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Introduction

In this paper developments in thin-film amorphous and polycrystalline photo-

voltaic cells are reviewed and discussed with a view to potential applications in space.

Two important figures of merit are discussed: efficiency (i.e., what fraction of the in-

cident solar energy is converted to electricity), and specific power (power to weight

ratio).

Current Generation Technology

Solar cells currently used in space are single-crystal silicon and gallium arsenide

cells [ref. 1]. Silicon solar cell performance has recently had major gains, and the

previous estimates for the "limits" to performance have had to be revised upwards.

New estimates taking into account new technologies such as light trapping and surface

passivation suggest achievable efficiencies of up to 22%, with the best cells to date

having already achieved efficiency of 20%.

The best GaAs cells are roughly 21.4% efficient under space (AM0) conditions

[ref. 2]. Cells manufactured using current production technology have a somewhat

lower efficiency. LSI in Japan has demonstrated production runs of 120 cells with an

average efficiency of 20% AM0 [ref. 3]. For GaAs on Ge, an efficiency of 21.7% has

been measured under the simulated AM0 spectrum /ref. 4,5]. Unfortunately, high

altitude tests have shown that the actual space solar spectrum does not contain as

much long wavelength irradianee as simulations, and the actual efficiency is lower

than the tested values [ref. 6]. This problem can potentially be eliminated either

by improving the Ge subcell or by adding A1 to the GaAs to let through more light.

Tobin et al. calculate a limit efficiency for this cell design of 35.7%, compared to

27.5% for GaAs alone [ref. 5].

Next generation technology will likely improve these efficiency values. For ultra-

thin silicon cells with light trapping and surface passivation, the optimum thickness

decreases and the efficiency increases. For highest end-of-life efficiency, the optinmm

thickness of silicon cells may be as low as 2 microns, leading to potentially very high

specific power. The radiation tolerance of such ultrathin cells may be extremely good,
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sincethe thicknessis lessthan the diffusion length evenafter radiation damage. Cal-
culations predict that suchultrathin Si cellshave efficiency and radiation tolerance

as good asthat of III-V solar cells [ref. 7].

Considerableinterest hasrecently beenfocussedon indium phosphide (InP) as a
new high efficiency solar cell material. Cells with efficienciesas high as 18.8%AM0

[ref. 8] havebeenproduced [ref. 9]. A major reasonfor the interest in the material

is that InP is considerablymore resistant to radiation damagethan silicon or GaAs.

Finally, it should be noted that efficiency can be increasedby concentrating the

incident sunlight, either by meansof a mirror or a lens. This approach will not be
discussedin detail here.

Thin-Film Solar Cells

An alternative to the conventional single crystal solar cell is the thin-film solar

cell. Thin-film solar cells are made from thin (1 to 5 micron) polycrystalline or amor-

phous semiconductor layers deposited on an inert substrate or superstrate material.

The materials used are high absorption direct bandgap semiconductors; the high ab-

sorption constant allows essentially complete absorption of the light within the first

micron or so of the material. Recently thin film solar cells have be, m the topic of

intense research for low-cost terrestrial electricity production, since the low materials

usage and potential for high throughput, automated deposition allows tile produc-

tion cost to be extremely low. Initial research efforts focussed on amorphous silicon;

recently copper indium selenide and cadmium telluride have shown extremely good

experimental results. For space applications, however, little work has been done. The

potential use of thin film solar cells for space will be a topic of research under the sur-

face power task of the NASA "Pathfinder" program to develop enabling technology
for future NASA missions.

Thin-film solar cells can be made from a wide variety of materials including ternar-

ies and quaternaries; many of these have not been extensively studied. The achievable

efficiency of a solar cell material will depend on the characteristic energy bandgap

of the material. An idealized calculation of achievable efficiency versus bandgap is

shown in figure 1, with the bandgaps of some of the important solar cell materials

indicated (after Loferski, [ref. 10]). For the technologically well-developed materials,

such as silicon and GaAs, the efficiencies on this chart are very close to the achieved

efficiencies (e.g., 21.4% for GaAs, 20% for Si). For thin film materials, achieved ef-

ficiencies as yet fall well below these values. This is for two reasons. First, Si and

GaAs have received the benefit of extensive materials development research done for

the electronics industry, and are technologically very well understood materials, while

thin film materials are relatively new and have been comparatively little researched.

Second, because the thin fihn materials are polycrystalline or" amorphous, there are

additional sources of efficiency loss due to grain boundary effects an<t the effects of
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structural disorder. It is as yet unknown whether the ultimate efficiencies of these

materials will approach those of the single crystal materials.

Since the absorption coefficients of all of the materials discussed is very high,

the cells can be made extremely thin, typically a few microns, compared to several

hundred microns thickness required for conventional silicon solar cells. This means

that the technology could potentially be extremely low weight, if the cells can be

deposited on low mass substrates (or superstrates). However, the urrent technology

development programs are directed at terrestrial use, for which the preferred substrate

is typically 1/4 inch thick glass; cheap and rugged but not light. There is little or no

research on alternative, lightweight substrates

Advantages of thin-film solar cells are:

-high radiation tolerance

-high specific power; potentially in the kilowatt/kilogram range.

-large area solar cells with integral series interconnections.

-flexible blankets

-large (by spacecraft standards) body of array manufacturing experience.

-low cost.

The disadvantages of thin-film solar cells are:

-lower efficiency

-lack of spacecraft experience

-not currently produced on lightweight substrates.

Experimental measurements on thin film solar cells are almost always quoted for

a solar spectrum filtered by passage through the atmosphere (Air Mass 1.5, or AM1.5

spectrum). Almost no measurements have been made of cells under the space (Air

Mass Zero, or AM0) spectrum. Efficiency measured under space sunlight is lower

than that under terrestrial sunlight because most of the added energy available in

space is in the infrared and ultraviolet regions, to which solar cells are generally not

very responsive. The conversion from AM1.5 to AM0 efficiency typically involves an

efficiency decrease of about 20 percent for cells with bandgaps in the range of 1 to

1.5 eV, varying slightly with the spectral response of the solar cell in question. For

example, for one amorphous silicon cell discussed in the literature [ref. ll], conversion

of AM1.5 efficiency to AM0 is by a multiplicative factor of 0.80. In this paper efficiency

figures quoted at AM1.5 have all been converted to AM0 efficiency using an assumed

conversion factor of 0.80.
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While thin-film technologies have not yet been demonstrated in space, there is a

very large (by space standards) manufacturing base on the Earth: tens of megawatts

per year for a-Si, a rapidly increasing capability of perhaps one megawatt per year

for CuInSe2, and around a hundred kilowatts per year for CdTe.

Very little actual flight experience is available on thin-film cells. CuInSe2 and

a-Si cells are both now flying on the LIPS-III satellite [ref. 12].

Table 1 summarizes the historical and projected efficiency of some of the most

important solar cell types.

CdS/Cu2S

The first thin-film solar cell developed was the heterojunction cadmium sul-

fide/copper sulfide cell [ref. 13,14]. The best achieved efficiency on these cells is

about 7% [ref. 15], with very high radiation tolerance. These cells were made obso-

lete by the development of more stable and higher-efficiency thin-film materials.

Copper Indium Selenide

Currently the leading technology for thin film photovoltaics is copper indium se-

lenide [ref. 16]. As of 1989, an efficiency of 10.4% AM0 has been achieved by Arco

Solar (again using the factor of 0.8 to convert from values measured at AM1.5 of 13%

[total area] 14.1% [active area]). 12% efficiency can be confidently predicted in the

near term [ref. 17]. Figure 2 (courtesy ARCO Solar) shows the electrical character-

istics of the best CuInSe 2 cell. Modules can be made with integral interconnection

of the deposited thin-film cells. ARCO Solar, for example, produces large area (4000

cm 2) modules [ref. 18] with multiple cells series interconnected on a single substrata.

The bandgap of copper indium selenide is 1.0 eV. This is on the low side of the

efficiency maximum shown in figure 1, but still reasonable. It is, as discussed below,

nearly ideal for the bottom cell of a cascade.

The absorption constant of CuInSe2 is extremely high, allowing the possibility of

cells as thin as one micron. Existing cells consist of a layer of the active copper indium

selenide, typically about 3 microns in thickness; a front contact and heterojunction

window of either cadmium/zinc sulfide or zinc oxide plus cadmium sulfide, thickness

typically about one micron; and a back contact of molybdenum, typically several

thousand angstroms thick. Thus the material has inherently low weight, and the

primary mass is that of the substrata onto which the film is deposited.

A wide variety of manufacturing methods have produced i,8% efficiency, including

vacuum evaporation, reactive sputtering, and electroplating of the base material onto

the substrata. In general, all of these techniques either involve high temperature de-

position, or a high temperature post-deposition anneal step. This could be a problem

for space applications, where it would be desirable to be able to deposit the cell onto
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a thin plastic (e.g., Kapton) substrate. Deposition onto a thin substrate has not been
demonstrated to date.

Copper indium selenide has the highest measured tolerance to electron irradiation

of any solar-cell material known to date.

Other I-III-VI2 Compounds

Related I-III-VI2 semiconductors have also been studied for solar cell use, al-

though not as extensively as CuInSe 2. The goal of investigations has been to identify

related semiconductors which have the same ease of manufacturing into thin-film solar

cells, but have wider bandgaps and thus presumably higher ultimate efficiency.

Copper gallium selenide is a major candidate for the proposed higher efficiency

sucessor to copper indium selenide. The advantage of CuGaSe 2 is the wider bandgap,

1.67 eV, which is much closer to the optimum for the solar spectrum (see figure 1),

and nearly ideal for a cascade upper cell.

While the best experimental results to date are only 4.6% efficiency, the material

has not been extensively developed. One known problem is that the CdS hetero-

junction used for CuInSe2 absorbs light in the short wavelength end of the spec-

trum. Since this is more important for the wider bandgap material, a different (wider

bandgap) heterojunction material needs to be developed to reach maximum efficiency

for CuGaSe2 [ref. 19,20]. Unless CuGaSe2 differs electronically from CuInSe 2 in some

yet-unknown way, ultimate efficiency for CuGaSe2 cells should be about 18% better

than for CulnSe2.

Cu(InGa)Se 2 quaternary compounds can be produced with bandgaps interme-

diate between copper indium selenide and copper gallium selenide. This allows a

bandgap variable from 1.0 to 1.67 eV. Such materials can be tailored for a good

match to the AM0 spectrum, yet be easier to work with than the wide bandgap

CuGaSe2. Cells made with the In/Ga ternary show performance as good or better

than that achieved with CuInSe2. Boeing has reported efficiencies of 10.5% measured

as AM0 results with CuIn(l__)GaxSe 2 cells where x is on the order of 25% [ref. 21].

Arco Solar and SERI have also reported good results [ref. 22].

Another proposed wide bandgap candidate is copper indium sulfide. CuInS2 has

a bandgap of 1.55 eV, very close to the optimum. It is not a very well studied

material, and until recently no good semicondvctor properties had been made with

the material. The results on CuInSe 2 cells have restimulated interest in the material,

and recently thin-film cells have been made with an efficiency of 5.8% AM0 [ref. 23J.

Many other I-III-VI 2 ternaries exist; only a minimum amount of research has
been done
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Cadmium Telluride

A second material which is being extensively studied for thin film solar cells is

cadmium telluride. The bandgap of CdTe is 1.5 eV, which is very well matched to

spectrum. It is produced in thin-film form by a wide variety of deposition methods.

Best solar cell results to date have an AM0 efficiency of about 9.8% [ref. 24].

Like CuInSe2, it is currently not produced on thin substrates. However, unlike

CuInSe2, most CdTe deposition methods are "superstrate" technologies, where the

cell is deposited inverted upon transparent glass, which is used as the front cover.

This glass can easily be produced in 50 micron (two rail) sheets. It is also possible

that a transparent plastic could be used.

Mixed alloys are also possible in the II-VI 2 system. Ternary alloys of cadmium

zinc telluride and cadmium manganese telluride [ref. 25] can be made with a higher

bandgap than CdTe; ternary alloys of mercury cadmium telluride can be made with

lower bandgap. Mercury cadmium telluride (HgCdTe) ternary cells have been made

with efficiency as high as 8.5% AM1.5 [ref. 26]. HgCdTe with high mercury con-

tent (low bandgap) is a material which has been well developed for infrared sensors.

Transfer of the technology to solar cells should be straightforward. One advantage of

HgCdTe is that it is easier to contact than CdTe, and, in fact, the best CdTe cells

utilize HgCdTe for the electrical contacts.

Another II-VI2 compounds which may be useful for thin-film solar cells is cad-

mium selenide (CdSe) [ref. 27]. The bandgap of CdSe is 1.7 eV, slightly high for a

single junction cell, but excellent for the top element of a cascade.

Amorphous silicon

The material referred to as amorphous silicon is actually a mixed alloy of silicon

and hydrogen, where the hydrogen incorporation is necessary for good electronic

properties and can range from a few percent to as much as 15%.

The material differs from the thin film materials described above in that the

crystal is unstructured. The effective bandgap of amorphous silicon can be varied

depending on the deposition parameters within a range of about 1.6-1.7 eV. This is

well matched to the solar spectrum. The bandgap can be tailored further by addition

of carbon to raise the bandgap, and germanium or tin to reduce it, but so far such

amorphous silicon alloy cells have not shown as high performance as pure amorphous
silicon.

Amorphous silicon solar cells for terrestrial use are the subject of a very large and

active research program, currently funded at several million dollars per year. Much

of this research will likely be applicable to space. The manufacturing technology

base for a-Si is very large by space standards. Amorphous silicon solar cell modules

are currently in production by a number of companies at the ten million watts/year
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level. This yearly production level is considerably larger than the entire amount of

conventional solar cells flown in space.

The best measured efl:iciency of an amorphous cells under space conditions is

currently about 9% AMO for single junction cells. Some better efficiencies have been

reported, but not independently verified. Efficiencies of 5% are more typical of what

we measure.

A difficulty with amorphous silicon solar cell technology is the light-induced degra-

dation, or Staebler-Wronski effect. First generation a-Si modules experienced about

20% degradation in peak power over two years of exposure to light. The best current

a-Si solar cells are more stable, but still experience a 10 to 15_ loss of performance.

It is believed that future improvements and better understanding of the physics will

reduce this degradation still further.

Technology to manufacture amorphous silicon solar cells on lightweight thin sub-

strates has been demonstrated, on thin polymer and metals by ECD [ref. 11], on thin

polyimide by 3M [re[. 28], and on thin polyethylene terepthalate by Teijin Ltd [ref.

29]. There is some interest in lightweight, high specific power amorphous Si arrays

for space [ref. 11, 30]. The best reported amorphous silicon module manufactured on

a thin substrate is that of Hanak et al. [11], who reported an efficiency of 4.2% AM0

on a 60 by 30 cm module. Despite the modest efficiency, they nevertheless note that

the unencapsulated specific power is 2.4 kW/kg, a value which is very impressive by

conventional spacecraft standards.

Thin Polycrystalline silicon

A final thin film technology which should be mentioned is thin polycrystalline

silicon. Recently results of up to 12.6% AM0 have been reported by a proprietary

technique developed by Astropower [ref. 31]. Crystalline silicon is an indirect bandgap

material and does not have the extremely high absorption constant typical of the other

thin-film materials; consequently, a "thin" polycrystalline silicon cell is considerably

thicker and heavier than other thin film technologies. The silicon is deposited on

a ceramic substrate; due to the high-temperatures typical of most silicon deposition

processes it is not clear if it will ever be possible to produce the material on lightweight

substrates. Nevertheless, future developments in this technology may make it of

interest, especially for the bottom element of a cascade.
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Radiation Tolerance of Thin-Film Solar Cells

In general, all of the thin-film solar cell types have exceptionally high radiation

tolerance compared to conventional single-crystal cells. A review of radiation damage

effects in thin film cells will be published [32].

Thin-film CdS/Cu2S solar cells showed excellent radiation tolerance, with no

degradation in power on exposure to up to 1017 1-MeV electrons/cm 2 [ref. 33], as

well as high tolerance to proton irradiation [ref. 34]. This led to the hope that thin-

film cells in general would have high radiation tolerance, an expectation which has

for the most part been proven correct.

Thin-film copper indium selenide solar cells have the highest radiation tolerance

of any solar cell measured to date. Existing experimental data show no noticible

degradation in performance at 1-MeV electron fluences of up to 1016 electrons/cm 2,

a dose equivalent to about 200 years of exposure at geosynchronous orbit if standard

coverglass protection is assumed. (In fact, the measured efficiencies actually improved

slightly) [ref. 35].

Under 1 MeV proton irradiation, the cells do show some loss of power; to about

90% after 1012 protons/cm 2, as shown in Figure 3 (courtesy Boeing [ref. 36]). This

represents about 50 times greater resistance to 1-MeV proton radiation than either

Si or GaAs.

The damage from the proton irradiation could be almost completely recovered by

a low-temperature anneal. The cells exhibited 95% recovery of initial power after 6

minutes at 225 C.

While it remains to be seen whether the high radiation tolerance will remain for

future high-performance versions of the cell technology, this radiation tolerance is so

extrordinary that the end of life (EOL) efficiency of even present-day CuInSe2 cells

may outperform conventional cell technologies in some high radiation orbits.

Thin-film cadmium telluride cells have not, to date, been extensively tested for

radiation tolerance. Preliminary results of 1-MeV electron irradiation, quoted by

Zweibel [ref. 37], show moderately high radiation tolerance with some loss of short

circuit current but negligible loss of voltage or fill factor. All of the degradation

they saw could be attributed to darkening of the glass superstrates used for the cells,

which could be avoided by using radiation tolerant glass. Bernard et al. [ref. 38]

also noticed little change in CdTe cell performance at 1-MeV electron fluence of up

to 3.1016/cm 2.

Amorphous silicon cells from Arco Solar exposed to 1-MeV electrons degraded

from 8.57% AM0 to 8% at 1015 electrons/cm 2 [ref. 35]. The efficiency dropped

to 5.95% at 1016 electrons/cm 2. The damage could be almost completely removed
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with a low temperature anneal; the cells showed 97% recovery after a fifteen minute
treatment at 175 °C.

Somewhat worse degradation was found on nip a-Si cells by NASA Langley [ref.

39]; they also found recovery with a 2-hr, 200 °C anneal.

Thin-Film Cascades

Introduction

An important technology for the production of high-efficiency thin film arrays is

the ability of thin films to be produced in multibandgap "cascade" structures [ref.

4O].

In the cascade structure, short wavelength (high energy) photons are absorbed in

a high bandgap material on the top of the solar cell. The high bandgap material is

transparent to longer wavelength (low energy) photons, which pass through and are

absorbed by a second layer consisting of a photovoltaic material with lower bandgap.

In principle, cascades could consist of an arbitrary number of elements, which

would approach complete utilization of the solar spectrum. The largest jump in

photon utilization comes from the increase from one bandgap to two. In practice,

it is unlikely that thin film materials will be made with more than two cascaded

elements, at least in the reasonable future.

In an optimum current-matched two-element cascade, the efficiency can be ap-

proximately calculated as equal to the top cell efficiency plus half the bottom cell

efficiency. If current matching is not required, the efficiency is approximately equal

to the top cell efficiency plus (1-Jsc (top)/Jsc (bottom)) times the bottom cell efficiency.

The optimum bandgap combination depends slightly on the materials properties;

for the air mass zero spectrum, using ideal materials, maximum efficiency of a two

element series- connected cascade occurs at bandgaps of 1.75 for the top cell and 1.05

for the bottom cell [ref. 41]. For the efficiencies of figure 1, this results in a maximum

efficiency of 33%, about 50% higher than the efficiency of 24.4% calculated for a single
bandgap cell.

Cascades can be configured as monolithic, in which the top cell is integrally

deposited on the bottom cell (or vice-versa), or mechanically stacked, in which the

two sets of cells are formed separately. Electrical interconnections can be set up as

two terminal, three terminal, or four terminal configurations. In general, monolithic

modules must be two terminal or possibly three terminal devices; while mechanically

stacked modules can be configured as four-terminal devices as well. For a two-terminal

current-matched cascade, the current through the top cell must equal that through
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the bottom. This means that once the bandap of one component has been chosen,

the bandgap of the other is determined.

Four terminal cascades allow separate connection to the top and bottom cells. If

the power is taken separately from each set of sub-cells, this connection requires no

matching of current. Four terminals also allow monolithic connection in the voltage-

matched configuration, with bottom cells connected in series.

The maximum effÉciency is almost the same for all configurations. However, the

current-matched configuration is very sensitive to the bandgaps, and loses efficiency

very rapidly when the matching condition is not exactly met. The four-terminal

system is relatively insensitive to the exact bandgap, while voltage-matched configu-

rations are intermediate in sensitivity.

Figure 4A and B show efficiencies calculated by Fan [ref. 41] for cascade solar

cells at AM0 in both the series connected and in the independent operation mode.

The maximum efficiency is about the same for both, but the independent operation

allows a much wider rnge of bandgaps.

An important element in a monolithic cascade is a shorting junction to connect

the base of the top cell to the emitter (or window layer) of the bottom cell to allow

current to flow from the first to the second.

The main question about monolithic cascades is whether technology can be devel-

oped to deposit the second cell and interconnections without degrading the first cell,

either by thermal effects during deposition causing decomposition or interdiffusion

of the first cell, or due to material incomparability, such as might happen if some

component of one cell reduces minority carrier lifetime in the other

For cascades where the top cell bandgap is lower than the optimum bandgap for

current matching, it is possible to create a current-matched cascade if the top cell is

made to pass through some of the light that would normally be absorbed. This is

discussed in [ref. 40].

There is a wide range of possible thin-film semiconductors for a two-cell cascade.

Only a few, however, have to date shown potential for producing good thin-film solar

cells.

Experimental Results

The best currently demonstrated thin-film cascade, reported by ARCO Solar [ref.

42], uses an amorphous silicon top cell on a CuInSe 2 bottom cell. The achieved

efficiency is 12.5% AM0. In this cell the two elements were deposited separately,

the a-Si on a glass superstrate and the CuInSe 2 on a metal-coated glass substrate,

and the two elements optically coupled with a transparent encapsulant. This module

configuration is shown in figure 5 (courtesy ARCO Solar). For higher specific power,
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it would be desirable to eliminate the intermediate layer by depositing the a-Si cell

directly on the CuInSe2.

An alternative technology, CdTe on CuInSe2, has shown about 8% AM0 efficiency

for a mechanically stacked prototype [ref. 43].

A problem with existing CuInSe 2 technology is that the current solar-cell struc-

tures use a heterojunction window layer which may not withstand the temperatures

needed to directly deposit a second cell on top. Thus, either a technology must be

developed to deposit the CulnSe 2 after the top cell deposition, a low temperature top

cell must be used, or a more robust window layer found.

Cascade ceils with amorphous silicon alloys for both top and bottom elements

have also been demonstrated. Energy Conversion Devices (ECD), has reported an

efficiency of 10% measured at Air Mass Zero for a three junction, two bandgap cell

[ref. 30].

Future

Bottom Ceil Materials

CuInSe 2 is nearly ideal for the bottom cell for a cascade. The bandgap of

CuInSe2 can be modified by alloying with related I-III-VI 2 materials; for example,

CuInTezSe(2_x) , will have a lower bandgap, with x selected to form the bandgap re-

quired; a higher bandgap material can be formed in CuGazIn(l_x)Se 2. This may be

important for monolithic cascades requiring current-matched cells.

Mercury-Cadmium Telluride, with a bandgap continuously variable from 0 to 1.5

eV, is also a good candidate for a bottom cell.

Other materials for bottom cells are polycrystalline silicon and crystalline silicon.

Top Cell Materials

The optinmm material for the top cell of a two element cascade would have a

bandgap near 1.75 eV. Of the wide-bandgap thin-film solar cell materials, CdTe is

the most well developed. The bandgap of CdTe, 1.5 eV, is slightly low for an optimum

cascade. For a current-matched cascade this could be remedied by use of a "perfo-

rated" cell; alternatively, a bottom cell (for example, HgCdTe) with correspondingly

lower bandgap could be used and the small penalty for off-optimum performance

accepted.

The related ternary alloys with Mn, CdxMn(l_x)Te; Zn, CdxZn(l_x)Te; or Se,

CdTe_Se(.2_x) , could be used to increase the bandgap to closer to optimum [ref. 25].
A related wide handgap material is cadmium selenide, CdSe [ref. 44]. Electronic
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properties and performance of solar cells made from these materials are still compar-

atively uninvestigated.

CuGaSe2, with a bandgap of 1.7 eV, and CuInS2, with bandgap 1.5 ev, are also

promising choices, as discussed in the previous section.

Amorphous silicon, with an effective bandgap of around 1.6 to 1.7 eV, may also

make a good choice. Alloys with Ge, Sn, SiC and SiN can tailor the bandgap as nec-

essary. Amorphous materials have the advantage that tunnel junctions are relatively

easily formed. The efficiency and lifetime of these materials require improvements to

allow them to be used for efficient elements in cascades, however, it should be noted

that intensive research into amorphous silicon alloys is in progress.

While mechanically stacked modules will likely be simpler to build, high specific

power arrays will probably require monolithic construction.

Applications

Future thin-film solar cells are likely to have greatly increased specific power at

the solar cell level compared to conventional technology solar cells.

Table 2 compares existing and projected efficiency for the best single crystal and

thin-film cells (where "current" means for the best cells achieved in the lab, not for

cells currently manufactured into space arrays). Table 3 shows these figures converted

into specific power at the cell level. These specific powers are for the cell only, not

including the radiation shielding, interconnections, support layers, array structure,

etc., all of which are major contributors to the actual mass. It must be noted that

cell mass is only a small component of the array mass, and thus of array specific

power.

Achieved specific power is typically about a tenth of the cell-level specific power.

In a well designed structure, the structural mass should be able to be decreased

roughly proportionately to the cell mass. As a rule of thumb, the array structural

mass is generally roughly equal to the (covered) cell mass. (The rest of the power

system-batteries, power conditioners and controllers, etc-contributes an additional

mass element which is nearly independent of the array.)

Specific power is not only concern in solar array design. Other criteria include

high array stiffness (i.e., resistance to bending during acceleration), high resonant fre-

quency, and low moment of inertia in order to minimize force required for orientation.

For all of these parameters higher specific power, by reducing the mass of the solar

cells, increases the relevant performance; while lower efficiency, by increasing the size,

decreases it. In general, for these parameters the relevant figure of merit scales as

product of the specific power and the efficiency.
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Low Earth orbit provides a special case, where the drag area is a criterion. For

these orbits, efficiency takes on increased importance.

However, for many, and perhaps even most missions, these concerns are secondary

compared to the array mass. In this case achieving maximum specific power is the

dominant factor in the choice of technology.

System Applications and Missions

The important applications for thin film solar cells are to missions where specific

power is a concern or where significant radiation exposure occurs during the course

of the mission. While most spacecraft can benefit from increased specific power and

radiation tolerance, specific missions for which thin-film photovoltaic arrays may be

an enabling technology are solar electric propulsion, a manned Mars mission, and

lunar exploration and manufacturing.

For solar electric propulsion, the system performance is directly proportional to

the specific power. Accurate pointing is not important during the thrust. One pro-

posed mission for solar electric propulsion is for a low-thrust vehicle to transfer satel-

lites from low Earth orbit to geosynchronous orbit, or from low Earth orbit to lunar

transfer. In both cases the orbit is a slowly rising spiral which spends a long time

in the radiation belts, and for these missions the potential radiation hardness of thin

film cells may be very important. For a Mars unmanned cargo ship, required power

levels could be very high (Megawatts), and specific power very important.

A manned Mars mission would require up to 1 MW of power, both for the space-

craft during the journey, and to power the surface base [ref. 45]. For the baseline

mission, the transportation cost is extremely high, and specific power becomes the

dominant concern, with efficiency of little importance. This makes thin film cells a

very attractive option. Figure 6 shows an artist's conception of astronaut unrolling a

thin-film solar array to provide power for a manned base on the surface of Mars.

For a long-term manned lunar base, transportation costs are moderately high.

However, the mass of the solar array for a lunar base is negligible compared to the

storage capacity required for the 14 day lunar night, so specific power of the array is

not an issue. Important uses for thin film cells may be for intermediate (14 day) stay-

time missions where the array is brought with the spacecraft, and for manufacturing

power, e.g., lunar oxygen extraction, that require large amounts of power but could

be run only during tile sunlit periods.

Another option is a base at or near the lunar poles, which may be able to place a

solar array to receive continuous sunlight [ref. 46]. For such a base the high specific

power of thin-film cells could be very important.

In the long term, it may be economically leasable to manufacture solar cells on

the moon from available lunar materials. In this case, the only practical cell material

192



is silicon, and the muchsmallermaterials requirementfor amorphouscellsmakesthis

the preferredtechnology. This is discussed in more detail by Landis and Perino [ref.

47].

Finally, it should be noted that in general, thin-film materials are tested at room

temperature. Operating temperatures for surface power use, however, will vary con-

siderably. On the moon, for example, peak operating temperatures may be as high as

90°C [ref. 48]; while on Mars, the operating temperatures may be as low as -100°C.

Thermal cycling stresses are also likely to be considerably greater in many space appli-

cations, including both greater temperature changes and more rapid rates of heating

and cooling. These issues will have to be addressed and cells and arrays will have to

be designed and tested to function in the appropriate space environment.

Conclusions

Thin-film solar cells show a potential for making extremely lightweight solar ar-

rays. Research programs for terrestrial photovoltaic power have resulted in dramatic

improvements in the state of the art performance for thin-film photovoltaic materials.

These improvements necessitate a reassessment of the potential for thin-film mate-

rims to be used for space power applications. Cells which have demonstrated over

9% efficiency CuInSe2 and Cu(In,Ga)Se2, CdTe, and amorphous silicon. While the

efficiencies are low compared to current technology space cells, the projected specific

power levels are still extremely good. Development of multibandgap cascades raises

the possibility that the efficiencies can be considerably improved.

Ultra lightweight space arrays will require that the materials can be deposited on

thin, space-qualified materials. This issue is not being addressed in current research

progras.

Data gathered to date [32] indicates that the radiation tolerance of such thin-film

materials is equal to or better than any other known photovoltaic materials. While

much of the radiation data is preliminary or incomplete, it appears that in some high

radiation orbits, thin film materials may be the prefered technology even at present

efficiency and specific power levels.

Data on the behavior of these devices in space is scanty. Even the efficiency

information is extrapolated from terrestrial measurements, and needs to be verified

in a rigorous manner using a spectrum calibrated for the specific material.

For several missions, including solar-electric propulsion, a manned Mars mission,

and lunar exploration and manufacturing, thin film photovoltaic arrays may be a

mission-enabling technology.

In order to take advantage of advances produced by existing terrestrial research

programs, it is important that space power research programs focus attention on the

issues not being addressed by research programs aimed at terrestrial power: weight,
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radiation tolerance, AM0 calibration and measurement,spacequalification of cells

and arrays, and designof lightweight arraysfor spaceand surfacepoweruse. Specific
recommendationsare:

(1) Thin film solar cellsare inherently flexibleand light weight. However,existing

researchprogramsarefocussedon low cost (but not low weight) rigid substrates. It is

of critical importance that we stimulate interest in deposition on light-weight, space-

qualifiable materials. If this is not done, the entire thin-film research program is

useless for space.

(2) Thin-film materials appear to be inherently highly radiation tolerant. How-

ever, preliminary results on radiation tolerance must be verified and continuing tests

made that radiation tolerance remains high on new cell designs and emerging tech-

nologies and materials.

(3) Thin-film solar cells are currently tested almost exclusively under terrestrial

(AM1.5) conditions. Calibration standards for space (AM0) measurement do not

currently exist.

(4) The road to full space qualification is long and slow. It is important that we

continually verify performance in space on each emerging technology in order for us

to have sufficient confidence in the materials to rely on them when critical space and

surface power requirements come on line in the early decades of the next century.

Required tests include not only space demonstrations, but tests of the cells under

thermal extremes and thermal cycling conditions characteristic of the environments

they will be needed in.

(5) Thin-film cells for space and surface power use will require unique light-weight

array designs with structural mass reduction comparable to the reductions in mass

per unit area of thin-film cells. It may not be too early to begin considering how such

arrays should be designed.
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TABLE I. - HISTORICAL PROGRESS OF THIN-FILM

SOLAR CELL EFFICIENCY

[Experimentally achieved efficienc_es (at

Air Mass Zero, in percent) as of 1978,

1983, 1988, and projected values for

future performance.]

Material 1978 1982 1988 1990's

CdS/Cu2S

CulnSe 2

CuGaSe 2

CuInS 2

CdTe

a-Si

7.3

5.3

2.9

4.1

4.4

8.2

8.5

2.9

8.4

8.1

9 ,

11.2

4.6

6.1

8.6

9.0

I0.0

12

12.5

12.5

12.5

11.5

note added in proof: CdTe ceils developed by Photon Energy Co. have since
reached efficiency of 9.8 % AM0.

TABLE II. - PROJECTIONS FOR FUTURE EFFICIENCY

[In percent.]

Material

si

GaAs

CuInSe 2

Opt. thin-film

Thin-film Cascade

Current

18

21 .4

ii .2

8.6

12.5

Future

Conserv-

ative

19.5

22

12

12.5

18

Opti-

mistic

22

25

13

15

20

TABLE llI. - PROJECTIONS FOR SPECIFIC POWER

[Does not include coverglass.]

Material

si

GaAs

CuInSe 2

Opt. thin-film

Thin-film cascade

Thickness,

_m

60

60

3

3

6

Current,

kW/kg

Future

Conservative,

Substrate,

_m

1.8

0.9

7.0

5.3

3.9

kW/kg

1.9

0.9

7.5

7.8

5.6

Optimistic,

kW/kg

2.2

1.0

8.1

9.4

6.2
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Bandgap of the Material.

199



%
b
_r

50 m

I00 MW/CM 2

SERI AMI.5 GLOBAL

250C

40 -

30 -

20 _ AREA: 3.5 c

Jsc: 41'0 mA/cm2 \

Voc: 5,05 mV

FF: O. G77_

10 EFF: 14, I% AM1.5 \

I I I I II
I00 200 300 400 500

VOLTAGE, mV

(a) CURRENT VERSUS VOLTAGE MEASURED AT AIR

MASS I. 5.

1.0 m

.8

_ .6

.2 --

o ' I I
.2 .4 .6 .8 1.0 1.2 I.LI

WAVELENGTH. IJM

(b) QUANTUM EFFICIENCY VERSUS WAVELENGTH.
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3. Effect of 1-Me Proton Irradiation on the Maximum Power of Silicon, Gallium

Arsenid, and Copper Indium Selenide Solar Cells.
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