifacts with 5 s resting in between) and the

subjects were instructed with a text on the monitor to perform

either eye blinking, rolling, up-down, or left-right movements. At

the beginning and at the end of each task a low and high warning

tone were presented, respectively. Note that due to technical prob-

lems no EOG block is available in session B0102T and B0504E (see

Table A3 in Appendix for a list of all subjects).

6.2.2. Protocol

Three bipolar recordings (C3, Cz, and C4) were recorded with

a sampling frequency of 250 Hz. The recordings had a dynamic

range of ±100 µV for the screening and ±50 µV for the feedback

sessions. They were bandpass filtered between 0.5 and 100 Hz, and

a notch filter at 50 Hz was enabled. The placement of the three

bipolar recordings (large or small distances, more anterior or pos-

terior) were slightly different for each subject (for more details see

Leeb et al., 2007). The electrode position Fz served as EEG ground.

In addition to the EEG channels, the electrooculogram (EOG)

was recorded with three monopolar electrodes (see Figure 19,

left mastoid serving as reference) using the same amplifier set-

tings, but with a dynamic range of ±1 mV. The EOG channels

are provided for the subsequent application of artifact process-

ing methods (Fatourechi et al., 2007) and must not be used for

classification.

The cue-based screening paradigm (see Figure 20A) consisted

of two classes, namely the motor imagery (MI) of left hand (class 1)

and right hand (class 2). Each subject participated in two screening
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Imagination of

left hand movement

Imagination of

right hand movement

Fixation cross Imagery Period PauseCue

beep

1 2 3 4 5 6 7 8 9 time in s0

Smiley (grey)

Cue

Feedback Period (Smiley) Pause

beep

1 2 3 4 5 6 7 8 9 time in s0

 Screening

 Smiley Feedback

A

B

FIGURE 20 | (Data Set 2b). Timing scheme of the paradigm. (A) The first two sessions (01T, 02T) contain training data without feedback, and (B) the last three

sessions (03T, 04E, 05E) with smiley feedback.

sessions without feedback recorded on two different days within

2 weeks. Each session consisted of six runs with ten trials each and

two classes of imagery. This resulted in 20 trials per run and 120

trials per session. Data of 120 repetitions of each MI class were

available for each person in total. Prior to the first motor imagery

training the subject executed and imagined different movements

for each body part and selected the one which they could imagine

best (e. g., squeezing a ball or pulling a brake).

Each trial started with a fixation cross and an additional short

acoustic warning tone (1 kHz, 70 ms). Some seconds later a visual

cue (an arrow pointing either to the left or right, according to the

requested class) was presented for 1.25 s. Afterward the subjects

had to imagine the corresponding hand movement over a period

of 4 s. Each trial was followed by a short break of at least 1.5 s.

A randomized time of up to 1 s was added to the break to avoid

adaptation.

For the three online feedback sessions four runs with smi-

ley feedback were recorded (see Figure 20B), whereby each run

consisted of twenty trials for each type of motor imagery. At the

beginning of each trial (second 0) the feedback (a gray smiley) was

centered on the screen. At second 2, a short warning beep (1 kHz,

70 ms) was given. The cue was presented from seconds 3 to 7.5.

Depending on the cue, the subjects were required to move the

smiley toward the left or right side by imagining left or right hand

movements, respectively. During the feedback period the smiley

changed to green when moved in the correct direction, otherwise

it became red. The distance of the smiley from the origin was set

according to the integrated classification output over the past 2 s

(more details see Leeb et al., 2007). Furthermore, the classifier out-

put was also mapped to the curvature of the mouth causing the

smiley to be happy (corners of the mouth upwards) or sad (cor-

ners of the mouth downward). At second 7.5 the screen went blank

and a random interval between 1.0 and 2.0 s was added to the trial.

The subject was instructed to keep the smiley on the correct side

for as long as possible and therefore to perform the MI as long as

possible.

6.3. DATA FORMAT

All data sets are stored in the general data format for biomedical

signals (GDF), one file per subject and session. However, only the

first three sessions contain the class labels for all trials, whereas

the remaining two sessions are used to test the classifier and hence

to evaluate the performance. For details on the data set, the GDF

files contained, markers and functions provided for loading and

evaluation, please see Section A.2 in Appendix.

6.4. CHALLENGE

Participants were asked to provide a continuous classification out-

put for each sample in the form of class labels (1, 2), including

labeled trials and trials marked as artifacts. A confusion matrix

was then built based on artifact-free trials only and for each time

point. From these confusion matrices, the time course of the accu-

racy as well as the kappa coefficient was obtained (Schlögl et al.,

2007b), which had a chance level of κ = 0. The algorithm used
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for this evaluation was provided in BioSig. The winner was the

algorithm with the largest kappa value.

Due to the fact that the evaluation data sets were not distributed

until the end of the competition, software had to be submitted. It

had to be capable to process EEG data files of the same format as

used for all training sets3) and produce the aforementioned class

label vector.

Since three EOG channels were provided, the software was

required to remove EOG artifacts before the subsequent data pro-

cessing using artifact removal techniques such as high pass filtering

or linear regression (Schlögl et al., 2007a). The use of other cor-

rection methods was possible, but it was requested that artifacts

had no influence on the classification results.

All algorithms were required to be causal, meaning that the clas-

sification output at time k may only depend on the current and

past samples xk,xk−1,. . .,x0. In order to check whether the causal-

ity criterion and the artifact processing requirements were fulfilled,

all submissions had to be submitted as open source, including all

additional libraries, compilers, programming languages, and so

on (for example, Octave/FreeMat, C++, Python, etc.). Note that

submissions could also be written in the closed-source develop-

ment environment MATLAB as long as the code was executable in

Octave. Similarly, C++ programs could be written and compiled

with a Microsoft or Intel compiler, but the code had to compile

also with g++.

6.5. SUBMISSIONS AND ALGORITHMS

Six groups submitted their participation for this data set. The given

list is in winning order and this ID will be used further on:

ID-1: Zheng Yang Chin, Kai Keng Ang, Chuanchu Wang, Cuntai

Guan, Haihong Zhang, Kok Soon Phua, Brahim Hamadicharef,

and Keng Peng Tee from the Institute for Infocomm Research,

Agency for Science, Technology, and Research in Singapore.

ID-2: Huang Gan, Liu Guangquan, and Zhu Xiangyang from the

School of Mechanical Engineering,Shanghai Jiao Tong University

in China.

ID-3: Damien Coyle, Abdul Satti, and Martin McGinnity from

the Intelligent Systems Research Centre, School of Computing

and Intelligent Systems, Faculty of Computing and Engineering,

Magee Campus, University of Ulster in the United Kingdom.

ID-4: Shaun Lodder and Johan du Preez from the E&E Engineer-

ing, University of Stellenbosch in South Africa.

ID-5: Jaime Fernando Delgado Saa from the Robótica y Sistemas

Inteligentes, Universidad del Norte in Colombia.

ID-6: Yang Ping, Xu Lei, and Yao Dezhong from the Perception-

Motor Interaction Lab, School of Life Science and Technology,

University of Electronic Science and Technology in China.

For each method the applied preprocessing, feature extraction,

and classification steps are briefly given.

Methods participant ID-1: They authors removed the EOG with

a bandpass filter and extracted their features via a Filter Bank

3One test data set is distributed from the beginning of the competition to enable

participants to test their program and to ensure that it produces the desired output.

CSP (FBCSP) using mutual information rough set reduction

(MIRSR). Classification of selected CSP features was performed

using the Naïve Bayes Parzen Window classifier. A more detailed

explanation of the winning algorithm is given in a separate paper

(Ang et al., 2012).

Methods participant ID-2: The EEG was bandpass filtered in

different frequency bands and the EOG artifacts were removed

afterward. Common spatial subspace decomposition (CSSD)

were extracted from the preprocessed signals with optimized win-

dow sizes and a LDA discriminate function was made for each

time point.

Methods participant ID-3: CSP on spectrally filtered neural time

series prediction preprocessing (NTSPP) signals was applied to

all signals all subjects using the self-organizing fuzzy neural net-

work (SOFNN). Furthermore the log variance of each filtered

channel was calculated with a 1-s sliding window. The best clas-

sifier among 3 variants of LDA and 2 variants of SVM was chosen

for each subject individually.

Methods participant ID-4: Wavelet packet transform was applied

only on electrodes C3 and C4 (Cz was ignored). Selected

frequency bands were extracted and concatenated to form a

multidimensional vector and classified with LDA.

Methods participant ID-5: EOG was removed with linear regres-

sion and the signals high pass filtered with 4 Hz. The algorithm

used spectral features in the mu and beta bands (from electrode

C3 and C4) as inputs for a neural network classifier.

Methods participant ID-6: EOG was removed with linear regres-

sion. Band-power features in 75 frequency bands for each channel

were extracted and selected with recursive feature elimination

(RFE). The remaining 6 features were classified with a Bayesian

LDA.

6.6. RESULTS

In total six submissions were received and most were of high

quality. As defined above in section evaluation the kappa value

was chosen as the performance measure. Remember, the expected

kappa value, if classification is made by chance, is 0. In Table 4 the

first column shows the average kappa across all subjects, columns

2–10 show the results for the individual subjects. Four submissions

achieved a mean kappa of more than 0.4 on the test set. Further-

more the two best approaches (ID-1 and ID-2; Ang et al., 2012)

achieved nearly similar results (mean of 0.60 and 0.58). Actually

approach ID-2 could achieve the best single subject performances

for 4 subjects and ID-1 “just” for 3 subjects, but was always very

close to the best ones on a single subject level. Only subject 2

caused troubles to these algorithms. Interestingly is that approach

ID-4 achieved incredible good results here compared to the other

approaches. Generally the data from subject 8 and subject 4 could

be identified best, whereby subjects 3, 2, and 1 were challenging.

These findings are consistent over all approaches, if the standard

deviation over the approaches is taken into consideration.

6.7. DISCUSSION

Two major challenges had to be addressed in this data set. The first

one was the influence of eye movement artifacts on the EEG and

the second one the generalization of the selected features to be suc-

cessful on the session-to-session transfer. Like in real conditions
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Table 4 | (Data Set 2b). Detailed results from the BCI competition IV.

Part. ID Mean Subject

1 2 3 4 5 6 7 8 9

ID-1 0.60 0.40 0.21 0.22 0.95 0.86 0.61 0.56 0.85 0.74

ID-2 0.58 0.43 0.21 0.14 0.94 0.71 0.62 0.61 0.84 0.78

ID-3 0.46 0.19 0.12 0.12 0.77 0.57 0.49 0.38 0.85 0.61

ID-4 0.43 0.23 0.31 0.07 0.91 0.24 0.43 0.41 0.74 0.53

ID-5 0.37 0.20 0.16 0.16 0.73 0.21 0.21 0.39 0.86 0.44

ID-6 0.25 0.02 0.09 0.07 0.43 0.25 0.00 0.14 0.76 0.47

Kappa values for each subject and the mean kappa for all participating groups.

the data were from different sessions recorded on different days.

Looking at the results it is interesting to compare the performance

achieved on data sets of different subjects, while applying the same

signal processing algorithms. No method achieved good results on

all subjects. Especially the session-to-session transfer could have

been a source for the occurred problems. Although we provided

training data sets from three different days,2 training data sets were

recorded without feedback and just 1 data set with feedback were

given, but of course we wanted to see the performance on online

data sets with feedback recorded later on different days. The win-

ning algorithms could foster this problem best, but unfortunately

their method needed a 2-s delay to the predicted classification

output to achieve a better performance. This approach is very

useful if offline classification is performed, but for online control

applications such a delay causes a lot of problems for the BCI user.

Like in all the BCI competitions before, the data set and the

description will continue to be available on the competition web

pagehttp://www.bbci.de/competition/iv/. Other researchers inter-

ested in EEG single-trial analysis are welcome to test their algo-

rithms on these data sets and to report their results. To imitate

competition conditions, all selections of method, features, and

model parameters must be confined to the training sets. However,

due to the current availability of the labels of the test data and the

publication of thorough analyses of these data, future classifica-

tion results of the competition data cannot fairly be compared to

the original submissions.

7. DATA SET 3

Data set 3 Directionally modulated MEG activity is provided by

S. Waldert, C. Braun, H. Preissl, N. Birbaumer, A. Aertsen, and

C. Mehring from Freiburg (Germany), Tübingen (Germany),

Trento (Italy), and London (UK). It was recorded in a col-

laboration of the Institute of Biology I, the Bernstein Center

Freiburg (both at the University of Freiburg), the MEG-Center

and the Institute of Medical Psychology and Behavioral Neurobi-

ology (both University of Tübingen). It can be freely accessed via

http://www.bbci.de/competition/iv/ with the only restriction that

the present article as well as (Waldert et al., 2008) is referenced

upon any publication of results.

7.1. BACKGROUND

Spinal injury patients rank the loss of hand function as one of

the most debilitating features of their injury (Anderson, 2004).

An intuitive way to realize a brain-machine interface (BMI) is

to access the neural cortical activity that controlled natural hand

movements and translate this activity into commands that pro-

duce equivalent movements of external effectors (e.g., prosthetic

arm/hand, computer cursor). Such direct motor BMIs require that

kinematic parameters of the movement (e.g., movement direction

or velocity) can be inferred from the measured neuronal signals.

Online direct motor BMIs have until recently only been real-

ized using spiking activity [single- (SUA) or multi-unit activity

(MUA), e.g., Hochberg et al., 2006; Velliste et al., 2008]. Only

in the last decade, it has been shown that not only spiking

but also neuronal population activity (Figure 21) is tuned to

the direction of hand movements. Tuning of neuronal popu-

lation signals has been demonstrated in several studies using

either (a) invasive recordings (local field potentials, LFP; Mehring

et al., 2003) and electrocorticogram (ECoG; Leuthardt et al.,

2004; Schalk et al., 2007; Pistohl et al., 2008) or (b) non-invasive

recordings (electroencephalogram, EEG; Hammon et al., 2008;

Waldert et al., 2008; Bradberry et al., 2010; Lv et al., 2010; Wang

and Makeig, 2010) and magnetoencephalogram (MEG; Geor-

gopoulos et al., 2005; Waldert et al., 2008; Bradberry et al.,

2009; Wang et al., 2010). Very recently, online direct motor

BMI control based on decoding movement direction was real-

ized using MEG (Witte et al., 2010) and ECoG (Milekovic et al.,

2012).

Among all these studies, intra-cortical recordings (SUA, MUA,

LFP) yield the highest amount of information to be extracted

about movement direction (Waldert et al., 2009). However, these

signals require the implantation of micro-electrodes into the cor-

tex and long-term stable recording of spiking activity remains

a difficult problem. Non-invasive EEG and MEG provide less

information, but allow for an easy access to human neural activity

without any medical risk for the subject. Obviously, current MEG

systems cannot be a basis for real-world direct motor BMI. How-

ever, MEG is convenient for BMI training and rehabilitation

attempts in patients (e.g., in stroke patients; Buch et al., 2008).

In this context, optimized algorithms for inferring kinematic

parameters from MEG signals could facilitate BMI training and

increase the performance of non-invasive direct motor BMIs. To

encourage the development of new algorithms, we contributed to

the BCI competition IV a data set containing MEG signals recorded

while subjects performed hand/wrist movements in four different

directions.
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FIGURE 21 | (Data Set 3). Schematic overview of different recording techniques for BMIs (from Waldert et al., 2009 with permission).

7.2. MATERIALS AND SUBJECT

The data set contained the signals of 10 MEG sensors (VSM

MedTech,Vancouver) above central areas measured at 625 Hz sam-

pling rate during wrist movements of two healthy, right-handed

subjects. The subject sat relaxed in an MEG chair, the elbow rested

on a pillow to prevent upper arm and shoulder movements, and

the head was stabilized by small pillows. The task was to move a

joystick from a central resting position toward one of four targets

(right, left, forward, backward) using exclusively the right hand

and wrist. Movement amplitude was 4.5 cm. In each trial, the tar-

get was self-chosen by the subject, i.e., no directional visual cue

was provided. Visual trigger signals were presented on a screen

in front of the subject to start a trial or to indicate possible time

violations. A trial started with the joystick in the center position

and the appearance of a gray circle. After a variable delay (1–2 s,

Figure 22), the disappearance of the circle indicated the “go” sig-

nal (cued movement onset). Then, within 0.75 s the subject had

to start the movement and reach the target. For a trial to be valid,

the subject also had to rest at the target for at least 1 s. These

time constraints allowed for temporal consistency across trials

and the hold period at the target prevented interference of in-

and outward movements. A red cross was presented continuously

for fixation.

7.3. DATA FORMAT AND PERFORMANCE CRITERIA

Trials were cut to contain data from 0.4 s before to 0.6 s after move-

ment onset. The signals were band-pass filtered (0.5–100 Hz) and

resampled at 400 Hz.

The data were provided as two Matlab “mat”-files, for subject

one “S1.mat” and for subject two “S2.mat.” Both files contained

the variable Info, which provided a detailed description of the

data. The second variable, training_data, contained 40 labeled tri-

als per movement direction. These 160 trials were provided to

train and evaluate the decoding algorithms. The third variable,

test_data, contained 74 (for S-1) or 73 (for S-2) unlabeled trials

FIGURE 22 | (Data Set 3). Time course of a trial with time constraints (from

Waldert et al., 2008 with permission).

in a pseudo-random order. The number of trials per movement

direction was unequal but similar. The movement directions of

these test trials were not given but had to be predicted from the

MEG signals and submitted to the competition. Based on the sub-

mitted labels, we calculated the performance of the competitor’s

algorithms as the percentage of correctly classified trials (decoding

accuracy).

7.4. SUBMISSIONS AND ALGORITHMS

We received four submissions (ID-1 to ID-4) for this data set. The

submission showing best performance was well above chance level

for the unlabeled test data. It was submitted by

ID-1: Sepideh Hajipour Sardouie, Mohammad Bagher Sham-

sollahi. Biomedical Signal and Image Processing Lab (BiSIPL),

School of Electrical Engineering, Sharif Univ. of Techn., Tehran,

Iran.

The following short summary of the applied algorithms is based

on the descriptions provided by the competitors:
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ID-1: A comprehensive set of statistical features, frequency-

domain features and wavelet coefficients was extracted from 12

channels (10 real channels plus 2 artificial bipolar channels). The

number of features was reduced using a supervised algorithm.

Then, a genetic algorithm selected features to optimize the clas-

sification accuracy. The classifier consisted of a combination of a

linear SVM and LDA. Details of this algorithm are published in

(Sardouie and Shamsollahi, 2012).

ID-2: First, a low-pass filter (cutoff 8 Hz) was used to filter the

time signal. Secondly, the time segment (0–0.5 s) was selected, that

is points 160–360. Third, the first three and five principal com-

ponents of the abs and angle of the 128 FFT of each channel and

each sample were used. Then, Fisher discriminant analysis (FDA)

was applied to the frequency features to reduce the dimension-

ality. Fourthly, the signal were subsampled to 20 Hz. Then, FDA

was applied to the time features to reduce dimensionality. Finally,

Fisher discriminant functions were used for classification using

the combination of time and frequency features.

ID-3: Preprocessing unknown. The feature set consisted of sta-

tistical, temporal, parametric and wavelet coefficients and was

reduced by PCA and a genetic algorithm. The classifier was a linear

SVM.

ID-4: First, a low-pass filter (cutoff 8 Hz) was used to filter

the time signal. Secondly, the time segment (0–0.5 s) was selected,

that is points 160–360. Third, the first three and five principal

components of the abs and angle of the 128 FFT of each chan-

nel and each sample were used. Then, FDA was applied to reduce

dimensionality. Finally, Fisher discriminant functions were used

for classification using the frequency feature.

7.5. OUTCOME

All contributors applied either linear SVM, the linear Fisher dis-

criminant analysis (LDA), or a combination of both. Algorithms

mainly differed in feature selection. Three competitors (ID-2/3/4)

achieved decoding accuracies around chance level of 25% only for

the test data (see Figure 23).

The winner applied a combined linear discriminant analysis

(LDA) and linear support vector machine (SVM) on features

selected from a large feature set by scattering matrices and a

genetic algorithm. The feature set comprised features extracted

from the time domain (e.g., AR coefficients, form factor), the fre-

quency domain (e.g., energy in different frequency bands, mean

frequency), and the time-frequency domain (wavelet coefficients),

but not the low-pass filtered signals that were used in (Waldert

et al., 2008). Obtained accuracies on the test data were 59.5%

and 34.3% for subjects 1 and 2, respectively, and 46.9% on

average.

7.6. DISCUSSION

The performance of the competitors algorithms was lower than

that of an established decoding algorithm: the application of a reg-

ularized linear discriminant analysis (RLDA, also used in Waldert

et al., 2008) to the low-pass filtered and resampled signals of the

BCI-competition data resulted in a significantly higher average

accuracy of 62% (average across both subjects; p < 0.01 com-

pared to the competition winner ID-1, Fisher’s exact test). Also

a linear SVM using the same low-pass filtered signals yielded a

FIGURE 23 | (Data Set 3). Results of the BCI competition IV and, for

comparison, the average result of applying a RLDA and linear SVM to the

low-pass filtered and resampled activity of the data.

higher average accuracy of 53% (significantly higher than ID-

2/3/4 (p < 0.01), not significantly higher than ID-1, Fisher’s exact

test).

ID-2 and ID-4 obtained much higher accuracies on the training

data (98% and 73%) than for the test data, which was classified at

chance level. This result indicates that the low accuracies for the

test data are due to a poor generalization. Possibly the same reason

explains the low accuracy for ID-3. However, the performance on

the training data was not available for this group.

Compared to the results of the winning group (ID-1), the

higher (RLDA) and equal (SVM) accuracies for the two standard

linear classifiers without sophisticated feature selection might be

explained by the fact that the low-pass filtered activity – which was

used in (Waldert et al., 2008) and which was, due to the applied

band-pass filter (0.5–100 Hz, see Data Format), also available in the

data set contributed to the BCI competition – was not included

in the predefined feature set used by the winning group. It is not

clear which decoding accuracies could have been achieved with

the algorithm of the competition winner if the low-pass filtered

activity were included. Especially this signal component contains

substantial information about movement kinematics and provides

high performance for decoding of neural population signals: LFP

(Mehring et al., 2003; Rickert et al., 2005), ECoG (Schalk et al.,

2007; Pistohl et al., 2008; Ball et al., 2009), EEG (Waldert et al.,

2008; Bradberry et al., 2010; Lv et al., 2010; Wang and Makeig,

2010), and MEG (Jerbi et al., 2007; Waldert et al., 2008; Bradberry

et al., 2009; Wang et al., 2010).

8. DATA SET 4

Data set 4 Finger Movements in ECoG is provided by K. J. Miller

and G. Schalk from Seattle and Albany (USA). The data set can

be freely assessed via http://www.bbci.de/competition/iv/ with the

only restriction that the present article is referenced upon any

publication of results.
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8.1. MOTIVATION

The goal for data set 4 of the BCI competition IV was to infer

the flexion of individual fingers from signals recorded from the

surface of the brain (electrocorticography, ECoG). Compared to

EEG, where a higher spatial blurring prevents the detailed local-

ization in single trial on the finger level, the ECoG signals provide

a much higher spatial resolution. This data set contained ECoG

signals from three subjects, as well as the time courses of the flex-

ion of each of five fingers. The task in the competition was to

use the ECoG signals and flexion information in a training set

to predict finger flexion for a provided test set. The performance

of that prediction was evaluated by calculating the average cor-

relation coefficient r between actual and predicted finger flexion.

We received five submissions for this data set. The results of these

submissions and recently published studies demonstrate that the

timing and degree of finger flexion can be accurately inferred from

ECoG in single trials.

Finger flexion is a simple parameter to correlate with an

extracted brain state, and thus can serve as a good test bed for

algorithm development. There are many potential implications of

successful algorithmic decoding of brain states: neural prosthet-

ics, communication devices, handicapped vehicle control (wheel-

chairs, etc.), and potentially rehabilitation of the brain. The use of

motor areas related to hand movements is particularly compelling

in this context, because, as an area that is evolutionarily special-

ized for tool use, it may provide an intuitive basis for controlling

prosthetic hands or other manipulandums.

Electrocorticography (ECoG) is the measurement of mesoscale

electric potentials (1–5 mm) from the subdural brain surface. In

the data set provided for the BCI competition, all three subjects

who participated were epileptic patients receiving ECoG monitor-

ing for the localization of seizure foci (Figure 24). In this setting,

ECoG has proven to be a powerful tool for brain-computer inter-

facing (Leuthardt et al., 2004; Schalk et al., 2008), and capable of

augmenting activity in the brain (Miller et al., 2010).

Several features can be extracted from the ECoG data that

may correlate with behavior. Motor-related event-related poten-

tials can be extracted from the raw time series (Figure 25D). A

running average of the raw signal, termed the local motor poten-

tial (LMP; Schalk et al., 2007) has been shown to be informative

about task-related brain activity in motor cortex (Schalk et al.,

2007; Kubanek et al., 2009; Figure 26). In addition, frequency-

domain features have been shown to robustly capture shifts in

behavioral state (Crone et al., 1998a,b; Miller et al., 2007). Shifts

in different frequency ranges often have different spatial patterns.

There is a characteristic decrease in power at low frequencies and

increase in power at high frequencies that accompanies movement

(Figure 27). The decreases in low frequency power have spatially

FIGURE 24 | (Data Set 4). The ECoG signals in train_data (time, channel) and test_data (time, channel) were acquired from each electrode with respect to a

scalp reference and ground before re-referencing with respect to the common average.

Frontiers in Neuroscience | Neuroprosthetics July 2012 | Volume 6 | Article 55 | 20

http://www.frontiersin.org/Neuroprosthetics
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/Neuroprosthetics/archive


Tangermann et al. Review of the BCI competition IV

FIGURE 25 | (Data Set 4 – event-related potential). Illustration that the

characteristic changes in the power spectral density changes with activity

are not due to an reproducible event-related potential shift (ERP). Two

adjacent electrodes are shown in (A). One has an ERP, and one does not,

but both have the characteristic peri-movement spectral changes. (B)

Individual (gray) and averaged thumb movement (black, left) or index finger

movement (black, right), locked to the first movement from the appropriate

movement cue. (C) The normalized power spectral density (“PSD”) as a

function of time. It demonstrates the classic spectral changes just prior to

movement onset for both thumb and index finger. Note that the decrease in

power at lower frequencies (α/β/µ range), and the increase in power at

higher frequencies (above about 40 Hz) both begin before movement onset.

(D) Individual and averaged raw potential traces around each of the first

movements from appropriate thumb or index finger movement epochs.

There is no significant event-related potential (ERP) effect for thumb, but

there is for the index finger.

broad distributions, and power increases at high frequencies have

spatially more confined distributions (Figure 28). Different fin-

gers have spatially different representations on the brain surface,

and this can be used to help distinguish which finger might be

moving at any particular time (Figures 28–30).

Time-frequency estimates of power change can serve as robust

correlates of behavior (Figures 25 and 27). Recent studies have

demonstrated that what had been perceived as a spatially focal

high frequency phenomenon was really a reflection of a broadband

feature, likely corresponding to average firing potential rate of the

FIGURE 26 | (Data Set 4). Time courses of finger flexion, broadband, LMP,

and the raw electric potential. The LMP (Schalk et al., 2007; Kubanek et al.,

2009) has been shown to hold information about different motor behaviors.

Spectrally broadband change, corresponding to 1/f type change in the

electric potential power spectrum (Miller et al., 2009a,b), can be captured

as another powerful correlate of motor behavior. By synthesizing different

features, more powerful brain-computer interfacing algorithms may be

obtained.

neuronal population beneath the electrode (Miller et al., 2009a,b).

When captured, this broadband feature has been demonstrated

to be a robust correlate of finger movement at individual sites in

motor cortex (Miller et al., 2009b; Figures 26 and 30).

In this competition, participants used different techniques that

capitalized on different aspects of these signals to predict the

flexion of individual fingers from the ECoG signals.

8.2. MATERIALS AND SUBJECTS

The three subjects in the data set were epileptic patients at Har-

borview Hospital in Seattle, Washington. Each patient had elec-

trode grids placed subdurally on the surface of the brain for

the purpose of extended clinical monitoring and localization

of seizure foci. Each subject gave informed consent to partic-

ipate in this study, which was approved by the internal review

board (IRB) of Harborview Hospital. All patient data have been

anonymized according to IRB protocol in accordance with HIPAA

regulations.

8.2.1. Experimental paradigm

Signals from the electrode grid were amplified and digitized

using Synamps2 amplifiers (Neuroscan, El Paso, TX, USA). The

general-purpose BCI system BCI2000 (Schalk et al., 2004) pro-

vided visual stimuli to the patient, acquired brain signals from

the Synamps2 system, and also recorded the flexion of individ-

ual fingers (on the hand contralateral to the implanted grid)

using a data glove (Fifth Dimension Technologies, Irvine, CA,

USA). BCI2000 stored the brain signals, the timing of stim-

ulus presentation, and the flexion of each of the fingers in a

data file. Data files were converted to MATLAB format for this

competition. Each patient had subdural electrode arrays (Ad-

Tech, Racine, WI, USA) implanted. Each array contained 48–

64 platinum electrodes that were configured in 8 × 6 or 8 × 8

arrangements. The electrodes had a diameter of 4 mm (2.3 mm

exposed), 1 cm inter-electrode distance, and were embedded

in silastic. Electrocorticographic (ECoG) signals (i.e., 62, 48,

and 64 channels from subjects 1, 2, and 3, respectively), were
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FIGURE 27 | (Data Set 4). Examples of the normalized power spectral

density (PSD) of the potential time series around finger flexion. The

PSD was calculated from 1 s windows centered at times of maximum

flexion and also during rest. (A) Mean PSD of index finger movement

samples (light trace) and rest samples (black trace). (B) Average

time-varying PSD (scaled as percentage of mean power at each

frequency) with respect to first index finger movement from each

movement cue.

FIGURE 28 | (Data Set 4). Cortical activation maps for movement of

different fingers in one subject. The changes in power between 126 and

150 Hz are focused in the classic hand area of the brain. The spatial

distribution for 76–100 Hz are nearly identical, as might be expected

since both are reflections of the broadband feature highlighted in

recent literature (Miller et al., 2009b). Low frequency changes are

spatially much more broad, corresponding to fluctuations in the classic

motor rhythms. Figure 29 shows that the spatial representations for

high frequencies are very different for different finger movement types,

within a general hand region. Electrode positions are shown with white

dots, and power change with light and dark gray patches on the brain

surface.

acquired with respect to a scalp reference and ground (Figure 24),

band-pass filtered between 0.15 and 200 Hz, and sampled at

1000 Hz.

8.2.2. Protocol

The subjects were cued to move a particular finger by displaying

the corresponding word (e.g., “thumb”) on a computer monitor

placed at the bed-side (Figure 30). Each cue lasted 2 s and was

followed by a 2-s rest period during which the screen was blank.

During each cue, the subjects typically moved the requested finger

3–5 times. This number varied across subjects and fingers. There

were 30 movement stimulus cues for each finger (i.e., a total of

150 cue presentations and about 90–150 flexions of each finger);

stimulus cues were interleaved randomly. This experiment lasted

10 min for each subject.

Subsequent offline analyses showed that ring (4th) finger move-

ments were correlated with either middle (3rd) or little (5th) finger

movements. Thus,while this ring finger position was included with

the training data, it was not used for evaluation.

8.3. DATA FORMAT

The data for each subject was contained in a separate MATLAB file

that was named “subX_comp.mat ” where “X” denotes the subject

number. Each file contained three variables:

• “train_data” – this variable, in time × channels, gave the first

2/3 (6 min, 40 s) of recorded ECoG signals (400,000 samples at

1 kHz sampling rate per channel) from the specified experiment,

for every channel.

• “train_dg ” – this variable, in time × finger was the first 2/3

(6 min, 40 s) of recorded finger position [thumb – index –

middle – ring – little; 400,000 samples (super-sampled to 1 kHz)

per finger] for the associated experiment.

• “test_data” – this variable, in time × channels, gave the last

1/3 (3 min, 20 s) of recorded ECoG signals (200,000 sam-

ples at 1 kHz sampling rate per channel) from the specified

experiment, for every channel. These data were used to pre-

dict the final 1/3 (3 min, 20 s) of recorded finger position

(thumb – index – middle – ring – little) for the associated

experiment.
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The channel order was scrambled so that the prediction task in the

competition was restricted to algorithmic optimizations only.

8.4. CHALLENGE

Each participating group submitted three files titled “sub1_eval,”

“sub2_eval,” and “sub3_eval, ” corresponding to subjects 1–3,

respectively. Each of these contained a single variable, “eval_dg,”

with dimensions 200,000 × 5:

FIGURE 29 | (Data Set 4). A blow-up of the sensorimotor region for high

frequencies from Figure 28. Note that this variability across electrodes

allows for robust segregation of different finger movements during

classification.

• “eval_dg ” – this variable, in time × channels, gave the last 1/3

(3 min, 20s) of predicted finger flexion for each of the five fin-

gers (thumb – index – middle – ring – little) for the associated

experiment (200,000 samples per finger).

The evaluation criteria was as follows: for each subject, the

received variable “eval_dg ” was compared with the actual fin-

ger positions in “test_dg,” which was withheld. We calculated the

correlation coefficient r between the actual and the predicted fin-

ger flexions for each subject and finger. We did not calculate the

correlation coefficient for the 4th (ring) finger, because the flex-

ion of this finger was typically correlated with the flexion of the

3rd (middle) or 5th (little) finger. The final score was calculated

as the arithmetic mean of the 12 correlation coefficients (4 per

subject, 3 subjects). The submission with the highest score won

the competition.

8.5. SUBMISSIONS AND ALGORITHMS

Five groups submitted a contribution (S-1 to S-5), with three of

them (S-1, S-2, S-4) showing a performance well above chance

level on the unseen test set.

S-1: Remi Flamary, Alain Rakotomamonjy, LITIS INSA de Rouen,

France

S-2: Nanying Liang and Laurent Bougrain, Cortex Team, Research

Centre INRIA, Nancy-Grand Est, France
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FIGURE 30 | (Data Set 4). Time course of ECoG in adjacent electrodes

reveals individual digit representation. (A) X-ray of the ECoG array

in situ, with three electrodes labeled, corresponding to the numbers in

(C). (B) Flexion time course of each finger. (C) Projections of the

time-frequency representation to broadband spectral change (Miller

et al., 2009b). Each electrode is specifically and strongly correlated with

one movement type (r = 0.46 for broadband from electrode 1 with

thumb position; r = 0.47 for electrode 2 with index finger; r = 0.29 for

electrode 3 with little finger; cross-combinations had a mean

correlation of −0.09, indicating light hyperextension of other fingers

while flexing the appropriate finger in this subject), over 10 min of

continuous data (3.6 × 106 samples).
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S-4: Mathew Salvaris, University of Essex, Colchester, UK

The following short summary of the applied algorithms is based

on the descriptions provided by the competitors:

S-1

Flamary and Rakotomamojy employed a switching model to pre-

dict finger flexion. This method assumed that the output flexion of

the fingers is linear and that the transfer function between ECoG

signals and finger position depended on an internal state k that

represents the finger moving (1–5) or no finger moving at all (6).

They used ridge regression to compute the transfer function and

sparse linear regression to derive the state estimation. In brief, sig-

nals were first down-sampled by a factor of 4. The features for the

linear transfer functions were obtained with a Savitsky-Golay filter

(0.4 s, 3rd order). The features used for the state estimator were AR

coefficients computed on a moving window of 300 points. Once

the internal state was estimated, finger flexion was computed by

multiplying the features at a time t by the linear transfer function

corresponding to the state k at time t.

S-2

Liang and Bougrain first extracted, from each location, the time-

varying activity in three frequency bands: 1–60, 60–100, and 100–

200 Hz. Then, the power in each bin was accumulated in 40 ms

time bins. The size of the time bin was chosen so that the resulting

amplitude modulation feature inputs had the same sampling rate

(i.e., 25 Hz) as that of the finger flexion values. Initial evaluations

found that each finger flexion was correlated to features from only

two or three particular locations. Therefore, features were auto-

matically selected (separately for each finger and subject) using a

stepwise feature selection procedure based on the train and vali-

dation method (i.e., 2/3 of train data were used for training and

1/3 for validation). The resulting features were then submitted to

a Wiener filter with 25 tap-delays (i.e., using the present input and

the previous 1-s inputs for predicting the present finger flexion).

S-4

Salvaris first re-referenced signals to the common average, and

then down-sampled signals to 500 Hz. Bandpower features were

extracted by wavelet packets with sym9 wavelet and the average

of the time series. Features were then selected using WEKA’s CFS

algorithm. The selected features were used to train the SVR algo-

rithm implemented in LibSVM. The parameters for SVR were

tuned through 5-fold cross validation. The resulting SVR model

was then used to classify the test data.

8.6. RESULTS

The goal of this portion of the competition was to predict finger

flexion for four of the five fingers on a test set (3 min 20 s) using a

classifier that was trained on a training set (6 min 40 s). The fidelity

of the prediction was assessed by computing the correlation coef-

ficient between the actual finger flexion values and the submitted

finger flexion values. The result of a particular submission was the

arithmetic mean of 12 correlation coefficients (i.e., 3 subjects and

4 fingers).

Two of the five submissions achieved particularly strong predic-

tions (see Table 5). Nanying Liang and Laurent Bougrain achieved

Table 5 | (Data Set 4). Performance of the five submissions.

Submission r

S-2 0.46

S-1 0.42

S-4 0.27

S-3 0.10

S-5 0.05

an average correlation coefficient of 0.46, and thereby won this

competition. The runner-up contribution of Flamary and Rako-

tomamojy performed similarly well with a correlation coefficient

of 0.42. Details of the two approaches are described in Flamary

and Rakotomamonjy (2012) and Liang and Bougrain (2012).

While it is difficult to assess the difference in performance

between the different methods, it is interesting that methods that

are similar in simplicity to those used in Schalk et al. (2007) and

Kubanek et al. (2009) can reliably and robustly estimate finger

flexion from ECoG signals. That being the case, it may also be pos-

sible that more sophisticated methods that explicitly incorporate

physiological or physical constraints in the computational model

might further improve performance.

9. DISCUSSION

The BCI competition was created in order to support the devel-

opment of algorithmic solutions for typical BCI problems. Does

it live up to its promise? The following sections attempt to give an

answer to the various aspects of this question.

9.1. REST CLASS PROBLEM REMAINS A CHALLENGE

Moving from an artificial lab situation to the every-day use of a

BCI introduces a new challenge: periods of non-control, where a

BCI user is voluntarily switching to another (non-BCI) action or

is involuntarily distracted from the control interface. The distrac-

tor can be another active task (e.g., communication via a different

channel, the perception and processing of content, reasoning about

a decision to take) or simply taking a rest. The basic problem about

rest class detection in general is, that the resting state is not well-

defined at all, and thus there is no reliable training data available

that can be used to calibrate the BCI system.

In this competition, the detection of such a rest class was chal-

lenged with data set 1. The results for this motor imagery data

set revealed, that most competitors had problems in correctly

identifying time periods of the rest class. Even considering the

performance of the competition winner (Figure 6) there remains

the wish for further improvement.

9.2. TRANSFERABILITY TO ONLINE BCIs

The winning methods of this or earlier competitions are not neces-

sarily transferable to be used in an online closed-loop BCI system.

While the runtimes of algorithms are not a real limitation, non-

causal filters and time delays are problematic. As an example, the

winning algorithm of data set 2b predicted the class labels quite

accurately, but introduced a delay of 2 s during the preprocessing

eye artifacts. This is a trade-off that has to be considered for each

specific application.
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High robustness and generalizability of a winning algorithm

is another characteristic, that supports the applicability of an

algorithm for the feedback case. Comparable to earlier BCI compe-

titions, again variants of CSP ruled the rankings. Of special interest

is the outcome, that the Singapore group has scored exceptionally

high for several of the data sets. As the submitted algorithms of

this group used similar concepts, this is a strong indicator for

robustness.

As some of the winning algorithms of earlier competitions have

indeed been adopted into the standard canon for BCI online con-

trol, we believe, that this will also happen for some algorithms of

the present competition.

9.3. USEFULNESS OF SYNTHETIC DATA

The most reliable way of testing new algorithmic ideas for BCI is

to implement them in an online experiment, if possible with users

matching the target group. But even when testing with healthy

users, the testing effort is huge and can not be invested for every

change of the algorithmic model.

Synthetic EEG data as presented in data set 1-artificial might

offer a partial remedy to this problem. It has proven to be realistic

in the sense that the submitted algorithms performed very similar

on the synthetic and the real EEG data. As it is cheap to generate a

large amount of this data, at least initial algorithmic test beds can

be based on it. Precautions, of course, have to be taken in order to

avoid that the priors used for the EEG generation are not known or

explicitly exploited by the algorithms under test and their creators.

As simulated BCI classifier output has already successfully been

applied for the fine-tuning of BCI user interfaces (Quek et al.,

2011), the next step is on the horizon: to use simulated EEG that –

certainly only to a limited extend – models the user behavior, in

order to test BCI systems online in a closed loop.

10. FURTHER TOPICS CONCERNING FUTURE

COMPETITIONS

Due to the development of the field of BCI, new data analytic

problems were identified, that are suitable for addressing them in

a BCI competition.

10.1. WIRELESS AND DRY EEG SIGNALS

We currently observe the upcoming of easy-to-mount dry elec-

trode caps as either research prototypes (Popescu et al., 2007;

Gargiulo et al., 2010; Luo and Sullivan, 2010; Saab et al., 2011;

Zander et al., 2011) or purchasable products (e.g., Sahara dry cap

by gTec, Mindset by NeuroSky, or Emotiv cap). As some of them

provide wireless transmission protocols, they open up the possi-

bility to monitor the acting brain during real-life situations rather

than under artificial lab conditions.

The signals of these dry electrodes, however, currently still suf-

fer from a number of artifacts, which are typically much weaker

or not present at all in wet electrode recordings. Examples are

inductive artifacts by persons moving in the same room, drifts

and saturation effects, or friction artifacts upon electrode move-

ments. While an overall higher noise level of dry electrodes might

be difficult to overcome, some artifacts might be alleviated by suit-

able data processing. A future BCI data competition should thus

include a number of dry sensor data sets to determine the most

effective approaches.

10.2. NON-STATIONARITY

Severe for the use of dry EEG sensors, but not restricted to this sig-

nal type, is the problem of non-stationarity in brain signals. In the

context of BCI, it is mostly observed during the transition from the

initial calibration phase to the online use of a BCI (Shenoy et al.,

2006; Sugiyama et al., 2007), but also within periods of online use,

where no obvious change of the task or paradigm takes place.

The reasons for non-stationarity in brain data can range from

external noise, over effects caused by high dimensionality and

robust estimation problems (Sannelli et al., 2008; Abrahamsen and

Hansen, 2011; task-unrelated) changes in the background brain

activity of BCI users (e.g., due to fatigue or artifacts; Winkler et al.,

2011, learning effects or adaptive behavior of the users; Ramsey

et al., 2009, or even co-adaptation of users and the BCI system

Vidaurre et al., 2011).

Non-stationarity can sometimes be observed even by bare eye in

the raw data, where it is present in the form of slow drifts, changes

in oscillatory sources, or changes in the noise level of electrodes. If

processed with an automatic classification or regression method

as in BCI, this processing can be harmed also by subtle bias shifts,

covariance drifts or changes of the covariance structure, or even

more complex changes of the data distributions.

Although a number of methods have been proposed to miti-

gate this problem either by finding a global stable subspace for the

data representation (Krauledat et al., 2007; Blankertz et al., 2008a;

von Bünau et al., 2009; Wojcikiewicz et al., 2011), or by adapt-

ing the online processing to compensate for ongoing changes (see

Vidaurre and Schlögl, 2008; Blankertz and Vidaurre, 2009; Sannelli

et al., 2011) for adaptation in motor-related tasks, and (Dähne

et al., 2011) for adaptation in ERP paradigms), it still is the source

of major problems in the online use of BCI. This qualifies the

problem of non-stationarity for becoming a target in future BCI

competitions.

10.3. MULTIMODAL SIGNALS/HYBRID BCIs

Considering the predominant use of non-invasive BCI systems, it

is worth to briefly review the development of BCI performance

(e.g., in terms of communication rates) over time. On the positive

side, new BCI systems based on external stimuli have recently been

reported, that employed novel paradigms for auditory (Schreuder

et al., 2010, 2011; Höhne et al., 2011) and for visual ERP setups (Liu

et al., 2010; Acqualagna and Blankertz, 2011; Schaeff et al., 2011;

Tangermann et al., 2011; Treder et al., 2011). They improve over

long-used standard stimulation paradigms or can provide solu-

tions for patients that have lost eye gaze control. In contrary, the

improvements reported for BCI systems based on motor imagery

and ERD/ERS effects have been slower over the last years, despite

of a drastic initial performance boost which was made possible by

the introduction of machine learning methods (Blankertz et al.,

2003, 2011; Schröder et al., 2003).

The next boost of BCI performance can be expected for par-

adigms, that are able to combine independent information from

different sources in order to improve the BCI control quality over

the level of a traditional single-source BCI. In an ERP setup, such

approaches could combine stimuli of different sensory modali-

ties (Aloise et al., 2007). In motor imagery, the use of ERD/ERS

effects together with slower motor-related potentials (Dornhege
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et al., 2004) can increase information rates. Abstracting this con-

cept to the next level, EEG signals could be combined with other

brain signal sources like fNIRS (Fazli et al., 2012), with non-neural

but physiological signals (e.g., heart rate variability, galvanic skin

resistance, pupil dilation, etc.) or in a hybrid setup (Millán et al.,

2010; Pfurtscheller et al., 2010; Müller-Putz et al., 2011) e.g., in

combination with non-BCI assistive technology.

We currently observe an expansion of BCI technology to other

fields. As it gives access to the real-time monitoring of mental

states (Müller et al., 2008), it is interesting for neuro-ergonomic

interface- and product design (Blankertz et al., 2010; Porbadnigk

et al., 2010). Furthermore it starts becoming a tool for the neu-

rosciences, where the use of multiple sources of information is

an inviting possibility. All these fields can profit from processing

methods, that are capable of linking brain data with behavioral

data or with non-neural physiological signal types.

The challenge in processing signals from multiple sources is

to represent, combine and converge information in a way, that is

independent of different sampling rates (Bießmann et al., 2009;

Biessmann et al., 2011), SNR-levels or varying levels of non-

stationarity. It is a great challenge with multiple facets. A next

BCI competition could contribute to the exploration of at least a

few of these aspects.

PERFORMANCE BASELINE FOR PARTICIPATION

The results of competition IV and the three past competitions

have shown, that the number of entries per data set varies to a

large extent, probably due to differing levels of effort that have to

be invested. Participants tend to submit more entries for standard

learning problems, e.g., classification problems where the percent-

age of correct classifications is the metric of choice. Non-standard

learning problems, even though representing important problems

in the field of BCI, tend to gain less attention.

As the success of a participant is finally expressed as a rank

among all submitted entries, the small sample ranking can

potentially be misleading with respect to the overall quality of

even the best-ranked entry. For this reason, it is planned to intro-

duce a performance threshold in future BCI competitions. It will

be determined based on the test data. All entries have to pass this

threshold before they can enter the official ranking. The threshold

is to be defined by the data issuing group and should represent the

state-of-the-art performance that can be gained with established

analysis methods. The threshold is published together with the

performance metric and with a short description of the standard

method that leads to this performance.

We think that this action will contribute toward assessing the

absolute quality of a competition entry rather than the relative

quality only. On the long run the introduction of a threshold

can increase the perceived reliability of novel methods brought to

the BCI community via a BCI competition, and speed up their

adoption by BCI practitioners.
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A. APPENDIX

A.1. DATA SET 2A

All files are listed in Table A1. Note that the test sets will be made

available after the deadline of the competition (except for one file

from subject A01, which serves as an example). The GDF files

can be loaded using the open-source toolbox BioSig, available

for free at http://biosig.sourceforge.net/. There are versions for

Octave1/FreeMat2/MATLAB3 as well as a library for C/C++.

A GDF file can be loaded with the BioSig toolbox with the fol-

lowing command in Octave/FreeMat/MATLAB (for C/C++, the

corresponding function HDRTYPE ∗ sopen and size_t sread must

be called):

[s,h] = sload(’A01T.gdf’);

Note that the runs are separated by 100 missing values, which

are encoded as not-a-numbers (NaN) by default. Alternatively, this

behavior can be turned off and the missing values will be encoded

as the negative maximum values as stored in the file with:

1http://www.gnu.org/software/octave/
2http://freemat.sourceforge.net/
3The MathWorks, Inc., Natick, MA, USA

Table A1 | (Data Set 2a). List of all files contained in the data set 2a, the

striked out test data sets were provided only after the deadline of the

competition.

ID Training Test

1 A01T.gdf A01E.gdf

2 A02T.gdf A02E.gdf

3 A03T.gdf A03E.gdf

4 A04T.gdf A04E.gdf

5 A05T.gdf A05E.gdf

6 A06T.gdf A06E.gdf

7 A07T.gdf A07E.gdf

8 A08T.gdf A08E.gdf

9 A09T.gdf A09E.gdf

Note that due to technical problems the EOG block is shorter for subject A04T

and contains only the eye movement condition.

Table A2 | (Data Set 2a). List of event types in data set 2a (the first

column contains decimal values and the second hexadecimal values).

Event type Description

276 0 × 0114 Idling EEG (eyes open)

277 0 × 0115 Idling EEG (eyes closed)

768 0 × 0300 Start of a trial

769 0 × 0301 Cue onset left (class 1)

770 0 × 0302 Cue onset right (class 2)

771 0 × 0303 Cue onset foot (class 3)

772 0 × 0304 Cue onset tongue (class 4)

783 0 × 030F Cue unknown

1023 0 × 03FF Rejected trial

1072 0 × 0430 Eye movements

32766 0 × 7FFE Start of a new run

[s,h] = sload(’A01T.gdf’,0,

’OVERFLOWDETECTION:OFF’);

The workspace will then contain two variables, namely the

signals s and a header structure h. The signal variable con-

tains 25 channels (the first 22 are EEG and the last 3 are EOG

signals). The header structure contains event information that

describes the structure of the data over time. The following fields

provide important information for the evaluation of this data

set:

h.EVENT.TYP

h.EVENT.POS

h.EVENT.DUR

The position of an event in samples is contained in

h.EVENT.POS. The corresponding type can be found in

h.EVENT.TYP, and the duration of that particular event is stored

in h.EVENT.DUR. The types used in this data set are described in

Table A2 (hexadecimal values, decimal notation in parentheses).

Note that the class labels (i.e., 1, 2, 3, 4 corresponding to event

types 769, 770, 771, 772) are only provided for the training data

and not for the testing data.

The trials containing artifacts as scored by experts

are marked as events with the type 1023. In addition,

h.ArtifactSelection contains a list of all trials, with 0 cor-

responding to a clean trial and 1 corresponding to a trial containing

an artifact.

SigViewer 0.2 (or higher) can be used to view and annotate GDF

files. SigViewer is available at http://sigviewer.sourceforge.net/.

A.2. DATA SET 2B

All files are listed in Table A3. The GDF files can be

loaded using the open-source toolbox BioSig, available for

Table A3 | (Data Set 2b). List of all files contained in the data set 2b, the

striked out test data sets will be provided after the deadline of the

competition.

ID Training Test

1 B0101T, B0102T, B0103T B0104E, B0105E

2 B0201T, B0202T, B0203T B0204E, B0205E

3 B0301T, B0302T, B0303T B0304E, B0305E

4 B0401T, B0402T, B0403T B0404E, B0405E

5 B0501T, B0502T, B0503T B0504E, B0505E

6 B0601T, B0602T, B0603T B0604E, B0605E

7 B0701T, B0702T, B0703T B0704E, B0705E

8 B0801T, B0802T, B0803T B0804E, B0805E

9 B0901T, B0902T, B0903T B0904E, B0905E

The first two sessions (. . .01T, . . .02T) contain training data without feedback, and

the last three sessions (. . .03T, . . .04E, . . .05E) with smiley feedback. Note: Due

to technical problems no recording for EOG estimation (eyes open, closed, eye

movements) exists in session B0102T and B0504E.

Frontiers in Neuroscience | Neuroprosthetics July 2012 | Volume 6 | Article 55 | 30

http://biosig.sourceforge.net/
http://www.gnu.org/software/octave/
http://freemat.sourceforge.net/
http://sigviewer.sourceforge.net/
http://www.frontiersin.org/Neuroprosthetics
http://www.frontiersin.org/Neuroscience
http://www.frontiersin.org/Neuroprosthetics/archive


Tangermann et al. Review of the BCI competition IV

free at http://biosig.sourceforge.net/. There are versions for

Octave4/MATLAB5 as well as a library for C/C++.

A GDF file can be loaded with the BioSig toolbox with the

following command in Octave/MATLAB (for C/C++, the corre-

sponding function HDRTYPE∗ sopen and size_t sread must be

called):

[s,h] = sload(’B0101T.gdf’);

Note that the runs are separated by 100 missing values, which

are encoded as not-a-numbers (NaN) by default. Alternatively, this

behavior can be turned off and the missing values will be encoded

as the negative maximum values as stored in the file with:

[s,h] = sload(’AO1T.gdf’,0,

’OVERFLOWDETECTION:OFF’);

The workspace will then contain two variables, namely the sig-

nals s and the header structure h. The signal variable contains

6 channels (the first 3 are EEG and the last 3 are EOG signals).

The header structure contains event information that describes

the structure of the data over time. The following fields provide

important information for the evaluation of this data set:

h.EVENT.TYP

h.EVENT.POS

h.EVENT.DUR

The position of an event in samples is contained in

h.EVENT.POS. The corresponding type can be found in

4http://www.gnu.org/software/octave/
5The MathWorks, Inc., Natick, MA, USA

Table A4 | (Data Set 2b). List of event types in data set 2b (the first

column contains decimal values and the second hexadecimal values).

Event type Description

276 0 × 0114 Idling EEG (eyes open)

277 0 × 0115 Idling EEG (eyes closed)

768 0 × 0300 Start of a trial

769 0 × 0301 Cue onset left (class 1)

770 0 × 0302 Cue onset right (class 2)

781 0 × 030D BCI feedback (continuous)

783 0 × 030F Cue unknown

1023 0 × 03FF Rejected trial

1077 0 × 0435 Horizontal eye movement

1078 0 × 0436 Vertical eye movement

1079 0 × 0437 Eye rotation

1081 0 × 0439 Eye blinks

32766 0 × 7FFE Start of a new run

h.EVENT.TYP, and the duration of that particular event is stored

in h.EVENT.DUR. The types used in this data set are described

in Table A4 (hexadecimal values, decimal notation in parenthe-

ses). Note that the class labels (i.e., 1 and 2, corresponding to event

types 769 and 770) are only provided for the training data and not

for the testing data.

The trials containing artifacts as scored by experts

are marked as events with the type 1023. In addition,

h.ArtifactSelection contains a list of all trials, with 0 cor-

responding to a clean trial and 1corresponding to a trial containing

an artifact.

In order to view the GDF files, the viewing and scoring

application SigViewer v0.2 or higher (part of BioSig) can be

used.
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