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Abstract: Checkpoint proteins are an integral part of the immune system and are used by the tumor
cells to evade immune response, which helps them grow uncontrollably. By blocking these proteins,
immune checkpoint inhibitors can restore the capability of the immune system to attack cancer cells
and stop their growth. These findings are backed by adequate clinical trial data and presently, several
FDA-approved immune checkpoint inhibitors exist in the market for treating various types of cancers,
including melanoma, hepatocellular, endometrial, lung, kidney and others. Their mode of action is
inhibition by targeting the checkpoint proteins CTLA-4, PD-1, PD-L1, etc. They can be used alone as
well as in amalgamation with other cancer treatments, like surgery, radiation or chemotherapy. Since
these drugs target only specific immune system proteins, their side effects are reduced in comparison
with the traditional chemotherapy drugs, but may still cause a few affects like fatigue, skin rashes,
and fever. In rare cases, these inhibitors are known to have caused more serious side effects, such as
cardiotoxicity, and inflammation in the intestines or lungs. Herein, we provide an overview of these
inhibitors and their role as biomarkers, immune-related adverse outcomes and clinical studies in the
treatment of various cancers, as well as present some future perspectives.
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1. Introduction

Microenvironment of the tumor is monitored and regulated by immune surveillance
through innate and adaptive immune systems [1]. Antigen-presenting cells have a funda-
mental role in this surveillance, as they identify and present tumor neoantigens to naive
T-cells [2]. When exposed to the antigen, naive T-cells multiply and become activated to
initiate an anti-tumor immune response [3]. This reaction is controlled by both stimulatory
and inhibitory signaling molecules [4,5]. The inhibitory signals are mediated through
immune checkpoints, such as B and T lymphocyte attenuator (BTLA), programmed death
protein 1 (PD-1) and cytotoxic T lymphocyte-associated protein 4 (CTLA4) [6,7]. CTLA-4
and PD-1 exist on the exterior of T-cells and can stop their activation [8]. CTLA-4 is also
found on Treg cells, and aids in immune suppression. PD-1 is also found on the exterior
of B and other immune response cells [9]. When PD-1 binds to its partner proteins, it can
also stop the T-cell response [8]. However, cancer cells within the tumor microenvironment
can escape the anti-tumor influences by stimulating these checkpoints through CTLA4
or PD-1/PD-L1 expression enhancement. They also attempt this by suppressing antigen
presentation [10,11].

Overexpression of these checkpoints on immune cellular surface can limit the capacity
of the immune system to identify and attack cancerous cells. This permits the cancer
cells to escape scrutiny and grow uncontrollably [12,13]. This is common in cancer cells
and can be a mechanism of resistance to immunotherapy [14]. Additionally, the unique
proteins or neoantigens, generated by genetic mutations in cancer cells are often taken as
foreign by the immune system and can serve as targets for the immune response against
cancer [15]. However, in some cases, the immune system may not properly distinguish
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neoantigens as foreign, causing the cancer cells to evade immune surveillance and grow.
This can occur when the immune system is suppressed by checkpoint proteins, such as
CTLA-4 and PD-1/PD-L1 [16]. Checkpoint proteins limit the action of immune cells by
tethering specific ligands on the surface of cancer cells. This interaction conveys a signal to
the immune cells to decrease their response, allowing the cancer cells to escape immune
attack [17,18]. By blocking checkpoint proteins, immune checkpoint inhibitors (ICIs) can
augment the impact of the immune system to counter cancer cells more effectively [19].
Thus, neoantigens generated by genetic mutations in cancer cells can serve as targets for
immune-mediated tumor control. However, immune response activity may be limited
by checkpoint proteins, and blocking these checkpoint proteins with ICIs can destroy
carcinogenic cells and improve the outcomes of immunotherapy [20]. Overexpression of
immune checkpoints can also be targeted by these drugs to block their pathway and boost
the immune system to spot and attack unchecked proliferating cells.

This review is focused on the ICIs and their role in cancer treatment. The history of
ICIs in immunotherapy dates back to the 1890s [21] but their use for cancer cure only dates
back to the 1990s when researchers first identified the importance of immune checkpoints
in regulating the immune response [22,23]. The first anti-cancer ICIs were developed in
the early 2000s but received regulatory endorsement for skin cancer treatment only after
2010 [24]. Since then, ICIs have become a significant part of cancer management and they
have had a noteworthy impact on patient outcomes in melanoma [25], lung cancer [26],
hepatocellular carcinoma [27], head and neck cancer [28], ovarian cancer [29], renal cell
carcinoma [30] and many others. The use of these drugs has led to long-lasting treatment
responses and even cures in advanced-stage cancer patients.

2. Methodology

To provide a broad overview of the existing literature, we conducted a narrative
review of the ICIs used for cancer treatment. We used PubMed, Scopus, and Google Scholar
for searching the literature. A list of keywords and phrases, e.g., ‘immune checkpoint
inhibitors’; ‘ICIs’; ‘ICI clinical trials’; ‘Cancer’ AND ‘immune checkpoint inhibitors’; ‘Can-
cer’ AND ‘ICIs’, etc., were used to search the databases. We did not add a filter for a
specific year, or the study type, to include all the data available related to ICIs in cancer
treatment. Exclusion criteria included articles written in a language other than English
and studies providing insufficient information in the abstract to evaluate their relevance.
For this purpose, the titles and abstracts of the retrieved articles were reviewed manually
to assess their relevance to the topic and the studies not meeting the context of ‘ICI in
cancer treatment’ were excluded. The included studies were read and analyzed. Notes on
study design, methodology, or other details of importance were written down. Collected
information was then structured to present a comprehensive overview of the topic. The
Clinical Trials database (https://clinicaltrials.gov/; accessed on 22 February 2023) was also
consulted to obtain the latest information on cancer treatment trials using ICIs.

3. Working Principle of ICIs

ICIs work by modulating the immune cell system, overexpressing themselves, and
eradicating the immune inhibition directive of the cancerous cells [31]. The immune
system, vital for resistance against infections and neoplasms, may become suppressed
and fail to properly recognize and eliminate cancer cells in certain circumstances. ICIs
address this issue by regulating the immune checkpoints and restoring or enhancing the
function of the immune system for tumor suppression or elimination [32]. ICIs are often
used in amalgamation with other treatment procedures, like surgery, chemotherapy, or
radiation therapy to elicit an efficacious anti-tumor response and enhance the effectiveness
of the cancer treatment [33]. The ultimate objective of ICIs is to harness the potent effector
functions of the immune system for combating cancer, thereby improving patient outcomes.

The two main types of ICIs are CTLA-4 and PD-1/programmed cell death ligand 1
(PD-L1) inhibitors [34]. CTLA-4 inhibitors target the CTLA-4 protein, which is present in
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the T-cells and acts as a brake on the immune system [9]. By obstructing the CTLA-4, these
drugs allow T-cells to become more active and kill cancerous cells. PD-1/PD-L1 inhibitors
block the relevant PD-L1 ligand expressed in the cancer cells (Figure 1) [35]. By obstructing
this complex, these drugs inhibit the tumor from immune escape and sanction T-cells to
eliminate cancer cells. Thus, overexpression of immune checkpoints can lead to decreased
effectiveness of the immune system in distinguishing and killing cancer cells. Pursuing
checkpoint proteins with ICIs can enrich the anti-cancer immune response and improve
the outcomes of immunotherapy. The first ICI against CTLA-4 was named Ipilimumab,
and got FDA approval for melanoma treatment in 2011 [36], while the first PD-L1 ICI
against melanoma was Pembrolizumab and got FDA approval in 2014 [37]. It is effective
for melanoma that progresses even after administering Ipilimumab [38].
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4. Immune-Related Adverse Responses to ICIs

The immune response to ICIs can vary but is different from the response of classical
chemotherapy. Many patients experience side effects, such as fatigue, skin rashes, and coli-
tis (inflammation of the colon) [40]. Some patients may experience a strong reaction, called
an immune-related adverse event (irAE). irAEs can severely impact various organs, such
as the gastrointestinal tract, skin, liver, endocrine glands, myocarditis, and others [41,42].
The frequency of side effects from irAEs due to ICIs depends on the type of drug and the
patient’s specific health characteristics. The estimated chance of a fatal side effect from these
drugs is between 0.3% and 1.3% [43]. Fatal or adverse side effects from immunotherapy
drugs usually occur early in treatment and can be serious. However, this risk is still lower
compared to other treatments like chemotherapy [44] or stem cell transplantation [45].
The type of side effect can also vary based on the combination of drugs used. For exam-
ple, death from colon inflammation is more frequent in patients receiving anti-CTLA-4
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drugs [46–48], while death from lung inflammation occurs more in patients receiving
anti-PD-1 or anti-PD-L1 drugs [43,49,50].

irAEs due to anti-CTLA-4 antibodies’ administration occur in 60% of treated patients,
with various grades. Among these, 10–30% experience serious (grade 3–4) irAEs [43].
The risk of irAEs is dose-dependent, with higher doses being associated with a higher
prevalence of adverse events [51]. The bulk of grade ≥ 3 irAEs ensue in 8–12 weeks of drug
usage. Skin rash onsets at the earliest, while diarrhea and/or colitis are the most frequent
irAEs caused due to the administration of anti-CTLA-4 antibodies [43,52–54]. Other toxi-
cities include endocrinopathies, hepatotoxicity, and rare toxicities, such as neuropathies,
autoimmune thrombocytopenia, and Stevens–Johnson-like syndromes [55]. Neurological
irAEs occur in 3.8% of patients being administered with anti-CTLA-4 antibodies, while
grade ≥ 3 adverse events occur in less than 1% of patients [43,56].

Compared to anti-CTLA-4 antibodies, anti-PD-1 antibodies are associated with less
frequent irAEs [49]. Most Anti-PD-1-related irAEs arise in the initial 6 months of drug
use [43]. Common effects (occurring in less than a quarter (5–20%) of patients) include
rash, fatigue, arthralgia, headache, pruritus, diarrhea, colitis, pneumonitis, hepatitis, and
endocrinopathies [57]. Only around 10% of patients using anti-PD-1 drugs experience
irAEs of grade ≥ 3, compared to up to 30% in the case of anti-CTLA-4 antibodies [43].
Neurological irAEs occur in 2.9% of patients receiving anti-PD1 treatment [58]. However,
skin, hepatic, and pulmonary-related irAEs are more frequent in the case of anti-PD1
antibody administration than anti-CTLA4 antibodies, it is the opposite for thyroid and
lower digestive tract irAEs, such as colitis [43].

Initially, autoimmune disorders were excluded from irAEs but studies suggest that ICIs
are non-toxic, manageable, or bearable for people with autoimmune diseases or associated
symptoms who are also suffering from cancers [59,60]. Only a minority of patients have
been reported to experience the exacerbation of previous autoimmune diseases. The ICIs
may be administered safely to around 50–70% of the patient cohort with a preceding
autoimmune disease [59]. The incidence of grade ≥ 3 irAEs in cancer patients is reported
to be 1.58% in a meta-analysis [61], while in ICI clinical trials that excluded cancer patients
with autoimmune diseases, the grade ≥ 3 irAEs ranged from 7 to 15% [62–64]. It has
been also suggested that targeted immunosuppression, comprising anti-PD-1 antibodies in
conjunction with antibodies aimed against selected inflammatory mediators can avert the
aggravation of autoimmune diseases and this can be carried out without disrupting the
efficiency of anti-PD-1 drugs [65,66]. Management, monitoring, and discontinuation of the
drugs could be attempted in the case of irAEs.

5. ICI Biomarkers

Immunotherapeutic biomarkers vary from other cancer treatments as they are continu-
ous and change over time, influenced by multiple factors [34]. Their use with chemotherapy
makes the study of biomarkers more complex. Markers envisaging response and resistance
to ICI are labeled positive and negative predictive biomarkers, respectively [67]. In addition
to these, toxicity prediction is deliberated by side effect biomarkers [68]. Common positive
predictive biomarkers in ICI treatment include tumor mutational burden (TMB) study [69],
T-cell filtration [70], PD-L1 expression analysis [71], etc. Enhanced PD-L1, TMB, and T-cell
infiltration within a tumor correspond to a better ICI treatment response [38]. Neoanti-
gen’s ability to activate T-cells dissimilarly to self-antigens can also be used as a predictive
biomarker [72]. FDA-approved biomarkers include PD-L1, TMB, and microsatellite instabil-
ity (MSI) for patient selection toward gaining therapy response [73]. Biomarkers allied with
the instigation of the immune process may be used for predicting the likelihood of a patient
benefiting from any potential immunotherapy, for instance, TMB. High TMB is associated
with an increased likelihood of detection by the immune system and thus elimination of
cancer cells [74]. On the other hand, PD-L1 augments drug-specific effects [75].

PD-L1 was the maiden biomarker to be approved by the FDA in 2015 for non-small-
cell lung cancer [76]. It has four FDA-approved testing methods to check the expression,
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with rabbit or mouse monoclonal antibodies [77]. It is now authorized as a companion
indicative test for several tumor types and is currently in use as a predictive biomarker for
ICIs, but work on other markers is being carried out due to its low diagnostic precision.
Nonetheless, it has shown good results in predicting survival for some cancers. The
second predictive biomarker to get FDA approval was MSI/DNA mismatch repair system
(MSI/dMMR) biomarker in 2017 [78]. Tumors with malfunctioning dMMR accumulate
numerous mutations across the genome and microsatellite regions being prone to these
errors lead to MSI [79]. Non-MSI regions have an increased rate of mutations in tumors
with dysfunctional dMMR and thus have additional neoantigens in comparison to a tumor
with functional MMR [67,80]. The higher presence of neoantigens causes an enhanced
immune response, including infiltration by lymphocytes, memory T-cells, and T-helper 1
cells, making them more responsive to immunotherapy. As a result, MSI/dMMR or tumor
infiltration index can be used as a positive predictive ICI treatment response biomarker.
Immunohistochemistry-based tests, PCR, or sequencing can be used for getting information
regarding this biomarker [81]. The third predictive marker approved by the FDA is TMB. It
is a count of the aggregate non-synonymous somatic mutations of the tumor. Increased
mutation burden in somatic exonic regions causes enhanced neoantigen production [82].
Some neoantigens are immunogenic and their recognition by the T-cells results in better
anti-tumor immune retort and sensitivity to ICI treatment. TMB can be tested via WES
and NGS panels but is more challenging to study than PD-1 and MSI. Its estimation can be
impacted by the tumor type, tissue type, sequencing parameters, etc. [67].

The response rate to immunotherapy is unpredictable via these markers and varies
widely, with some patients with low or absent tumor expression for these markers still
displaying a good response, and vice versa. This uncertain predictability highlights the
need for other biomarkers in determining the response to immunotherapy. Gene signature
predictive biomarkers, including T-cell inflamed gene expression profile (GEP), melanocytic
plasticity signature (MPS), T-cell dysfunction and exclusion gene signature (TIDE), and
B-cell focused gene signature have also been explored for ICI therapy [68]. High expression
of GEP and TIDE has shown better patient survival statistics compared to TMB or PD-
L1 in ICI therapies [83–85]. Low MPS has demonstrated longer survival [86]. It has
outperformed FDA-approved markers in experiments. The combination of gene markers
(TMB and GEP; MPS and TIDE) is also of superior prognostic value compared to single gene
predictors [67]. Apart from these, the richness of B cells in tumors is also associated with
better ICI responsiveness and patient survival [87,88]. PTEN inactivation, POLE mutations,
and common mutations of KRAS and STK11 have predictive value as well [89–91]. Overall,
these markers denote a significant prospect for ICI response prognostics. The ultimate goal
is to use these biomarkers to personalize treatment and improve outcomes for patients.

6. ICIs in the Laboratory or Pre-Clinical Studies

In biomedical research, preclinical studies are the initial stage of research that involve
testing a new drug or therapy in non-human models, such as cell lines, laboratory animals,
cells, or organoids, to evaluate the efficacy and safety of the treatment [92]. The selection of
the model is determined by the specific research question and the type of therapy being
tested. Preclinical studies are usually conducted before human clinical trials and help to
provide important information about the potential benefits and risks of the treatment [93].
They can help researchers to determine the optimal dose, route of administration, and
timing of treatment. In addition, preclinical studies offer valuable information about the
mechanism of action of the treatment, as well as its potential side effects and toxicity [94].

Non-human models, such as cell lines, spheroids, organoids, and animals like mice,
zebrafish, dogs, primates, particularly macaques, etc., have been used in preclinical studies
to evaluate the efficacy and safety of ICI therapy [95]. Tumor-transplanted macaques have
been demonstrated as a useful preclinical model for investigating T-cell tumor accretion and
for studying the development of new immunotherapies [96]. Hutchins et al. conducted an
anti-PD1 assessment in non-human primates and found that safety results were comparable
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in human clinical trials [97]. Ji et al. developed a macaque model for determining ICI-
induced multi-organ irAEs, specifically myocarditis [98]. The toxicity of combination
therapy has also been studied in macaques for anti-PD1 and anti-CTLA-4 for urinary tract
and skin cancer, respectively [99]. This study helped infer the inflammation response to
these ICIs.

Patient-derived xenografts (PDX) are a type of preclinical model in which tumor
tissue is taken directly from a patient and transplanted into a mouse or another animal
with a compromised immune system. The mice are then monitored for changes in tumor
growth, metastasis, and overall survival. PDX models are particularly valuable because
they preserve the genetic and molecular characteristics of the patient’s tumor, making them
more representative of the patient’s disease. Zhao et al. demonstrated the use of PDX
for evaluating drug benefits and side effects of anti-PD1 and anti-CTLA-4 antibodies for
hepatocellular carcinoma [100]. Odunsi et al. demonstrated enhanced T-cell production
under the combined impact of these antibodies in both cell lines and PDX for ovarian
cancer [101]. Zebrafish xenografts have also been studied for anti-PD1 response against
pancreatic cancer, revealing initiation of apoptosis and shrinkage in the tumor size [102].
Several cell line studies have been conducted to investigate the potential of anti-PD-1
therapy in different types of cancers, including melanoma [103], lung cancer [104], and
bladder cancer [105]. These studies have shown that ICI combination therapy can enhance
anti-tumor impact, leading to improved outcomes for patients.

Preclinical mice models may include humanized immune system (HIS) and genetically
engineered mice for studying the impact of ICI against various cancers (Table 1). These
models have proven valuable in studying human immune responses to ICI therapy for
various cancers [106,107].

Table 1. List of some studies using various mouse models to analyze the impact of ICIs in cancer.

Serial No. Mouse Model Therapy Studied
against Target Cancer References

1 BLT (bone marrow, liver, and thymus) mice PD-1 Bladder, renal, and
urethra [106,108]

2 PBMC (peripheral blood mononuclear cell) mice PD-1/PD-L1 Lung [109]

3
NOG (NOD/Shi-scid/IL-2Rγnul; Non-Obese
Diabetic Severe Combined Immunodeficiency
Interleukin-2 receptor gamma chain)

PD-1 Melanoma [110]

4 BALB/c (Bagg Albino) mice CTLA-4 Renal cell carcinoma [111]

5 NSG (NOD scid gamma mouse) mice with human
immune cells engrafted after birth PD-1/CTLA-4 Breast cancer [112]

6 NSG (NOD-scid Il2rg−/−) PD-1/PD-L1 Hepatocellular
carcinoma [100]

7 PBL-NSG (Peripheral Blood Lymphocyte-NOD
Scid Gamma mouse) PD-1 Lung cancer [113]

8 PDX (CD34+ HSC) (patient derived xenograft
CD34+ hematopoietic stem cells mouse) PD-1 Lung cancer [114]

9 NSG-CTLA-4 (NOD scid gamma cytotoxic T
lymphocyte-associated protein 4) knock-in mice CTLA-4 Hepatocellular

carcinoma [115]

10 BALB/c-Rag2nullIl2rγnullSirpaNOD mice PD-1 Adrenocortical cancer [116]

11 NOG-EXL mice PD-1 Lung cancer [117]

Apart from these, tumor organoids and spheroids are in vitro three-dimensional
models of cancer that closely mimic the architecture and heterogeneity of tumors in vivo.
These models provide an excellent platform to study the response of tumors to ICI therapy
and to test potential therapeutic strategies. Kong et al. have previously studied anti-PD-1
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response in rectal cancer using organoids [116]. Jenkins et al. have studied anti-PD-1
response in melanoma and colon cancer using tumor spheroids [118]. Similarly, studying
anti-PD-1/PD-L1 response in chordoma patient organoids revealed that organoids could
prove useful for even those patients that lack immunohistochemical PD-L1 expression [119].

7. ICI Clinical Trials

The results of several preclinical studies may not prove useful when directly extrapo-
lated for humans and many treatments that show promising results in preclinical studies
do not ultimately prove to be safe and effective in human trials. This is why clinical trials
must also be conducted before marketing drugs. Usually four levels of clinical trials may
be conducted to ensure the usefulness and safety of a drug. Phase 1 typically involves a
small number of patients (usually 15–50 individuals). The primary objectives of phase 1
trials are to evaluate the safety and toxicity of the drug or treatment, define a dose range,
and detect prospective side effects [120]. Phase 2 trials typically involve a larger number
of patients (usually 100–300 individuals) and are conducted to appraise the efficacy of
the drug or treatment in a particular set of patient population [121]. Phase 2 trials also
provide supplementary evidence regarding the safety profile of the drug or treatment
and can help determine optimal dosing [122], while phase 3 trials are the largest and the
most comprehensive clinical trials, typically involving thousands of patients. Phase 3 trials
can confirm the efficacy of the drug or treatment, compare it to existing treatments, and
further evaluate its safety profile [123–125]. The results of phase 3 trials are often used by
regulatory agencies to make decisions about the approval and marketing of the drug or
treatment [126], while phase 4 mostly includes post-marketing analysis [127].

Currently, the US clinical trials database (https://clinicaltrials.gov/; accessed on
22 February 2023) statistics show 853 active (recruiting or non-recruiting) clinical trials
registered for anti-PD-1, 330 for anti-PD-L1 and 128 for anti-CTLA-4. Detailed statistics
for various phases of these registered trials for ICIs are shown in Figure 2. Among these,
around 11 phase 1 trials are ongoing for combination therapy (Table 2).
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Table 2. List of phase 1 clinical trials currently recruiting patients for ICI combined with other
interventions (data retrieved from https://clinicaltrials.gov/; accessed on 22 February 2023).

Serial
No.

National
Clinical Trial
(NCT) Number

Conditions Interventions Enrollment Proposed
Completion

1 NCT05303493

NSCLC Stage IV|Melanoma Stage
IV|Unresectable
Melanoma|Advanced Non-Small
Cell Lung Cancer

Biological: Camu Camu
Capsules (Camu Camu
powder encapsulated (500 mg
each) + ICI

45 15-Apr-27

2 NCT05430009 Liver Metastases|Non-small Cell
Lung Cancer

Radiation: Liver SBRT|Drug:
Pembrolizumab 12 15-Jun-26

3 NCT04290546

Squamous Cell Carcinoma of the
Head and Neck|Recurrent Head
and Neck Squamous Cell
Carcinoma

Drug: Interleukin-15
Superagonist
(N-803)|Biological: CIML NK
cell Infusion|Drug:
Ipilimumab

12 31-Dec-23

4 NCT05497453

Hepatocellular Carcinoma|Solid
Tumor|Hepatocellular Carcinoma
Non-resectable|Hepatocellular
Carcinoma
Recurrent|Hepatocellular
Cancer|Liver Cancer|Liver, Cancer
of, Non-Resectable

Drug: OTX-2002|Drug:
Tyrosine kinase inhibitor
One|Drug: Tyrosine kinase
inhibitor Two|Drug:
Checkpoint Inhibitor, Immune

190 Dec-28

5 NCT05338775 Relapsed/Refractory Multiple
Myeloma

Drug: Talquetamab|Drug:
Teclistamab|Drug: PD-1
Inhibitor

152 15-Oct-25

6 NCT02557321 Melanoma Drug: PV-10|Drug:
Pembrolizumab 192 Nov-24

7 NCT04187404
Adrenocortical
Carcinoma|Pheochromocytoma|
Paraganglioma

Biological: EO2401|Biological:
Nivolumab|Biological:
EO2401 and nivolumab

120 30-Dec-24

8 NCT05089370 Malignant Melanoma

Combination Product: Oral
Decitabine/Cedazuridine
(DEC-C) in Combination with
Nivolumab

30 Jul-26

9 NCT04247165
Borderline Resectable, Locally
Advanced or Metastatic
Pancreatic Cancer

Drug: Gemcitabine|Drug:
Nab-paclitaxel|Drug:
Nivolumab|Drug:
Ipilimumab|Radiation: SBRT

40 Feb-24

10 NCT05598853

Leptomeningeal
Metastasis|Non-small Cell Lung
Cancer
Stage IV|Melanoma Stage IV

Drug: intrathecal nivolumab
and intrathecal ipilimumab 26 Apr-25

11 NCT04003649 Recurrent Glioblastoma|Refractory
Glioblastoma

Biological:
IL13Ralpha2-specific
Hinge-optimized
4-1BB-co-stimulatory
CAR/Truncated
CD19-expressing Autologous
TN/MEM Cells|Biological:
Ipilimumab|Biological:
Nivolumab|Other:
Quality-of-Life
Assessment|Other:
Questionnaire Administration

60 31-Dec-24

https://clinicaltrials.gov/
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The results of the clinical trials for ICIs have been generally positive, with many
patients showing significant improvements in survival and quality of life. Cancer im-
munotherapy was acknowledged as a ‘breakthrough of the year in 2013’ due to its substan-
tial progress against cancer [128]. However, a lot more effort still needs to be undertaken
for annotating interactions of the tumor with human immunome and its therapeutic inter-
ventions. Use of these drugs is associated with side effects, including irAEs, and further
research is needed to better understand and manage these side effects [129]. The number of
new ICI being registered are good but several of them are similar anti-PD-1/L1 antibodies
and a large fraction of the trials is dedicated to T-cell modulation drugs [129]. Additionally,
the patient recruitment rate needs to be improved. It is also important to note that not
all drugs or treatments advance through all phases of clinical trials, and some may be
discontinued at any point due to safety concerns or lack of efficacy. Some examples of
these include termination of a basket trial for anti-CTLA-4 and PD-L1 combination ther-
apy assessment in metastatic solid tumors (NCT03982173) and anti-CTLA-4 in advanced
melanoma (NCT 01740401) due to non-encouraging results. An anti-PD-1 trial for refractory
(NCT 03445533) and advanced melanoma (NCT02452424) was terminated due to lack of
efficacy. Similar non-satisfactory results for phase 1/2 trials for anti-PD-L1 therapy against
advanced melanoma and other solid tumors also resulted in the termination of trials.

8. Future Perspective

ICIs work in conjunction with the immune system and demonstrate an important stride
toward cancer treatment. They help enhance and amplify the body’s own immune response
to cancer, leading to an improved anti-tumor response. These drugs have revolutionized
the way cancer is treated, and they have the potential to continue having a significant
impact on patient outcomes in the future. However, like all cancer treatments, ICIs can
have side effects, including irAEs, such as colitis, hepatitis, and skin reactions. These side
effects can usually be managed with prompt recognition and treatment. The future of ICIs
therefore holds a lot of promise for the treatment of cancer.

However, despite this success of ICIs in treating cancers, there are cases where they
may not be as effective or cancers may resist ICIs [130,131] and require alternative therapeu-
tic approaches. This includes cancers with low TMB, low PD-L1 expression [132,133],
immunosuppressive tumor microenvironment or alternative immune evasion mecha-
nism [134]. Cancers with low TMB, such as certain types of breast and prostate cancers,
may not have enough neoantigens (antigens derived from tumor-specific mutations) to
provoke a robust immune response [135], while a cancer with low PD-L1 expression cannot
respond well to PD-1/PD-L1 inhibitors. In tumors that create an immunosuppressive
microenvironment, the effectiveness of ICIs is hindered due to the presence of regulatory T
cells, myeloid-derived suppressor cells, and other immune suppressive factors [136].

In such cases, targeted, combination, adoptive or vaccine-based therapies maybe
useful. Combining ICIs with other treatments, such as chemotherapy [137], radiotherapy,
targeted therapies, or other immunotherapies, may enhance the overall response [33]. It
may also include targeting a dyad or triad of ICIs. Combination treatment with ICIs and
multiple therapeutics is an active area of research and clinical development in the field
of cancer immunotherapy [138]. The goal is to synergize different mechanisms of action,
enhance the overall anti-tumor immune response in order to overcome resistance and
improve patient outcomes [139]. This has been reviewed in detail elsewhere [140–144].

The focus of this review was CTLA-4, PD-1, PD-L1 but there are several promising
targets for ICIs beyond them. These include Lymphocyte-activation gene 3 (LAG-3), T-cell
immunoglobulin and mucin-domain containing-3 (TIM-3), T-cell immunoreceptor with Ig
and ITIM domains (TIGIT), V-domain Ig suppressor of T cell activation (VISTA), and B7
homolog 3 (B7-H3) inducible T cell costimulatory (ICOS) [144], Fibrinogen-like protein 1
(FGL1) [145], B and T lymphocyte attenuator (BTLA), etc. ICIs targeting these receptors are
being tested but success may vary across different cancer types and patient populations, so
rigorous clinical trials are necessary to assess their safety and efficacy.
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Moving forward, research on ICIs is expected to continue to advance, leading to the
development of more effective and safer immunotherapies. Some of the areas of research
that are likely to be focused on in the future include new inhibitor discovery, combina-
tion therapy, and expansion to various non-explored cancers landscape. Additionally,
the effectiveness of ICIs can vary between patients, and researchers are exploring ways
to differentiate responders vs. non-responders to ICIs. This may lead to the develop-
ment of personalized medicine approaches, in which patients receive the treatment that
is most likely to be effective for them. Moreover, identifying biomarkers that predict re-
sponse to these therapies could help guide treatment decisions and lead to better outcomes
for patients.
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