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Abstract

The success of quenching process during industrial heat treatment mainly depends on the heat transfer

characteristics of the quenching medium. In the case of quenching, the scope for redesigning the system or

operational parameters for enhancing the heat transfer is very much limited and the emphasis should be on

designing quench media with enhanced heat transfer characteristics. Recent studies on nanofluids have shown

that these fluids offer improved wetting and heat transfer characteristics. Further water-based nanofluids are

environment friendly as compared to mineral oil quench media. These potential advantages have led to the

development of nanofluid-based quench media for heat treatment practices. In this article, thermo-physical

properties, wetting and boiling heat transfer characteristics of nanofluids are reviewed and discussed. The unique

thermal and heat transfer characteristics of nanofluids would be extremely useful for exploiting them as quench

media for industrial heat treatment.

Introduction
Quench hardening is a commonly used heat treatment

process in manufacturing industry to increase the ser-

vice reliability of components where the material is

heated to the solutionizing temperature, held for a parti-

cular period of time and then quenched into the

quenching medium. Quenching during heat treatment

involves simultaneous occurrence of different physical

events such as heat transfer, phase transformation and

stress/strain evolution, and heat transfer is the driving

physical event as it triggers other processes [1]. The two

phase (boiling) heat transfer is the predominant mode

of heat transfer during quenching. When the hot metal

submerged into the liquid pool, heat transfer is con-

trolled by different cooling stages known as vapour

blanket stage/film boiling stage, nucleate boiling stage

and convective or liquid cooling stage [1-3] (Figure 1).

Quenching from high temperature is enough to produce

a stable vapour film around the surface of component.

During this vapour blanket stage, heat transfer is very

slow because the vapour film acts as an insulator and

occurs by radiation through the vapour phase. Nucleate

boiling starts when the surface temperature of the com-

ponent drops slowly where the vapour film starts to col-

lapse and allowing liquid to come into contact with the

surface of component. The stage is characterized by vio-

lent bubble boiling as heat is rapidly removed from the

part surface and maximum cooling rate is obtained.

This continues till the surface temperature drops below

the boiling temperature of the liquid. Quenching is a

non-stationary process where the occurrence of these

local boiling phenomena is a function of time and posi-

tion along the surface of the component. This behaviour

leads to the occurrence of a wetting front, which is the

locus of the boundary between the vapour film and the

occurrence of bubbles [4]. The final stage of the

quenching, i.e. convection cooling occurs when the

metal surface is reduced below the boiling point of

quenchant. During this stage, boiling stops and heat

transfer occurs directly by direct contact between the

surface and liquid and the rate of heat removal is low.
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The important factors, which influence the heat trans-

fer/metallurgical transformation during quench harden-

ing, are shown in Figure 2 [5]. Of all these factors listed,

only a few can be changed in the heat treatment shop.

The selection of optimum quenchant and quenching

conditions both from the technological and economical

point of view is an important consideration [5].

Water, brine solution, oil, polymer etc. are used as

conventional quenching media. Water and brine

solution are restricted to quenching simple shapes and

steels of comparatively low hardenability because of the

occurrence of intolerable distortion, warpage and

quench cracks [6]. On the other hand, convective cool-

ing in oil is less intensive due to relatively high viscosity

and lower heat capacity. A variety of different quenching

oils tend to show a prolonged vapour blanket stage, a

short nucleate boiling stage with a much lower cooling

rate, and finally a prolonged convective cooling stage

with a very modest cooling rate [1]. Polymer quenchants

show low cooling rate and it cannot be used with some

common additives and anti oxidants. Continuous moni-

toring of polymer quenchant is required for optimal per-

formance and it is not suitable for steels requiring high

temperature quenching [7]. Therefore, it is necessary to

develop new type of quenchants capable of producing

desired property distribution, acceptable microstructure

and residual stress distribution in section thicknesses of

interest with avoidance of cracking and reduced

distortion.

Modern nanotechnology provides new opportunities

to process and produce materials with average crystallite

sizes below 50 nm [8]. The unique properties of these

nanoparticles are (i) size dependent physical properties,

(ii) large surface area, (iii) large number density and (iv)

surface structure [9]. Fluids with nanoparticles sus-

pended in them are called nanofluids [8]. Commonly

used materials for nanoparticles are oxide ceramics

(Al2O3, CuO), metal carbides (SiC), nitrides (AlN, SiN),

Figure 1 Typical boiling (a) and temperature-time (b) curves for a hot surface quenched in a liquid bath.

Figure 2 Factors influencing the metallurgical transformation

during quench hardening.
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metals (Al, Cu), nonmetals (graphite, carbon nanotubes),

layered (Al+Al2O3, Cu+C), PCM and functionalized

nanoparticles and the base fluids includes are water,

Ethylene or tri-ethylene glycols, oil, polymer solutions,

bio-fluids and other common fluids [10]. There are

mainly two techniques used to produce nanofluid: the

single-step and two-step method. Latter method is

extensively used in the synthesis of nanofluids in which

nanoparticles was first produced and then dispersed in

the base fluids [8]. The properly prepared nanofluids are

expected to give the benefits of (i) higher heat conduc-

tion, (ii) more stability, (iii) microchannel cooling with-

out clogging, (iv) reduced chances of erosion and (v)

reduction in pumping power [11]. The addition nano-

particles to the conventional fluids result in anomalous

change in thermo-physical properties of the fluid. Apart

from that, the addition of nanoparticles affect the boil-

ing behaviour at the surfaces as they fill up the disconti-

nuity at the surfaces and probably affect the critical heat

flux. Nanofluids can be considered to be the next gen-

eration heat transfer fluids as they offer exciting new

possibilities to enhance heat transfer performance com-

pared to pure liquids. They are expected to have differ-

ent properties related to heat transfer as compared to

conventional fluids [8]. Nanofluids offer completely dif-

ferent behaviour of wetting kinetics and heat removal

characteristics and these characteristics could be

exploited in industrial heat treatment for quenching.

The present article reviews important thermo-physical

properties, wetting and boiling heat transfer characteris-

tics of the nanofluids. The importance of using nano-

fluids as effective quench media for hardening process

during heat treatment is highlighted.

Discussion
Thermophysical properties of nanofluids

Thermal conductivity

Experiments on nanofluids have indicated that the addi-

tions of small volume fraction of nanoparticles into the

base fluid have significant impact on the effective ther-

mal conductivity of the fluid. Choi coined the term

nanofluid in 1995 and proposed that the thermal con-

ductivity of the base fluid can be increased by adding

low concentration of nanoparticles of materials having

higher thermal conductivity than the base fluid [12].

The transient hot wire method, the steady-state parallel-

plate technique and the temperature oscillation techni-

que are the different techniques employed to measure

the thermal conductivity of nanofluids [8]. Eastman et

al. showed 60% improvement in thermal conductivity by

suspending 5% volume of nanocrystalline copper oxide

particles in water [13]. Wang et al. observed that the

effective thermal conductivity of ethylene glycol

increases by about 26 and 40% when approximately 5

and 8 vol.% of Al2O3 nanopowders are added, respec-

tively [14]. Choi measured thermal conductivity

enhancement of 150% for MWCNT’s dispersed in poly-

alphaolefin [15] and Marquis observed upto 243% incre-

ments in CNT nanofluids [16]. The summary of

enhancement ratio of the thermal conductivity of water

by addition of different nanoparticles is listed in Table 1

[13,14,17-42]. There are no general mechanisms to

explain the behaviour of nanofluids so far and the possi-

ble mechanisms for the increment of thermal conductiv-

ity of the nanofluids are as follows [43-63]:

I. Brownian motion of nanoparticles: The Brownian

motion of nanoparticles at the molecular and nanos-

cale level was a key mechanism governing the ther-

mal behaviour of nanoparticle-fluid suspensions [45].

The random motion of nanoparticles suspended in

the fluid results in continuous collisions between the

particles and molecules of bulk liquid thereby trans-

port energy directly by nanoparticles. The impact of

Brownian motion was more effective at higher tem-

peratures [46]. The micro convection/mixing effect

of the base fluid in the immediate vicinity of the

nanoparticles caused by the Brownian motion was

an important reason for the large thermal conductiv-

ity enhancement of nanofluids [47]. However, the

Brownian motion contribution to the thermal con-

ductivity of nanofluid was very small and cannot be

responsible for extraordinary thermal transport

properties of nanofluids [43,48-50].

II. Liquid layering around nanoparticles: The

ordered layering of liquid molecules at the solid par-

ticle surface forms solid-like nanolayer. This layer

acts as a thermal bridge between the solid nanoparti-

cles and the base liquid and plays an important role

in the enhanced thermal conductivity of nanofluids

[51-54]. The effective thermal conductivity increases

with increase in nanolayer thickness. Especially in

small particle size range, the effects of particle size

and nanolayer thickness become much more

obvious, which implies that manipulating nanolayer

structure might be an effective method to produce

highly thermally conductive nanofluids [55].

Although the presence of an interfacial layer may

play a role in heat transport, it is not likely to be

solely responsible for enhancement of thermal con-

ductivity [43]. By using molecular dynamics simula-

tions, Xue et al. demonstrated that the layering of

the liquid atoms at the liquid-solid interface does

not have any significant effect on thermal transport

properties [58].

III. Nature of the heat transport in the nanoparticles:

When the nanoparticle size becomes very small, the

mean free path of phonon is comparable to the size
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Table 1 Enhancement of thermal conductivity of water on addition of nanoparticles reported in the literature

[13.14.17-42]

Particle material Particle size (nm) Concentration
(vol.%)

Thermal conductivity
ratio (Keff/Kf)

Remarks Reference

Cu 100 2.50-7.50 1.24-1.78 Laurate salt Surfactant [18]

100-200 0.05 1.116 Spherical and square [19]

Not available 0.05 1.036 -

130-200 0.05 1.085 Spherical and square

75-100 0.1 1.238 Spherical and square

50-100 0.1 1.238 Spherical and square

100-300 0.1 1.110 Spherical, square, and needle

130-300 0.2 1.097 Spherical

200 × 500 0.2 1.132 Needle

250 0.2 1.036 Spherical, square, and needle

Ag 60-70 0.001 1.30 30°C [20]

1.04 40°C

8-15 0.10-0.39 1.03-1.11 - [21]

Au 10-20 0.00013 1.03 30°C (citerate reduced) [20]

1.05 40°C (citerate reduced)

0.00026 1.05 30°C (citerate reduced)

1.08 60°C (citerate reduced)

Fe 10 0.2-0.55 1.14-1.18 - [22]

Al2Cu 30 1.0-2.0 1.48-1.98 - [23]

65 1.4-1.78 -

104 1.35-1.60 -

Ag2Al 30 1.0-2.0 1.5-2.1 - [23]

80 1.4-1.9 -

120 1.3-1.75 -

CuO 36 5 1.6 - [13]

23.6 1.00-3.41 1.03-1.12 - [24]

23 4.50-9.70 1.18-1.36 - [17]

28.6 1.00-4.00 1.07-1.14 21°C [25]

1.22-1.26 36°C

1.29-1.36 51°C

- 1.00 1.05 - [26]

25 0.03-0.30 1.04-1.12 pH = 3 [27]

1.02-1.07 pH = 6

29 2.00-6.00 1.35-1.36 28.9°C [28]

1.35-1.50 31.3°C

1.38-1.51 33.4°C

29 0-16 1.00-1.24 - [29]

Al2O3 13 1.30-4.30 1.109-1.324 31.85°C [30]

1.100-1.296 46.85°C

1.092-1.262 66.85°C

38.4 1.00-4.30 1.03-1.10 - [24]

28 3.00-5.00 1.12-1.16 - [17]

60.4 1.80-5.00 1.07-1.21 - [31]

60.4 5.00 1.23 - [32]

38.4 1.00-4.00 1.02-1.09 21°C [25]

1.07-1.16 36°C

1.10-1.24 51°C

27-56 1.6 1.10 Sodium dodeculbenzene sulfonate [33]

11 1.00 1.09 21°C [34]

1.15 71°C
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Table 1 Enhancement of thermal conductivity of water on addition of nanoparticles reported in the literature

[13.14.17-42] (Continued)

47 1.03 21°C

1.10 71°C

150 1.004 21°C

1.09 71°C

47 4.00 1.08 21°C

1.29 71°C

36 2.0-10.0 1.08-1.11 27.5°C [28]

1.15-1.22 32.5°C

1.18-1.29 34.7°C

36-47 0-18 1.00-1.31 - [29]

SiO2 12 1.10-2.30 1.010-1.011 31.85°C [30]

1.009-1.010 46.85°C

1.10-2.40 1.005-1.007 66.85°C

- 1.00 1.03 - [26]

15-20 1.00-4.00 1.02-1.05 - [21]

TiO2 27 3.25-4.30 1.080-1.105 31.85°C [30]

1.084-1.108 46.85°C

1.075-1.099 86.85°C

15 0.50-5.00 1.05-1.30 Sphere (CTAB) [35]

10 × 40 1.08-1.33 Rod (CTAB)

SiC 26 4.2 1.158 Sphere [36]

600 4.00 1.229 Cylinder

MWCNT 15 × 30000 0.40-1.00 1.03-1.07 - [37]

100 × >50000 0.60 1.38 Sodium dodecyl sulfate [38]

20-60 dia 0.04-0.84 1.04-1.24 Sodium dodecyl benzene 20°C [39]

1.05-1.31 Sodium dodecyl benzene 45°C

130 × >10000 0.60 1.34 CATB [40]

- 0-1 wt% 1.00-1.10 Gum Arabic 20°C [41]

1.00-1.30 Gum Arabic 25°C

1.00-1.80 Gum Arabic 30°C

- 1.00 1.07 - [26]

- 0.6 1.39 SDS 0.1 mass% [42]

1.23 SDS 0.5 m ass%

1.30 SDS 2 mass%

1.28 SDS 3 mass%

1.19 CTAB 0.1 mass%

1.34 CTAB 1 mass%

1.34 CTAB 3 mass%

1.28 CTAB 6 mass%

1.11 Triton 0.17 mass%

1.12 Triton 0.35 mass%

1.13 Triton 0.5 mass%

1.11 Triton 1 mass%

1.28 Nanosperse 0.7 mass%

0.75 1.03 CTAB 1 mass%

1.02 CTAB 3 mass%

1 1.08 CTAB 5.5 mass%
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of the particle. In that case diffusive thermal trans-

port in nanoparticles is not valid and ballistic trans-

port is more realistic. Keblinski et al. indicated that

inside the solid particles, heat moves in a ballistic

manner that involves multiple scattering from the

solid/liquid interface, which plays a key role in trans-

lating fast thermal transport in particles into high

overall conductivity of the nanofluids. They also sug-

gested that particles may be much closer due to

Brownian motion and thus enhance coherent pho-

non heat flow among the particles [43]. The esti-

mated mean free path and the transition speed of

phonons in nanofluids through density functional

theory indicated that the speed of phonon transport

will not be affected due to the existence of nanopar-

ticles in the low volume fraction limit [59].

IV. Clustering of nanoparticles: Since nanoparticles

in the fluid are in Brownian motion and the Van der

Waals force against gravity results in clustering of

nanoparticles into percolating patterns with lower

thermal resistance paths. With decreasing packing

fraction, the effective volume of the cluster increases

thus enhancing the thermal conductivity. Clustering

may also exert a negative effect on the heat transfer

enhancement particularly at low volume fraction, by

settling small particles out of the liquid and creating

large regions of particle free liquid with high thermal

resistance [43]. Using non-equilibrium molecular

dynamics simulations, Eapen et al. showed that the

thermal conductivity of a well-dispersed nanofluid

was enhanced beyond the 3� Maxwell limit through

a percolating amorphous-like fluid structure at the

cluster interface [60]. Studies on clustering of nano-

particles in the fluids suggest varying values of ther-

mal conductivities, i.e. enhanced, reduce and

unchanged thermal conductivity of nanofluids

[61-63]. Ozerinc et al. mentioned that there should

be an optimum level of clustering for maximum

thermal conductivity enhancement [44].

The experimentally measured thermal conductivities

of nanofluids deviate from conventional models such as

Maxwell, Hamilton-Crosser, Jeffery, Davis, Bruggeman,

Lu and Lin model. The important factors, which control

the thermal conductivity of nanofluids, are particle

volume concentration, particle material, particle size,

particle shape, base fluid material, temperature, additive

and acidity [17,44]. Due to these complex variables and

different mechanisms, the exact model for effective ther-

mal conductivity of nanofluid is difficult. Yu and Choi

have modified the Maxwell equation for the effective

thermal conductivity of solid/liquid suspensions to

include the effect of this ordered nanolayer [51]. Wang

et al. proposed fractal model for liquid with dilute

suspensions of nonmetallic nanoparticles, which involves

the effective medium theory. The proposed model

describes the nanoparticle clusters and their size distri-

bution [64]. Xue presented a novel model considering

the interface effect between the solid particles and the

base fluid in nanofluids based on Maxwell theory and

average polarization theory [65]. Jang and Choi devised

a theoretical model that accounts for the role of Brow-

nian motion of nanoparticles in nanofluid. This model

also includes the concentration, temperature and size

dependent conductivity [45]. By considering the particle

dynamics (Brownian motion), Koo and Kleinstreuer

expressed a model which consists of particle volume

fraction, particle size, particle material and temperature

dependence as well as properties of base liquid [46]. A

comprehensive theoretical model has been developed by

Kumar et al. which explains the enhancement in ther-

mal conductivity of a nanofluid with respect to variation

in particle size, particle volume fraction, and tempera-

ture [66]. Xue and Xu derived a model which consists

of the thermal conductivity of the solid and liquid, their

relative volume fraction, the particle size and interfacial

properties [67]. Patel et al. introduced a concept of

micro-convection into Kumar et al. model for predicting

the thermal conductivity accurately over a wide range of

particle sizes (10 to 100 nm), particle concentrations (1

to 8%), particle materials (metal particles as well as

metal oxides), different base fluids (water, ethylene gly-

col) and temperature (20 to 50°C) [68]. By considering

the effect of the interfacial layer at the solid particle/

liquid interface, Leong et al. proposed a model which

accounts for the effects of particle size, interfacial layer

thickness, volume fraction and thermal conductivity

[54]. For carbon nanotube (CNT) nanofluids, Patel et al.

presented a simple model which shows linear variation

of the thermal conductivity of CNT nanofluid with

volume concentration [69]. Feng et al. expressed a

model as a function of the thermal conductivities of the

base fluid and the nanoparticles, the volume fraction,

fractal dimension for particles, the size of nanoparticles,

and the temperature, as well as random number. Monte

Carlo technique combined with fractal geometry theory

is applied to predict the thermal conductivity of nano-

fluids [70]. Shukla and Dhir developed a microscopic

model based on the theory of Brownian motion of nano-

particles in a fluid which account size of the particle and

temperature [71]. Moghadassi et al. presented a novel

model based on dimensionless groups which included

the thermal conductivity of the solid and liquid, their

volume fractions, particle size and interfacial shell prop-

erties. The proposed model creates a non-linear relation

between the effective thermal conductivity and nanopar-

ticle volume fraction [72]. Wang et al. proposed a Novel

Statistical Clustering Model to determine the
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macroscopic characteristics of clusters, and then, the

thermal conductivity of a nanofluid [73]. Sitprasert et al.

modified the Leong model inorder to predict both the

temperature and the volume fraction dependence of the

thermal conductivity of nanofluids for both non-flowing

and flowing fluids [57]. Murugesan and Sivan developed

lower and upper limits for thermal conductivity of nano-

fluids. The upper limit is estimated by coupling heat

transfer mechanisms like particle shape, Brownian

motion and nanolayer while the lower limit is based on

Maxwell’s equation [74]. Teng et al. proposed an empiri-

cal equation incorporating the nanoparticle size, tem-

perature and lower weight fraction of Al2O3/water

nanofluid [75]. By considering nanoparticles as liquid-

like particles, Meibodi et al. expressed a model for esti-

mation of upper and lower limits of nanofluid thermal

conductivity [76].

Viscosity

Viscosity is an intrinsic property of a fluid that influ-

ences flow and heat transfer phenomena. The addition

of nanoparticles to the base fluid shows Newtonian and/

or Non-Newtonian behaviour depending on the volume

percentage of particles, temperature and methods used

to disperse and stabilize the nanoparticle suspension

[41,77-79]. The effective viscosity of nanofluid increases

by increasing concentration of particles and decreases

with increase in temperature [14,41,78,80-82]. The effec-

tive viscosity of fluid containing a dilute suspension of

small particles is given by Einstein’s equation. Mooney

extended Einstein equation to apply to a suspension of

finite concentration [83]. Later Brinkman modified the

Einstein equation to more generalized form [84]. How-

ever, the experimentally measured nanofluids viscosities

deviate from the classical model because these models

relate viscosity as a function of volume concentration

only and there is no consideration of temperature

dependence and particle aggregation [77]. Pak and Cho

measured viscosities of the dispersed fluids with g-Al2O3

and TiO2 particles at a 10% volume concentration and

were approximately 200 and 3 times greater than that of

water [81]. Wang et al. observed 20 to 30% increase in

viscosity of water when 3 vol.% Al2O3 nanoparticles is

added to water [14]. Das et al. measured the viscosity of

water-based Al2O3 nanofluids at 1 and 4 vol.%. They

found that the increase of viscosity with particles con-

centration but the fluid remains Newtonian in nature

[78]. Experimental studies on CNT nanofluid by Ding et

al. [41] found the shear thinning behaviour at low shear

rates but slight shear thickening at shear rates greater

than 200s-1. Kulkarni et al. investigated the rheological

behaviour of copper oxide (CuO) nanoparticles of 29

nm average diameter dispersed in deionized (DI) water

over a range of volumetric solids concentrations of 5 to

15% and temperatures varying from 278 to 323 K.

These experiments showed that nanofluids exhibited

time-independent pseudoplastic and shear-thinning

behaviour. The suspension viscosities of nanofluids

decrease exponentially with respect to the shear rate

[79]. Similarly Namburu et al. showed the non-Newto-

nian behaviour at sub-zero temperatures below -10°C

and Newtonian behaviour above -10°C in SiO2 nanofluid

[77]. Chen et al. categorized the rheological behaviour of

nanofluids into four groups as dilute nanofluids, semi-

dilute nanofluids, semi-concentrated nanofluids, concen-

trated nanofluids [85]. Xinfang et al. measured the visc-

osity of Cu-H2O nanofluid by using capillary

viscometers and results showed that the temperature

and sodium dodecylbenzenesulfonate (SDBS) concentra-

tion are the major factors affecting the viscosity of the

nano-copper suspensions, while the effect of the mass

fraction of Cu on the viscosity is not as obvious as that

of the temperature and SDBS dispersant for the mass

fraction chosen in the experiment [86]. Recently

Masoumi et al. introduces a new theoretical model for

the prediction of the effective viscosity of nanofluids

based on Brownian motion. This model could calculate

the effective viscosity as a function of the temperature,

the mean particle diameter, the nanoparticle volume

fraction, the nanoparticle density and the base fluid phy-

sical properties [87].

Specific heat

Research work on the specific heat of nanofluids is lim-

ited compared to that on thermal conductivity and visc-

osity. The specific heat of nanofluid depends on the

specific heat of base fluid and nanoparticle, volume con-

centration of nanoparticles, temperature of the fluids

and the literature suggests that the specific heat of

nanofluid decreases with an increase in the volume con-

centration and increases with temperature [88-90].

According to Pak and Cho, the specific heat of nano-

fluids can be calculated using the following equation

[81]:

Cρnf = ϕCps + (1 − ϕ)Cpbf. (1)

Under the assumptions of local thermal equilibrium

between the nanoparticles and the base fluids, Xuan and

Roetzel expressed specific heat equation for nanofluid as

[91]

(ρCp)nf = (1 − ϕ)(ρCp)f + ϕ(ρCp)s. (2)

Nelson and Banerjee used differential scanning calori-

meter for measurement of specific heat capacity of exfo-

liated graphite nanoparticle fibers suspended in

polyalphaolefin at mass concentrations of 0.6 and 0.3%.

They found an increase in the specific heat of the nano-

fluid with increase in the temperature. The specific heat

capacity of the nanofluid was found to be enhanced by
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50% compared with PAO at 0.6% concentration by

weight [88]. Zhou et al. showed that specific heat capa-

cities of nanofluids vary with the base fluids, the size

and volume concentration of nanoparticles [89]. Vajjha

and Das measured the specific heat of three nanofluids

containing Al2O3, SiO2 and ZnO nanoparticles. The first

two were dispersed in a base fluid of 60:40 by mass of

ethylene glycol and water and the last one in deionized

water. Experiments were conducted at different particle

volume concentration and different temperatures. They

developed a general specific heat correlation as [90]:

Cpnf

Cpbf
=

((

A ∗

(

T

T0

))

+ B ∗

(

Cps

Cρbf

))

(C + ϕ)
.

(3)

Density

The density of the nanofluids can estimated from the

mixture theory [81]:

ρnf = ϕρp + (1 − ϕ)ρw. (4)

where j is the volume fraction of the nanoparticles, rp
is the density of the nanoparticles and rw is the density

of the base fluid. Sundar et al. estimated the densities of

nanofluids at different temperatures. The density was

found to decrease with increase in temperature [92].

Similarly Harkirat measured the density of Al2O3 nano-

particles dispersed in water using specific gravity bottles

at different ranges of temperature (30 to 90°C) and dif-

ferent concentrations of nanofluids (1 to 4%). He

observed that density of nanofluids is higher than the

base fluids and increase with increase in volume fraction

of nanoparticles from 1 to 4%. The density of nanofluids

decreases with increase in temperature upto about 80°C.

Beyond this value, densities of 1 to 4% nanofluids

remained nearly constant but still were more than that

of water [93].

Surface tension

Surface tension is defined as the force acting over the

surface of the liquid per unit length of the surface per-

pendicular to the force. Surface tension has a significant

influence on the boiling process since bubble departure

and interfacial equilibrium depends on it [94]. Surface

tension of nanofluids prepared by without addition of

any surfactant was found to differ minimally whereas

addition of surfactant during preparation of nanofluids

affect significantly [78,95,96]. The surfactant behaves

like an interfacial shell between the nanoparticles and

base fluids and modifies the surface tension of nano-

fluids [97]. Surface tension decreases with increases in

concentration of nanoparticle and temperature [98-100].

It clears from the above study, the addition nanoparti-

cles to the base fluids would result in a change in

thermophysical properties of the base fluids. A wide

spectrum of microstructure and mechanical properties

can be obtained for a given steel component by control-

ling the cooling rate (Figure 3) [101]. In order to attain

the fully quenched structure (martensitic structure), the

component must be quenched below the nose of the

TTT curve called critical cooling rate. This critical cool-

ing rate is not a constant for all materials and addition

of alloying elements to the steel shift the nose of TTT

curve (Figure 4) [102]. Therefore, the heat treaters need

different types of quenching media to provide varying

critical cooling rate. Table 1 shows for the same base

fluid, addition different nanoparticle materials at differ-

ent concentrations yield varying thermal conductivities.

Jagannath and Prabhu observed peak cooling rates vary-

ing from 76°C/s to 50.8°C/s by addition of Al2O3 nano-

particles of concentration 0.01 to 4% by weight into

water during quenching of copper probe [103]. The

standard cooling curve analysis by Gestwa and Przyłecka

observed that addition 1% of Al2O3 nanoparticles to the

10% polymer water solution results cooling speed

increases from 98 to 111°C/s [104]. Babu and Kumar

also observed different cooling rates with the addition of

different concentration of CNT into water during

quenching of stainless steel probe [105]. Further, the

addition of nanoparticles not only changes the peak

cooling rate but also results in change of the six cooling

curve characteristics. Hence, the change in thermophysi-

cal properties of base fluids with addition of nanoparti-

cles can be utilized to prepare fluids having different

cooling properties by controlling the particle volume

concentration, particle material, particle size, particle

shape and base fluid. Synthesis of quenching media hav-

ing varying cooling severity would greatly benefit the

heat treatment industry.

Wetting characteristics of Nanofluids

The presence of nanoparticles affects the spreading and

wettability of base fluids because of additional particle-

particle, particle-solid and particle-fluid interactions

[106]. Two important phenomena for the enhancement

of wetting behaviour of nanofluid are (i) solid like order-

ing of nanoparticles in the vicinity of three-phase con-

tact region and (ii) deposition of nanoparticles during

boiling. Simulations study by Boda et al. on hard spheres

in a wedge-shaped cell reported formation of new layers

of hard spheres between the walls of the wedge [107].

Wasan and Nikolov directly observed the particle-struc-

turing phenomenon in the liquid film-meniscus region

by using reflected-light digital video microscopy [108].

The layering arrangement of the particles gives rise to

an excess pressure in the film, the structural disjoining

pressure which has an oscillatory decay profile with the

film thickness. A result of such a structure force is that
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nano-dispersions could exhibit improved spreading/wet-

ting capabilities at a confined space [109]. The pool boil-

ing studies on nanofluid shows deposition of porous

layer of nanoparticle on the heater surface. The reason

for this porous layer formation could be microlayer

evaporation with subsequent settlement of the nanoparti-

cles initially contained in it. The nanoparticles deposition

improves the wettability of the surface considerably [95].

During quenching, the local boiling phenomenon of

quenchant leads to occurrence of a wetting front which

ascends the cooling surface with a significant velocity

during nucleate boiling and descends in the fluid direc-

tion during film boiling. A wetting process that occurs

over a long time period of time is called non-Newtonian

wetting, whereas a wetting process that occurs in a

short time period or an explosion-like wetting process is

termed as Newtonian wetting. A Newtonian type of wet-

ting usually promotes uniform heat transfer and mini-

mizes the distortion and residual stress development. In

extreme cases of non-Newtonian wetting, because of

large temperature differences, considerable variations in

the microstructure and residual stresses are expected,

resulting in distortion and the presence of soft spots [1].

Tensi has shown that the measured values indicate con-

gruent curves for calculated hardness sample quenched

in the distilled water and the total wetting time mea-

sured at the top of the sample was more than 60 s,

Figure 3 Cooling curves superimposed on the hypothetical I-T diagram.

Figure 4 Effect of alloying elements on TTT diagram.
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whereas the measured hardness profile shows a continu-

ous line in the case of sample quenched in the polymer

solution having total wetting time of 1.5 s (Figure 5) [2].

Thus, the type of the wetting process significantly affects

the cooling behaviour of the quenchant and hardness

profile of the quenched samples. Vafaei et al. measured

the contact angle of nanofluid sessile droplets and

showed that the contact angle depends strongly on

nanoparticle concentration and for the same mass con-

centration smaller size nanoparticles lead to larger

changes in contact angle [110]. Sefiane et al. observed

that advancing contact line velocity increases to a maxi-

mum as the concentration increases up to 1% and then

decreases as the concentration is increased further. They

explained that the enhanced wetting is attributed to a

pressure gradient within the nanofluid which is created

due to the nanoparticles forming a solid-like ordering in

the fluid ‘wedge’ in the vicinity of the three-phase con-

tact line and agglomeration of nanoparticles at higher

concentration reduces the degree of enhanced wetting

[106]. The surface wettability study by Kim et al. mea-

sured the static contact angle of sessile droplets for pure

water and nanofluids on clean surfaces and nanoparti-

cle-fouled surfaces. They found dramatic decrease of the

contact angle on the fouled surfaces and concluded that

the wettability was enhanced by the porous layer on the

surface, not the nanoparticles in the fluid [111]. Another

study by Mehta and Khandekar measured static contact

angles of sessile droplets showed that the wettability of

laponite nanofluid on copper substrate was indeed

much better than both alumina nanofluid and pure

water [112]. These studies imply that the use of nano-

particles in the conventional quenching media would

result in enhancement of wettability. The enhanced wet-

ting characteristics of nanofluids can be adopted to pro-

mote the Newtonian wetting and improve the spreading

process during quench heat treatment of components.

Boiling heat transfer characteristics of nanofluids

The alteration of thermophysical properties, especially

the enhancement of the thermal conductivity, of the

nanofluid and different heat transfer mechanisms are

expected to have a significant effect on heat transfer

characteristics. Xuan and Li [18] listed the following five

reasons for improved heat transfer performance of the

fluid by suspending nanophase particles in heating or

cooling fluids: (i) the suspended nanoparticles increase

the surface area and the heat capacity of the fluid, (ii)

the suspended nanoparticles increase the effective (or

apparent) thermal conductivity of the fluid, (iii) the

interaction and collision among particles, fluid and the

flow passage surface are intensified, (iv) the mixing fluc-

tuation and turbulence of the fluid are intensified and

(v) the dispersion of nanoparticles flattens the transverse

temperature gradient of the fluid. Experiments on two

phase (boiling) heat transfer of nanofluid shows different

behaviour. Das et al. conducted experiments to study

the pool boiling in water-Al2O3 nanofluid with different

      

(a)                                                                          (b)

Figure 5 Surface hardness profile calculated from the measured wetting time tB and the specific calibration curve for the material

related to the distance from the lower end of the sample and compared to the measured hardness profile. Sample: 100Cr6 dia 25 mm

× 100 mm, bath: (a) distilled water, (b) polymer solution.
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particle concentration, heater diameter and surface

roughness. The results indicate that the nanoparticles

have pronounced and significant influence on the boil-

ing process deteriorating the boiling characteristics of

the fluid. The deterioration in boiling performance was

observed to be more drastic at a higher surface rough-

ness. It has been observed that the shift of the curve to

the right is not proportional to the particle concentra-

tion and it is strongly dependent on the tube diameter

even for the similar values of surface roughness

[78,113]. Zhou observed a reduction in pool boiling heat

transfer of nanofluids [114]. Similarly Bang and Chang

also observed that the addition of alumina nanoparticles

caused a decrease of the pool nucleate boiling heat

transfer. The heat transfer coefficient was decreased by

increasing the particle concentration. On the other

hand, CHF performance has been enhanced to 32 and

13%, respectively, for both horizontal flat surface and

vertical flat surface in the pool [115]. You et al. observed

the addition of nanoparticles to the water have no sig-

nificant effect on nucleate pool boiling heat transfer.

However, the measured pool boiling curves of nano-

fluids saturated at 60°C have demonstrated that the

CHF increases dramatically (approx. 200% increase)

compared to pure water [116]. Similarly pool boiling

experiment on water-silica nanofluids by Vassallo et al.

observed that no improvement in pool boiling heat

transfer but the CHF increased by about three times.

They observed the formation of a silica coating over the

heater surface [117]. Wen and Ding observed a signifi-

cant enhancement in the pool boiling heat transfer of

alumina nanofluids. The enhancement increases with

increasing particle concentration and reaches approxi-

mately 40% at a particle loading of 1.25% by weight

[118]. Kim et al. showed 200% enhancement of CHF of

nanofluids on a bare heater compared to that of pure

water by increasing nanoparticle concentration. SEM

images of the heater surface taken after pool boiling

CHF tests revealed that CHF enhancement of nanofluids

was closely related to the surface microstructure and

enhanced topography resulting from the deposition of

nanoparticles [119]. Kim et al. reported that the forma-

tion of the porous nanoparticle layer during the nucleate

boiling is a plausible mechanism for enhancement of

CHF [95]. The nucleate boiling heat transfer experi-

ments of water-CuO nanoparticles by Liu et al. showed

that the both boiling heat transfer coefficient and CHF

of the nanofluids increase with the increase of the mass

concentration. However, when the concentration (opti-

mum mass concentration) is over 1 wt%, the CHF is

basically close to a constant value, and the heat transfer

deteriorates gradually. They also found that the boiling

heat transfer of the nanofluid on the smooth surface is

almost the same with that of water on the smooth

surface at atmospheric pressure whereas boiling heat

transfer of the nanofluids on the grooved surface

increases remarkably [120]. Kathiravan et al. observed

the enhancement of heat transfer coefficient during the

pool boiling of water-CNT nanofluids of 0.25, 0.5 and

1.0% concentration by volume of CNT by 1.76, 1.203

and 1.20 times greater than that of heat transfer coeffi-

cient of water, respectively, at the critical heat flux.

They also observed that there is no fouling over the

test-section [121]. Another study by Park et al. shows

that the pool boiling heat transfer coefficients of the

aqueous solutions with CNTs are lower than those of

pure water in the entire nucleate boiling regime but the

CHF increased up to 200% as compared to that of pure

water. They observed the deposition of a thin film of

CNTs on the surface and decrease in the contact angle

[122]. So, it is clear that the CHF during pool boiling of

nanofluids increased even when the pool boiling heat

transfer of nanofluid may decrease or remain

unchanged.

During quench hardening process, the surface heat

transfer conditions between the steel part and the

quenchant are the most important factors controlling

the microstructural evolution, generation of stresses and

distortion [1]. Kobasko showed that very fast and uni-

form part cooling within the martensitic range actually

reduces the probability of part cracking and distortion,

while improving the surface hardness and durability of

steel parts [123]. The enhanced CHF of the nanofluids

during pool boiling revealed that nanofluids may be sui-

table for cooling at high heat flux applications [124].

According to Kim et al. the use of nanofluids can afford

a significant acceleration of quenching by means of pre-

mature destabilization of film boiling due to nanoparti-

cle deposition [125]. The quenching of 304 stainless

steel probe into different concentration of nanofluids

yielded varying peak heat transfer coefficient (HTC) and

Grossmann severity of quenching [126]. Jagannath and

Prabhu measured the interfacial peak HTC of water was

1280 W/m2 K and the peak HTC decreased from 1400

to 965 W/m2 K with increases in Al2O3 nanoparticle

concentration from 0.01 to 4 wt% when copper is

quenched [103]. Similarly Babu and Kumar observed

that the peak heat flux during quenching in CNT nano-

fluids increases with an increase in the CNT concentra-

tion until 0.50 wt.% and starts decreasing with further

increase in the CNT concentration [105]. These results

suggest that for the same base fluid there is an optimum

level of nanoparticle concentration to enhance/decrease

the heat transfer characteristics of nanofluids. The

enhancement and deterioration of pool boiling heat

transfer of nanofluids could be utilized in quenching

heat treatment in two ways either to promote or

decrease the rate of heat transfer depending upon the
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section thickness of the part to be heat treated and the

desired microstructure. Hence there is a need for devel-

opment of nanofluids having (i) high quench severity for

enhancement of heat transfer for thick sections with low

quench sensitivity and (ii) low cooling severity for thin

sections with high quench sensitivity [127].

Effect of addition of nanoparticles on microstructure and

mechanical properties of components

The application of nanofluid in nuclear, rocket, transport

and transformer industry is presently well known. It

should be noted that there is no metallurgical and

mechanical properties change in these applications. How-

ever, in quenching heat treatment there is a microstruc-

tural change in the component. When steel is quenched

from the austentic phase, austenite may transform to fer-

rite, pearlite, bainite or martensite depending on the

cooling rate. Phase transformations in solid state are

accompanied by volume variation and transformation

plasticity. Large thermal stresses and residual stresses are

developed during quenching because of non-uniform

cooling of parts and associated heat of metal parts

released during the phase transformation. AISI 1070 spe-

cimens quenched into the water and water-Al2O3 nano-

fluid showed a martensitic structure (Figure 6). Finer

martensitic structure was observed in 0.01% nanofluid

with higher hardness [128]. Chakraborty observed the

microstructure of the top surface of the steel after spray

quenching with water and Water-TiO2 nanofluids. The

cooling rate of the nanofluid was much faster than that

of water resulting in ferrite-bainite structure whereas

only ferrite was obtained for water quenching (Figure 7)

[129]. Recent experiments with Al2O3 nanofluid by

Gestwa and Przylecka observed that hardening in nano-

fluid results in higher impact strength in comparison to

the impact strength of the samples hardened in the

media without nanoparticles for both the C10 and the

16MnCr5 carburized steel samples. They also observed

lowest values of the dimension changes for samples har-

dened and carburized in 10% polymer water solution

       

(a)                                                                (b)

Figure 6 Microstructure of AISI 1070 steel specimen (a) quenched in water (b) quenched in 0.01% nanofluid.

                            (a)                                                                                   (b)

Figure 7 SEM micrographs of (a) top surface of steel after cooling with water, (b) top surface of steel after cooling with nanofluid.
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with 1% of Al2O3 nanoscale particles [104]. It is evident

that by adopting nanofluids as quenching media it is pos-

sible to obtain the desired microstructure of components

and hence the required mechanical properties.

Summary
Heat transfer and wetting kinematics are the two impor-

tant phenomena during quenching that controls the

final metallurgical and mechanical properties of the

components. Judicious selection of quench medium is

critical for obtaining optimum mechanical properties,

avoiding quench cracks, minimizing distortion and

improving reproducibility in hardening. The addition of

nanoparticles to the conventional quenching fluid results

in anomalous change in thermo-physical properties of

the fluid, enhanced critical heat flux during boiling heat

transfer, improved wetting characteristics and improved

metallurgical and mechanical properties. By exploiting

these potential advantages of nanofluids, preparation of

a spectrum of quench media, known as nanoquenchants,

with varying cooling severity would be extremely useful

for industrial heat treatment.
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