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Review of the generation mechanisms of
post-midnight irregularities in the
equatorial and low-latitude ionosphere
Yuichi Otsuka

Abstract

This paper provides a brief review of ionospheric irregularities that occur in magnetically equatorial and low-latitude

regions post-midnight during low solar activity periods. Ionospheric irregularities can occur in equatorial plasma

bubbles. Plasma bubbles are well-known to frequently occur post-sunset when the solar terminator is nearly parallel to

the geomagnetic field lines (during equinoxes at the longitude where the declination of the geomagnetic field is

almost equal to zero and near the December solstice at the longitude where the declination is tilted westward),

especially during high solar activity conditions via the Rayleigh–Taylor instability. However, recent observations

during a solar minimum period show a high occurrence rate of irregularities post-midnight around the June

solstice. The mechanisms for generating the post-midnight irregularities are still unknown, but two candidates

have been proposed. One candidate is the seeding of the Rayleigh–Taylor instability by atmospheric gravity

waves propagating from below into the ionosphere. The other candidate is the uplift of the F layer by the

meridional neutral winds in the thermosphere, which may be associated with midnight temperature maximums in the

thermosphere.
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Introduction
Plasma bubbles, which are localized plasma density de-

pletions in the ionosphere at equatorial and low-latitude

regions, have been studied since their discovery by

Booker and Wells (1938) with various radio and optical

techniques (see reviews by Hysell 2000; Makela 2006;

Kelley et al. 2011; Abdu 2012). Within plasma bubbles,

various size scales of plasma density irregularities exist.

Intense backscatter echoes caused by Bragg scattering

from field-aligned irregularities (FAI) with spatial scales

of one half of the radar wavelength have been observed

with VHF, UHF, and L-band radars (e.g., Woodman and

LaHoz 1976; Tsunoda 1980a, b). The FAI echoes are

considered to be manifestations of plasma bubbles (e.g.,

Woodman and LaHoz 1976). Tsunoda et al. (1982)

showed that FAIs observed using the ALTAIR radar

were collocated with plasma depletions measured using

the Atmosphere Explorer-E satellite. It is well-accepted

that plasma bubbles are generated via the Rayleigh–Taylor

instability that occurs at the magnetic equator after sunset

when the eastward electric fields increase. In general,

plasma bubbles occur frequently when the solar termin-

ator is parallel to the geomagnetic field (during the equi-

noxes at the longitude where the declination of the

geomagnetic field is almost equal to zero and near the

December solstice at the longitude where the declination

is tilted westward), and their occurrence rate increases

with solar activity (Abdu et al. 1983; Tsunoda 1985; Burke

et al. 2004; Nishioka et al. 2008). Such local time, seasonal,

and solar activity dependences could be attributed to the

magnitude of the eastward electric field at the magnetic

equator. An enhancement of the eastward electric field

occurs around the evening terminator in the equatorial

ionosphere, known as prereversal enhancement, and in-

creases the upward E × B drift. At the evening terminator,

a thermospheric neutral wind blows eastward due to a

pressure gradient toward the dayside caused by solar

heating. Since the neutral wind traverses the geomagnetic

field through the F region dynamo mechanism, upward
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dynamo current is driven in the F region. Since electric

current flows along the geomagnetic field, the E and F

regions are coupled electro-dynamically. Due to the rapid

decrease of the plasma density in the E region after sunset,

the longitudinal gradient of the conductivity in the E

region becomes steep at the sunset terminator. To main-

tain curl-free of the electric fields and/or divergence-free

of the electric currents, intense eastward and westward

electric fields are generated before and after the sunset ter-

minator, respectively. Details of these mechanisms are de-

scribed by Eccles et al. (2015). Prereversal enhancement is

one of the most important parameters in relation to plasma

bubble generation (e.g., Kelley 1989; Fejer et al. 1999).

During low solar activity conditions in recent solar

cycles, however, after midnight, FAIs were frequently

observed with VHF radars at magnetically low latitudes

(e.g., Patra et al. 2009; Otsuka et al. 2009; Li et al. 2012;

Yizengaw et al. 2013), and plasma density and electric field

irregularities were observed by the C/NOFS satellite (e.g.,

Yokoyama et al. 2011; Dao et al. 2011; Yizengaw et al.

2013). The mechanisms generating these equatorial iono-

spheric irregularities are still unknown and extensively de-

bated. The probability of plasma bubble occurrence (P)

can be interpreted as a product of two probabilities, that

is, P = PI ∙ Ps, PI is the conditional probability for the

Rayleigh–Taylor instability, and Ps is the probability of

seeding an instability (e.g., McClure et al. 1998). Local

time, seasonal, longitudinal, and solar activity depen-

dences for P are attributed to PI. PI could be represented

in terms of the growth rate of the Rayleigh–Taylor in-

stability. Asymmetry of the equatorial ionization anomaly

between the Northern and Southern Hemispheres, which

could be caused by transequatorial winds, also contributes

to PI (Maruyama and Matuura 1984). On the other hand,

the day-to-day variability of P could be controlled by Ps
because plasma bubbles occur some days but not others

even in almost identical conditions for the Rayleigh–

Taylor instability. Atmospheric gravity waves and

plasma velocity shear at the prereversal enhancement

are considered to be candidates for seeds for the

Rayleigh–Taylor instability (e.g., Hysell and Kudeki

2004; Abdu et al. 2009). Atmospheric acoustic/gravity

waves could be launched from severe convection in

equatorial regions and propagate upward. Some of

these waves could reach the ionosphere/thermosphere

and seed the instability. Because the Intertropical Con-

vergence Zone (ITCZ) is an area where tropospheric

convection is active at the equatorial region (Wallset

and Gautier 1993), the ITCZ can be a source of gravity

waves. McClure et al. (1998) have proposed that gravity

waves launched from the ITCZ could initiate the

Rayleigh–Taylor instability and that the gravity wave

seeding mechanisms explain the longitudinal depend-

ence of the plasma bubble occurrence rate because the

location of the ITCZ depends on the longitude and mi-

grates northward and southward from the geographic

equator mainly according to the subsolar point. How-

ever, Su et al. (2014) have reported that such a relation-

ship between the ITCZ and plasma bubble occurrence

is not clearly seen for the longitudinal dependence.

During the high solar activity conditions of the equi-

nox, PI is high and varies day to day, so identifying the

most important factors for plasma bubble generation is

difficult. On the contrary, during the low solar activity

conditions of the June solstice, PI is low, so PS may

need to work effectively to generate plasma bubbles.

Study of the post-midnight irregularities could elucidate

plasma bubble generation mechanisms. This paper re-

views recent studies of the post-midnight irregularities

in equatorial and low-latitude regions and argues pos-

sible mechanisms for their generation.

Observations of post-midnight irregularities
Characteristics of occurrences

Using the Gadanki radar in India, Patra et al. (2009)

have observed F-region FAIs post-midnight during July–

August in low solar activity conditions. Figure 1 shows

range-time-intensity plots of the FAI echo observed by

the Gadanki radar during July 1–10, 2008. FAI echoes

were detected during the post-midnight periods of those

nights. Patra et al. (2009) noted that the FAI echoes were

observed up to sunrise and beyond (the time of sunrise

in the F region (300 km) is 0430 LT) and that the echo

region extended to altitudes as high as 500 km on some

occasions, connecting to an apex altitude of 600 km over

the magnetic equator. Post-midnight FAIs were also

observed by VHF radar at Hainan, China on June of

2009–2010 (Li et al. 2012). The researchers observed

that the features of these FAI echoes are different from

the FAIs observed post-sunset in the equinox season. In

Indonesia, Otsuka et al. (2009) have carried out continu-

ous observations of FAIs using a 30.8 MHz radar with

multiple beams since February 2006. Figure 2 shows

range-time-intensity (RTI) plots of the F-region FAI

echoes observed in five beams on the night of August

21 and July 8, 2007. On the night of August 21, 2007

(Fig. 2 (right)), the FAI echoes on the beams with azi-

muths ranging from 180.0–125.8° lasted for more than

4 h during 2200–0400 LT with changing altitudes in the

range from 200 to 350 km. Time delays between the FAI

echoes of the different beams are not seen, indicating

that the FAI region did not move in the zonal direction.

On the other hand, on the night of July 8, 2007 (Fig. 2

(left)), FAI echoes were observed continuously during

2330–0300 LT on the easternmost beam and 0030–0500

LT on the westernmost beam. From this time delay, the

trace velocity of the echo region in the zonal direction is

120 m/s westward. Using a 30.8 MHz radar in Indonesia,
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Otsuka et al. (2009, 2012) and Nishioka et al. (2012)

have performed statistical studies of the FAI echo char-

acteristics. Figure 3 shows the seasonal and local time

variations of the occurrences and non-occurrences of

FAI echoes from 2006 to 2010. In their study, an FAI

echo was defined as an echo whose signal-to-noise ratio

is larger than 0 dB and that extends more than

50 km in range. FAIs appeared most frequently

post-sunset (pre-midnight) around the equinoxes and

post-midnight between May and August. The yearly

averages of solar flux F10.7 were 80, 73, 68, 70, and

80 in 2006, 2007, 2008, 2009, and 2010, respectively.

Fig. 1 Height-time variations of SNR associated with the F-region FAI observed by the Gadanki radar during July 1–10, 2008 (after Patra et al. 2009)

Fig. 2 Range-time-intensity plot of the FAI in the F region observed on the beam with azimuth of 234.2°, 207.0°, 180.0°, 153.0°, and 125.8° (from

top to bottom panels) with the 30.8 MHz radar at Kototabang, Indonesia on the nights of (left) August 21, 2007, and (right) July 8, 2007. Left

vertical axis shows the range from the radar and the right axis shows the altitude at which the radar beam is perpendicular to the geomagnetic

field. (after Otsuka et al. 2009)
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The occurrence rates of the pre-midnight FAIs tended to

increase with solar activity. On the other hand, post-mid-

night FAIs appeared more frequently in 2007, 2008, and

2009 than the other 2 years, indicating a negative correl-

ation with solar activity.

By analyzing plasma density data obtained by the C/

NOFS satellite, Dao et al. (2011) have reported seasonal

and longitudinal variations of the plasma density

irregularities occurring at magnetically equatorial and

low-altitude regions in 2008 when solar activity was

quite low (Fig. 4). Plasma density irregularities are found

to occur frequently during May–August. This seasonal

variation is consistent with the post-midnight FAIs

observed with VHF radars and different from that of

plasma bubbles, which frequently occur in high solar

activity conditions. Furthermore, Yizengaw et al. (2013)

Fig. 3 Seasonal and local time variations in the F-region FAI echoes observed at Kototabang, Indonesia from 2006 to 2010. A signal-to-noise ratio

larger than 0 dB was regarded to be an echo from an FAI. Red and blue sections represent FAI occurrences and non-occurrences, respectively,

against local time and day of the year for each year from 2006 to 2010. The yearly average of the solar flux F10.7 is given at the top of each

panel (after Nishioka et al. 2012)

Fig. 4 a Average nighttime ΔN/N versus longitude over time from May 2008 to March 2010. b Average nighttime ΔN/N separated by seasons

from observations dated May 2008 to March 2010 (after Dao et al. 2011)
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have reported 4-year (2009–2012) statistics for the

post-midnight irregularities observed with the C/NOFS

satellite and noted that a strong occurrence peak predom-

inantly in the African sector appears during the June sol-

stice, indicating that the occurrence rate of post-midnight

irregularities depends on the longitude.

Otsuka et al. (2012) have investigated the zonal propaga-

tion velocity of the post-midnight FAI regions by conduct-

ing five-beam measurements with the 30.8 MHz radar at

Kototabang (0.20°S, 100.32°E; dip latitude 10.4°S), Indonesia

and reported that 46% (14%) of the post-midnight FAIs

propagated westward (eastward) and that the remaining

40% did not show discernible propagation. Figure 5 shows

the local time variation of the averaged zonal propagation

velocities of the post-midnight FAIs. The average propaga-

tion velocity is approximately 50 m/s westward and is in-

variant with time. Otsuka et al. (2012) have noted that the

velocities of the post-midnight FAIs are different from that

of the ambient F-region plasma observed with incoherent

scatter radar and satellite in situ measurements (e.g., Fejer

1993; Coley and Heelis 1989). However, by analyzing the

ion velocity data obtained by the C/NOFS satellite, Coley et

al. (2014) have shown that the zonal plasma drift velocities

largely depend on solar activity, especially pre-midnight,

and that the average plasma drift velocity was westward

during the midnight and post-midnight period in 2009,

when solar activity was very low. Consequently, the

post-midnight FAIs may mostly propagate together with

the ambient plasma in the same way as the post-sunset

FAIs (plasma bubbles) propagate.

Evolution of the post-midnight FAIs

By analyzing two-dimensional maps of the FAIs ob-

served with the EAR in Indonesia, Ajith et al. (2016)

have investigated the evolution of the FAI echo region

within the field-of-view of the radar. They have analyzed

116 FAI events during the equinox and 45 events during

the June solstice. Figure 6a, b shows the local time vari-

ation of FAI echo events during 2011–2012 for the equi-

nox and the June solstice, respectively. During the

equinoxes, 59% of the FAIs evolved between 1900 and

2000 LT and 27% during 2000–2100 LT. On the other

hand, during the June solstices, 71% of FAIs evolved

around midnight (2200–0300 LT), as shown in Fig. 6b.

Dao et al. (2016) have investigated the vertical rise

velocities of post-midnight FAIs and found that the rise

velocities of post-midnight FAIs are between 10 and

100 m/s and are smaller than those of post-sunset FAIs

(from 35 to 260 m/s) (Fig. 7). Tulasi Ram et al. (2017)

have calculated the rise velocity of the plasma depletion

using a simulation. This velocity is consistent with

those of the observed post-midnight FAIs. Based on the

rise velocities, Dao et al. (2016) have estimated that the

post-midnight FAIs are generated between 21:30 LT

and 02:00 LT for 14 of the 15 events. These results sug-

gest that post-midnight FAIs could be generated after

the prereversal enhancement of the zonal electric fields

has ceased.

Comparison with GPS scintillation

Otsuka et al. (2009) have reported seasonal and local

time variations for the GPS scintillation occurrence rate

in Indonesia during a solar minimum period from

February 2006 to November 2007 and compared this

rate to the post-midnight FAI occurrence rate (Fig. 8).

While FAIs occurring after midnight were observed be-

tween May and August in 2006 and between May and

September in 2007, GPS scintillation was not observed.

Fig. 5 Local time variation of averaged zonal propagation velocity (after Otsuka et al. 2012)
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Li et al. (2012) have reported that GPS scintillation did

not occur with the post-midnight FAIs observed by

47.5 MHz radar in Hainan (18.4°N, 109.6°E; dip latitude

12.8°N), China, although GPS scintillation coincided

with the FAIs that occurred during the post-sunset

period. Since the intensity of amplitude scintillation is

proportional to the amplitude of plasma density pertur-

bations, GPS scintillation could not be observed

post-midnight during solar minimum conditions when

the plasma density in the F region is low.

On the other hand, Akala et al. (2015) have studied

the climatology of GPS amplitude scintillation over Af-

rica from 2009 to 2011 during solar minimum and as-

cending conditions. Post-midnight scintillation occurred

during the June solstice, although the intensity was

weak. The intensity of the scintillation observed at the

station near the magnetic equator was especially weaker

than that observed in the crest region of the equatorial

anomaly. This latitudinal variation is also interpreted

from the perspective that the intensity of the amplitude

scintillation is proportional to the amplitude of the

plasma density perturbations. The difference between

the scintillation occurrences in Asian and African re-

gions may be related to a longitudinal dependence, as

shown by satellite observations (Dao et al. 2011; Yizen-

gaw et al. 2013). As Yizengaw et al. (2013) have shown,

the post-midnight plasma irregularities in the American

and African sectors extend to higher altitudes compared

with those in the other longitudinal sectors. Such longi-

tudinal differences may be responsible for why

post-midnight GPS scintillation was observed in Africa

but not in Asia.

Scintillation of a GPS signal is caused by plasma density

perturbations at scales of 300–400 m, corresponding to

the first Fresnel scale defined as
ffiffiffiffiffiffiffi

2λz
p

, where λ is the radio

wavelength, and z is the altitude of the ionosphere. On the

other hand, VHF radar measures meter-scale plasma

density perturbations as FAI echoes. Within plasma bub-

bles, plasma density irregularities of various size scales are

generated, but the smaller scale irregularities disappear

earlier than the larger scale irregularities due to plasma

diffusion (Basu et al. 1978). However, this feature is not

consistent with the FAIs observed without GPS scintilla-

tion post-midnight during a solar minimum period. Sripati

(2008) have suggested that the meter-scale FAIs could be

generated at the gradient of kilometer-scale size irregular-

ities as secondary instabilities and that the Rayleigh–Tay-

lor instability that initiates a plasma bubble does not

extend to the irregularities at size scales of a few hundred

meters that cause GPS scintillation, resulting in an ab-

sence of GPS scintillation.

Discussion
Seeding by atmospheric gravity waves

An atmospheric gravity wave is an oscillation of neutral

air that causes ion-neutral collisions and eventually gen-

erates a polarization electric field in the F region. Huang

and Kelley (1996) have carried out numerical simula-

tions to study the effect of gravity waves on the seeding

of equatorial plasma bubbles and showed that the

polarization electric fields induced by the neutral wind

oscillations due to gravity waves can initiate the Ray-

leigh–Taylor instability and that the special resonance of

the gravity waves and the plasma motion can speed up

plasma bubble formation. Tsunoda (2010a) have studied

the efficiency of polarization electric field generation by

gravity waves in the equatorial F region, where the mag-

netic field is horizontal. Ions in the F region move in the

U × B direction (where U is the thermospheric neutral

wind and B is the magnetic field) through ion-neutral

collisions and the Lorentz force, whereas electron move-

ment is restricted to gyromotion around the magnetic

field. This difference between the ion and electron

Fig. 6 Histogram showing the nighttime occurrence of freshly evolved

EPBs over Kototabang during the a equinox and b June solstices from

2011 to 2012. The numbers shown on top of the histogram bars indicate

percentages (after Ajith et al. 2016)
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Fig. 7 Temporal variation of the top altitudes of the FAIs observed by the EAR during the growth phase. The left vertical axis shows the altitude

of the location where the EAR radar beam is perpendicular to the magnetic field line. The right vertical axis shows the apex altitude of the geomagnetic

field line connecting to the point measured with the EAR (after Dao et al. 2016)

Fig. 8 Seasonal and local time variations of (left) F-region FAI echoes and (right) scintillation index (S4) observed at Kototabang between

February 2006 and November 2007 (after Otsuka et al. 2009)
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movements drives the polarization electric fields. The

neutral wind oscillations due to the gravity waves in the

thermosphere also drive the polarization electric fields os-

cillating perpendicular to the wind and magnetic fields.

Tsunoda (2010a) has suggested that gravity waves with cir-

cular phase fronts effectively generate polarization electric

fields through the F region dynamo mechanism rather

than gravity waves with planar phase fronts. Figure 9

shows the configurations of the geomagnetic fields and

phase fronts of the gravity waves with (a) planar and (b)

circular phase fronts. As shown in Fig. 9a, when the phase

front is planar, a magnetic field line pierces different

phases of the gravity waves in general, except for the case

where the gravity wave propagates precisely in the zonal

direction when the phase front of the gravity wave is par-

allel to the magnetic field line. Polarization electric fields

driven by the neutral wind oscillations due to gravity

waves also oscillate according to the phase of the gravity

wave. Since the polarization electric field can be transmit-

ted along the magnetic field without attenuation, the elec-

tric field integrated along the magnetic field is smeared

out. On the other hand, for the case of a circular phase

front, the polarization electric fields are not completely

smeared out because the length of the magnetic field

passes through the same phase of the gravity wave de-

pending on the radius of the circular phase front. Gravity

waves with longer horizontal wavelength and monochro-

matic wavelength tend to have higher magnitude

polarization electric fields. This researcher has also sug-

gested that such gravity waves may produce large-scale

wave structures (LSWSs). Circular patterns of plasma

density perturbations in the F region were observed

over Japan after a large earthquake (Tsugawa et al.

2011) and over the USA after a tornado (Nishioka et

al. 2013) in two-dimensional maps of total electron

content obtained from dense GPS receiver networks,

suggesting that acoustic gravity waves can propagate

from the lower atmosphere into the thermosphere

with circular patterns of phase fronts. Tsunoda

(2010b) has compared tropospheric convection activ-

ity with the occurrence of equatorial spread F (ESF),

which could correspond to plasma bubbles, and found

that the occurrence rate of the ESF is highest when

the active convection region is located very close to

the magnetic dip equator. These results indicate that

atmospheric gravity waves launched from the active

convection region in the troposphere could propagate

into the thermosphere and contribute to plasma bub-

ble seeding.

Seeding by medium-scale traveling ionospheric

disturbances (MSTIDs)

Miller et al. (2009) have conducted simultaneous obser-

vations using an all-sky airglow imager and a VHF

coherent radar and showed that after southwestward-

propagating medium-scale traveling ionospheric distur-

bances (MSTIDs) passed through a magnetically low-

latitude (close to the magnetic equator), post-midnight

plasma bubbles appeared. MSTIDs, which appear fre-

quently at mid-latitudes and propagate southeastward

Fig. 9 Diagram showing the polarization response to the presence of gravity waves with a planar and b circular phase fronts (after

Tsunoda 2010a, b)
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(northwestward) in the Northern (Southern) Hemi-

sphere, could be caused by the Perkins instability and

are accompanied by polarization electric fields gener-

ated to maintain a divergence-free ionospheric current

(e.g., Kelley and Makela 2000; Shiokawa et al. 2003;

Otsuka et al. 2004). Miller et al. (2009) have suggested

that the perturbations of the electric fields can seed

the Rayleigh–Taylor instability at the magnetic equa-

tor. The seeding of plasma bubbles by MSTIDs could

be a candidate for the generation of a post-midnight

plasma bubble because MSTIDs accompanying elec-

tric fields occur after sunset at mid-latitudes. Candido

et al. (2011) have presented seasonal and local time

variations of spread F occurrences over Cachoeira

Paulista (22.7°S, 45.0°W; MLAT 16°S), Brazil and

found that the spread F occurrence rate is high around

the June solstice (winter in the southern hemisphere)

during solar minimum conditions. By carrying out

simultaneous observations with an all-sky airglow

imager at the same site, they have suggested that

MSTIDs are one of the main sources of post-midnight

irregularities. MSTIDs also can be seeded by atmos-

pheric gravity waves (Miller et al. 1997; Kelley and

Miller 1997), suggesting that atmospheric gravity

waves may directly and indirectly play an important

role in post-midnight irregularities.

However, such electrified MSTIDs do not always

reach the magnetic equator. An equatorward boundary

for the electrified MSTIDs could exist at the crest re-

gion of the equatorial anomalies (Shiokawa et al. 2002;

Narayanan et al. 2014). On the other hand, at

Kototabang, Indonesia, near the geographic equator,

MSTIDs propagating magnetically poleward were fre-

quently observed (Shiokawa et al. 2006; Fukushima et

al. 2012). The researchers have ascertained that these

poleward-propagating MSTIDs could not be accom-

panied by polarization electric fields. The polarization

electric fields generated to maintain current continuity

should be in the meridional direction because the

phase front of the plasma density perturbations is

elongated along the zonal direction. The electric fields

in the meridional direction move ionospheric plasma

only horizontally by E × B drift and thus do not form

plasma density perturbations (MSTIDs). The poleward-

propagating MSTIDs are assumed to be generated by

atmospheric gravity waves. Further investigation is

needed regarding the mechanisms of plasma bubble

seeding by electrified MSTIDs.

Preferable conditions for Rayleigh–Taylor instability

post-midnight

The linear growth rate (γ) of the Rayleigh–Taylor in-

stability, which could cause an equatorial plasma bubble,

is written as

γ ¼ E

B
þ g

νin

� �

1

n0

dn0

dz

� �

ð1Þ

where E, B, g, νin, n0, and z are the eastward electric fie-

magnetic field, gravity acceleration, ion-neutral collision

frequency, plasma density in the F region, and altitude,

respectively. The growth rate increases with eastward

effective electric field ðE
B
þ g

νin
Þ . Post-sunset, an enhance-

ment of the eastward electric field (E), the so-called pre-

reversal enhancement, plays an important role in

generating a plasma bubble. During nighttime, however,

the electric field is on average westward (e.g., Fejer

1991), making the growth rate negative or low. On the

other hand, g/νin is larger during nighttime than daytime

and increases with decreasing solar activity because νin is

proportional to the neutral density, which is smaller at

night than during the day and decreases with decreasing

solar activity (NRLMSISE; Picone et al. 2002). The value

of g/νin also increases with altitude. Therefore, the alti-

tude of the F layer is a key parameter for plasma bubble

generation. Nishioka et al. (2012) have investigated the

seasonal variations of post-midnight FAI occurrence and

F-layer altitude using an ionosonde near the magnetic

equator and showed that both post-midnight FAIs and

uplift of the F layer frequently occur around midnight

between May and August. Figure 10 shows the seasonal

and local time variations in the peak altitude of the F2

layer, hmF2, at Chumphon, Thailand, near the magnetic

equator. The value for hmF2 is calculated from foF2 and

M(3000)F2. This figure shows that hmF2 enhances post-

sunset (pre-midnight) around the equinoxes and post-

midnight between May and August. The post-sunset en-

hancements are caused by prereversal enhancement of

the zonal electric fields. The post-midnight enhance-

ments coincide with the occurrences of post-midnight

FAIs. Based on the observed altitude of the F layer, the

researchers have evaluated the linear growth rate of the

Rayleigh–Taylor instability and showed that the uplift of

the F layer can enhance the growth rate due to the in-

crease in g/νin. Figure 11a shows the seasonal variation

of the F-layer altitude. Each cross represents hmF2 at

Chumphon at midnight, and the red curve shows the 3-

month running average of hmF2. Since plasma bubbles

are initiated at the bottom of the F layer, an altitude of

40 km below hmF2 is assumed to be where a plasma

bubble could be initiated. Figure 11b shows the seasonal

variation of g/νin at a fixed altitude of 220 km (black)

and at an altitude of the bottom of the F layer defined as

(hmF2–40 km) (blue). An enhancement in g/νin at the

bottom of the F layer (blue) is seen between May and

August, whereas g/νin at an altitude of 220 km does not

show distinct enhancement. This result indicates that

the uplift of the F layer plays an important role in the

growth rate. During the night, the E × B drift velocity is
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Fig. 10 Seasonal and local time variations of hmF2 at Chumphon in (a) 2006, (b) 2008, and (c) 2009 (after Nishioka et al. 2012)

Fig. 11 (a) Seasonal variation of ionospheric altitude; crosses represent hmF2 derived from foF2 and M(3000)F2 at Chumphon, Thailand. The

running average of the daily hmF2 with a window of 3 months is shown by the red curve. The blue curve shows the altitude of the bottom-side

ionosphere, which is defined as the altitude 40 km lower than the averagedhmF2 (red curve). (b) Estimated g × B drift velocity; the blue curve shows

the g × B drift at the bottom side of the ionosphere as defined in the top panel. The black curve shows the g × B drift at a fixed altitude of 220 km

(after Nishioka et al. 2012)
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downward, but the seasonal average of E × B drift velocity

(E/B) is approximately 10 m/s for solar minimum condi-

tions (e.g., Fejer et al. 1991). g/νin compensates for the nega-

tive value of E × B drift velocity, and thus the growth rate

or the Rayleigh–Taylor instability becomes positive. There-

fore, the Rayleigh–Taylor instability may occur even near

midnight through the enhanced gravity-driven eastward

electric current, and plasma bubbles could grow.

Nicolls et al. (2006) have also shown observational evi-

dence of F-layer uplift around midnight using an ionosonde

in Brazil. Performing model calculations of the F layer, they

have reported that the uplifts of the F layer around mid-

night are in general not caused by eastward electric fields,

but a decreasing westward electric field in conjunction with

sufficient recombination and plasma flux can be responsible

for an uplift of the F layer. The weakening of the westward

electric fields can be caused by an enhancement of the

equatorward wind or an abatement of the poleward wind

through the F-region dynamo mechanism. These merid-

ional wind variations may be associated with the midnight

temperature maximum (MTM). Using the SAMI2 model

with E × B drift observed with the C/NOFS satellite as the

input for the background electric fields, Ajith et al. (2016)

have evaluated each term of the field-line-integrated growth

rate and showed that a steep altitude gradient in the

field-line-integrated electron content is the most important

parameter for the increase of the growth rate at midnight

around the June solstice. Using the SAMI3/ESF model,

Huba and Krall (2013) have investigated the effect of the

meridional neutral winds on the growth rate of the Ray-

leigh–Taylor instability. These researchers have shown that

the equatorward winds at low latitudes (i.e., at a nonzero

inclination of the magnetic field) could destabilize the bot-

tom of the F layer by decreasing the Pedersen conductivity

by the same mechanisms proposed by Maruyama et al.

(2009). The parallel component of the neutral wind along

the geomagnetic field carries the plasma to higher altitudes,

thus reducing the Pedersen conductivity such that the bot-

tom of the F layer is destabilized by the Rayleigh–Taylor in-

stability. These researchers also observed that the eastward

Pedersen current induced by the equatorward wind helps

to increase the RT growth rate. Dao et al. (2017) have

shown that post-midnight plasma bubbles develop toward

higher altitudes/latitudes when the poleward neutral wind

abated and the neutral wind became equatorward, suggest-

ing that the equatorward neutral winds increased the

growth rate of the Rayleigh–Taylor instability.

Relation to midnight temperature maximum

As described above, the uplift of the F layer may be a

possible cause for conditions preferable for the

Rayleigh–Taylor instability around midnight. However,

we have a missing link; what causes the F-layer uplift

around midnight? Nicolls et al. (2006), Yokoyama et al.

(2011), and Nishioka et al. (2012) have suggested that

meridional neutral winds associated with midnight

temperature maximum (MTMs) can be drivers to in-

crease the growth rate of the Rayleigh–Taylor instability

by uplifting the F layer. MTM is a phenomenon where

the neutral temperature in the thermosphere reaches a

local maximum around local midnight. Niranjan et al.

(2006) have suggested that MTMs more frequently

occur during low solar activity conditions. This feature

is consistent with the solar activity dependence of the

post-midnight irregularities. Faivre et al. (2006) have

shown that the amplitude of the observed neutral

temperature is as high as 50–200 K. MTM could be a

result of tidal phenomena and accompanied by the mid-

night density maximum (MDM) (Akmaev et al. 2010).

The convergence of thermospheric tidal winds around

the equator is considered to be responsible for generat-

ing MDMs and MTMs through adiabatic heating

(Herrero 1982). Using the Thermosphere Ionosphere

Electrodynamics General Circulation Model (TIEGCM),

Fesen (1996) have shown that the MTM is related to at-

mospheric tides and that interaction of semidiurnal tides

with (2, 2) and (2, 3) modes could be responsible for

generating MTMs and MDMs. This researcher has fur-

ther shown that these two modes reinforce each other in

summer, causing frequent occurrences of MTMs in the

summer hemisphere. By carrying out long-term simula-

tions with the Whole Atmosphere Model, Akmaev et al.

(2010) have revealed that the terdiurnal tide propagating

upward from the lower atmosphere also plays an import-

ant role for the enhancement of the neutral temperature

around midnight.

Conclusion
During solar minimum conditions, post-midnight irregu-

larities may occur mostly in association with plasma

bubbles initiated around midnight. The statistical char-

acteristics of these post-midnight irregularities can be

summarized as follows: (1) The post-midnight irregular-

ities occur frequently around the June solstice in low

solar activity conditions. Their occurrence rate increases

with decreasing solar activity. (2) The regions with

irregularities move mostly westward. (3) The post-mid-

night irregularities do not accompany GPS scintillation

or weak GPS scintillation.

The mechanisms for generating these post-midnight

irregularities are argued from the perspective of two as-

pects. The first aspect includes a seeding of the

Rayleigh–Taylor instability by atmospheric gravity waves

and MSTID. Gravity waves with circular phase patterns

could effectively initiate the instability through the elec-

tric field perturbations caused by dynamo mechanisms.

Gravity waves launched from the ITCZ may contribute

to seeding the instability. MSTID associated with the
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polarization electric fields may also initiate the instabil-

ity. The second aspect includes F region conditions

favorable for the Rayleigh–Taylor instability, especially

the altitude of the F layer. The uplift of the F layer

frequently occurs at midnight around the June solstice

season and coincided with the post-midnight irregular-

ities. The decrease in the ion-neutral collision frequency

at higher altitudes increases the growth rate of the

instability. The F layer uplift could be caused by the

magnetically equatorward winds associated with MTMs.

Abbreviations

FAI: Field-aligned irregularity; MSTID: Medium-scale traveling ionospheric

disturbance; MTM: Midnight temperature maximum
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