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SUMMARY

The vapour pressures of ice and supercooled water are reviewed with an emphasis on atmospheric appli-
cations. Parametrizations are given for the vapour pressure, molar heat capacity, and latent heat of vaporization
of both ice and liquid water. For ice, the experimental vapour pressure data are in agreement with a derivation
from the Clapeyron equation. Below 200 K cubic ice may affect the vapour pressure of ice both in the atmos-
phere and in the laboratory. All of the commonly used parametrizations for the vapour pressure of supercooled
water are extrapolations that were not originally intended for use below the freezing point. In addition, the World
Meteorological Organization definition of the vapour pressure of supercooled water contains an easily overlooked
typographical error. Recent data on the molar heat capacity of supercooled water are used to derive its vapour
pressure. Nevertheless, the uncertainty is such that measurements of the deliquescence and freezing behaviour of
aerosol particles are beginning to be limited by uncertainties in the thermodynamics of supercooled water.
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1. INTRODUCTION

The vapour pressure of water over ice and supercooled water is important for cirrus
clouds, polar stratospheric clouds, and for the great volume of the atmosphere that is
colder than 273 K. The difference in vapour pressure over ice and over supercooled
water is important for the growth of ice crystals in mixed-phase clouds. The composition
and water uptake of deliquesced aerosol particles depend on the aqueous solution water
activity, which is closely related to the vapour pressure of supercooled water.

How well do the vapour pressures of water and ice need to be specified for
atmospheric applications? It is doubtful if any measurements of relative humidity
in the atmosphere are sufficiently accurate in both water vapour and temperature to
achieve 0.1% absolute accuracy. Water vapour measurements in the stratosphere have
uncertainties of about 10%, with frost-point measurements consistently yielding results
somewhat lower than other techniques (Kley et al. 2000). The uncertainties in the vapour
pressure of ice and supercooled water are both greater than 0.1% except very close to
the triple point. Physical processes (discussed below) in addition to the vapour pressure
of bulk samples of pure water also come into play at about the 0.1% level.

There are several reasons for a new review of the vapour pressure of ice for
atmospheric applications. First, none of the major expressions has been compared
to measurements by Marti and Mauersberger (1993), which are probably the best
experimental data below 205 K. Second, some of the parametrizations do not extend
down to temperatures important in the stratosphere and mesosphere; for example,
minimum temperatures in the Antarctic winter stratosphere can be below 175 K. Finally,
metastable forms of ice such as cubic ice that may be important at temperatures below
200 K (Murphy 2003) have not been included in previous expressions.

The first modern derivation of the vapour pressure of ice was by Goff and Gratch
(1946). It was later updated to revised temperature scales (Goff 1957, 1965). Hyland and
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Wexler (1983) is another widely used derivation from much of the same thermodynamic
data. The parametrization of Wagner et al. (1994) is approved by the International
Association for the Properties of Water and Steam. The functional form was chosen
to satisfy experimental constraints at the triple point as well as to have well-behaved
derivatives. A broader approach is to fit master thermodynamic functions for ice and
vapour that simultaneously satisfy experimental data not only for vapour pressure and
latent heat but also for other properties such as the speed of sound (Wagner and Pruss
2002; Feistel and Wagner 2005). The vapour pressure derived from the master functions
will automatically be self-consistent with other properties. Many other formulae for the
vapour pressure of ice have been published: Washburn (1924) is historically important;
Jancso et al. (1970) combines experimental and thermodynamic data; Buck (1981)
is primarily an attempt to find more convenient mathematical forms rather than an
independent derivation. See appendix A for a compilation of many of these expressions.

Surprisingly, none of the expressions commonly used for the vapour pressure of
supercooled water were intended for that purpose in the original papers. According
to Goff (1957), the International Meteorological Organization decided in 1947 to
extrapolate the 1946 Goff–Gratch formula ‘for undercooled liquid down to −50 ◦C
pending further research’. Other derivations of the vapour pressure of water (Wexler
1977; Hyland and Wexler 1983; Wagner and Pruss 1993, 2002) are also stated by their
authors as valid only above either the freezing or triple point; Sonntag (1990) is an
update of Hyland and Wexler; McDonald (1965) is a restatement of Goff (1957; see
appendix B).

2. THERMODYNAMIC BASIS OF THE VAPOUR PRESSURE OF ICE

(a) Clapeyron equation
The vapour pressure of both ice and liquid water at the triple point is pt =

611.657 ± 0.01 Pa at temperature Tt = 273.16 K (Guildner et al. 1976). The high
accuracy of this measured value will be used as a boundary condition. The vapour
pressure may be extended down in temperature from the triple point using the Clapeyron
equation:

dp

dT
= �s

�v
, (1a)

where �s and �v are the molar entropy and volume changes upon sublimation,
respectively.

To a very good approximation (discussed later), one may assume that the molar
volume of ice is much less than that of water vapour, and that water vapour is an ideal
gas. This is the Clausius–Clapeyron equation:

d ln p

dT
= Lice(T )

RT 2
, (1b)

where Lice(T ) is the latent heat of sublimation of ice as a function of temperature and
R is the molar gas constant (8.31447 J mol−1K−1).

A useful starting point is to solve Eq. (1b) with Lice approximated as constant.
Then it can be easily evaluated to obtain a straight line for ln(p) versus 1/T . Inserting
numerical values for the vapour pressure and latent heat at the triple point (see below)
along with a small adjustment for non-ideal behaviour gives:

pice ≈ exp(28.9074 − 6143.7/T ), (2)

with temperature in K and pressure in Pa.
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This functional form was used by Jancso et al. (1970), Marti and Mauersberger
(1993), and Mauersberger and Krankowsky (2003) to fit experimental vapour pressure
data (see appendix A).

The next level of detail beyond Eq. (2) is to include the temperature dependence of
Lice. This may be done by writing it as a function of �cp(T ), the difference in molar
heat capacities of water vapour and ice (Pruppacher and Klett 1997):

Lice(T ) = Lice,t +
∫ T

Tt

�cp(T
′) dT ′

+
∫ T

Tt

dp

dT ′

{
(vv − vi) − T ′

(
∂(vv − vi)

∂T ′

)
p

}
dT ′, (3)

where Lice,t is the latent heat of vaporization at the triple point Tt, �cp is the difference
in molar heat capacities, and vv and vi are the molar volumes of vapour and ice. The
second integral is very small compared to the first (it is zero for an ideal gas with
vv 
 vi). However, it was included in the numerical integrations that form the basis
for Eq. (7).

The value used here for Lice,t is 51059 J mol−1. This is obtained by interpolating
between measured values at 0 and 1 ◦C (Osborne et al. 1939; Osborne 1939). The
smooth fit proposed by Osborne et al. and a value obtained from the difference of master
thermodynamic functions for water vapour and ice (Wagner and Pruss 2002; Feistel and
Wagner 2005) differ by up to 10 J mol−1, but the true uncertainty may be larger because
the values are not independent of each other. A molar mass of 18.015 g mol−1 for water
was used when required to convert heat-capacity units.

(b) Molar heat capacity
Figure 1 shows the isobaric molar heat capacity, cp, of ice and water vapour.

Both sets of ice data are measurements. The Giauque and Stout (1936) data have been
corrected for a change in definition of the calorie from 4.1832 to 4.184 J. Molar heat
capacities of water vapour from Friedman and Haar (1954) are ideal-gas calculations
from vibrational spectroscopy, and those from Wagner and Pruss (2002) are calculations
from their thermodynamic function for water. Note that the molar heat capacities of ice
and water vapour are of similar magnitude between 210 and 270 K. This is what makes
the simple solution (Eq. (2)) work fairly well: the integral of �cp over 210–273 K is
close to zero.

In units of J mol−1K−1, the molar heat capacity of ice can be fitted to within the
scatter of the Giauque and Stout (1936) data by

cp,ice = −2.0572 + 0.14644T + 0.06163T exp{−(T /125.1)2}, T > 20 K. (4)

The last term is good for fitting the nonlinear portion because it goes to zero at both low
and high temperatures, and can be integrated analytically. The same form can be used
for the difference in heat capacity between vapour and ice. Using Wagner and Pruss
(2002) for vapour, the coefficients are −35.319, 0.14457, 0.06155, 129.85. Because
temperatures above 160 K are most important for the atmosphere, points below 160 K
in this fit were weighted by 50% as much as points above 160 K, and points below 40 K
30% as much as points above 160 K.

Ignoring the second integral in Eq. (3), this expression for the difference in molar
heat capacity integrates analytically to give the latent heat of sublimation of ice.
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Figure 1. The molar heat capacities of ice and water vapour. The vapour-phase heat capacities from Wagner and
Pruss (2002) include non-ideal-gas effects but those from Friedman and Haar (1954) do not.

Including the second integral and other non-ideal gas effects gives slightly modified
coefficients:

Lice(T ) = 46782.5 + 35.8925T − 0.07414T 2

+ 541.5 exp{−(T /123.75)2}, T > 30 K, (5)

with Lice in J mol−1.

(c) Extending previous fits
Following the lead of Jancso et al. (1970), we have integrated the Clapeyron

equation down in temperature from the triple point. It is possible to substitute Eq. (5) into
Eq. (1b) and obtain an analytic result, but the functional form is inconvenient. A better
approach is to start by ignoring the last term in Eq. (5). Although this is not highly
accurate, it defines a physically based functional form for a later numerical fit. The
result is that:

ln(p) = b0 + b1/T + b2 ln(T ) + b3T, (6)
where b0 to b3 are constants. This functional form was known long ago (Weber 1915),
but modern formulae have been more complicated.

In a separate calculation, Eq. (1a) was solved numerically using a fourth order
Runge–Kutta solver. This numerical solution included the full �cp as well as the terms
in both Eqs. (1) and (3) due to the finite volume of ice and non-ideal behaviour of
water vapour. The second virial coefficient was taken from Harvey and Lemmon (2004).
The form of Eq. (6) was then fitted to the numerical results with a constraint at the triple
point. With temperature in K and pressure in Pa the result is:

pice = exp(9.550426 − 5723.265/T + 3.53068 ln(T ) − 0.00728332T ); T > 110 K.
(7)
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Figure 2. Vapour pressure of ice versus inverse temperature for selected experimental data. The Bryson et al.
(1974) data below 140 K are probably affected by amorphous ice. Also shown is the vapour pressure of

supercooled water.

This fits the numerical solution to within 0.025% from 111 K to the triple point,
so the errors in the fitting process are much less than the uncertainties in the thermo-
dynamics. This expression fits the vapour pressure of ice over a wider temperature
range with fewer terms than other expressions available in the literature. The good fit
also shows that there is no reason to add more terms. Sample values for this and other
equations are shown in appendix C.

The frost point, Tfrost, is defined as that temperature at which the vapour pressure
of ice is equal to the ambient water partial pressure pw. Equation (7) cannot be inverted
to find Tfrost. A convenient fit for this, with temperature in K and pressure in Pa, is:

Tfrost ≈ (1.814625 ln(pw) + 6190.134)/(29.120 − ln(pw)); T > 115 K. (8)

The residuals for this expression compared to the numerical solution are less than
±0.04 K above 115 K.

(d) Comparison to vapour pressure data
Figure 2 shows some of the available data on the vapour pressure of ice along with

the results from Eq. (7). When comparing them, one should remember that only one
vapour pressure value, that at the triple point, went into Eq. (7). Figure 3 shows a more
detailed comparison of some experimental data on the vapour pressure of ice. Although
the experimental data confirm the thermodynamic predictions, it is apparent that they
do little to narrow the uncertainty compared to integrating the Clapeyron equation. The
different experimental techniques show their strengths and weaknesses: Weber (1915)
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Figure 3. The ratio of selected ice vapour pressure data to that calculated from Eq. (7). One point from Weber
(1915) is off-scale at (175, 1.27). The sample bounds consist of changing the latent heat of sublimation of ice at
the triple point by ±20 J mol−1, the molar heat capacity of ice by ±0.5%, and the molar heat capacity of water

vapour by ±0.3%.

and Jancso et al. (1970) made direct pressure measurements that are accurate but have
limited signal at lower vapour pressures; Marti and Mauersberger (1993) used better
vacuum techniques and a mass spectrometer that was very sensitive but required an
additional calibration step. Their low vapour pressure data are more reliable than the
direct pressure measurements but the higher-temperature data are less accurate.

The experimental vapour pressure data do not imply that any one parametrization
of the vapour pressure is best. Equation (7) gives essentially identical results to those
of Hyland and Wexler (1983) but with fewer terms (Fig. 4). In addition, Eq. (7)
is also applicable over a very wide temperature range. Figure 4 reveals that several
parametrizations are within plausible error bounds of each other. The fit used by Marti
and Mauersberger (1993) is outside such bounds for much of the temperature range.
This is in part because they used the simple form of Eq. (2) to fit data over a wide
temperature range. As the temperature range widens the temperature dependence of
Lice becomes more important and the form of Eq. (2) is less suitable for fitting.

Practical temperature scales have been revised through the years. Vapour pressure
expressions such as Eq. (7), those proposed by Hyland and Wexler (1983) or by
Goff (1965) are a combination of experimental data on practical temperature scales
which change, and integrations over temperature which do not change. Therefore one
cannot simply substitute different temperature scales into the equations. Instead, the
experimental data need to be shifted and the equations derived again. This work relies
on the Giauque and Stout (1936) specific-heat data. We have shifted their data as best we
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Figure 4. Ratios of various parametrizations of the vapour pressure of ice to the nominal thermodynamic solution
expressed here as Eq. (7). The figure is given as two panels to avoid overlap. The Jancso et al. (1970) curve is

from their Eq. (13).

could to a modern temperature scale but the effect of the shifts on the vapour pressure
is very small—less than 0.01% above 160 K. Shifting the Jancso et al. (1970) data on
Fig. 3 from the 1968 to 1990 temperature scales moves the points by less than half the
symbol size at about 200 K, and even less at higher temperatures.

Handbook values for the vapour pressure of ice are not always accurate. The 83rd
edition of the CRC tables (Chemical Rubber Company 2002) uses the Wagner et al.
(1994) parametrization, with minor round-off errors below 200 K. The values in the
55th edition are much less accurate. The Smithsonian Physical Tables (Table 635 in
Smithsonian 2003) has errors of up to 3.4%. The Smithsonian Meteorological Tables,
6th edition (Smithsonian 1951) are within about 0.5% of Eq. (7).

Although it does not show up well on Fig. 3, a sharp change in the slope of vapour
pressure versus inverse temperature was observed by Mauersberger and Krankowsky
(2003). This is reflected in their expression for the vapour pressure (Fig. 4), which
quickly goes outside the nominal thermodynamic bounds. One possibility is simply that
the slope is not well defined over such a limited temperature range (164.5 to 169 K);
alternatively the change in slope might represent a phase change in ice. Because the
change is to lower vapour pressures, such a phase would have to be more stable than
hexagonal ice. As they note, the implied latent heat at 169 K would be about 7 kJ mol−1.
For comparison, 7 kJ mol−1 is about half the latent heat of fusion of ice at 0 ◦C. It is
much larger than the entire area of the ‘hump’ between 50 and 170 K in the molar
heat-capacity data (Fig. 1). Therefore, the cause for the change in slope observed by
Mauersberger and Krankowsky (2003) is unclear.
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Figure 5. Vapour pressure ratio of cubic to hexagonal ice estimated from measurements of the latent-heat release
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Hallbrucker (1987), 151 J mol−1 from McMillan and Los (1965), and 160 J mol−1 from Sugisaki et al. (1968).

3. METASTABLE ICE

Metastable forms of ice may have affected some of the experimental vapour
pressure data below about 200 K. Metastable forms necessarily have a higher vapour
pressure than the most stable form, which is hexagonal ice. Most vapour pressure
experiments have used ice deposited from the vapour. Besides hexagonal ice, this can
also produce cubic and amorphous ice (Hobbs 1974). Below about 200 K cubic ice
nucleates first, then transforms to hexagonal ice over a period of minutes to days. This
process may influence clouds at the tropical tropopause (Murphy 2003). Below about
160 K amorphous (vitreous) ice can be formed. Some forms of amorphous ice are
probably not a well-defined phase since their properties can depend on the deposition
rate and temperature (Kouchi 1987).

The vapour pressure of cubic ice does not appear to have been explicitly measured.
Cubic ice can be estimated to have a vapour pressure 3 to 11% higher than hexagonal
ice at 200 K (Fig. 5). The vapour pressure ratio is just exp(�G/RT), where �G =
�H − T�S is the Gibbs energy difference between hexagonal and cubic ice, and �H
and �S are the corresponding enthalpy and entropy differences. Calculations by Tanaka
(1998) indicate that the entropy is nearly identical for cubic and hexagonal ice. If so, then
the Gibbs energy difference is equal to the latent heat of transformation between cubic
and hexagonal ice, and that is what is shown in Fig. 5. The wide variation in measured
�H can be attributed to its small magnitude as well as the difficulty in preparing samples
of cubic ice that are not contaminated by either amorphous or hexagonal ice. Cubic ice
can also be sufficiently disordered to affect its bulk properties (Kohl et al. 2000).

The difference in vapour pressures raises the issue of just what vapour pressure
some of the low temperature measurements represent. Bryson et al. (1974) deposited
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their ice at 100 K and do not mention an annealing procedure, so it is likely that
their samples were affected by cubic ice, amorphous ice, or both. Indeed, Kouchi
(1987) plotted the Bryson et al. data as cubic ice. To ensure hexagonal ice, Marti and
Mauersberger (1993) annealed their samples for at least 15 minutes at over 200 K. That
may not have been quite warm enough to be sure that every sample was completely
annealed to hexagonal ice. For example, the calorimeter data of Handa et al. (1986)
showed that a bulk sample was largely transformed to hexagonal ice in 10 minutes at
200 to 210 K, but complete conversion was not observed until 215 K. Mauersberger
and Krankowsky annealed their samples for at least 15 minutes, and usually much
longer, at 210 K and verified that the vapour pressure at 210 K was reproducible. To our
knowledge, nobody has measured the vapour pressure of ice at low temperatures and
confirmed the crystalline structure with electron or x-ray diffraction. There is a need for
such measurements, as differences between the vapour pressures of cubic and hexagonal
ice might have important implications for high altitude clouds (Murphy 2003).

Another issue that is not yet clear is whether a frost-point hygrometer always
measures hexagonal ice at very low temperatures. At times the frost is bluish or nearly
clear (Brewer et al. 1948). If the ice deposit on a frost-point hygrometer includes other
forms of ice than hexagonal, then the frost point will be misleading. The difference
between cubic and hexagonal ice is in the right direction to possibly explain some of
the persistent differences between frost point and other measurements of water vapour
in the stratosphere (Kley et al. 2000). Whether or not atmospheric data are affected by
cubic ice depends on whether the ice surface is laid down at a high temperature and then
maintained under feedback control, or is repeatedly formed and evaporated at the low
temperatures.

4. SUPERCOOLED WATER

(a) General remarks
Supercooled water is metastable with respect to ice, that is, it has a greater Gibbs

energy and, hence, a greater vapour pressure than ice. The implications of this vapour
pressure difference for mixed clouds were recognized by Wegener at the beginning of
the last century and finally led to the theory of precipitating clouds by means of the
Bergeron–Findeisen process (Eliassen et al. 1978). The earliest experimental studies
devoted to determine the vapour pressure of supercooled water date back to 1820 and
1844 (Angell 1982), but the first reliable measurements appear to be those of Scheel
and Heuse (1909). More recent studies include those of Bottomley (1978), Kraus and
Greer (1984) and Fukuta and Gramada (2003). Such measurements are difficult, since
metastable water samples can spontaneously freeze to form ice. Measurements are
restricted to temperatures above about 235 K, at which point even very small water
droplets freeze homogeneously to ice. This temperature is therefore often termed the
homogeneous freezing temperature of water, Tf.

From an atmospheric perspective, there are reasons to be interested in the thermo-
dynamics of supercooled water at temperatures below Tf ≈ 235 K. By convention rel-
ative humidity from radiosonde data is expressed with respect to supercooled water
rather than ice (WMO 1988). Water vapour measurements in cirrus clouds have been
referenced to the vapour pressure of supercooled water at about 200 K (Heymsfield
et al. 1998). At a more fundamental level, the vapour pressure of supercooled water is
closely related to the water activity of supercooled aqueous solutions. According to its
definition, the water activity aw = psolution/pliq, where psolution and pliq are the vapour
pressures over a solution and supercooled liquid water, respectively. The water activity is
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important for the deliquescence of aerosol particles, the chemical equilibria in aerosols
at low temperature (Clegg et al. 1998; Wexler and Clegg 2002), and the freezing of
supercooled droplets in the atmosphere (Koop et al. 2000).

Just as for ice, the Clapeyron equation can be integrated starting from the triple
point to calculate the vapour pressure of supercooled water. Because of experimental
limitations with supercooled water, there is much greater uncertainty in this calculation.
Figure 6 shows three of the more recent measurements of the isobaric molar heat
capacity of liquid water (Angell et al. 1982; Tombari et al. 1999; Archer and Carter
2000). The data stop at ∼236 K because it is difficult to supercool water beyond that
point. All three datasets, which include both bulk samples and small droplets, show a
rapid increase in heat capacity below about 250 K. It is important to note that neither
of the two most widely used formulations of the vapour pressure of supercooled water
follows the experimental data (Goff 1965; Hyland and Wexler 1983).

In order to extend the heat-capacity data of pure water to lower temperatures,
we need to know what happens below Tf. Unfortunately, crystallization of ice can be
avoided only by hyperquenching liquid water at extremely high cooling rates exceeding
105 K s−1 to temperatures below 100 K (Brüggeller and Mayer 1980). This procedure
results in an amorphous (vitreous) form of water, often termed amorphous ice. Amor-
phous ice crystallizes upon warming to about 155 K. Hence, the region between 155 K
and 235 K is not accessible to experiments on supercooled water (Mishima and Stanley
1998).

(b) Detailed thermodynamics of supercooled water
Currently, there are three theories to explain the properties of water in the super-

cooled temperature range (Mishima and Stanley 1998; Debenedetti 2003). Reviewing
them is beyond the scope of this paper, but we present a brief discussion relevant to
the work that follows. The first theory is the so-called stability-limit hypothesis (Speedy
and Angell 1976; Speedy 1982), which suggests a singularity in various properties of
supercooled water (including cp) at about 228 K. Liquid water cannot exist below this
temperature. The second theory, the singularity-free hypothesis, suggests strong changes
in thermodynamic properties at about 235 K, but with a thermodynamic continuity be-
tween liquid water above and below 235 K (Sastry et al. 1996; Rebelo et al. 1998).
The third suggestion is the liquid–liquid phase transition hypothesis (Poole et al. 1992,
1994). It proposes the existence of a second critical point of water at about 220 K and
0.1 GPa (= 1000 bar). It is suggested that this critical point is the cause for the observed
strong changes in thermodynamic properties also at ambient pressure.

It is difficult to test experimentally which of these theories is correct. But recent
experimental studies and modelling results support some sort of thermodynamic con-
tinuity between liquid water above 235 K and amorphous ice at ∼155 K. Neutron
diffraction measurements show that the structure of liquid water changes towards the
amorphous ice structure when cooled at ambient pressure (Bellissent-Funel et al. 1992,
1995). Likewise, diffusivity measurements are consistent with the idea that amorphous
ice transforms upon warming into a deeply metastable extension of normal liquid water
before crystallizing at 160 K (Smith and Kay 1999).

The concept of thermodynamic continuity between liquid water and amorphous ice
at normal pressure has an important implication: experimental data on amorphous ice
can be used to constrain the thermodynamic functions of water at intermediate (155 K
< T < 235 K) temperatures where no data exist (Johari et al. 1994; Speedy et al. 1996;
Bartell 1997; Starr et al. 2003). One common conclusion is that the molar heat capacity
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of supercooled water has a maximum just below 235 K, and then decreases until at
something like 150 K it is near the heat capacity of ice. Indeed, if the molar heat capacity
of supercooled water were to remain above 100 J K−1mol−1 then liquid water would be
more stable than ice at, say, 100 K. This is unphysical because it implies that hexagonal
ice would spontaneously melt to form water upon cooling. As a consequence, the molar
heat capacity of water is expected to go through a maximum and to decrease at low
temperatures.

Here, we follow these earlier approaches and at the same time include the most
recent heat-capacity data by Archer and Carter (2000). Our nominal fit to the molar heat
capacity of supercooled water (heavy curve, Fig. 6(a)) starts with an exponential fit to
the Archer and Carter (2000) data. This exponential fit together with a value for the
latent heat of vaporization of liquid water at the triple point of Lliq,t = 45051 J mol−1

(Osborne et al. 1939; Wagner and Pruss 2002) yields the latent heat of vaporization of
supercooled water as:

Lliq(T ) ≈ 56579 − 42.212T + exp{0.1149(281.6 − T )}; 236 ≤ T ≤ 273.16 K.
(9)

Below 231 K, our nominal fit follows, except for small adjustments, the approach of
Starr et al. (2003) of estimating the properties of supercooled water within plausible lim-
its. Archer and Carter (2000) argue that the measurements by Angell et al. (1982), which
were used by Starr et al., were not corrected for the applied cooling rate of 10 K min−1.
A correction by 1.8 K brought the two datasets into excellent agreement. Therefore,
we have adjusted the upper-temperature portion of the Starr et al. (2003) molar heat-
capacity curve (derived from a best guess of their excess entropy formulation; F. Starr,
personal communication) to match the Archer and Carter (2000) data. Below 167 K the
molar heat capacity of water was set to that of hexagonal ice plus 2 J K−1mol−1.

The error limits on the vapour pressure of supercooled water are naturally hard to
define at temperatures below the molar heat-capacity data. We present two alternative
calculations, with and without a constraint based on amorphous ice. Limits without
such a constraint are shown as the outer dashed and dash-dotted curves on both
Figs. 6(a) and (b). These represent limits on physically plausible behaviour. As described
earlier, the molar heat capacity of supercooled water must have a maximum. The two
dashed curves represent putting the maximum at the highest temperature allowed by
experimental data, or at the lowest temperature allowed without generating unphysical
behaviour. Piecewise linear extrapolations were used simply because they are easy to
work with.

Alternatively, as discussed above, experimentally determined properties of amor-
phous ice can be used to constrain the vapour pressure of water. Speedy et al. (1996)
measured evaporation rates of amorphous and crystalline ice (probably cubic) and de-
rived the ratios shown as squares in Fig. 7. These correspond to a Gibbs energy differ-
ence between amorphous and cubic ice of 1100 ± 100 J mol−1 at 150 K. The double
centre point shows the uncertainty expected depending on whether their crystalline ice
was cubic or hexagonal. Johari et al. (1994) measured the enthalpy of crystallization
of amorphous ice to cubic ice. From this, and estimates of the entropy difference be-
tween water and hexagonal ice, they estimated the Gibbs energy difference between
amorphous and hexagonal ice to be 1100 ± 300 J mol−1 at 153–158 K (circles in Fig. 7).
The inner uncertainty limits in Figs. 7 and 8 show alternative calculations of errors that
include the same uncertainty in the heat capacity above 235 K as shown on Fig. 6, but
are constrained at 150 K to the range of Gibbs energy difference between amorphous
and hexagonal ice given by Speedy et al. (1996).
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and vice versa.

Water vapour data from the atmosphere provide a weak constraint on the vapour
pressure of supercooled water. Saturation with respect to ice up to 1.6 or 1.7 has been
observed at temperatures of 184 to >210 K (Kelly et al. 1993; Heymsfield et al. 1998;
Haag et al. 2003). Assuming the atmosphere does not exceed liquid water saturation by
more than about 1%, this means that the uncertainty in the liquid vapour pressure cannot
go beyond the lower limit shown on Fig. 6.

Figure 8 compares, on an expanded scale, our nominal case with a number of other
parametrizations of the vapour pressure of water. The nominal case here generates
vapour pressures at 200 to 240 K that are slightly lower than Goff (1965). This
is a consequence of using molar heat-capacity data not available in 1965. Goff’s
parametrization, and many others, diverge rapidly beyond their intended range of
applicability.

The WMO (2000) parametrization, which is based on Goff (1957), should be
essentially identical to Goff (1965); instead, a typographical error (see appendix B)
leads to a difference of almost 1% at 230 K and rapidly increasing errors below
that. The uncorrected formula is outside plausible thermodynamic bounds (Fig. 8).
The Hyland and Wexler (1983) parametrization is used for calibration of the widely
used Vaisala radiosondes (Miloshevich et al. 2001). According to the original paper,
the parametrization is only valid above 0 ◦C (273.15 K). When extrapolated to lower
temperatures, the molar heat capacity derived from it using the Clausius–Clapeyron
equation is inconsistent with data for supercooled water (Fig. 6). The parametrization is
therefore not well suited for use below ∼260 K. There is a coincidental correspondence



1552 D. M. MURPHY and T. KOOP

1.10

1.05

1.00

0.95

R
a
ti

o
 t

o
 n

o
m

in
a
l 
s
u

p
e
rc

o
o

le
d

 v
a
p

o
r 

p
re

s
s
u

re

260240220200180

Temperature (K)

Koop et al.

heat capacity data
Wright

Goff 1965

WMO 2000
(uncorrected)

Hyland and Wexler

limit calculation

limit with constraint

limitsAIM

1.01

1.00

0.99

260240
T (K)

K

W
G

WMO

H&W

Figure 8. Ratios of parametrizations of the vapour pressure of supercooled water to Eq. (10). The dashed and
dash-dotted curves refer to the assumed limits shown in Fig. 6 plus small increments due to changing the latent
heat of vaporization at 273.16 K by 20 J mol−1. References are: Goff (1965); Hyland and Wexler (1983); Wright
(1997); Clegg et al. (1998); Koop et al. (2000); Wexler and Clegg (2002). Note that some of the expressions from
the literature are plotted here beyond their stated temperature range, simply to illustrate how they would diverge.

between the erroneous WMO (2000) expression and the extrapolated Hyland and Wexler
parametrization. This may have misled some into believing that the two agreed with each
other.

The maximum in the molar heat capacity of supercooled water makes it difficult
to fit its vapour pressure with a simple function. The expression in Koop et al. (2000)
for the activity of supercooled water (appendix A) is adequate, except that it is not
sufficiently accurate near 260 K to express the difference between the vapour pressures
of supercooled water and ice. The nominal calculation in this paper was extended
upward from the triple point using vapour pressures from Wagner and Pruss (1993).
That makes this fit suitable for the entire range of temperatures normally encountered in
the atmosphere, not just supercooled water. The fit is:

ln(pliq) ≈ 54.842763 − 6763.22/T − 4.210 ln(T ) + 0.000367T
+ tanh{0.0415(T − 218.8)}(53.878 − 1331.22/T
− 9.44523 ln(T ) + 0.014025T );

(10)

for 123 < T < 332 K.
This expression was obtained by first using the form of Eq. (6) to fit separately the

calculated vapour pressures on each side of the maximum in molar heat capacity. Then a
hyperbolic tangent was used as a continuous and differentiable way of splicing the fits
together. It goes to +1 for T 
 220 and −1 for T � 220. Finally, the expression was
optimized over the entire temperature range. In the fit, data points from 123 to 233 K
were weighted by a factor of 1/8 to 1/2 compared to data points at higher temperatures,
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because there are no heat-capacity data below 233 K. The residuals compared to the
combination of the numerical solution and Wagner and Pruss (1993) are < 0.05% for
123 < T < 332 K. The results of Eq. (10) for pliq are shown in Fig. 2 together with the
curve for pice. Interestingly, the lowest temperature data points by Bryson et al. (1974)
are in agreement with Eq. (10), implying that these measurements do indeed correspond
to amorphous ice rather than hexagonal ice.

5. DIFFERENCES BETWEEN pliq AND pice

The difference between the individual vapour pressures of liquid water and ice is
important for applications such as the characteristic time constant for water vapour
transfer from liquid water droplets to ice crystals in mixed clouds. Figure 9 shows
the difference between the parametrizations for ice and liquid water derived in this
work as a function of temperature. Data on the vapour pressure of supercooled water
are also shown in Fig. 9 (Scheel and Heuse 1909; Bottomley 1978; Kraus and Greer
1984; Fukata and Gramada 2003). The maximum difference occurs at a temperature
of 261.3 K, in accordance with experimental data. Below about 255 K all of the data
are lower than the calculation. To explain the Fukata and Gramada (2003) data, the
molar heat capacity of water would have to differ from measured values by about a
factor of three. This is in a temperature range where the heat capacity of water has been
measured by several groups with both small droplets and bulk samples. Therefore, we
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believe that below 255 K the vapour pressure data must be rejected in favour of the
molar heat-capacity data.

6. OTHER EFFECTS ON VAPOUR PRESSURE

So far, this discussion has focused on the vapour pressure of bulk samples of pure
ice or supercooled water under its own vapour. Other effects need to be considered if
very high accuracy is desired.

At a larger total pressure, for example in the presence of air, the vapour pressures
of ice or liquid water are increased (Hyland 1975). This comes from the interaction of
water vapour with air, and to a lesser extent the compressibility of the condensed phases.
At one atmosphere the effect is less than 1%, with a slight temperature dependence
(Fig. 10(a)). Below one atmosphere total pressure, the effect may be considered to
scale linearly with pressure. For typical atmospheric temperature profiles the result is
an increase in vapour pressure by perhaps 0.1% for high altitude clouds to about 0.4%
for near-surface clouds.

Very approximately, 0.1% of water in air may be present as monohydrates with
oxygen, nitrogen, and other molecules as well as water dimers (Kjaergaard et al. 2003).
Some of the total air pressure effect may be due to the monohydrates. Going beyond the
0.1% accuracy level in measuring water vapour will require an understanding of how
a given technique responds to hydrates and dimers. For example, an optical absorption
line might not measure dimers.

Solutes can have a large effect on the vapour pressure of water. Pruppacher and
Klett (1997) present an extensive discussion of this. The effect of solutes is strongly
temperature dependent for supercooled solutions (Archer and Carter 2000). For activa-
tion of most aerosol particles into cloud droplets, however, the particles are sufficiently
dilute that the properties are close to those of pure supercooled water. The effects of
solutes on ice are difficult to ascertain because of the wide range of possible solutes,
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as well as non-equilibrium amounts of dissolved material left in the ice when rapidly
frozen water is unable to expel all of a solute (Hobbs 1974). However, the effect on the
vapour pressure is probably fairly small for atmospheric applications. Coatings, such
as organic films, can change the accommodation coefficient of water vapour on ice and
otherwise change the approach to equilibrium. However, only changes in the bulk phase
of the ice change the basic vapour pressure.

Precipitation changes the isotopic composition of water in the upper atmosphere.
However, water is about 99.7% H16

2 O, so changes in the overall vapour pressure caused
by isotopic fractionation will be very small.

Because of surface energy, small ice crystals and water droplets only a few mi-
crometers in diameter have vapour pressures that are larger than those of bulk phases by
a fraction of a percent. Figure 10(b) shows this excess vapour pressure resulting from
surface energy (Pruppacher and Klett 1997). Various coatings and adsorbed species may
modulate this surface energy effect. Gao et al. (2004) suggested an association with
adsorbed HNO3 as the cause of an observed supersaturation in clouds below 200 K. The
supersaturation with respect to hexagonal ice was 10 to 30%, depending on whether
or not one scales the water vapour data above 200 K to the ice vapour pressure. For a
surface layer to change the vapour pressure of ice crystals larger than about 1 µm by
10%, the surface energy would have to increase by a factor of about 100. Alternatively,
the reason for the supersaturation could be cubic ice, failure to reach equilibrium, or
even other mechanisms.

A final consideration for highly accurate atmospheric water vapour measurements
comes from the nonlinear dependence of the vapour pressure on temperature. For
example, for normally distributed temperature values with a standard deviation of 1 K,
the vapour pressure at the average temperature differs from the true average vapour
pressure by 0.4% at 255 K or 1% at 200 K. Using data from a long horizontal transect
in the upper troposphere (Tuck et al. 2004), 200 km averages of the temperature would
have led to errors of 0.1 to 1.4% in the average vapour pressure of ice. Therefore, more
accurate relative-humidity data would require not only better measurements of both
temperature and water vapour but also better spatial and temporal resolution in those
measurements.

7. WATER ACTIVITY, DELIQUESCENCE AND HOMOGENEOUS ICE NUCLEATION

Upon cooling, aerosol particles take up water from the gas phase in order to main-
tain equilibrium between the water vapour pressure of the aerosol particles, psolution, and
the gas-phase water partial pressure, pw. Deliquescence and subsequent ice nucleation
may occur during this simultaneous cooling and dilution. Calculations can be performed
with the help of the following equalities:

aw ≡ psolution

pliq

at equilibrium= pw

pliq
≡ RHliq = RHice

pice

pliq
. (11)

According to its definition, the water activity aw is equal to the ratio psolution/pliq. If
the aerosol droplets are in thermodynamic equilibrium with the surrounding air, psolution
is equal to pw. Hence, under equilibrium conditions we can calculate aw directly from
pw and the temperature dependent expression for pliq. It is interesting to note that under
equilibrium conditions aw in the droplets is equal to the gas-phase relative humidity with
respect to liquid water, RHliq.

Data on deliquescence and freezing behaviour are sometimes limited by the accu-
racy with which the vapour pressure of supercooled water is known (e.g. Cziczo and
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Abbatt 2001; Parsons et al. 2004). For example, field measurements of the freezing
behaviour of ambient aerosols showed nearly a step-function change from 0.03% to
30% of the particles freezing when the relative humidity was varied from 99% to 101%
with respect to liquid water at roughly 223 K (DeMott et al. 2003). In this case, the
uncertainty in the vapour pressure exceeds the precision of the ambient data. Because of
the large uncertainty in the vapour pressure it is important that such papers clearly state
which parametrization was used.

Homogeneous ice nucleation in liquid aerosol particles can be calculated with a
water-activity-based theory (Koop et al. 2000). Figure 11 shows the results of using
different expressions for pice and pliq to calculate the aerosol droplet water activity
that corresponds to a homogeneous nucleation rate coefficient of J = 1013 cm−3s−1.
This rate implies a median freezing time of 1 s for aerosol droplets with a diameter
of 0.5 µm. The resulting aw values at different temperatures were used in Eq. (11) to
get the corresponding RHice values together with various expressions for pliq and pice.
While the results shown in Fig. 11 are simplified, because the equilibrium between the
gas and liquid phase is not always maintained in the atmosphere (for example in strong
updraughts), they do provide insight into the effects of using different water vapour
parametrizations on the predicted ice nucleation conditions.

The use of the various parametrizations yields differences of up to 20% RHice at the
lowest temperatures. The highest values are found for the expressions of Sonntag (1990),
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Hyland and Wexler (1983) and the uncorrected expression from WMO (2000), while the
formulation of Goff (1965) yields the lowest RHice values. The results from the AIM
model (Wexler and Clegg 2002), the expression of Koop et al. (2000), and the nominal
case presented as Eqs. (7) and (10) in this paper are all very close to each other, within
the uncertainty of the nucleation model. Therefore, we recommend using any of the
latter three formulations for pliq and pice to predict ice nucleation conditions that are
in accordance with the derivation of water-activity-based ice nucleation theory (Koop
et al. 2000). Note that ice nucleation rates are very sensitive to small changes in RHice,
as indicated by the grey shaded area in Fig. 11 which denotes nucleation coefficient
values varying between J = 1011 and 1015 cm−3s−1, i.e. over four orders of magnitude.

8. CONCLUSIONS AND FUTURE NEEDS

There is basic agreement between the measurements of the vapour pressure of ice
and the thermodynamic parametrizations derived from the Clapeyron equation (Fig. 3).
All of the commonly used expressions for the vapour pressure of ice, except that of
Marti and Mauersberger (1993), are within 1% of each other for temperatures between
170 and 273 K. The experimental vapour pressure data do not select any of the remaining
expressions as superior. Equations (7) and (8), derived above, give the vapour pressure
of ice and the frost point with fewer terms than other expressions in the modern literature
and over a wider temperature range.

The uncertainty in the vapour pressure of ice is not large enough to explain the
differences between frost point and other measurements of water vapour pressure in the
stratosphere. For many atmospheric applications, the uncertainty in the vapour pressure
of ice is small compared to other uncertainties. For example, there is a range exceeding
a factor of ten in estimates of the uptake coefficient of water vapour on ice at 200 K
(Chaix et al. 1998). This uncertainty propagates into computer models of cirrus clouds
(Lin et al. 2002; Gierens et al. 2003). For most atmospheric questions involving ice, the
accommodation coefficient is a more important open issue than the vapour pressure.

It is impressive to consider the quality of the vapour pressure data of Weber (1915).
He read a mercury manometer with a microscope to a precision of 3 µm for both direct
measurements and calibration of a hot-wire probe. At pressures high enough so that
he was not limited by vacuum pumping, his data lie within 1% of modern results even
though the temperature-scale was defined differently in 1915.

To move to the next (∼0.1%) level of accuracy in the vapour pressure of ice, new
data will be required not only on the thermodynamics of bulk ice but also on trapped
solutes, surface energy and the stabilization of water vapour by air. Future data on the
vapour pressure or latent heat of ice below 200 K should include a measurement of the
crystal structure. The heat of fusion of water at the triple point is also a candidate for
a new measurement: the standard reference (Osborne 1939) is actually a recalculation
from data obtained before 1914. Many fundamental units have been redefined since
then.

For liquid water there is good agreement between the Clapeyron equation and
measurements of the vapour pressure down to about 255 K. Below that, the vapour
pressure measurements are low, as if they had been influenced by the presence of ice.
The vapour pressure of liquid water is quite uncertain below about 230 K because
the molar heat capacity of liquid water can only be measured until samples freeze at
about 236 K. The uncertainty in pliq at 200 K is larger than ±5% and increases rapidly
below that. The uncertainty in the vapour pressure at low temperatures is smaller if the
properties of supercooled water are related to amorphous ice. Given the large uncertainty
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in the vapour pressure of supercooled water, it may be more appropriate to report RHice
below the freezing temperature rather than the meteorological convention of always
using RHliq.

Widely used expressions for water vapour (Goff and Gratch 1946; Hyland and
Wexler 1983) are being applied outside the ranges of data used by the original authors
for their fits. This work may be the first time that data on the molar heat capacity of
supercooled water have been used to constrain its vapour pressure.

The most important open issue involving supercooled water is whether thermo-
dynamic data of any kind can be obtained at temperatures well below 230 K, perhaps
by using high pressures or nano-droplets and very fast experiments (Bartell 1997).
Resolving the theoretical question of the relation between amorphous ice and highly
supercooled water would also help define the uncertainty in the vapour pressure.
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APPENDIX A

Vapour pressure parametrizations and stated range of validity
Here, Tt is the triple point 273.16 K, log is the logarithm to base 10, and ln is the

natural logarithm. For parametrizations from this work see Eqs. (7) and (10). A variety
of other equations are listed and graphed at http://cires.colorado.edu/∼voemel/vp.html
(last accessed 12 January 2005). The computational speed of 25 equations was tested by
Gueymard (1993).

Goff and Gratch (1946): Units are converted here from atmospheres to Pa. Stated ranges:
184 < T < 273.16 K for ice and 273.15 < T < 373.15 K for liquid.

log(pice) = −9.09718{(273.16/T ) − 1} − 3.56654 log(273.16/T )
+ 0.876793{1 − (T /273.16)} + log(610.71).

log(pliq) = −7.90298{(373.16/T ) − 1} + 5.02808 log(373.16/T )

− 1.3816 · 10−7(1011.344(1−T/373.16) − 1)

+ 8.1328 · 10−3(10−3.49149(373.16/T−1) − 1) + log(101325).

Goff (1957): Units are converted here from atmospheres to Pa. Stated ranges 180 < T
< 273.16 K for ice and 273.15 < T < 373.15 K for liquid with extension to 223 K.

log(pice) = log(611.14)− 9.096853(Tt/T − 1) − 3.566506 log(Tt/T )

+ 0.876812(1 − T/Tt).

log(pliq) = log(611.14)+ 10.79574(1 − Tt/T ) − 5.0280 log(T /Tt)

+ 1.50475 · 10−4(1 − 10−8.2969(T/Tt−1))

+ 0.42873 · 10−3(104.76955(1−Tt/T ) − 1).
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Goff (1965): Units are converted here from atmospheres to Pa. The range is the same
as Goff (1957). This 1965 publication, taken from the proceedings of a conference in
1963, has also been frequently referenced as Goff 1963. It is a minor correction to Goff
(1957).

log(pice) = log(611.11)− 9.096936(Tt/T − 1) − 3.56654 log(Tt/T )

+ 0.876817(1 − T/Tt).

log(pliq) = log(611.11)+ 10.79586(1 − Tt/T ) − 5.02808 log(T /Tt)

+ 1.50474 · 10−4(1 − 10−8.29692(T/Tt−1))

+ 0.42873 · 10−3(104.76955(1−Tt/T ) − 1).

Hyland and Wexler (1983), also in Wexler and Hyland (1983): Stated ranges 173.16 ≤
T < 273.16 for ice and 273.15 ≤ T ≤ 473.15 for liquid.

ln(pice) = (−5674.5359/T + 6.3925247 − 0.96778430 · 10−2T

+ 0.62215701 · 10−6T 2 + 0.20747825 · 10−8T 3

− 0.94840240 · 10−12T 4 + 4.1635019 ln T ).

ln(pliq) = (−5800.2206/T + 1.3914993 − 0.48640239 · 10−1T

+ 0.41764768 · 10−4T 2 − 0.14452093 · 10−7T 3 + 6.5459673 ln(T )).

Jancso et al. (1970) data fit: ∼195 < T < 273.16 K:

log(p′
ice) = −2668.726/T + 10.43112, (torr).

pice = 133.32(611.657/611.283)p′
ice;

corrects for units and triple-point pressure.

Jancso et al. (1970) thermodynamic derivation: ∼173 < T < 273.16 K:

log(p′
ice) = −2481.604/T + 3.5721988 log T − 3.097203 · 10−3T

− 1.7649 · 10−7T 2 + 1.901973.

pice = 133.32(611.657/611.283)p′
ice;

corrects for units and triple-point pressure.

Koop et al. (2000): 150 < T < 273 K:

pliq ≈ pice exp(−(210368 + 131.438T − 3.32373 · 106/T

− 41729.1 ln(T ))/RT).

Marti and Mauersberger (1993): 169 < T < 273.16 K:

pice = exp(28.868 − 6132.9/T ).

Mauersberger and Krankowsky (2003): 164.5 < T < 169 K:

pice = exp(34.262 − 7044/T ).

Sonntag (1990): Stated ranges are 173.15 ≤ T ≤ 273.16 K for ice and 173.15 ≤ T ≤
373.15 K for liquid, despite being based on Wexler (1976).

pice = 100 exp(24.7219 − 6024.5282/T + 1.0613868 · 10−2T

− 1.3198825 · 10−5T 2 − 0.49382577 ln(T )).

pliq = exp(16.635764 − 6096.9385/T − 2.711193 · 10−2T

+ 1.673952 · 10−5T 2 + 2.433502 ln(T )).
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Wright (1997), US Meteorological Handbook:

pliq = 611.21 exp{17.502(T − 273.15)/(240.97 + T − 273.15)}.
Wagner and Pruss (1993): 273.16 ≤ T ≤ 647 K:

ln{pliq/(2.2064 · 107)} = (Tc/T )(−7.85951783τ + 1.84408259τ 1.5

− 11.7866497τ 3 + 22.6807411τ 3.5

− 15.9618719τ 4 + 1.80122502τ 7.5),

where τ = 1 − T/Tc and Tc = 647.096 K.

Wagner et al. (1994): 190 < T < 273.16 K:

ln pice = ln(611.657)− 13.9281690(1 − (Tt/T )
1.5)

+ 34.7078238(1 − (Tt/T )
1.25).

Wexler (1976): 0 to 100 ◦C: ln pliq = ∑6
i=0 giT

i−2 + g7 ln T , where T is on the IPTS-
68 scale∗ and

gi = {−0.29912729 · 104 − 0.60170128 · 104 + 0.1887643854 · 102

− 0.28354721 · 10−1 + 0.17838301 · 10−4 − 0.84150417 · 10−9

+ 0.44412543 · 10−12 + 0.2858487 · 101}.

APPENDIX B

Typographical errors in the literature
In the course of preparing this review, we uncovered a number of typographical

errors in the literature. No doubt there are additional errors awaiting discovery.

Archer and Carter (2000): In their equation (A.1), the coefficients ai should be outside
the braces (D. Archer, personal communication, 2004).

Jancso et al. (1970): The value at −3.471 ◦C in their Table 1 is incorrect.

McDonald (1965): Although the equation given for the vapour pressure of supercooled
water is correct, the tabulated values contain systematic errors that reach about 50% at
−100 ◦C. Figure 1 is in error by a similar amount.

Pruppacher and Klett (1997). In the second edition, Eq. (5.12) for the surface tension of
water matches their corresponding figure only when T ≤ 0 ◦C.

Smithsonian Physical Tables (Smithsonian 2003): Table 635 for the vapour pressure of
ice contains numerous errors, most notably the points at −67, −59, −52, and −25 ◦C.
This does not apply to the Smithsonian Meteorological Tables (Smithsonian 1951)
which are derived from a different formula.

Tombari et al. (1999): Their equation in the caption to their Fig. 1 should contain 0.044
rather than 0.44 (E. Tombari, personal communication, 2002).

WMO (1988, 2000): In Eq. (13) of appendix A in the 1988 version the log term on the
first line has the wrong sign; there is a misplaced T in the exponent of 10 on the second
line; and the sign of the power of 10 on the third line should be positive. The correct
expression is from Goff (1957; see our appendix A). In the WMO 2000 corrigendum the
first two errors are corrected but the third one remains. The error is about 1% at 230 K
and increases rapidly below that.
∗ International Practical Temperature Scale of 1968.
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APPENDIX C

Selected values

TABLE C1. VALUES RECOMMENDED FOR CHECKING COMPUTER CODES

Ice vapour Liquid vapour Ice molar Liquid molar Ice latent Liquid latent
Temperature pressurea pressurea heat capacity heat capacityb heat heatb

(K) (Pa) (Pa) (J mol−1K−1) (J mol−1K−1) (J mol−1) (J mol−1)

150 6.106 · 10−6 1.562 · 10−5 22.10 24.10 50623 49119
180 0.0053975 0.011239 25.70 31.75 50906 49314
210 0.70202 1.2335 29.47 84.22 51081 48841
240 27.272 37.667 33.46 89.22 51139 46567
273.15 611.154 611.213 38.09 75.86 51059 45051
273.16 611.657 611.657 38.09 75.85 51059 45051
300 – 3536.8 – (c) – (c)

aThese values are calculated using double precision; Eqs. (7) and (10) give acceptable results using single
precision, although the last digits may vary.
bItalics represent values used in this paper but beyond the range of Eq. (9). A polynomial was used for
cp for 167 < T < 231 K with coefficients (38565.2, −635.6299, 0.964911, 0.03646245, −0.0002189861,
4.197441 · 10−8, 2.456321 · 10−9, −4.839049 · 10−12).
cWater vapour pressures above the triple point were fitted to Wagner and Pruss (1993), so the molar heat
capacities and latent heats are approximately as defined in that paper.
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