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Abstract: Digital twin is one of the emerging technologies for the digital transformation of the power
industry. Many existing studies claim that the widespread application of digital twins will shift the
industry to a principally new level of development. This article provides an extensive overview
of the industrial application experience of digital twin technologies for solving the problems of
modern power systems with a particular focus on the task of high-voltage power equipment lifecycle
management. The latter task contours one of the most promising areas for the application of the
digital twins in the power industry since it requires deep analysis of the technological processes
dynamics and the development of physical, mathematical and computer models that cover all the
potential benefits of the digital twin technology. At the moment, there is a lack of reliable data on
the problems of assessing and predicting the technical state of high-voltage power equipment. The
use of digital twin technology in modern power systems will allow for aggregating data from a
variety of real objects and will allow the automatization of collecting and processing of big data by
implementing artificial intelligence methods, which will ultimately make it possible to manage the
life cycle of the power equipment. The article puts to scrutiny the industrial experience of digital
twins creation, considering the technical solutions suggested by the largest manufacturers of electrical
equipment. A classification of digital twins, examples and main features of their application in the
power industry, including the problem of managing the life cycle of high-voltage electrical equipment,
are considered and discussed.

Keywords: digital twin technology; digital twin applications; smart energy; equipment lifecycle
management; electrical equipment

MSC: 00A06

1. Introduction
1.1. Digital Twin Technology

The concept of the digital twin was first introduced by Michael Greaves [1]. Today,
this term can be given a specific definition. The digital twin is the real projection of
all components in the product life cycle using physical data, virtual data and data in
between [2]. The digital twin includes data on the characteristics of the object in a detailed
mathematical model, the parameters of which are refined using the actual data.

Along with the term digital twin, another term has emerged—the digital shadow. A
digital shadow is a system of links and dependencies that describes the behavior of a real
object, usually under normal operating conditions, reflected in redundant big data obtained
from a real object using industrial Internet technologies. With the use of a digital shadow, it
is possible to predict the behavior of a real object, but only under the conditions described
by the collected data. However, it does not allow the modeling of a situation in which the
real object was not operated.
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In [1], digital twins are divided into three types:

• Prototype of the digital twin, which contains data sets that can be used to build a
physical version of the object (Figure 1). The prototype includes object requirements,
specifications, etc.;

• Instance describes a specific physical object linked with the digital twin associated
with the object throughout the entire lifecycle. The instance includes a 3D model, data
from measuring instruments and sensors, and testing results (Figure 2);

• The aggregate is a combination of digital twin instances. It receives data from many
physical objects (Figure 3).
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The development of digital twin technology has led to the specification of their types [2]:
digital twin of the product, process digital twin, and digital twin of the system.

Today, digital twin technology is actively used in the fuel and energy sector to solve
various technical and technological problems. The digital twin makes it possible to de-
tect deviating parameters in the operation of industrial equipment with extremely high
sensitivity—even if they do not yet affect the state of the equipment and, therefore, are not
recorded by traditional control and monitoring systems.

1.2. Digital Twin Studies in the Power Industry

Most of the research in the field of digital twins in the power industry is focused on
the following issues: assessment of the power equipment technical state [3–8], control of
the power system operation modes [9,10], optimization of energy consumption [11] as well
addressing the technical issues of renewable energy sources integration [12].

The article [13] presents a study on digital twins of electrical networks using an onto-
logical approach. In accordance with the proposed approach, the digital twin technology is
used to study the power system operation modes and ensure its security. When building
an ontology, the following levels of system description were addressed [13]:

• Top-level (research, modeling, functioning of the objects of a specific subject area);
• Subject level (formulation, alignment and classification of the problem-oriented concepts).

The implementation of the project using the ontological approach includes the devel-
opment of the object prototypes, testing the prototypes of digital twins and establishing
information interaction of simulated and measured data flows.

In [14], scenarios for using a digital twin technology for the Cai-Lun substation (China)
are presented. The main provisions laid in the design of the digital twin are:

• Simulation of the system in real and quasi-real-time;
• Ensuring data transfer between the ontology-based system and the digital twin.

This method is based on the connection of various types of knowledge in the digital
space. The digital twin for the analysis of the simulated system takes into account the
uncertainty of the system caused by the presence of various consumers, generators and
the probability of power equipment failure. The Cai-Lun substation model is based on
real-time monitoring data of various systems, a three-dimensional model of the substation
equipment and a decision core.

In [15], a method for real-time assessment of the distribution network reliability based
on digital twin technology is presented. The method uses technical data, information from
external systems, and monitoring systems’ data on the current state of the power equipment.
At the same time, it uses the presentation of the power equipment on holographic maps.
Implementation of the digital twin concept using holographic evaluation allows the method to:

• Improve the assessment of the power supply reliability of the distribution network;
• Increase the accuracy of the network reliability prediction by providing real-time

simulation of the topology changes;
• Improve the network reliability by adjusting its configuration, load reduction at weak

power distribution zones, and provide network development recommendations.

Due to the increasing requirements for the environmental performance of the power
systems, many countries are implementing projects to support decision-making on the
construction of power plants based on renewable energy sources (RES). Due to the com-
plexity of their operation, digital twins are being introduced to facilitate their design and
operation processes.

In [16], a study of the application of the digital twin concept using 3D modeling
technologies for the implementation of an intelligent system to support the operation and
maintenance of a photovoltaic power plant is presented. In [17], digital twin technology is
applied to predict the generation of tidal power plants.
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1.3. Industrial Cases

The relevance of using digital twin technology in the energy sector is confirmed by
the projects of many large industrial and technological corporations.

Siemens Corporation has developed a digital twin SiprotecDigitalTwin of the Siprotec
5 digital protection device [18]. By creating a digital twin, the utility operating costs were
reduced due to the considerable reduction of the power equipment emergency downtime.
The cloud application introduced by Siemens contributes to a significant reduction of short
circuits (SC) elimination time when searching and eliminating failures.

A comprehensive solution that allows the development of digital twins, presented by
Siemens Corporation, is MindSphere [19]. This solution has the functionality for working
with the power system equipment, a wide range of open MindSphere APIs, including
analytical services, and a MindSphere Store with ready-to-use applications.

In order to create a complex cross-industry solution, ABB implemented the ABB Ability
product [20]. As a part of the ABB Ability, an Aspect Object technology was implemented,
which means it is possible to create a digital twin of real equipment.

General Electric develops and implements digital twin technology based on the
PREDIX platform [21]. The PREDIX platform has found wide application in the creation of
the gas turbines’ digital twin. The platform includes a digital turbine model, intelligent
database, and analytical unit, which determines the current state of the turbine and predicts
its performance.

IBM has realized and implemented a system for creating digital twins named IBM
Engineering Lifecycle Optimization [22], aimed at assessing the actual technical state of
the equipment.

The American company Paladin Gateway has developed and implemented the Power
Analytics platform [23], which consists of various services with the possibility of hosting
them in the cloud, allowing for the creation of digital twins, software management tools
and exchange power system monitoring data.

Rotek JSC has developed the Prana diagnostic system [24] for assessing the technical
state of steam turbines, generators, transformers, boilers, pumps and gas piston units.

The core of the Prana system is a multidimensional state model of the equipment—a
digital twin which analyzes how the equipment works within the control period and in
real-time mode. The system uses the technologies of neural networks and big data.

The VNIIAES company developed the software and hardware solution named Virtual
Digital Nuclear Power Plant (NPP) with Water-Water Energetic Reactor (WWER) [25]. The
system is based on a digital twin of a nuclear power plant. It applies complex calculations
of a variety of processes at nuclear power plants: from the neutronic, thermal and hydrody-
namic characteristics of reactors to the cumulative economic effect acquired when using
various systems and materials. In such a model, it is possible to calculate the behavior
of new equipment before it is installed at real power units, assess its compatibility and
impact on other systems, and simulate equipment failures, external influences and incorrect
actions of the engineering personnel.

The company Productive Technological Systems has developed and implemented a
digital twin of the turbine with the axial exhaust Kr-77-6.8. The digital twin was imple-
mented on the basis of Creo [26] and Windchill [27] software. The use of a digital twin
made it possible to reduce the turbine manufacturing time from 2.5 years to eight months.

In Russia, in 2018, a decree was issued [28], which led to the occurrence of the Digital
Transformation 2030 concept at PJSC Russian Grids [29], the completion of which should
be the transition to the new generation of digital power networks.

In order to achieve this goal, the digital twin concept is being introduced, representing
the creation of an integration platform for a wide variety of existing operational and
information technologies and data processing systems. As a result of combining the
technologies, the digital twin platform makes it possible to synchronize heterogeneous
data so that a digital model corresponds to the physical one.
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In [30], the development of the concept of a digital twin using 3D modeling technology
to build the Smart Grid in 23 districts of Tokyo (Japan) is presented. The Plateau project
represents a three-dimensional urban space that simulates urban life and existing and
expected loads of the power transmission system. The project is aimed at planning electric
power network development and operation, urban planning, disaster prevention, and
improving the quality of life of Tokyo residents. The major advantage of the project is the
possibility of its application by various city services.

As can be seen, the use of digital twins in the power industry is a vast topic. This review
focuses on the features of using digital twins for power equipment lifecycle management,
technologies and data necessary to implement the concept of a digital twin. At the same
time, the article also covers examples from adjacent areas when describing the technologies
necessary for the creation and proper operation of digital twins. The review also focuses
on the analysis of the existing methods and technologies for designing the digital twins,
creating the mathematical models of electrical equipment for power engineering facilities
and describing the input data.

The article is structured as follows. The second section provides an overview of the
problem of power equipment lifecycle management in modern power systems and shows
the fundamental differences between simulation modeling and digital twin modeling. The
third section contains an overview of the methods and technologies for implementing
digital twins. The fourth section describes the data and technologies for data storage and
processing, which is of crucial importance for creating and implementing digital twins.
Discussion and generalization of the presented materials are provided in the conclusion.

2. The Difference between Simulation and Digital Twin Concept for Power
Equipment Lifecycle Management
2.1. High-Voltage Equipment Lifecycle Management

The modern electric power system is a complex technical system, the development
of which is aimed at the introduction of renewable generation, distributed generation,
electric power storage facilities, the development of Smart Grids and ultra-high voltage
power transmission technologies. These innovations cause a sharply variable nature of
power production and consumption, which increases the load on high-voltage equipment.
It emphasizes the need for increased monitoring of the technical state of power genera-
tion facilities, transmission and distribution networks, and electrical installations of the
consumers. Moreover, frequent failures of the power system elements result from the low
controllability and observability of the power systems facilities.

In order to extend the life of the equipment and maintain its operable condition at all
stages of the life cycle, energy utilities are implementing various systems for monitoring
and diagnosing the power equipment state [31].

In accordance with [32], the life cycle of a system is understood as a set of processes
that describe the state of the system from the stage of formulating technical requirements
to the stage of its decommissioning.

Each system of any structure and purpose is typically considered in the context of
the time of its application. When designing and operating the system, such models are
built that reflect the changing properties of the object under study. Simulation models
are created for this purpose called life cycle models. The life cycle model is segmented
into several stages because it makes it easier to plan, prepare, and operate the system.
Segmentation depends on the imposed requirements corresponding to the period of the
system application and the decision-making mechanisms aimed at reducing the risk of the
system operation [33].

Stages (or phases) of the life cycle make up a structure within which the processes of
the system under study are described by certain models. The beginning and the ending of
each stage represent decision points. Each stage has its own tasks, and the transition from
one stage to another is an unequivocal event. The order, sequence, and duration of the life
cycle stages and their number are unique for each system. The life cycle processes (system,



Mathematics 2023, 11, 1315 6 of 23

software, service) can be launched simultaneously, iteratively, and recursively, depending
on the stage in focus [33]. Table 1 lists the standard stages of the power equipment
life cycle.

Table 1. Power equipment life cycle stages.

Stage Description

Engineering survey Stating basic requirements and regulations for the formation of design documentation

Design project
technical assignment Detailed elaboration of the requirements, creation of technical specifications

System design Construction planning and designing, patent search, coordination of system and equipment
requirements

Construction
and installation Installation and testing of the designed installations and systems

Commissioning Design project inspection, as-built documentation, adjustment and testing of the
installations

Pilot operation
Approbation of the system, carrying out tests confirming the system’s operability in

accordance with the technical specifications and project documentation, putting the system
into operation

Equipment operation,
maintenance and repair

Operation of equipment according to the instructions and standards, ensuring stable,
reliable and secure operation of the system

Decommissioning Archiving and disposal

The life cycle is a complex indicator of the period of existence of the system under
consideration. At each stage of the life cycle and during the transition from one state of
the system to another, based on the current technical state and regulatory documentation,
decisions are made to change the parameters of the system and extend or reduce each
stage of the life cycle. The described process is called lifecycle management. Life cycle
management is complicated by the influence of various external factors (economy, market
signals, policy, climate, etc.) and factors that describe the system or the object (operation
experience and the complexity of technological processes, etc.).

In [33], the following principles related to the life cycle model are defined:

• During the life cycle, the system goes through certain unified stages;
• The duration of each stage varies depending on several internal and external factors

and can be changed by different control actions;
• The transition from one stage to another is described by a qualitative change in the

parameters of the system, depending on the expert ranking of the criteria reflecting
the fulfillment of the tasks of each stage;

• The criteria for the transition from one stage to another are based on risk reduction
goals and depend not only on regulatory documents but also on the retrospective data
of operating a particular system.

There are various methods for assessing the effective duration of each stage of the
life cycle. The methodology of transition between the stages is based on the assessment of
the physical wear and obsolescence of the assets in focus. Obsolescence of the first kind
is characterized by a considerable reduction of equipment manufacturing costs due to
the appearance of analogs with better properties and characteristics. Obsolescence of the
second kind is interpreted in different ways. The methodology for choosing economically
viable terms can be based on the following:

• A comparison of reduced costs for aged and new equipment.
• Assessment of the duration and structure of the repair cycle using information from

technical diagnostics and relevant information systems.
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2.2. Simulation of the Equipment Lifecycle Management

In order to increase the efficiency of the design stage, the simulation method is used.
The method consists of replacing the designed system with a model, where the experiments
are carried out to obtain information about its operation under various control actions and
environmental conditions [34]. The simulation model is a dynamic model, where processes
are considered only at the increasing time scale [35].

The main goals of the simulation are [35]:

• Description of the behavior of the system;
• Construction of the hypothesis;
• Prediction of the system behavior;
• Reproduction of the system’s functioning process in time with the preservation of the

elementary physical phenomena and their structure in order to obtain information
about the state of the system in the future.

Modeling involves simulating the operation process of an object in order to highlight
the problems and find ways to ensure the reliable operation of the equipment under
various requirements and conditions. The input parameters, in this case, include the
parameters of the technical state associated with the operational process of the equipment,
the probabilities of occurrence of various conditions, the duration of the certain state, and
failure probability. Monitoring allows us to assess the technical state of the equipment or
process in real time, allowing us to adjust measures for its maintenance and repair.

The simulation also gives the opportunity to solve the following problems:

• Uncertain and contradictory information;
• Multicriteria problem statement of the power equipment design;
• Impossibility of precise goal formulation;
• The presence of implicit restrictions and the relationship between them;
• The dynamic change of the external conditions;
• Minimization of the equipment defects arising from the design stage errors;
• Determining the conditions for the system development;

When comparing simulation with other mathematical approaches, the following
specific features can be distinguished:

• Iterative process (to refine the system state assessment);
• Use of statistical modeling methods;
• Pre-processing of information in order to clarify the input data;
• Use of various simulation methods.

Various methods of mathematical analysis are developed and applied to determine
and predict the technical state of the power system facility and plan and adjust the power
equipment maintenance and repair (MR) schedules [36]. Today, systems are being de-
veloped based on big data using machine learning algorithms. In this case, the output
is an estimate of the current technical state of the equipment or predictive values of the
state’s major parameters [37]. However, the application of these methods does not allow
for making decisions on optimizing the operation of the power equipment depending
on the external conditions and requirements without the participation of the expert. The
concept of the digital twin makes it possible to take into account all the above-described
shortcomings of the classic simulation approach.

2.3. Digital Twins Technologies for Power Equipment Lifecycle Management

The concept of digital twins can be effectively used to coordinate all stages of the
life cycle of the power equipment through the accumulation of retrospective data from
various sources and data on the current technical state. The digital twin can be used as a
single source of data about the power equipment unit, which is used to implement decision
support for its further operation. This concept allows modeling, monitoring, diagnosing
and control of the technical state of the controlled object [38].
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At the operational stage, by using digital twin technology, it is possible to implement
real-time dynamic monitoring of any process or equipment unit. The application of the
digital twin concept for continuous technical state monitoring contributes to the localization
of faults, prevention of emergency events, and quality control of the technological process
or a specific power equipment unit [38].

While standard mathematical models are based on the solution of algebraic differential
equations, the calculation of partial derivatives, historical data and expert estimates, the
digital twin technology also includes monitoring and diagnostic data on the current state
of the system to build the model.

Unlike the simulation models, the digital twin, due to the presence of the feedback
link between the physical object and the model, allows self-adjustment when the state of
the system changes. After processing the data at the information level and transferring it
to the application level, the model is recalculated. Then recommendations are generated
for optimizing the system operation and managing the power equipment life cycle. For
example, article [39] presents an approach for diagnosing fuel cell failures using a digital
twin. The digital twin is built on the basis of a thermodynamic model with real-time sensor
data updates. Fault diagnostics are carried out by calculating and estimating the residual
vector. If the residual vector crosses the fault detection threshold, the fault is localized
using a sensitive residual.

When using a digital twin, it becomes possible to assess and manage the technical
state of a particular power equipment unit throughout the entire life cycle. In contrast,
during the simulation, only optimization of the design stage is possible.

In this case, a mathematical model is needed not only to understand how an object
or process works. It also describes the structure, properties, and laws of interaction with
the surrounding world in order to learn how to control an object or process as well as to
determine the best ways to control it. Moreover, the most important thing for digital twins
technology is to predict the consequences of impacts on an object or process. Thus, it is
possible to assess and manage the technical state of a particular node of power equipment
throughout the entire life cycle.

Thus, digital twin allows you to use the current data from the object of study, retro-
spective data from single (in the case of the digital twin instance) or multiple (in the case of
digital twin aggregation) objects, provides physical and mathematical modeling with the
opportunity of the power equipment life cycle prediction, as shown in Figure 4.
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The digital twin technology helps to coordinate all stages of the life cycle of the
equipment or process under study since not only statistical, regulatory and retrospective
data are taken into account, but also current state monitoring and diagnostic data.
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From the foregoing, the application of the digital twin technology can be of great value
for solving the problems of managing the technical state of the power equipment serving
as a data-driven intelligent software tool able to:

• Propose solutions for updating and building up the MR plans;
• Provide recommendations on the choice of the MR strategy:

# scheduled preventive maintenance;
# condition-monitored maintenance;

• Implement equipment data management for various business processes;
• Simulate development, production, and implementation of the equipment;
• Reduce the risks of introducing innovative solutions;
• Analyze and predict the technical state of the equipment at any stage of its life cycle.

Usually, the development of the power system facility includes the following four
stages: design, transfer of the project to the production phase, manufacturing and testing of
a prototype, and finally, starting commercial production. In the traditional paradigm, the
majority of the design project updates occur throughout the development phase. Moreover,
the number of design project updates and the associated costs increase dramatically from
the design phase to the commercial production.

When using a digital twin, due to the opportunity to take into account the require-
ments from various development stages, to model external and internal processes, and to
synchronize various sources of information, it becomes possible to concentrate necessary
changes and updates, shift and minimize the costs at the design stage. Moreover, it makes
sense to use such a digital twin in the subsequent stages of the life cycle.

In [40], an example of applying the digital twin concept using virtual and augmented
realities is presented. Virtual reality, with the help of 3D simulation, allows operators
to be immersed in a digital twin environment. Augmented reality technology helps to
transfer virtual information to the physical environment. Thus, developers are able to test
the objects on virtual simulators, reducing assembly costs and time for conducting real
experiments at the development and design stages. These digital twin technologies can
also be applied at other stages of the life cycle for the engineering staff to be immersed into
the digital twin environment to analyze the operation modes of the equipment under study
and reveal the potential defects at early development phases.

In fact, maintenance and repair activities may be referred to as a tool for managing
the life cycle of the power equipment. Currently, there is a worldwide transition from
scheduled preventive maintenance to condition-based maintenance. The scheduling of
preventive maintenance is based on the standards and regulations with no regard to the
actual technical state of the equipment. Condition-based service is based not only on the
standards reflected in the technical documentation but also on the current technical state of
a particular item and the results of its technical diagnostics. This approach improves the
efficiency of resource planning at the enterprise.

The digital twin technology contributes to the implementation of condition-based
maintenance, as it provides the opportunity to analyze the actual technical state of the
power equipment under study and make relevant recommendations based on the results of
predictive analysis. At the same time, due to the application of different technologies that
find implicit links between data from different sources, the accuracy of determining the
actual state increases [41]. In [42], the implementation of the state-of-the-art maintenance of
the wind turbines, based on the digital twins’ technology, is presented. In [43], the authors
present the application of digital twins for choosing the optimal maintenance and repair
strategy of a power converter. Depending on the operating conditions of a particular item,
a different maintenance and repair strategy can be chosen, which is carried out by means
of digital twin technology implementation.

Notable among that is the connection between the technology of digital twins and the
development of cyber-physical robotic systems for the tasks of monitoring and assessing
the state of electrical equipment. Moreover, as shown in [44], digital twin technologies
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can be used both to form optimal routes for unmanned diagnostic systems and to design
power system facilities that would be initially more suitable for the use of cyber-physical
robotic systems.

2.4. Drawback of Digital Twins

The disadvantages of the digital twin include the following:

1. The high complexity and cost of creating a software part. Firstly, this includes the
development of mathematical models and the involvement of an interdisciplinary
team of specialists (engineers, IT specialists, system analysts, data science special-
ists, and information security specialists). Secondly, there is the high complexity
of implementing a computer model with sufficient accuracy and high detailing
of processes.

2. The need to use hardware, hardware-software, and telecommunication systems for
collecting, transmitting, and storing large amounts of data with protection against
loss and data integrity violations. For many existing utilities of the power indus-
try, creating a digital twin would require very large investments in digitalization
just to realize the collection and transmission of the necessary data in real-time or
near real-time.

3. Cyber threats: the digital twin as a decision support tool or automatic control of
industrial, energy, and logistics facilities is vulnerable to attackers. They can inflict
critical damage by distorting the output actions of the digital center and disrupting
the technological process. For example, the integration of software and physical
high-voltage equipment of a power station and substation creates a threat of damage
to electrical equipment by introducing malicious code into the software part of the
system. The failure of electrical equipment can lead to a cascade effect: from a
power plant/substation shutdown to a blackout within the region. This, in turn, can
lead to mass accidents and man-made disasters in transport systems, enterprises,
and in life-support systems. At the same time, the aggregate-type digital twin is
connected to many physically existing objects at once, which creates the risk of a
massive catastrophic attack.
Since the digital twin is a complex hardware and software system, often distributed,
many vulnerabilities arise. These include vulnerabilities in data transmission channels,
the ability to connect to data collection elements, database vulnerabilities, and the
ability to penetrate the supervisory control system. In the case of using machine
learning for decision-making, it is necessary to take into account the vulnerabilities
associated with data poisoning, as well as the substitution of machine learning models
and the threats associated with the low interpretability of machine learning models: in
other words, the risks of unpredictable critical errors. Building reliable protection and
cybersecurity of the digital twin will require very large investments and continuous
monitoring to identify vulnerabilities, threats and attacks.

4. The economic effect of the introduction of digital data manifests slowly since aggrega-
tion of a large amount of data is required. Another feature is increasing the accuracy
of decision-making, for example, in the task of managing the life cycle of electric grid
equipment. It gives a deferred economic effect, which manifests itself in an increase
in the life cycle and a decrease in accidents. There is a risk that the expected effect
will not be achieved due to the use of incorrect models, an insufficiently high level
of observability of the object’s elements, or errors in the program code. At the same
time, as shown above, the costs of developing, implementing, and maintaining digital
twins are very high. As a result, the payback period is too long, often longer than the
decision-making horizon in companies.
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3. Using Digital Twins for a Large-Scale Power System Facility
3.1. Levels of Digital Twins Architecture

One of the first steps in creating a digital twin is creating a data model that reflects
the geometry, attributes, behavior and principles of operation of a physical object. The
architecture of digital twins consists of the levels [45] presented in Table 2.

Table 2. Digital Twin Architecture.

Level Description

Physical level
A set of attributes of an existing object: geometric parameters, physical properties, rules for
changing the state of the object, and functional requirements (including the interaction with

other elements of the system in which the object is operated).

Model level Projection of the attributes and characteristics of the physical level into a virtual space.

Information level Implementation of the interaction between the physical level, the model level and the
databases, libraries of the models, and knowledge base.

Application level Analysis of the processes, control actions, decision-making algorithms, and knowledge.
Formulation of the proposals for managing the life cycle of the real object.

From the physical level to the level of the model, information about the parameters
of the system arrives, thus, refining and expanding the mathematical models. From the
level of the model to the physical level, control actions and proposals for optimizing the
operation of the equipment are received [45]. In general, the information level is used to
solve the following tasks [46]:

• Verification of the coincidence of the assumptions about the existing systems and
models with real data acquired from the online monitoring systems;

• Building up the information sets processed at the application level;
• Presentation of the ontologies and standards.

The integration of the information model into the digital twin system is implemented
by the introduction of interface modules that connect the model with the following elements:
power system design supporting tools based on CAD systems and gateways for collecting
data from sensors and sending commands to actuators, developed on the basis of the
Industrial Internet of Things (IoT).

It is shown in [47] that the development of the concept of digital twins can contribute
to a change in the development paradigm based on cloud technologies, 3D modeling
technologies, and IoT.

Cloud technologies and edge computing have found application at the information
level since this level requires the implementation of real-time synchronization functions
between the physical level and the model level, between the databases, as well as with the
application level.

The application level is necessary for such tasks as generating decision-supporting
recommendations, performing predictive analysis about the changes associated with the ob-
ject of study for a specified time span, and identifying new strategic options for developing
a system to obtain economic effects.

At the application level, such technologies are used that process vast of heterogeneous
data coming from a physical object and store it at the information level, solve optimization
problems and provide decision support [40,46]. The algorithms and methods used at the
application level may be classified into the following two groups:

• Traditional/deep machine learning algorithms;
• Supervised/unsupervised/reinforcement learning.

Artificial intelligence and machine learning algorithms can be used to detect anomalies
and equipment defects, find the cause of an anomaly or the location of a defect, and protect
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the communication channel between the physical and the information levels of the digital
twin [40,48,49].

In order to connect different levels and subsystems of the digital twin, IoT technology
is used, which aggregates and pre-processes data from heterogeneous data sources [7].

The digital twin should implement the following functions [7,40]:

• Data management (managing calculation assumptions, evaluation of the calculation
results, taking into account the uncertainty of the system);

• Closed-loop feedback (adaptive model update and optimization);
• Interaction between the model and the physical object in real-time (increasing aware-

ness of the current parameters of the system);
• Integration of digital technologies, supporting system engineering, and creation of the

multilevel matrix of indicators for the various stages of the life cycle.

3.2. Approaches and Tools for Digital Twins’ Development

Table 3 shows some of the approaches and tools used for digital twins’ modeling when
dealing with the specific tasks of the energy sector.

Table 3. Approaches and tools for digital twins’ modeling.

No Model Name Application Approaches and Tools

1 Digital twin of the servo scanning
system Predicting the state of a physical model Blender,

Python

2

Digital twin of the power
equipment (power transformers,

switches, power transmission lines,
etc.)

Optimization of the equipment operation
modes and predictive analytics of the power

equipment technical state

3D modeling
Neural networks

Artificial intelligence

3 Digital model of the photovoltaic
power plant

Solving the problem of predicting the
generation of electrical energy by the

photovoltaic modules

DBT systems (data conversion)
Python

Machine learning algorithms

4 Motion performance control of
machine tools, manipulators

Monitoring and control of the kinematics of
complex mechanical systems

Matlab
Python

5 Digital model of the company’s
staff behavior Control and forecasting of the staff behavior Deep machine learning

6 Digital twin of the solid fuel engine Solving the problem of measuring data from
solid-state engines AstroLab

7 Digital twin for evaluating the
development process

Shortening the development cycle,
accelerating the execution of business

processes
MPD-Processor

8 Digital model for coal mining
enterprises Implementation of automatic coal mining Theory

9 Digital model of the workshop
production system

Producing 3D visualization and monitoring
of the workspace in real time

3D-monitoring
Petri net

10 Industrial park
“production-operation-storage”

Improving the accuracy of decision-making;
implementation of adaptable and interactive

management and system control
MatLab

11 Multidimensional scalable smart
manufacturing space

Implementation of multidimensional
integration of physical, information and

business space
Plant Simulation

12 Cloud platform for intelligent
material and technical planning

Solving the problem of intelligent planning
of material and technical resources

Theory
IoT

13 Power system models Processing information from the power
system subject to the existing constraints

Multivariate analysis tools
Big data

IoT
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In [40,46,49], the main provisions for the development and application of the power
system facilities’ digital twins are given. The main issues to be focused on when developing
the description of the object are the following:

• Choice of ontologies, concepts and relationships, which are the basis of the
information model;

• Tracking the impact of various components and limitations on the system at all stages
of the equipment life cycle;

• Refinement and modification of the model;
• Selection and implementation of methods for combining the ontologies of several

objects (for complex power systems and their facilities).

3.3. Industrial Examples

The Nrjpack software package, built on the command query request segregation
(CQRS) architecture, implements the automatic downloading of a set of information about
an object that can be used for ontological modeling. Nrjpack is an effective solution for
finding the optimal configuration of a hybrid power supply system containing power
generation equipment, including renewable energy facilities, storage devices, consumers
and power distribution facilities [46].

With increased requirements for the calculation speed (for nuclear reaction processes
at a nuclear power plant, emergency operation modes), the task of finding the optimal
solution with reduced calculation time and space for storing the information can also be
solved by evolutionary algorithms, as well as HRES optimizers, simplified models of a
reduced order [45,46].

The methods used to reduce the order of the mathematical problem under study may
be divided into the following [45]:

• Simplification method (criteria for early termination of the calculation process, coarse-
grid approach, reduction of the degree of freedom of the system, division of the big
task into several ones);

• Projection method (internal orthogonal decomposition, reduced basis method, Krylov
subspace method, balanced truncation);

• Fitting method (polynomial regression, Gaussian process regression, support vector
regression, neural networks).

Checking the operation of the selected configuration can be implemented by using
the models of MATLAB Simulink or models created using deep neural networks. Data
from the power equipment monitoring systems and actual consumption from the metering
devices are received through IoT gateways.

Spirit implements 5G network technology when creating a digital twin [40] of the
communication system between a crawler vehicle or unmanned aerial vehicles and a
start/launch point, intelligent systems at industrial enterprises.

The application of the 5G system for a smart factory, for example, has reduced the
failure rate of electrical equipment by 70% and reduced the cost of maintenance and repairs
by 25%.

The paper [50] presents the application of ensemble machine learning algorithms in
building the concept of a digital twin to optimize the operation of a petrochemical plant in
the energy sector.

In [51], a digital twin of a photovoltaic panel of a solar power plant is described
using a hybrid neural network, which is used to simulate the current-voltage curve of the
photovoltaic system depending on environmental parameters: irradiation, temperature
and humidity. The link between the physical model and the digital twin was implemented
by using IoT technology.

In [4], the study on the application of a digital twin to predict the power generation of
a wave power plant is presented. In the project, with the help of artificial intelligence algo-
rithms, wave height is predicted in real-time in order to provide timely energy generation
calculations. Data collection is also carried out using intelligent sensors of the IoT system.
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In [41], a review from General Electric is presented on the application of the digital
twins of the power plant equipment (steam turbine, gas turbine plant, boilers and compres-
sors). The digital twin implementation at the power plant in [41] is based on the following
types of models:

• Physical Models

� Thermodynamic model:

# prediction of the power equipment operation in quasi-stationary and
transient operation modes;

# modeling of the gas turbines, steam turbines, and boilers; modeling of
the heat balance in the GateCycle application.

� Anomaly detection models and methods:

# modeling the state of the technical equipment using time series and
remote monitoring data;

# detection of the developing defects and providing decision support on
their impact on the power equipment under study.

� Life cycle model:

# aggregating the data on the operation modes, site-specific information,
and outages from the whole power equipment fleet;

# simulation and analysis of power equipment operation scenarios in
order to implement condition-based maintenance and repair strategies.

� Dynamic evaluation and tuning of the model in transient processes:

# matching thermodynamic performance model with the measured sen-
sor data from the power plant;

# implementation of the model consistency analysis, assessing the appli-
cability of the existing model to the current operating conditions.

� Dynamic flow and combustion models:

# optimization of the compressor and turbine sections of the power plant
at the design stage;

# analysis of the turbine operation modes from the point of view of the
flow and thermal physics of the real object model.

• Artificial intelligence models and methods

� Pattern recognition:

# application of artificial intelligence methods for behavioral analysis and
refinement of physical models.

� Model training:

# continuous creation, verification, tracking and updating of the models
due to the permanent link of the digital twin with the physical object.

� Unstructured data analytics:

# interpretation and analysis of unstructured enterprise data, which make
up approximately 80% of the total amount of available data;

# semi-automation of the tasks of setting up models, analytics, and analy-
sis of the model quality using various error metrics.

� Multimodal data analytics:

# predicting failures and maintaining automatic, operational and up-to-
date estimates of the power equipment state.

� Knowledge networks:

# connecting experts, providing common access to the sensors and high-
precision metering devices to assess the current state of the equipment.
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Siemens has established a partnership with DecisionLab Ltd. to develop the Agent-
based Turbine Operations & Maintenance (ATOM) product for the state monitoring and
maintenance activities of aviation gas turbines. The major problem in carrying out main-
tenance and repairs of aviation gas turbines was the participation of other organizations.
Therefore, when analyzing the technical state of turbines, it was necessary to take into
account the production processes that could not be described by the available databases [52].
The ATOM system uses big data technologies and machine learning algorithms to ana-
lyze heterogeneous data. A distinctive feature of the system is the possibility of dividing
the model into several modules and analyzing each part of the gas turbine power plant
separately in order to provide a deep analysis of the system state and highlight the major
influencing factors.

In [53], a digital twin of an onshore wind turbine was developed, which monitors the
effect of turbulence and wind speed on power converters. The digital twin is implemented
on the basis of the physical turbine model that reflects the electrodynamic and thermal
processes. Based on the Metropolis–Hastings random walk algorithm and discrete wavelet
transformation, the wind speed and turbulence parameters are reconstructed based on
the averaged data with 1 s resolution over a 10-min interval. Based on these data and
data from temperature sensors, the graphs of the conductor materials’ fatigue are built.
When comparing the fatigue value calculated by the digital twin and the value calculated
by using stochastic methods using the average, maximum and minimum wind speeds
from Supervisory Control and Data Acquisition (SCADA) system, it turned out that the
actual fatigue was four orders of magnitude higher than the value calculated based on the
averaged parameters acquired from the SCADA system. Another example of the digital
twin technology application for wind turbines is presented in [54]. In this paper, digital
twins are used to analyze the reliability of wind turbines.

In [55], the authors describe the application of a digital twin to correct the values
obtained from wind speed sensors at wind farms. The Virtual Wind Sensing Digital Twin
extends the platform of physical sensors using virtual ones. The behavior of the sensors is
simulated using a spatiotemporal wind model, taking into account the correlations between
the measurements obtained from different sections of the wind farm. After determining the
wind conditions, the model estimates the accuracy of the physical sensors. When a deviation
is detected, the selector identifies faulty physical sensors and replaces their measurements
with the estimated ones. The statistical error of the proposed method is 0.45 ± 0.009 m/s,
and the sensitivity is 1.083, from which it can be concluded that the digital twin technology
can be used to estimate the wind speed and verify the wind speed values.

In [56], a digital twin of a wind turbine is suggested for solving the problems of
monitoring the technical state of the wind turbine and predicting energy production. The
digital twin of the wind farm uses a new generation 5G radio access network and cloud
technologies. Predictive modeling is implemented using deep learning, temporal superfine
regression and non-parametric k-nearest neighbor regression. The forecasting procedure
consists of two stages: processing data from a single-dimensional time series of wind speed
and estimating energy production.

In [57], the authors suggest the digital twin of a wind turbine using the SCADA data
for predictive analysis of the turbine behavior and scheduling of the maintenance and
repair. The digital twin, implemented in MATLAB Simulink and MATLAB Sunscape,
corresponds to a 1500 MW wind farm with a fleet of wind turbines with hydraulic drives
and mechanical brakes capable of reducing or stopping axis movement at wind speeds
ranging from 4 m/s to 25 m/s.

4. What Data Is Needed to Create a Digital Twin and How to Work with It

Data is the basis of digital twin technology since the efficiency of the models em-
bedded in the digital twin depends on the data quality and quantity. In order to ar-
range the exchange and analysis of the digital twin data, the following items should be
properly addressed:
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• Data sets sufficient to implement data analytics;
• Systems for collecting and processing data acquired from the physical objects and

SCADA systems;
• Database technologies: database management systems (DBMS): Oracle, MS SQL, DB2;

open-source DBMS (PostgreSQL); cloud storage (S3, RedShift, Greenlum); distributed
file systems;

• Elements that implement service provision and human-machine interface
(HMI) interaction;

• Provision of communication between the elements of the system.

In addition, the architecture requires the storage of the models based on machine
learning, which may also include a knowledge base. An example of a system that includes
a real object, a database, a SCADA system, subsystems for assessing the technical state and
an AI-based decision-support module is shown in Figure 5.
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The data set depends on the type of the digital twin and the tasks for which it
was created. In order to build a digital twin of the electrical network, it is necessary to
have [15,46,57]:

• The database of the network’s digital twin;
• Technical information: relay protection and automation settings; current-carrying

capacity of the conductors; list of the power equipment with the corresponding
characteristics and parameters; estimates of the power equipment damage and defects;
residual service life of each power equipment unit, etc.;

• External data: data on power equipment maintenance and repairs, strategic develop-
ment plans; asset management strategy and plans; data from the geographic informa-
tion systems and maps, weather data, and energy consumption data.

In [14], the digital twin of the Cai-Lun substation was implemented based on
the following:

• Data collected from monitoring and diagnostic systems;
• Power network intelligent systems using neural networks, deep learning methods,

and statistical analysis to provide decision support in operation and control;
• Cloud computing solutions for establishing an interconnection between the informa-

tion system and the physical object.
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4.1. Input Data

The ATOM system for assessing the technical state and managing maintenance and
repairs for Siemens gas turbines uses the data on the turbines’ operation history and their
technical parameters [52].

In [41], the authors present the results of the study of the General Electric company
dedicated to the digital twin technology implementation for gas turbines, boilers and
compressors. The initial data for the correct operation of the system is the following:

• External conditions’ data: Ambient temperature, air humidity, load, weather forecast mod-
els, and market prices.

• Equipment technical data: Measurements from the monitoring systems, parameters of the
fuel mixture, mechanical, static and dynamic loads on the equipment, and electrical parameters.

To build a digital twin of wind turbines, data, such as [27,53,54] rated passport param-
eters of the turbines, current and historical operation parameters and meteorological data
are required.

In [58], the study on the development of the substation automatic walker system is
presented. The information stored in the digital twin databases of the substation equipment
and automatic crawler system includes the following parameters: the object; object type;
equipment position (longitude and latitude); rated voltage; rated power; operating time;
manufacturer. The crawler creates a data packet and transmits it through the wireless
interface of the general radio service node to the gateway support node at the link logic
control level. Next, the gateway decompresses the data and converts them into the formats
available for transmission over the network.

In [59], a study on the implementation of a digital twin for nuclear power plant
equipment is presented. The digital twin includes a nuclear power plant simulator and
machine learning algorithms for predictive analysis. In order to justify the implementation
of complex information systems at the critical infrastructural facility, the study was initially
conducted. The data for the digital twin in this study was obtained not from real objects
but from a simulator. The data sets included time stamps, temperature, water level and
flow rate, steam flow rate, reactor coolant flow, steam generator pressure, containment
level, enthalpy, nuclear reaction parameters, and total thermal power of the reactor.

In [60], a study is presented on the application of the concept of digital twins for
high-voltage power transmission lines using IoT technologies and methods of holographic
perception of the power cables. IoT systems are used to aggregate data from various
sources and increase the speed of synchronization between a real object and a digital
twin [60,61]. The technology is implemented using intelligent sensors, RFID tags, and
intelligent information storage devices.

The study [37] describes the implementation of the digital twin instances of 110
kV voltage and current measurement transformers in order to solve the technical state
estimation problem. A system of sensors and physical, mathematical and 3D spatial models
were developed for this project.

A monitoring system has been developed as a set of sensors and a diagnostic system
based on essentially different methods of non-defective diagnostics. A 3D model of the
equipment under study is also referred to as an integral part of the digital twin concept.
The advantages of the digital twin technology application were highlighted as well.

In the study [15], in order to obtain the basic information about the parameters of
the 10 kV, 35 kV distribution network and 110 kV power network equipment, it is sug-
gested to use the PMS 2.0 system through an interface program. By using the PMS 2.0
system, it is possible to obtain information on the state of switching equipment (power
switches, disconnectors, fuses, circuit breakers), the state of the power transmission
lines (connected/disconnected), and the supply centers (power transformers of different
voltage classes).

Geographic data, which is imported as a topological grid, is used to reflect the actual
location of the equipment and the structural relationship between the power equipment
units. Maps are used to analyze the data routes and reliability metrics.
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When adding the information about the network (topology, switching state, equipment
and loading parameters) to the model, the map reflects the reliability characteristics in
accordance with the following colors [15]:

• Green—high fault tolerance;
• Blue—good fault tolerance;
• Yellow—transformers and substations;
• Orange—low-reliability indicators, network overload in normal mode;
• Red—low fault tolerance, the network is on the verge of failure.

In the study [62], a digital twin based on the IoT Framework was designed by dividing
the development process into two parts: in the first, the information exchange is established
between the model and the physical object; in the second, data preprocessing using cloud
technologies is organized. The information exchange is treated as a separate critical task in
order to minimize the communication delays between the object of study and the cloud
and to ensure the raw data confidentiality and integrity. At the same time, machine
learning technology is implemented on smart sensors for local pre-training of aggregated
data models, thereby reducing delays and avoiding the transfer of raw data. In [63],
the application of the blockchain system was proposed to improve the security of the
aggregated data storage system.

4.2. Technologies of Data Storage and Processing

In order to ensure the effective processing of heterogeneous data, a proper database is
to be arranged. In [58], the use of Oracle relational databases, which possess the properties
of atomicity, data consistency, and durability, is presented to solve the problem of opti-
mizing the application of the power equipment monitoring systems. The Oracle database
system implements the functions of storing, processing, and updating the data. Through
the interface integrated into the data transmission platform, the predefined parameters
(active, reactive power, power factor, voltage levels) enter the Oracle database system.

In [46], relational databases are used to process events that change the structure of the
information model and its content. Relational database systems, in this case, allow for the
creation of relational projections of various levels of complexity.

For pre-processing of the information, boundary calculations are used. Cloud tech-
nologies are used to work with big data, provide synchronization between the different
levels and subsystems of the digital twin, as well as to perform complex data analytics.
MTConnect protocol and knowledge resource centers are used to manage data [64].

In order to analyze data coming from sensors and information systems, it is necessary
to introduce the corresponding elements and modules of data analysis. General Electric
uses the following products [41]:

• Predix (analysis of sensor data, data management and data analysis on the operation
of production assets, information security);

• Predix-Machine (providing secure bi-directional connection and asset management;
providing information to the applications, cloud storage, and internet connection via
the OPCUA, and Modbus protocols);

• Advanced controls and peripheral computing (supervisory control).

4.3. Industrial Case Studies

In [65], a study on the implementation of the digital twin for building an enterprise
network architecture is described. Nowadays, grid companies face problems resulting from
incompatibility standards for managing the electrical network, the need to integrate new
monitoring and diagnostic systems, adopt new technologies, and the need for the transition
from the scheduled repair strategy to condition-based maintenance.

In order to build a digital twin of an enterprise, it is necessary to design and implement
digital twins for all the equipment units, business processes, technologies, and security
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systems. The general digital circuit of the digital twin, built on the basis of the State Grid
cloud platform and the ECS server [65], consists of the following:

• The physical level, integrated with the unified control systems (SG-ISC), digital tools
for monitoring and managing the power grid projects;

• The data storage level is in the form of a relational SQL database system (storage of the
object’s architecture, data about the applications, technologies, and security systems)
and a cache database (Redis) implemented for data visualization;

• The service level, consisting of the search engine, visualization, analysis and
service applications;

• The functional level implements data analysis and control actions, which solves
the tasks of changing the architecture of the object, displaying the infrastructure,
maintaining architecture analysis statistics, generating maintenance and repair plans
using the Vue architecture visualization frameworks and intelligent search using the
EChart system.

To unify and consolidate data analysis at the application level of the digital twin, the
company developed the PSS®ODMS and PTI software (Siemens, Munich, German). The
software receives operational information about the system for processing and analysis.
Functions are the sources and the recipients of data:

• Power flow calculations of the network (PTI PSSE/E from Siemens);
• Calculation and adoption of the relay protection settings (PTI PSSE/E from Siemens);
• Network modeling and data management (PTI ODMS from Siemens);
• Real-time data archiver (PI Historian from Siemens);
• Company project management (Primavera from Oracle, Austin, TX, USA);
• Geospatial analysis (GeoSpatial Analysis from General Electric Company, Boston,

MA, USA);
• Intelligent asset management and monitoring (Maximo from IBM, Armonk, NY, USA);
• Production asset management (ESPRIT form Hexagon AB, Stockholm, Sweden);
• Business process management (SAP NetWeaver Business Process Management from

SAP SE, Walldorf, Germany).

The Siemens PTI PSSE/E system receives a model of the system as an input and
provides the calculation results of the power flow mode (voltage, loading conditions,
power flows), analysis of the power system operation mode and its dynamics [65,66]. At
the output, the system issues the necessary calculations and modifies the settings.

The Siemens PTI ODMS calculates the network mathematical model used for the
adaptive protection and automation systems. The input parameters for calculating the
network model are current operational data (voltages, electrical currents, power flows) and
asset hierarchy.

The Maximo system visualizes backbone networks using Geographic Information
System (GIS) data, SAP data, Primavera, relay protection and automation settings, as well
as Siemens PTI PSSE/E and Siemens PTI ODMS calculations. When the model or network
mode changes, the feedback is applied to the physical object. Changing the network model
or electrical mode leads to the corresponding changes in adaptive relay protection and
automation algorithms and settings.

The system ELVIS is a digital twin for the backbone electrical network developed by
the Fingrid Oyj (Helsinki, Finland) solves the problems of managing assets and ensures
power network interoperability, unification of data flows, and uninterrupted data exchange
in real-time, reducing the costs and increasing the reliability of the system [67].

Together with the increasing speed of computing systems and the development of
data transmission methods, digital twin technology is also changing. In the future, digital
twin technology will allow for not only analyzing the current state of objects or processes
in real time but also predicting their change. This step will make it possible to increase the
reliability of the functioning of power systems by increasing their information observability.
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5. Conclusions

The relevance of using the digital twin technology for the tasks of managing the life
cycle of electrical equipment lies in the fact that specifically digital twins allow solving one
of the main problems of this task, which is the integration of physically existing electric
power facilities and intelligent information systems. In order to implement a digital twin
of the instance or aggregation, a connection is required within the framework of the inte-
grated hardware and software system of the physical objects under study, equipment for
collecting, transmitting, storing and processing data, physical and mathematical models,
analysis, diagnostics, forecasting and control models based on artificial intelligence algo-
rithms. That ultimately drives the development of information technologies and the digital
transformation of the power industry.

The introduction of the digital twin technology, even in the case of the implementation
of only a digital shadow, will significantly speed up the collection of big data in the power
industry, which is necessary to implement the next step. This step is the creation of intelli-
gent decision-making systems. At the same time, the digital twin can organically develop
along with the introduction of new technologies, starting from the equipment model, its
technical passport and operation history, almost infinitely increasing its functionality by
reaching the status of integrated intelligent life cycle management systems connected to a
variety of real power system facilities and allowing to conduct in-depth research.

The advantage of a digital twin is the possibility of using various technologies to form
optimal strategies for controlling actions on a simulated object. It also contributes to the
evolutionary development of technology, as it allows enterprises in the energy sector to
obtain an economic effect already at the initial stages of technology implementation.

In addition, this article compares the areas of application of digital twin technologies
and simulation modeling. Simulation models are used to optimize the design phase and
are based on static data using standard analytical methods, while digital twins can be used
to optimize life cycle stages, analyze the transition from one stage to another, and form an
optimal life cycle management strategy in order to adjust the duration of the stages. The
use of digital twins is the basis for choosing maintenance and repair strategies.

Digital twins will allow the implementation and development of the online systems
for monitoring and diagnosing the technical state of the power equipment, as well as online
and offline decision support systems. The main requested effect of the system, in this case,
is the reduction of operating costs and the opening of new ways for the development of
energy utilities.
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