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Simple Summary: Various nanoparticles have been developed over the last few decades for targeted
drug delivery to cancerous tumors while reducing toxicities. Thermosensitive liposomes (TSL)
belong to the category of triggered nanoparticle delivery systems, where drug release occurs in
response to hyperthermic temperatures (typically, >40 ºC). After administration, the TSL-encapsulated
drug circulates for extended duration (hours) in the blood stream. Localized hyperthermia of the
targeted tissue results in localized drug release, enabling up to 25x tumor drug uptake compared to
administration of unencapsulated drug. Here, we review the delivery kinetics of TSL and discuss
how the interaction between drug, TSL and hyperthermia device affects drug delivery. Thus, this
review provides guidelines on how to improve drug delivery by optimizing the combination of TSL,
drug, and hyperthermia method. Many of the concepts discussed are applicable to a variety of other
triggered nanoparticle delivery systems.

Abstract: Thermosensitive liposomes (TSL) are triggered nanoparticles that release the encapsulated
drug in response to hyperthermia. Combined with localized hyperthermia, TSL enabled loco-regional
drug delivery to tumors with reduced systemic toxicities. More recent TSL formulations are based
on intravascular triggered release, where drug release occurs within the microvasculature. Thus,
this delivery strategy does not require enhanced permeability and retention (EPR). Compared to
traditional nanoparticle drug delivery systems based on EPR with passive or active tumor target-
ing (typically <5%ID/g tumor), TSL can achieve superior tumor drug uptake (>10%ID/g tumor).
Numerous TSL formulations have been combined with various drugs and hyperthermia devices in
preclinical and clinical studies over the last four decades. Here, we review how the properties of TSL
dictate delivery and discuss the advantages of rapid drug release from TSL. We show the benefits
of selecting a drug with rapid extraction by tissue, and with quick cellular uptake. Furthermore,
the optimal characteristics of hyperthermia devices are reviewed, and impact of tumor biology and
cancer cell characteristics are discussed. Thus, this review provides guidelines on how to improve
drug delivery with TSL by optimizing the combination of TSL, drug, and hyperthermia method.
Many of the concepts discussed are applicable to a variety of other triggered drug delivery systems.

Keywords: thermosensitive liposomes; hyperthermia; cancer; nanoparticles; drug delivery
systems; chemotherapy

1. Introduction

Thermosensitive liposomes (TSL) belong to the category of triggered nanoparticle
drug delivery systems (DDS) where a drug associated with the DDS is released in response
to an external trigger [1–4]. TSL are triggered by heat and release the encapsulated drug
when exposed to mild hyperthermia (HT), typically ~40–43 ◦C. TSL were first described
more than four decades ago [5–8]. Since then, numerous TSL formulations combined with
various drugs have been described, as summarized in prior reviews [9–15]. TSL are most
often administered systemically, e.g., by intravenous infusion, and then circulate in the
blood stream for an extended duration. Combined with localized hyperthermia, TSL enable
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loco-regional drug delivery (Figure 1). This enables the delivery of a large drug dose to a
targeted tissue region (e.g., tumor) while reducing systemic toxicities. Therefore, TSL are
attractive as a therapeutic strategy in cancer patients where loco-regional drug delivery is
beneficial, but less useful in metastatic cancer patients that require systemic therapy. While
TSL have been most widely investigated for drug delivery in cancer therapy, additional
potential clinical applications include the delivery of antibiotics [16,17], the treatment of
inflammatory diseases [18], and the treatment of blood clots [19].

TSL enable two different delivery approaches: extravascular triggered release, and
intravascular triggered release (Figure 2) [14,20–23]. Extravascular triggered release re-
quires the extravasation of the TSL, followed by HT-triggered release of the encapsulated
agent [14,24]. This extravasation is based on TSL accumulation within the tumor intersti-
tium facilitated by enhanced permeability and retention (EPR) [14,25–28]. Several recent
papers described the limitations of the EPR effect, such as high intra- and inter-tumor
variability, and an apparent upper delivery limit [14,27,29]. Recent reviews highlight the
need for delivery strategies that do not rely on EPR [14,27,29].
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geting due to enhanced permeability and retention (EPR), where drug is released following extravasation of the DDS. (2) For TSL 80 
with intravascular triggered release, EPR is not relevant: TSL enter the tumor microvasculature of the target region where the re- 81 
lease trigger (i.e., hyperthermia) is present, and release the contained drug within the vasculature. The released drug extravasates 82 
rapidly into tissue and is then taken up by cancer cells. b) Top graph: Concentration dynamics in plasma, interstitial, and intracellu- 83 
lar compartments during extravascular triggered release. TSL were allowed to accumulate for 24 h in the tumor based on EPR, fol- 84 
lowed by hyperthermia triggered release. Bottom graph: Concentration dynamics during intravascular triggered release. 30 min 85 
hyperthermia was applied immediately after TSL administration. Concentration increases in plasma due to drug release. Released 86 
drug then extravasates into interstitium (extravascular extracellular space), where it is taken up by cells. Figure a) reproduced from 87 
[20] (published under CC BY 4.0 license). Figure b) reproduced from [22] (published under CC0 license). 88 
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Figure 1. Localized drug delivery with thermosensitive liposomes (TSL). Following the administra-
tion of TSL-encapsulated doxorubicin (Dox), a subcutaneous mouse tumor was heated by a surface
heating probe to 43 ◦C. Fluorescence imaging during hyperthermia visualizes the localized delivery
of the fluorescent drug (Dox). Drug delivery takes place as long as hyperthermia is applied, here
visualized by a fluorescence increase over the 60 min heating duration. Figure reproduced from [30]
(published under Creative Commons CC BY license).
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been based on passive tumor targeting due to enhanced permeability and retention (EPR), where
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drug is released following extravasation of the DDS. (2) For TSL with intravascular triggered release,
EPR is not relevant: TSL enter the tumor microvasculature of the target region where the release
trigger (i.e., hyperthermia) is present, and release the contained drug within the vasculature. The
released drug extravasates rapidly into tissue and is then taken up by cancer cells. (b) Top graph:
Concentration dynamics in plasma, interstitial, and intracellular compartments during extravascular
triggered release. TSL were allowed to accumulate for 24 h in the tumor based on EPR, followed by
hyperthermia triggered release. Bottom graph: Concentration dynamics during intravascular triggered
release. Hyperthermia (30 min) was applied immediately after TSL administration. Concentration
increases in plasma due to drug release. Released drug then extravasates into interstitium (extravas-
cular extracellular space), where it is taken up by cells. Figure 3a reproduced from [20] (published
under CC BY 4.0 license). Figure 3b reproduced from [22] (published under CC0 license).

Intravascular triggered release is a strategy where drug release occurs in the microvas-
culature while the TSL pass through the heated tumor, and does not require the EPR effect
(Figure 2a) [6,20–23]. Many of the more recent TSL formulations are based on intravas-
cular triggered release, and such TSL have demonstrated superior delivery efficacy, with
up to 25× higher drug delivery compared to unencapsulated drugs [31]. Compared to
non-triggered nanoparticle drug delivery systems, TSL based on intravascular triggered
delivery demonstrate superior tumor drug uptake (Figure 3). In addition, the direct com-
parison of TSL with extra- versus intra-vascular triggered delivery strongly suggests that
the latter is superior [22,24,32,33] (Figure 2b). Therefore, in the remainder of this review,
we will focus on drug delivery by TSL via intravascular triggered release.
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Figure 3. Delivery efficacy of intravascular triggered TSL compared to other nanoparticle DDS. A
prior review compared the efficacy of 117 nanoparticle DDS studies published between 2005–2015 [27],
and we combined data from this prior review to include studies published between 2016–2022 based
on the same search algorithm [30–32,34–114]. (a) Plot showing the delivery efficacy (%injected
dose per gram tumor (%ID/g tumor)) based on the combined data [27,30–32,34–114]. Each marker
represents a published study, and dashed lines indicate the annual median for DDS with passive and
active targeting. (b) The means of all prior studies in each category between 2005–2022 are compared,
suggesting superior delivery efficacy of intravascular triggered TSL (* indicates statistical significance
(p < 0.05)).

Tissue Transit Time

For TSL based on intravascular triggered release, the dynamics of blood flow through
the tumor vasculature is of primary relevance. Blood/plasma with TSL enter a tumor
segment through a supplying artery, pass through tumor capillaries, and exit the tumor
segment through a draining vein. The average time that plasma spends within a tumor
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segment is termed the ‘tissue transit time’ (TT) (compared to plasma, red blood cells move
significantly slower through capillaries, and thus remain for longer within the tumor
segment [115]). The drug release from TSL, and drug extraction by tumor tissue, can only
occur during this tissue transit time. Figure 4 visualizes the transit time between supplying
artery and draining vein of a small mouse tumor segment. In human tumors, the mean
transit time through a tumor has been measured for various tumor types. This mean tumor
transit time varies widely, and is ~2 s for primary hepatocellular carcinoma [116], ~3 s for
head and neck and prostate tumors [117,118], ~11 s for renal cell carcinoma [119], ~25 s for
metastases to the liver [116], and ~30 s for breast cancer [120]. Furthermore, transit time
and perfusion vary spatially within tumors such that transit time can be locally within a
tumor considerably higher or lower than these mean values that were averaged over the
whole tumor.
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Figure 4. Tumor plasma transit time. Tumor (green fluorescent labeled cancer cells) was imaged
by intravital fluorescence microscopy. A red fluorescent contrast agent was injected as bolus. The
time at left upper corner of each image indicates timing relative to plasma first entering the tumor
segment; plasma exits the tumor segment again within ~4 s (note: red blood cells move slower than
plasma and remain longer in the tumor segment). In the final image (right lower corner), the main
supplying artery (MSA), and main draining vein (MDV) of the imaged tumor segment are labeled.
Figure reproduced with permission from [115].

As plasma with TSL enters capillary vessels within a heated tumor region, the TSL
start releasing the drug and the drug is then extracted by the tumor (Figure 5b,c). Therefore,
the plasma drug concentration varies along the vasculature as plasma flows between the
supplying artery and draining vein of a tumor segment—in other words, a concentration
gradient develops along the tumor microvasculature between the supplying artery and
draining vein. Figure 5 illustrates schematically this microvascular concentration gradient
along a representative capillary connecting the supplying artery and the draining vein of
a tumor segment. For free (unencapsulated) drug, plasma drug concentration decreases
as drug is extracted (Figure 5a). For TSL, drug is first released by hyperthermia, and
then the released (free) drug is extracted (Figure 5b,c). Ideally, TSL completely release the
encapsulated drug during the transit time to maximize tumor drug uptake—i.e., TSL that
release their drug within seconds are preferable (Figure 5b).
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Figure 5. Microvascular concentration gradient. Plasma flows within a representative capillary between
the supplying artery and draining vein of a tumor segment. Plasma concentration of unencapsu-
lated/released drug (blue bar), and TSL-encapsulated drug (black bar) are shown, with red arrows
indicating tumor drug uptake (i.e., drug extraction). Three cases are presented: (a) Unencapsulated
drug infusion into supplying artery, (b) TSL with complete release during transit, and c) TSL with
incomplete release during transit. In (b,c), drug is first released from TSL, followed by tissue uptake.
Note that all figures show first pass where no drug is yet present in the tissue interstitium. Figure
reproduced from [20] (published under CC BY 4.0 license).

2. Impact of TSL Properties on Drug Delivery

The methods for preparation and loading of various TSL formulations with different
agents has been reviewed extensively in prior reviews [9–15]. Additionally, the factors and
mechanisms that affect drug release from TSL have been summarized in detail in earlier
publications [9,11,12]. Here, we focus on reviewing how TSL properties such as release
kinetics and plasma stability affect drug delivery. These properties depend both on the TSL
formulation and the drug. For example, the same formulation will have varying release
kinetics depending on which drug is encapsulated [121]. In addition, the buffer used to
measure release affects release kinetics [121], highlighting the importance of selecting an
appropriate buffer (e.g., plasma) (Figure 6d).

2.1. TSL Release Kinetics

The early TSL formulations had comparably slow release (within minutes to
hours) [122,123]. In addition, heating to >42 ◦C was required to achieve substantial re-
lease. This is disadvantageous since temperatures above 43 ◦C may result in reduced
blood flow [124] that would also reduce the inflow of TSL-encapsulated drug. The first
fast-release TSL formulations were published in the early 1990s, demonstrating substantial
release within a few seconds after heating to >41 ◦C [125,126]. Such rapid release is re-
quired to take full advantage of the intravascular triggered release paradigm, as discussed
above. The first fast-release formulation with substantial release at lower temperatures
(40 ◦C) was presented around the year 2000 [31,127,128], and formed the basis for the first
commercial TSL formulation (ThermoDox®) that has been employed in several human
clinical trials [129–135]. Several additional fast-release TSL formulations encapsulating
various agents have been presented within the last two decades [136–138]. Recent studies
confirm that fast-release TSL that release within a few seconds can deliver substantially
higher drug amounts compared to slower releasing formulations [20–22]. However, for
most of these TSL formulations, release kinetics is not known within the time scale relevant
for intravascular triggered release (e.g., within the first few seconds), owing to limitations
of conventional methods used for measuring the release kinetics.

The most widely used method for measuring TSL release kinetics employs a buffer pre-
heated to the desired temperature, where a small volume of TSL is added, typically under
stirring [113,123,137,139–143]. Release is quantified usually using spectrophotometry, since
optical properties (e.g., fluorescence) change when the drug is released from TSL. Due to
the time required for mixing of the TSL with the buffer, the first reported time points are
typically between 8–20 s. This time is substantially longer than many typical tumor transit
times, making these measurements of limited value.
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Figure 6. Measuring release kinetics of fast-release TSL formulations. (a) Millifluidic release assay
schematics. A TSL solution (TSL + buffer) is pumped through a capillary tube that has been heated to
the desired temperature by a Peltier element. Once the TSL solution enters the heated region, TSL
begin to release the fluorescent drug/dye, resulting in a fluorescence gradient along the tube (upper
graph). The Peltier temperature is measured by a thermocouple, and a control algorithm regulates
the power applied to the Peltier element to control temperature. (b) Release of carboxyfluorescein
(CF) from fast-releasing TSL (DPPC:MSPC:DSPE-PEG2000 = 85:10:5) between 37 and 45 ◦C during
the first 8 s. Release within seconds is required to take advantage of the intra-vascular triggered
release paradigm. (c) Release depends on the encapsulated compound, shown for four compounds
for the same TSL formulation. Release in (a–c) was measured using fetal bovine serum (FBS) as buffer.
(d) Release kinetics vary between buffers. CF release is shown for 4 buffers: phosphate buffered
saline (PBS), 10% bovine serum albumin (BSA) solution, fetal bovine serum (FBS), and human plasma.
TSL formulation used in (b–d) was identical. Figures reproduced with permission from [121].

There have been two methods presented to measure TSL release kinetics at short
(second) time scales. The first method employed a small-diameter tube within which TSL
solution was passed through heated water for a specific time, and the released drug was
quantified in the sample exiting the tube [125]. An advantage of this method is that various
quantification methods can be employed on these samples. In a second method, a glass
capillary tube was heated by a Peltier element, and release was quantified by measuring
fluorescence along the tube by either microscopic or macroscopic fluorescence imaging
(Figure 6a) [121,144]. This method provides data at high temporal resolution not possible
with other methods (Figure 6b–d), but is limited to fluorescent agents. In both methods,
it is important to select thin-walled tubes and to validate sufficiently rapid heating of the
solution passing though the tube to target temperature [121].
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To compare the release kinetics of TSL formulations, a recent study suggested using a
characteristic release time based on a linear approximation of the TSL release kinetics [20].
As noted earlier, TSL only spend a few seconds within a tumor (=transit time), and for
most TSL, the release kinetics within those first seconds can be adequately represented by a
linear approximation (Figure 7). Ideally, this release time would be smaller than the transit
time to maximize release and tissue drug uptake (Figure 5). The amount of drug released
during tumor transit (Figure 5) can be estimated by the ratio of transit time to release
time (see Supplementary Material File S1, Equation (S2)). A recent study demonstrated
that TSL with rapid release (i.e., short release time) can deliver substantially more drug to
tissue than TSL with slow release (Figure 8) [20]. Table 1 summarizes the release times of
published fast-release TSL formulations. In most cases, the exact release times could not
be determined owing to limitations of methods used to quantify the release kinetics, as
described above.
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Figure 7. TSL release time. Release of two TSL formulations encapsulating a fluorescent drug analog
(carboxyfluorescein) with slow (sTSL) and fast (fTSL) release is plotted, based on data from a prior
study [20]. The dotted lines indicate a linear approximation of the release kinetics. TSL only spend a
few seconds within the heated tumor (see black double arrow indicating ‘Transit Time’). Thus, in
most cases, a linear approximation adequately represents release within those few seconds that TSL
spend within the tumor vessels. Based on this linear approximation, a characteristic ‘release time’
is determined (indicated by red and blue double-arrows at the top) that enables the comparison of
different TSL formulations. This release time was 8.2 s for fTSL, and 63.0 s for sTSL. The fraction
of drug released during transit can be estimated by the ratio of transit time to release time (see
Supplementary Material File S1, Equation (S2)).
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Table 1. Fast-release TSL formulations. Release times (see Figure 7) were estimated if possible, or an upper limit was provided (e.g., <20 s); in the latter cases, release at
the first measured time point is shown in brackets. Buffer used for release measurement is indicated, since buffer affects release kinetics [121].

TSL Composition (Molar Ratio) Drug Release Time [Temp.] Buffer In Vivo Plasma Half-Life (Species) Refs.

DPPC:MSPC:DSPE-PEG2000 (86:10:4) Doxorubicin 3 s [40 ◦C] human plasma 0.96 h (human);
1–2 h (rabbit); 4.8 h (pig) [127–129,140,145–147]

DPPC:MSPC:DSPE-PEG2000 (85.3:9.7:5) Doxorubicin 4 s [41 ◦C] PBS 0.93 h (mouse); 0.96 h (rat); 0.75 h (dog) [30,148,149]

DPPC:DSPC:DSPE-PEG2000 (70:25:5) Doxorubicin ~5–10 s [42 ◦C] FBS >1 h (mouse) [105]

DPPC:DSPE-PEG2000:Ch:mELP Doxorubicin <5 s [41–42 ◦C] FBS + culture media 2.0 h (mouse) [150]

DPPC:DSPC:DPPG1 (50:20:30) Doxorubicin <20 s [42 ◦C]
(92.2% release @ 20 s) HEPES buffered saline 1.4 h (rat) [151]

DPPC:DSPC:DPPG2 (50:20:30) Doxorubicin <20 s [42 ◦C]
(~75% release @ 20 s) HEPES buffered saline ~1 h (pig); 1.6–2.4 h (rat);

0.4–0.7 h (cat) [151–155]

EYPC:Chol:Peg-PE:poly(EOEOVE-OD4) (50:45:4:2) Doxorubicin ~1 min [43 ◦C] HEPES buffered saline - [156]

DPPC:Brij78 Doxorubicin ~1 min [42 ◦C] FBS 0.5 h (mouse) [157]

DOPE:EPC:chol-pHPMAlac (70:25:5) Doxorubicin ~2 min [42 ◦C] HEPES buffered saline - [158]

DPPC:DSPC:DSPE-PEG2000 (60:35:5) Idarubicin <1 s [42 ◦C] FBS >1 h (mouse) [105]

DPPC:DSPC:DSPE-PEG2000 (80:15:5) Gemcitabine <2 min [42 ◦C]
(90% release @ 2 min) FBS ~2 h (mouse) [143]

DPPC:MSPC:DSPE-PEG2000 (86:10:4) Gemcitabine ~30–60 s FBS:saline (1:1) - [34]

DPPC:Brij78 Gemcitabine ~30–60 s FBS:saline (1:1) ~2 h (mouse) [34]

DPPC:Brij78 Oxiplatin ~30–60 s FBS:saline (1:1) ~1 h (mouse) [34]

DPPC:DSPC (90:10) Cisplatin 3–5 s [43 ◦C] rat plasma ~1 h (mouse) [125,126,159]

DPPC:DPPG:MSPC:DSPE-PEG2000
(57.7:28.9:9.6:3.8) Cisplatin <5 min [42 ◦C]

(90% release @ 5 min) 0.9% saline ~1.5 h (mouse) [113]

DPPC:MSPC:DSPG:DSPE-PEG2000 (82:8:10:4) Epirubicin ~4 min [41–43 ◦C] PBS 0.2 h (rat) [160]

DPPC:MSPC:DSPE-PEG2000 (86:10:4) Alvespimycin <30 s [42 ◦C]
(90% release @ 30 s) BSA in PBS 0.2 h (mouse) [80]

DPPC: 1,2-Dipalmitoyl-sn-glycero-3-phosphocholine; DSPC: 1,2-distearoyl-sn-glycero-3-phosphocholine; MSPC: 1-stearoyl-2-hydroxy-sn-glycero-3-phosphatidylcholine; DPPG: 1,2-
dipalmitoyl- sn-glycero-3-phosphoglycerol; PE: poly ethylene; PEG: polyethylene glycol; Ch: Cholesterol; EYPC: egg yolk phosphatidylcholine; EOEOVE: 2-(2-ethoxy)ethoxyethyl vinyl
ether; mELP: modified elastin-like polypeptide; Brij78: proprietary surfactant (main component: eicosaethylene glycol octadecyl ether); pHPMAlac: 2-Hydroxypropyl methacrylamide
mono/dilactate polymers; PBS: phosphate buffered saline; FBS: fetal bovine serum; BSA: bovine serum albumin.
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Figure 8. TSL delivery kinetics. (a) Drug concentration in plasma and interstitium (extracellular-
extravascular space, EES) was determined from intravital microscopy data. Hyperthermia (42 ◦C)
for 10 min was applied following the administration of either slow- (sTSL) or fast-release TSL (fTSL)
encapsulating a fluorescent drug analog (carboxyfluorescein) (see Figure 7 for release kinetics of
sTSL and fTSL). Plasma concentration increases during hyperthermia due to drug release. Re-
leased drug is then extracted by tissue, indicated by increasing interstitial (EES) concentration. A
plateau (peak) concentration is approached towards the end of hyperthermia. This plateau concen-
tration is substantially higher for fTSL compared to sTSL. Error bars indicate standard deviation
(n = 3 animals/group). (b) Computer simulation of drug delivery kinetics based on in vivo measured
tumor properties reproduces the delivery kinetics observed in (a). Error bars indicate computer
model uncertainty due to uncertainty of model parameters. Figures reproduced from [20] (published
under CC BY 4.0 license).

2.2. Plasma Stability

Plasma stability describes how long TSL-encapsulated drug remains in the systemic
circulation after administration and can be quantified by the initial plasma half-life of a
TSL formulation. Similar to the TSL release kinetics, plasma stability depends both on
TSL formulation and encapsulated drug, but also varies with species (Table 1). During
hyperthermia, circulating TSL-encapsulated drug continuously enters the heated tissue
volume, with subsequent intravascular drug release (Figures 2 and 5). The plasma con-
centration of TSL-encapsulated drug represents the amount available for intravascular
triggered release. Thus, the AUC (area under the concentration vs. time curve) of the
plasma concentration calculated during hyperthermia correlates with the total amount
of TSL-encapsulated drug subjected to hyperthermia [161,162]. As a result, this AUC di-
rectly correlates with the amount of drug released in the heated tumor (see Supplementary
Material File S1, Equation (S5)). This AUC also correlates with tumor drug uptake, as
initially demonstrated in a computer modeling study [161] and later confirmed by several
experimental studies (Figure 9) [149,162,163]. A higher plasma stability would therefore
increase this AUC, resulting in larger amount of drug being released—assuming that the
kinetics of TSL release is not different (e.g., increased plasma stability of a TSL formulation
may be disadvantageous if it is associated with slower release). Similarly, one approach to
enhance drug delivery is to adjust the timing of hyperthermia as to maximize the plasma
AUC during heating [161,163].

Note however that such comparisons based on AUC are only appropriate for different
studies with the same TSL formulation, and the same or similar hyperthermia methods
(i.e., with similar tumor temperature). The AUC indicates the total amount of TSL-
encapsulated drug that passes through the heated tissue during hyperthermia. If two
different heating devices with different temperature profiles and heating volumes are
used, the amount of drug released from TSL will differ. Similarly, if two different TSL
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formulations are used, the amount of drug released will differ due to varying TSL release
kinetics. Thus, even if the AUC is identical (=total amount of TSL-encapsulated drug
passing through heated tissue), the amount released from these two TSL formulations will
vary, resulting in different tumor drug uptake.
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Figure 9. Plasma-AUC during hyperthermia correlates with tumor drug uptake. (a) AUC of plasma
Dox concentration was calculated during heating, for either 15 or 60 min hyperthermia (HT) as
indicated by shaded regions. (b) Plasma-AUC during HT correlated well with Dox fluorescence in the
tumor region-of-interest measured following HT (R2 = 0.63). Tumors were exposed to hyperthermia
(43 ◦C) for either 15 min (blue dots) or 60 min (red dots). Data reproduced from [162] (published
under CC BY 4.0 license).

TSL plasma stability depends on several factors, and one major contributor is drug
leakage from TSL at body temperature (37 ◦C)—i.e., drug slowly leaks from TSL while in
systemic circulation [164]. Unfortunately, the release rate at body temperature is usually
tied to the release rate at hyperthermic temperatures—i.e., slow release at 37 ◦C and rapid
release at hyperthermia represent conflicting requirements for TSL formulations.

The peak plasma concentration after administration of TSL-encapsulated drug (Figure 9a)
naturally correlates with the administered dose. Often, the administered dose is close to,
or at the maximum tolerated dose (MTD) for that particular TSL–drug formulation in
the studied species. In rodents, the MTD relative to body weight is often substantially
higher compared to humans [165]. This higher administered dose in rodents results in
higher plasma concentration (Figure 9a) and higher tumor drug uptake compared to large
animals [147,149,155] and humans [129,133]. This issue may be relevant when extrapolating
results on tumor drug uptake and therapeutic response from rodent studies to human
patients.

3. Impact of Drug Properties on Drug Delivery

In addition to TSL properties, the properties of the encapsulated drug have a major
impact on drug delivery facilitated by TSL. As discussed earlier, both the TSL release
kinetics and plasma stability are impacted by the selected drug (Figure 6c; Table 1). Thus,
delivery is indirectly affected by the interaction between drug and TSL. In addition, the
properties of the unencapsulated drug (i.e., once released) have a substantial impact.

3.1. Tissue Extraction (Vascular Permeability)

TSL based on the intravascular triggered release paradigm are equivalent to the direct
infusion of unencapsulated drug into the tumor-feeding vessels (Figures 2 and 5). This
delivery paradigm is similar to intra-arterial drug infusion—a clinically used delivery
strategy where the drug is directly infused into tumor-feeding vessels through catheters. It
is well known that the drugs optimal for intra-arterial delivery are not necessarily identical
to those optimal for systemic delivery, and that rapidly extracted drugs are preferable [166].
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The parameter ‘extraction fraction’ (EF) (or ‘extraction ratio’) indicates the drug fraction
extracted by tissue when infused via a supplying artery, during a single pass. This extraction
fraction varies widely between drugs, and is in the range of ~0.2–1 for many chemotherapy
agents (Table 2).

Table 2. Extraction fraction (EF) of chemotherapy agents that have been encapsulated in TSL.

Drug Extraction Fraction (EF) Source

Idarubicin ~1 [167]
Gemcitabine 0.55–0.89 [168]
Oxaliplatin 0.47 [169]

Doxorubicin 0.45–0.5 [166]
Cisplatin 0.24 [170]

A recent study evaluated how tumor drug uptake varies depending on drug extrac-
tion fraction (EF), concluding that drugs with high extraction fraction are preferable for
triggered DDS such as TSL [20]—similar to intra-arterial drug infusion [166]. In addi-
tion, the EF of the selected drug determines optimal TSL release kinetics (i.e., release
time) for maximum delivery. For highly permeable drugs that are completely extracted
(EF~1), a release time equal to or below the tumor transit time is sufficient. For drugs with
lower EF, a much more rapid release time of less than 10% of transit time (release time
<< 1 s) is ideal (Figure 10). This may explain why prior studies with TSL-encapsulated
cisplatin—a drug with comparably low EF (Table 2), that is, in addition, taken up slowly by
cells [171]—has achieved limited delivery efficacy. Prior studies demonstrated a limited
drug uptake enhancement of 2- to 4-fold (or ~1–5%ID/g) for TSL–cisplatin combined with
hyperthermia, compared to control animals where free cisplatin was administered with
hyperthermia [113,114,125,159].
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Figure 10. Drug extraction fraction (EF) and TSL release time dictate delivery efficacy. A parametric
study was conducted based on an in vivo-validated computer model. The parametric study examined
the interaction of two parameters that affect the maximum drug concentration achievable within the
tissue interstitium (=plateau concentration (cplateau); see Figure 8): (1) TSL release time (see Figure 7),
and (2) drug extraction fraction (EF). Delivery efficacy is indicated by the plateau concentration
relative to maximum (cplateau/cmax), and is visualized by a color scale. The dotted horizontal lines
indicate EF for four common chemotherapy agents, and for a common fluorescent drug analog
(carboxyfluorescein). In a prior in vivo study, carboxyfluorescein was encapsulated in two TSL
formulations: a fast-release (fTSL) and a slow-release formulation (sTSL) (compare Figure 7). The
two vertical dotted lines indicate the release times for fTSL (release time = 8.2 s) and for sTSL (release
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time = 63.0 s). The intersections of the horizontal dotted line corresponding to carboxyfluorescein and
the vertical dotted lines indicate the location of experimental in vivo results for fTSL and sTSL in this
map. The color inside the gray crosshairs corresponds to the measured in vivo plateau concentration.
For highly permeable drugs (e.g., idarubicin, EF~1), a release time in the range of seconds is sufficient
for near optimal delivery. For lower permeable drugs (e.g., cisplatin, EF~0.2), about 10× faster release
(<0.1 s) is ideal. This study assumed a tumor transit time of 5.0 s based on in vivo measurements [20].
Figure reproduced from [20] (published under CC BY 4.0 license).

3.2. Cell Uptake Kinetics

During drug delivery with TSL based on the intravascular triggered release paradigm,
the drug is released from the TSL within the vasculature and then diffuses across the vessel
wall into the interstitial space (Figures 2 and 5). This interstitial drug is then available for
cellular uptake. The cell uptake kinetics depend on the drug (Figure 11), and may also
vary with cell type. One recent study compared two anthracycline chemotherapy agents
(doxorubicin and idarubicin) in mouse tumors. In vitro experiments in this prior study
indicated much more rapid cell uptake of idarubicin compared to doxorubicin, which
presumably contributed to the much higher tumor uptake of idarubicin [105]. Another
recent study evaluated four anthracycline chemotherapy agents in computer models, where
cell uptake kinetics were based on in vitro experiments with each drug in three cancer cell
lines [172]. This study demonstrated that tumor drug uptake is significantly affected by
cell uptake kinetics, and that drugs with rapid cell uptake (Figure 11) resulted in highest
tumor drug uptake (Figure 12).
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Figure 11. Cell uptake kinetics depend on drug. In vitro drug uptake of SVR (angiosarcoma) cells
for (a) doxorubicin (DOX), (b) idarubicin (IDA), (c) pirarubicin (PIR), and (d) aclarubicin (ACLA) at
extracellular concentrations of 1, 5 and 10 µg/mL. Uptake is shown for 60 min, which is a typical time
used for hyperthermia-triggered delivery by TSL. Figure reproduced from [172] (published under
CC BY license).

Interestingly, the drugs with rapid cell uptake also produced a steep radial concentra-
tion gradient surrounding the capillaries (Figure 12c–e). This is because drug uptake by
cells close to the capillaries depletes drug amount available for cell uptake further distant
from the vessels. For drugs with slower uptake, radial diffusion dominates, resulting
in a more uniform radial concentration gradient (Figure 13a). For drugs with rapid cell
uptake, cellular uptake dominates, resulting in a steeper gradient (Figure 13b). The radial
concentration gradient thus depends on the competition between cellular uptake and radial



Cancers 2023, 15, 398 13 of 30

drug diffusion. This more pronounced gradient for drugs with rapid cell uptake has been
also demonstrated in the earlier mentioned prior in vivo study for idarubicin (rapid cell
uptake) and doxorubicin (slow cell uptake) (Figure 13c) [105].
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Figure 12. TSL delivery depends on drug. (a) Computer model simulated TSL-based drug delivery
to SVR cancer cells surrounding a tumor capillary. Drug concentration after 60 min hyperthermia
is shown for (b) doxorubicin (DOX), (c) idarubicin (IDA), (d) pirarubicin (PIR), and (e) aclarubicin
(ACLA). Tumor drug uptake in (b–e) is largely dictated by cell uptake kinetics of the drug (see
Figure 11). Drugs with fast cell uptake (ACLA, IDA) also result in highest tissue uptake. Figure
reproduced from [172] (published under CC BY license).
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Figure 13. Rapid cell uptake produces steep radial drug concentration gradient. A competition
between radial drug diffusion and cellular uptake dictates the radial drug concentration gradient.
(a) Schematics indicating transport kinetics for a drug with slow cell uptake (e.g., DOX). Diffusion
is dominating over cell uptake, allowing drug penetration distant from the capillary. Blue arrows
indicate drug transport, red circles represent cancer cells. (b) For a drug with rapid cell uptake
(e.g., ACLA, IDA), the uptake by cells close to the capillary depletes drug available for more dis-
tant cells. (c) A prior in vivo study demonstrated a steeper radial concentration gradient for IDA
(rapid uptake) compared to DOX (slower uptake), shown after 60 min hyperthermia [105]. Figures
reproduced from [172] (published under CC BY license).
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4. Impact of Hyperthermia Method on Drug Delivery

Various hyperthermia methods and devices have been used in clinical and preclinical
studies in combination with TSL. Each heating device induces a different temperature
profile in tissue, has varying penetration depth and different heating dynamics. Thus, the
choice of the hyperthermia device will have substantial impact on the drug delivery from
TSL. Depending on anatomic location and size of the targeted tumor(s), the hyperthermia
device needs to be carefully selected and heat delivery optimized.

4.1. Temperature

Ideally, the target tissue volume (e.g., tumor) is uniformly exposed to temperatures
within the optimal range of ideal drug release from TSL. For the more recent TSL formula-
tion, that corresponds to minimum tissue temperatures of ~40 ◦C. In addition, maximum
temperatures should be limited to avoid reduced blood perfusion. Reduced perfusion takes
place above ~43–45 ◦C in animal tumors [124]. Thus, ideally the target tissue volume is
heated to a narrow temperature range of 40–42 ◦C [173]. While this may be feasible for
small rodent tumors, for large human tumors such uniform heating is technically quite
challenging [14].

In addition to temperature of the target tissue, body temperature can have a significant
impact on drug delivery with TSL. Plasma stability is in part due to drug leakage from TSL
in systemic plasma at body temperature. A slightly increased body temperature, even if still
within the physiological temperature range of the animal or human (e.g., 38–39 ◦C), may
result in premature drug leakage within systemic circulation [30,149]. This can substantially
reduce drug delivery as less drug is available for release. Adequate monitoring and control
of core body temperature is therefore important.

4.2. Hyperthermia Duration and Timing

The hyperthermia duration used in past studies with TSL varies widely, between
2–60 min [30,161]. Multiple more recent studies have demonstrated that longer hyperther-
mia duration enhances tumor drug uptake (Figure 14) [30,161,162,174,175]. We described
earlier that the AUC of the plasma concentration calculated during hyperthermia corre-
lates with the amount of drug released during heating, and therefore predicts tumor drug
uptake (Figure 9; Equation (S5)) [149,161–163]. This also explains why longer hyperther-
mia duration enhances drug delivery, since a longer heating duration results in a larger
AUC. At some time point, there will however be limited additional benefit of extend-
ing the heating duration—i.e., when plasma concentration of TSL-encapsulated drug has
decreased substantially.
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Figure 14. Extended hyperthermia duration increases drug uptake. Tumor drug concentration
(doxorubicin) was quantified for tumors receiving hyperthermia for 15, 30 or 60 min (red bars), and
for contralateral tumors with no hyperthermia (blue bars) in mice. A regression analysis identified
hyperthermia duration as significant predictor of tumor drug uptake (p = 0.02). * indicates significance
(p < 0.05). Figure reproduced from [30] (published under CC BY license).

In addition to hyperthermia duration, the timing of hyperthermia in relation to the
administration of TSL-encapsulated drug impacts drug delivery. A past study showed
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that timing of hyperthermia while keeping duration constant impacts drug delivery [161].
Another recent study demonstrated in vivo that the optimization of hyperthermia timing
relative to TSL administration as to maximize plasma AUC also maximizes tissue drug
delivery [163].

In many cases, substantial amounts of encapsulated drug will remain in systemic
circulation after completion of hyperthermia (Figure 9a, Figure 15). Since no further tumor
delivery occurs after completion of heating (Figure 2b) [22,30], this systemically remaining
drug does not contribute therapeutically. A recent study presented an approach that
removes this remaining encapsulated drug from systemic circulation to reduce systemic
toxicities [148].
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Figure 15. Volumetric heating rapidly depletes systemically available TSL-encapsulated drug.
(a) Plasma pharmacokinetics of mice injected with TSL-Dox is shown, for three heating modali-
ties. The focal heating modalities (heating probe, laser) have little impact on plasma concentration
(e.g., plasma half-life was similar to a prior study in the same animal model without heating [30]). In
contrast, water bath heating—where the whole limb is exposed to heat rather than just the tumor—
rapidly depletes encapsulated drug in systemic plasma. (b) Pharmacokinetic model shows similar
results at higher temporal resolution, and includes results in unheated mice (‘no HT’). Figures
reproduced from [162] (published under CC BY license).

4.3. Volume of Hyperthermia

The hyperthermia volume (volume where significant drug release occurs, e.g., total
volume of tissue heated to >40 ◦C) varies between hyperthermia methods. A recent study
demonstrated that the hyperthermia volume can have a substantial impact on the amount
of drug delivered to tumors [162]. When a large tissue volume relative to the total body
volume is exposed to hyperthermia, large amounts of TSL-encapsulated drug are released.
As result, the available encapsulated drug in systemic circulation can be depleted quite
rapidly (Figure 15). In such cases, extending the hyperthermia duration beyond the time
when all the encapsulated drug has been released does not enhance tumor drug uptake.
For example, one prior study showed no difference in tumor uptake between 15 min and
60 min water bath hyperthermia [162].

Two animal studies where water bath heating was employed to heat the entire tumor
bearing leg demonstrated significantly lower drug delivery to tumors compared to focal
hyperthermia methods such as infrared lasers [162,176]. In both studies, the more focused
infrared laser hyperthermia resulted in 2–3 times higher tumor drug uptake compared to
volumetric hyperthermia from a water bath. Notably, water bath hyperthermia has been
very widely used in TSL studies with rodents [7,8,21,112,128,151,172,176–178], and tumor
uptake may have been suboptimal in some of these prior studies due to large volumetric
heating. The plasma level of TSL-encapsulated drug after hyperthermia completion com-
pared to unheated control animals provides information on how much encapsulated drug
has been released during heating (Figure 15b).

While the described mechanism has only been established more recently, there are
multiple earlier studies that reported a substantially reduced plasma concentration of
TSL-encapsulated drug following hyperthermia, compared to unheated control
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animals [6,105,112,151,155,176]. In all these studies, it is likely that the amount of drug
delivered to tumors was reduced due to large-volume hyperthermia. By how much the
delivery was reduced could be estimated by comparing the plasma AUC during heating
between animals with and without hyperthermia (Figures 9 and 15).

These observations also have clinical relevance, since various HT devices have been
employed in combination with TSL in human patients [129,131–133,135,173,179,180]. Ad-
ditionally, in some cases—such as for the treatment soft tissue sarcoma or for chest wall
recurrences after breast cancer—large tissue volumes may be exposed to HT. This could
rapidly deplete TSL-encapsulated drug, similarly to the discussed preclinical studies.

4.4. Review of Available Hyperthermia Devices

Below, we briefly review hyperthermia devices that have been used in combina-
tion with TSL. Table 3 provides an overview of devices. The various hyperthermia de-
vices for human and preclinical application have been reviewed in greater detail in prior
publications [181–183].

4.4.1. Hyperthermia Devices for Human Use

All clinical studies in humans listed below used the same commercial formulation of
thermosensitive liposomal doxorubicin (TSL-Dox), ThermoDox® [135].

Tumor ablation is a clinically used cancer therapy where the cancerous tumor is di-
rectly killed by heat, generally at temperatures above 50 ◦C. In clinical trials, patients with
primary liver cancer have been treated with a combination of tumor ablation (specifically,
radiofrequency ablation) and TSL-Dox [129,135,173,179,180]. The rationale for this combi-
nation is to kill central tumor regions by heat alone and release a therapeutic chemotherapy
dose in the margin where temperatures are not adequate for complete cell kill [135,147,161].
Unfortunately, past Phase III trials combining radiofrequency ablation and TSL-Dox in
humans with liver cancer have been unsuccessful [173,180]. There are multiple possi-
ble reasons for these failures, including selection of patients and drug selection, among
others [173,184].

For recurrent chest wall cancer in human patients, microwave hyperthermia has been
employed to expose large skin regions and underlying tissue to hyperthermic
temperatures [131].

Finally, high-intensity focused ultrasound (HIFU) has been employed in Phase I trials:
for targeted drug delivery to patients with liver tumors [133]; in solid pediatric tumors [132];
and in an upcoming trial for pancreatic cancer [173]. HIFU employs ultrasound focused
non-invasively into deep tissue regions and enables spatial targeting with millimeter
accuracy. Often, HIFU is guided by MR thermometry, enabling real-time monitoring of
tissue temperature and accurate temperature control [185].

4.4.2. Hyperthermia Devices for Animal Use

Below, we briefly review those devices that have been used in animal studies in
combination with TSL. Two trials in privately owned companion animals—one in dogs and
one in cats—used microwave hyperthermia devices. The feline trial employed a microwave
applicator for human use to treat sarcomas with a DPPG2-based TSL-Dox formulation [155].
The canine trial used a proprietary microwave hyperthermia applicator to treat sarcoma
and carcinoma with the commercial TSL-Dox formulation ThermoDox® [186].

Some studies used tumor ablation devices for humans, either without modification in
porcine studies [147,161], or adapted for canine and mouse models [149,187]. One study in
normal porcine bladder used irrigation of warm water inside the bladder [188].

Likely the most widely used heating method in rodents—in part due to its simplicity—
is the water bath, where the limb including tumor is immersed in heated
water [7,8,21,112,128,151,172,176–178]. As noted above, while heating is very uniform,
a disadvantage of water bath hyperthermia is that a comparably large tissue volume is
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exposed to heat that likely results in rapid depletion of the available TSL-encapsulated
drug in systemic circulation [162].

A few studies used focused light sources to induce localized hyperthermia such as
infrared lasers [113,114,162,176,189] and cold light lamps [176,190]. Such light sources are
attractive for heating subcutaneous tumors since they can be easily targeted and provide
often adequate heat penetration for small rodent tumors (Figure 16e).
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Figure 16. Effect of hyperthermia device on drug delivery. A prior study presented 3-D computer
model results on three hyperthermia (HT) devices, assuming a subcutaneous tumor on a mouse
hindlimb. The temperature profile after 15 min HT (=steady state profile) is shown for a heating
probe, an infrared laser, and water bath heating on the hindlimb surface (a–c), and in a tumor cross
section (d–f). The resulting drug concentration is shown after 15 min HT for the three devices, again
on the limb surface (g–i), and in a tumor cross section (j–l). The resulting drug concentration is shown
after 60 min HT on the limb surface (m–o), and in a tumor cross section (p–r). Figures reproduced
from [162] (published under CC BY 4.0 license).

HIFU has been widely used in combination with TSL in both large and small animal
models [17,141–143,145,146,163,174,175,191–204]. Similar to human studies with HIFU, it
is often combined with MR thermometry to provide non-invasive monitoring and control
of temperature.

Intravital microscopy has been used in several studies to monitor drug delivery
from TSL at the microscopic level, where custom-designed heating systems based on
heating elements, radiofrequency hyperthermia, or microwave hyperthermia have been
employed [205].

Finally, a few studies have used custom-designed heating probes applied directly
to tumors [30,162,206], though such applicators provide very limited heat penetration
(Figure 16d).

The type of device used and resulting temperature distribution significantly impact
drug delivery from TSL, as visualized in a recent computer modeling study (Figure 16) [162].
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Table 3. Heating devices used in human and animal studies with TSL.

Heating Device Tem-
Perature

Target
Tissue

Heating
Duration

Device
Advantages

Device
Limitations Refs.

Clinical
human
trials

Radio-frequency
ablation

Up to
~100 ◦C

Primary liver tumors
(Phase III trial)

Variable (multiple
sequential

applications)

Central tumor
kill by cytotoxic

temperatures
>50 ◦C

Drug delivery limited
to margin of heating

zone (~40–45 ◦C)

[129,135,173,
179,180]

Microwave
hyperthermia 40.0–42.0 ◦C

Recurrent chest wall
breast cancer (Phase

I trial)
60 min

Hyperthermia of
large tissue

volume
[131]

High-intensity
focused

ultrasound
(HIFU)

42 ◦C

Primary liver tumors
(Phase I trial);

Pancreatic cancer;
Pediatric solid tumors

(Phase I trial)

30 min

Non-invasive
heating of deep
tissue regions;

excellent spatial
targeting

HIFU cannot
penetrate air or bone;

thermometry is
technically complex,

and/or expensive
(MR thermometry)

[132,133,173]

Animal
studies

Radio-frequency
ablation

Up to
~100 ◦C

Normal porcine liver;
mouse tumors

5, 12 min and 30
min (porcine liver;

3 min (mouse
tumors)

Central tumor
kill by cytotoxic

temperatures
>50 ◦C

Drug delivery limited
to margin of heating

zone (~40–45 ◦C)
[147,161,187]

Water bath 40–43 ◦C Subcutaneous tumors 60 min Simplicity;
Uniform heating

Large heating volume
(see [162])

[7,8,21,112,128,
151,172,176–

178]

Laser (Red or
Near-Infrared

(760–1000 nm))
40–43 ◦C Subcutaneous tumors 15–60 min Non-contact;

spatially targeted
Penetration depth
limited to ~1–2 cm

[113,114,162,
176,189]

High intensity
focused

ultrasound
(HIFU)

40–43 ◦C Subcutaneous tumor 2–40 min

Non-invasive
heating of deep
tissue regions;

excellent spatial
targeting

HIFU cannot
penetrate air or bone;
Most studies use MR

thermometry
(expensive)

[17,141–
143,145,146,
163,174,175,

191–203]

Microwave
hyperthermia 40–44 ◦C

Sarcomas (feline,
canine); carcinomas

(canine); subcutaneous
rat tumors

90 min (canine);
60 min (feline);

15 min (rat tumors)

Microwave
antenna with

directional
heating (rat

tumors)

[148,173]

Custom heating
probes

45 ◦C at
probe

surface
Subcutaneous tumors 30–60 min Heating penetration

limited [30,206]

5. Impact of Tumor Properties
5.1. Tumor Perfusion and Transit Time

We described earlier that tissue transit time is of primary relevance for drug delivery
with TSL based on the intravascular triggered release paradigm. Tissue transit time de-
scribes the time that plasma spends within the vasculature of the target tissue segment (note
that red blood cells typically spend longer than plasma within the same vasculature due
to interaction with the small-diameter capillaries [115]). This transit time is the duration
available for TSL to release the encapsulated drug (Figures 4 and 5). We discussed earlier
how TSL release time impacts delivery (Figure 10); in this prior figure, a certain tumor
tissue transit time (=5 s) was assumed. However, it is not just the TSL release time that is
relevant; to be more exact, it is the ratio between TSL release time and transit time that is
relevant. This ratio determines the amount of drug released while TSL pass through the
capillaries of the target tissue (Supplementary Material File S1, Equation (S2)) [20]. For
example, delivery to tumors with short transit times of ~2 s will therefore be less efficient
compared to tumors with longer transit times.

Tumor perfusion describes the volume of blood or plasma passing through tissue
(e.g., mL plasma per g tissue per minute). Tumor perfusion and transit time are inversely
related [20], i.e., a higher perfusion is typically associated with a shorter transit time. In
addition, perfusion and transit time vary spatially within tissue (e.g., tumors). This spatial
heterogeneity will therefore contribute to heterogenous drug delivery within tumors.
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5.2. Tumor Microenvironment

The tumor microenvironment includes cancer cells, stromal cells, immune cells, blood
vessels and the extracellular matrix. The tumor microenvironment is highly heteroge-
nous, and here we will focus on microenvironmental aspects that affect TSL delivery. The
extracellular matrix (ECM) (i.e., dense stroma) is known to represent a barrier for drug
delivery [14,207], and a prior study identified high collagen content (a major component of
the ECM) as contributing to poor treatment response following TSL-based delivery [114].
This prior study also identified a second factor of the microenvironment as contributing
factor to poor response: hypoxia. Hypoxia is the result of low vascular density. The low
vascular density results in large distances between neighboring capillaries, with limited
penetration of oxygen into regions distant from any capillary. Hypoxia is generally as-
sumed as contributing towards poor tumor response to drug-based therapies [207–209].
In addition, drug penetration into hypoxic regions is lower, since the large distance from
neighboring capillaries limits drug penetration in addition to oxygen penetration [209] (see
also Figure 12).

In addition, several biophysical parameters dependent on the tumor microenviron-
ment impact drug delivery. These include for example the vascular fraction, extravascular
fraction, and vascular permeability [20,207]. The latter depends both on the drug and on
vascular biology, and determines in part the drug extraction fraction (EF) discussed earlier.

Finally, the microenvironment also indirectly affects transit time and perfusion of
tumors, e.g., due to variations in vascular geometry and vessel density.

5.3. Cancer Cell Properties

The varying therapeutic response of different tumor types is further affected by
properties of the cancer cells. It is we well known that different cancer cell types have
varying sensitivity to a particular drug [111,172,210]. Further, we described earlier that cell
uptake kinetics varies as well between cancer cell types [171,172,211]. This varying uptake
kinetics impacts delivery to cancer cells, and may impact efficacy of therapy as well. In
addition, proliferative properties of cancer cells can affect treatment response. A prior study
with five tumor types analyzed in vitro cancer cell properties and in vivo tumor response
after treatment with TSL-Dox. The in vitro doubling time was identified as significantly
correlating with in vivo tumor response (i.e., tumor growth time) [111].

6. Other Hyperthermia Effects

Hyperthermia induces a variety of biological effects that impact both drug transport
and cytotoxicity, and therefore hyperthermia also indirectly impacts delivery and efficacy
of TSL-based therapies. Hyperthermia has been widely used as cancer therapy in human
clinical trials with limited side effects, usually in combination with chemo- or radiation-
therapy [212,213]. Relevant for TSL-encapsulated chemotherapeutics, hyperthermia is a
well-known chemosensitizer that enhances the efficacy of many chemotherapy agents.
In part, this is due to enhanced cellular uptake of drugs at elevated temperatures [214].
In addition, hyperthermia inhibits multiple DNA repair mechanisms, providing a syner-
gistic cytotoxicity with agents that cause DNA damage [215]. In addition, hyperthermia
transiently enhances vascular permeability which can improve transvascular transport of
macromolecules [216], or can enable drug transport across the blood–brain barrier [149].
Furthermore, hyperthermia improves tumor perfusion, which is particularly helpful in
poorly perfused, often hypoxic tumor regions. There, re-oxygenation can improve therapy
response, while enhanced perfusion can improve drug delivery [214]. Finally, hyperthermia
locally stimulates the immune system, which can improve anti-tumor response [214,217].
Most of these effects depend on both temperature and heating duration, and thus may
require additional consideration when devising heating algorithms to take advantage of
these effects while also providing optimal TSL drug delivery.
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7. Recommendations for Preclinical TSL Studies

Below, we provide some guidelines based on our review of preclinical TSL studies in
rodents that may be helpful for future studies:

• Measure in vitro TSL release kinetics at early time points, with the first measurement
ideally within 5 s or less. In addition, a physiologically relevant buffer should be used
(e.g., plasma or serum), since the buffer affects drug release (Figure 6d) [121].

• Initiate hyperthermia (HT) either before bolus administration of TSL, or as soon as
practical after administration. This is to maximize the plasma-AUC, which corre-
lates with tumor drug uptake (Figure 9) [149,161–163]. Pre-heating is particularly
advantageous in cases when heating of the tumor requires some time (depending on
heating method).

• Use a heating method that ensures heating of the whole tumor while avoiding exten-
sive exposure of normal tissues. To ensure adequate tumor heating for subcutaneous
tumors, at minimum, temperature at the distal edge of a subcutaneous tumor should
be measured to confirm that the whole tumor is exposed to hyperthermic tempera-
tures where the employed TSL have optimal release (~40–43 ◦C in most cases). While
MR thermometry or ultrasound thermometry are often not available, such methods
would be ideal to ensure targeted tumor heating. As discussed above, water bath
hyperthermia is not ideal for rodent studies and can result in reduced delivery [162].

• Obtain a blood sample after completion of HT, to quantify drug concentration and
ensure that available encapsulated drug has not been depleted. A comparison to a non-
heated control group confirms if any depletion is due to HT, rather than from systemic
TSL elimination/leakage. An additional blood sample following TSL administration
and before HT would be valuable (e.g., for estimating the plasma-AUC as in Figure 9).
While the required HT duration for therapeutic effect depends on many factors such
as drug, tumor model, etc., in general, extending the HT duration enhances tumor
drug uptake assuming that TSL-encapsulated drug is still in circulation.

• Provide optimal thermal support and monitor the core temperature of animals during
studies. Due to anesthesia, rodents are not able to regulate their core temperature
and require thermal support. However, extensive thermal support may elevate core
temperature above normal. Prior studies have shown that elevated core temperature
(>37 ◦C) resulted in premature drug leakage from TSL, even though thermal support
was at 37 ◦C [30]. Conversely, a reduced core temperature will make it more difficult
to raise tumor temperature to ranges required for release. Thus, ideally the core tem-
perature should be continuously monitored and regulated to ~36–37 ◦C by adjusting
thermal support as necessary.

8. Conclusions

Drug delivery by TSL depends on complex interactions between the liposomes, the
drug, the hyperthermia device, and tumor physiology/biology (Figure 17). Optimal
delivery by TSL requires rapid drug release from liposomes, ideally combined with a drug
that is quickly taken up by tissue and cancer cells. In addition, selection of an adequate
hyperthermia device that can expose the target tissue to temperatures of ~40–42 ◦C with
limited exposure of non-targeted tissues is of importance. Many of the discussed concepts
are applicable to other heat-activated nanoparticles, and triggered drug delivery systems
in general.
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