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Abstract

Therapeutic clinical and preclinical studies using cultured cells are on the rise, especially now that the World Health Organization

(WHO) declared coronavirus disease 2019 (COVID-19) a “public health emergency of international concern”, in January, 2020. Thus,

this study aims to review the outcomes of ongoing clinical studies on stem cells in Severe Acute Respiratory Syndrome (SARS), Acute

Respiratory Distress Syndrome (ARDS), andMiddle East Respiratory Syndrome (MERS). The results will be associated with possible

applications to COVID-19. Only three clinical trials related to stem cells are considered complete, whereby two are in Phase 1 and one

is in Phase 2. Basically, the ongoing studies on coronavirus are using mesenchymal stem cells (MSCs) derived from bone marrow or

the umbilical cord to demonstrate their feasibility, safety, and tolerability. The studies not related to coronavirus are all in ARDS

conditions; four of them are in Phase 1 and three in Phase 2.With the COVID-19 boom,many clinical trials are being carried out using

different sources with an emphasis on MSC-based therapy used to inhibit inflammation. One of the biggest challenges in the current

treatment of COVID-19 is the cytokine storm, however MSCs can prevent or mitigate this cytokine storm through their immunomod-

ulatory capacity.We look forward to the results of the ongoing clinical trials to find a treatment for the disease. Researchers around the

world are joining forces to help fight COVID-19. Stem cells used in the current clinical studies are a new therapeutic promise for

COVID-19 where pharmacological treatments seem insufficient.
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Introduction

On January 31st, 2020, the World Health Organization (WHO)

declared coronavirus disease 2019 (COVID-19) a “public health

emergency of international concern” [1]. The virus causing it is

highly homologous to the coronavirus (CoV) that caused an

outbreak of Severe Acute Respiratory Syndrome (SARS) in

2003 and is named SARS-CoV-2 [2]. Further, in 2011, the world

also experienced outbreaks of a coronavirus infection that threat-

ened to become a global pandemic called Middle East

Respiratory Syndrome (MERS). In both cases, the causative

agents (SARS-CoV and MERS-CoV, respectively) were newly

identified coronaviruses from the genus Betacoronavirus having

zoonotic origin [3]. Another lung disorder associated with CoV

is the Acute Respiratory Distress Syndrome (ARDS) that devel-

oped in several patients causing pathological changes in the lungs

such as diffuse alveolar damage leading to fibrotic lesions [4, 5].

Therapeutic clinical and preclinical studies using cultured

cells are on the rise. Models for respiratory virus infections
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and relevant clinical studies related to the administration of

stem cells in patients are essential to define the patient popu-

lation that can benefit from cell therapy [6]. Thus, this study

aims to review the outcomes of ongoing clinical studies on

stem cells in SARS, ARDS, and MERS. The results will be

associated with possible applications to COVID-19.

Stem Cells and Respiratory Diseases

Stem cells are specialized cells that differentiate into other cell

types [7]. In certain organs, the stem cells produce descendants

that maintain tissue homeostasis and also have the same function

as the cells that are not generated from this differentiation [8].

This class of cells depicts a revolution in such studies enabling

their application in patientswith various disorders, including lung

diseases, thus allowing to study cell-based therapies for their

treatment. For the treatment of ARDS and sepsis, various cell

types are used such as headStartembryonic stem cellsheadEnd

(ESCs), headStartmesenchymal stem cellsheadEnd (MSCs), and

epithelial progenitor cells (EpPCs). Currently, most of the pre-

clinical studies are usingMSCs, though headStartinduced plurip-

otent stem cellsheadEnd (iPSC) for the treatment of ARDS [9]

are also being used.

The lungs were previously thought to be “post-mitotic” and

unable to regenerate, while the stem cell populations, such as

bone marrow, intestinal mucosa, and skin are considered re-

generative. Yet it is known that different regions in the lungs

are dependent on different cell populations, such as the endog-

enous stem cell complex for tissue repair demonstrating re-

generative characteristics [10]. For example, idiopathic pul-

monary fibrosis (IPF) is a fatal form of the disease character-

ized by scar tissue formation in the interstitial lungs with ex-

tracellular matrix deposited over time. The symptoms include

cough, exertional dyspnea, functional and exercise limitation,

acute respiratory failure, and death.

With the emergence of stem cell therapy in treating diseases,

the murine bleomycin model became the best-characterized

one, in which the administration of allogeneic bone marrow-

derived-MSCs (BM-MSCs) reduces inflammation and collagen

deposition [11–13]. Also, it was observed that stem cells from

the placenta and human umbilical cord demonstrated reduced

lung tissue damage in the mouse bleomycin models [14–16].

Another example of stem cells applied to lung disease is

chronic obstructive pulmonary disease (COPD), a major dev-

astating disease worldwide. COPD is characterized by chronic

small airway inflammation, commonly known as chronic

bronchitis, causing progressive poor airflow leading to dam-

age of lung tissues (emphysema). MSCs, as a therapy, are

considered a strong candidate in headStartclinical

trialsheadEnd to repair damaged lung tissue in COPD or any

other chronic lung disease [17–19].

Stem cells, particularly pluripotent cells such as ESCs or

iPSCs, offer the potential to differentiate into lung cells

reprogramming the immune response to reduce destructive

inflammatory elements and directly replace damaged cells

and tissues [20]. Thus, it can be a promising novel therapeutic

strategy in ARDS to repair and resolve a lung injury restoring

the whole epithelial and endothelial function [21]. They can

also attenuate bacterial sepsis, directly associated with ARDS,

via several mechanisms, such as improving the phagocytic

ability, secreting anti-microbial peptides [22], and increasing

bacterial clearance [23]. Furthermore, MSCs demonstrated a

great potential when reducing the endotoxin-induced injury to

explanted human lungs [24].

Mesenchymal Stem Cells

headStartMesenchymal stem cellsheadEnd can be isolated

from bone marrow and expanded extensively in vitro. They

play an important role in the repair process or may engraft the

injured lung [25, 26]. Engraftment may initiate simultaneous-

ly, where MSCs differentiate into lung epithelial cells and can

directly replace the damaged cells in alveoli during the treat-

ment of ARDS [27, 28]. Their applicability has been reported

in treating cardiovascular and pulmonary diseases [26, 29]

along with severe inflammation [30, 31]. These properties

are also very attractive due to the immunosuppressive/

immunomodulatory abilities [32, 33] influencing an increase

in Keratinocyte growth factor (KGF) on epithelial cells, and in

the study models of lung injury. Thus, they play a protective

role in inducing type II cell proliferation and edema clearance

[34]. Additionally, KGF could upregulate alveolar fluid clear-

ance in ex vivo human lungs injured by an endotoxin [24].

MSCs play an anti-inflammatory role secreting several medi-

ators that down-regulate the inflammatory process [35] and

secrete growth factors, including KGF [36, 37].

In animal models with lung injury, intravenous MSCs led to

favorable outcomes, such as reduction in inflammation, pro-

inflammatory cytokines, and lung edema [38]. In mouse

models, the treatment involvingMSCs reduced pulmonary ede-

ma and extended survival in Escherichia coli endotoxin-

induced lung injury [39]. The outcomes of involving MSCs

in experimental models of ALI/ARDS have been promising

as a cell-based therapy [40].

Previously, ARDS was defined within two simple concepts,

namely [1] the pro-inflammatory (leading to host damage) and

[2] fibrotic (repair and fibrosis) phase. These two phases make

the disease progressionmore complex [41].Moreover, themech-

anism of action of MSCs is also unknown due to the diverse

array of paracrine mediators which are directly associated with

the therapeutic effects [42]. Several factors that influence these

effects are [1] differences between the cell surface epitopes and

genomic stability between mice and humans involved in the
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studies [43]; [2] different inflammatory environment [44]; and

[3] the heterogeneity ofMSCs and their subtypes [45]. However,

the complete success of MSCs as a cell therapy for patients with

ARDS will probably depend on a better understanding of their

mechanism of action and on defining the best strategies for their

use in a clinical setting [46].

The benefit of MSCs utilization is directly related to para-

crine soluble factors, transfer of mitochondria, and histolog-

ically active microvesicles [47]. siRNA knockdown was uti-

lized to analyze the paracrine soluble factors in cultured

human type 2 cells during in vitro MSCs treatment and it

was found that angiopoietin-1 secretion was partially respon-

sible for the beneficial effect of MSCs [48–50]. The pres-

ence of MSCs upregulates lipoxin A4, a pro-resolving lipid

mediator which could play an important role in MSC-

mediated healing of lung injury [49, 50]. Additionally,

MSCs mediate the release of microvesicles during cell-to-

cell communication [51].

The resistance of pulmonary epithelial cells during inflam-

mation is an important tool to combat pulmonary edema. The

interaction between epithelial cells andMSCs in an inflamma-

tory process represents a critical information point in revealing

the mechanism of MSC-mediated therapeutic effects, thus

allowing to design a better practical protocol to manage these

cells [52]. However, the genetic manipulation to improve the

therapeutic efficacy of MSCs, so that they could work at the

low level of trophic factors in the damaged host tissue, re-

mains a permanent challenge [53].

MSCs-derived Microvesicles

Among the MSC-derived extracellular vesicles (EVs) or

microvesicles, the best- characterized ones are the exosomes.

They have a conserved protein group known as tetraspanins

which is important for cell targeting. These vesicles are rich in

integrins, flotillins (lipid raft-associated), and cholesterol [54].

An important role of microvesicles is cell-cell-mediated com-

munication and they are composed of small circular mem-

brane fragments released from the endosomal cell membrane

[33, 55].MSC-derived EVs contain RNAs that are involved in

transcription control, cell proliferation, and immune regula-

tion [56], and interact using different mechanisms with the

cell surface receptors [54, 57]. These exosomes activate mol-

ecules between the cells through the transfer of genetic mate-

rial and specific organelles such as mitochondria [58].

Microvesicles derived from MSCs play an important role in

the repair of lung injury in ARDS [59]. Zhu et al. [51] ob-

served a decrease in lung edema and neutrophil counts by

utilizing microvesicles from human bone marrow MSCs with

an increased expression of KGF in this induced lung injury.

Evidence from several studies supports the role of

microvesicles in cell-based therapies associated with respira-

tory diseases [55, 60]. Furthermore, microvesicles from adult

MSCs protect against acute tubular injury ischemia–reperfu-

sion-induced acute and chronic kidney injury [61, 62].

In relation to cell-free therapeutics in lung diseases, Monsel

et al. [63] displayed various advantages of usingMSC-derived

extracellular vesicles compared to the MSCs. The advantages

are as follows: they are non-self-replicating, have reduced risk

of iatrogenic tumor formation, can be stored without DMSO at

− 80ºC to maintain a biologically active state, they do not

express MHC I or II antigens, nor can be induced to express

them, and they allow allogeneic transplantation.

Stem Cells From Other Sources

Induced Pluripotent Stem Cells

The headStartinduced pluripotent stem cellsheadEnd (iPSCs)

produced by the method of Takahashi & Yamanaka [64] are

based on the reprogramming of adult cells to a “stem cell state”

through a gene transfection technique by manipulating them to

undergo cellular differentiation, plasticity and behavioral trans-

formation [64, 65].

There is a great potential of using iPSCs in ARDS and

sepsis [9]. However, the associated problems arising from

their use are unclear, and also their low efficiency during

differentiation and the reprogramming process might be a

concern. Thus, a possible genomic modification may be con-

sidered to address these drawbacks [66].

Embryonic Stem Cells

The human headStartembryonic stem cellsheadEnd (ESCs)

derived from the inner cell mass of blastocysts are pluripotent

and able to differentiate into all three primary germ layers.

Their capacity to self-renew makes them a viable treatment

option for tissue regeneration [67]. These ESCs promote the

MSCs through reprogramming and differentiation with dem-

onstrated efficacy in murine endotoxin and bleomycin-

induced lung injury [68]. To develop cell-based strategies

for repairing lung injury, Banerjee et al. [69] differentiated

human headStartembryonic stem cellsheadEnd (hES) into

lung epithelial lineage-specific cells. According to the authors,

the study indicated an increase in progenitor cell numbers in

the airway and significantly reduced the collagen content in

bleomycin-treated mice, after the transplantation of differenti-

ated hES cells.

Clinical Trials

Only three headStartclinical trialsheadEnd related to stem

cells are considered complete, whereby two are in Phase 1

and one is in Phase 2. All the completed studies were
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associated with ARDS in the United States (USA) (Table 1).

Wilson et al. [70] conducted a Phase 1 trial, where no adverse

events were reported in the nine patients evaluated. However,

in three patients, serious adverse events were observed weeks

after the infusion, but none were MSC-related. The study was

considered for an extension trial by Matthay et al. [71]. These

researchers carried out a Phase 2 trial in a double-blind study

with placebo-control and allogeneic bone marrow-derived-

MSCs in a 2 (MSCs):1(Placebo) randomization. The MSC

group had significantly higher mean scores than the placebo

group for Acute Physiology and Chronic Health Evaluation III

(APACHE III) (Table 1). No results were posted in

NCT02804945 by the authors.

The ongoing headStartclinical trialsheadEnd related to

stem cells for various respiratory disorders such as SARS,

MERS, and ARDS are presented in Table 2. Six studies

related to coronavirus are in Phase 1, and four studies are

already in Phase 2. Basically, the ongoing studies on co-

ronavirus are using MSCs derived from bone marrow or

the umbilical cord to demonstrate their feasibility, safety,

and tolerability.

The studies not related to coronavirus are all in ARDS

conditions; four of them are in Phase 1 and three in Phase

2. Two particularly interesting situations are being devel-

oped in Phase 1, where firstly, menstrual blood stem cells

are utilized to determine whether these cells are effective

in the treatment of infection, and secondly, another study

is testing the drug administration of HCR040 (drug based

on allogeneic adipose-derived adult headStartmesenchymal

stem cellsheadEnd, expanded and pulsed with H2O2)

(Fig. 1).

Emukah et al. [72] conducted a systematic review on the

effects of mesenchymal stromal cell conditioned media

(CdM) on many lung diseases. The findings were enthusiastic

because it was demonstrated that CdM improved inflamma-

tion and was as effective as MSCs. Further studies must be

conducted to determine the ideal site of CdM delivery, dosage,

and timing of the treatment according to the lung disease [72].

Zhao et al. [73] also conducted a systematic review and meta-

analysis evaluating the safety of cell therapies and the clinical

variables critical for these lung disorders. The authors con-

cluded that the cell therapies do not cause complications in

gas exchange, spirometry, quality of life, cardiopulmonary

circulation, and immune system of those suffering from the

lung disease. Phases 2 and 3 are very important to determine

the efficacy of the cell therapies related to dosage and safety

approaches. Moreover, death rate was lower in the MSCs-

treated group than in the non-MSCs-treated patients [73].

Preclinical studies examined the efficacy of MSCs-treatment

compared to the control group across different animals and

acute lung injury induction models [74]. A reduced number

of deaths was also shown in acute lung injury (ALI) studies of

preclinical models [74].

Possible Applications to COVID-19

Cytokines Storm

Lymphopenia and higher levels of cytokines are features of

COVID-19-patients, being potential biomarkers for disease

progression. In severely ill patients, a “cytokine storm” is

induced due to the high levels of cytokines, and consequently,

numerous adverse reactions in the human body are observed

[75]. Cytokine storms include the interleukins IL-1β, IL-2, IL-

6, IL-7, IL-8, IL-10, Granulocyte colony stimulating factor

(G-CSF), Granulocyte-macrophage colony-stimulating factor

(GM-CSF), Interferon gamma inducible protein 10 kD (IP10),

Monocyte chemoattractant protein-1 (MCP1), Macrophage

inflammatory protein-1 alpha (MIP-1α), IFN-γ and TNF-α

[75–79]. For COVID-19, IL-6 serves as a key mediator cyto-

kine in cytokine storm development [80]. After infection,

CD4 + T cells can be quickly activated in pathogenic helper

T cells (Th) 1 secreting GM-CSF, which further induces

CD14+, CD16 +monocytes providing high levels of IL-6,

accelerating the inflammation process [75, 81].

Successful treatment involves influencing the immune re-

sponse to SARS-CoV-2, including increasing antiviral immu-

nity and inhibiting systemic inflammation. Therefore, using

specific immunological profiles of COVID-19, such as the

increase of lymphocytes or the inhibition of inflammation,

may be essential for treatment in severe cases [75].

Given the potential of modular MSCs in sepsis and evolu-

tion of chronic conditions, strategies such as MSC-based ther-

apy can be used to inhibit inflammation. One of the biggest

challenges in the current treatment of COVID-19 is the cyto-

kine storm, where some of them with a most important role,

evolve to irreversible chronicity, and in this sense, MSCs can

prevent or mitigate this cytokine storm through their immuno-

modulatory capacity [82]. Promising and unprecedented re-

sults for COVID-19 were obtained 14 days after the injection

of MSCs in 7 patients with pneumonia at Youan Hospital of

Beijing, China. Both, regulatory T cells and CD increased

significantly after cell therapy. Before transplantation of

MSCs, the patients in a severe condition had a significant

increase in cells T CXCR3+ CD4+, T CXCR3+ CD8+ and

CXCR3 +NK compared to the healthy control (without path-

ological manifestation), thus being reported as the cytokine

storm. Nevertheless, once the transplantation of MSCs was

performed in the patient, it could be observed on the 6th day

that previously overactivated T and NK cells were drastically

reduced, almost disappearing, and many other cells were re-

stored to their normal dosages in the patient, especially the

regulatory dendritic cells CD14+ CD11c+ CD11b. When

transplanting MSCs, anti-inflammatory and trophic factors

like TGF-β, HGF, LIF, GAL, NOA1, FGF, VEGF, EGF,

BDNF e NGFwere highly expressed in these cells confirming

the immunomodulatory action of MSCs [82] (Fig. 2).
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Angiotensin-converting Enzyme 2 (ACE2) Receptor

Both, the angiotensin-converting enzyme 2 (ACE2), widely

distributed on cell’s surfaces in humans, especially type II

alveolar cells (AT2) and the capillary endothelium, as well

as the presence of Transmembrane Protease Serine 2

(TMPRSS2), highly expressed by AT2 cells, are fundamental

to the pathogenesis of HCoV-19, activating the Spike protein

(S). Since many cells of the immune system are negative for

ACE2, immune therapy may be an alternative in the treatment

of infected patients [83].

According to the results of the above-mentioned study,

MSCs have a natural immunity to HCoV-19, being ACE2-

or TMPRSS2-negative according to transplant analyses. Thus,

especially for patients critically ill with COVID-19 pneumo-

nia, transplantation of MSCs was a safe and effective treat-

ment regulating the inflammatory response and promoting

tissue repair and regeneration [82].

Interferon-stimulated genes (ISGs) present in MSCs may

explain why these cells are resistant to viral infections. MSCs,

for example, express several ISGs, some of which are known

to show typical antiviral responses. The member proteins of

the Interferon Induced Transmembrane Family (IFITM) are

peculiar because they prevent infection before the virus can

cross the lipid bilayer on cells [84]. Cells cultivated by viruses

such as SARS coronavirus, Ebola virus, influenza A and den-

gue were not infected because of the assigned activity to

IFITM proteins [85]. Therefore, in this scenario of the

COVID-19 respiratory viral infection, as suggested by

Rajarshi et al. [84], the unique antiviral mechanisms of

MSCs include constitutive elevation of MSC-specific ISG

levels acting as regulators of antiviral protection and second-

ary response to IFN, which induces ISG, offering broad viral

resistance [84].

In the case of hematopoietic stem / progenitor cells

(HSPCs), evidence suggests that the SARS-CoV-2 virus input

receptor (ACE2) and the angiotensin II receptor (AT1) are

expressed and functional on the surface of these cells [86,

87]. Therefore, it is possible for SARS-CoV-2 upon binding

to ACE2 via the Spike protein to directly activate the Nlrp3

inflammasome, contributing to the cytokine storm, affecting

the mitochondrial function, leading to cell death by pyroptosis

[87–93]. The Nlrp3 inflammasome, which can affect various

tissues and organs as well as potentially hematopoiesis [93],

may be responsible for certain complications during a SARS-

CoV-2 infection.

In 2014, Min et al. [94] evaluated the therapeutic effects of

human umbil ical cord MSCs in the presence of

ang io t en s inconve r t i ng enzyme 2 gene (ACE2;

ACE2uMSCs) using bleomycin (BLM)induced lung injury

and pulmonary fibrosis in mice. The injection of ACE2-

uMSC demonstrated significantly more effective results in

the treatment of bleomycin-induced pulmonary fibrosisT
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in vivo compared to those of the ACE2 and uMSC treatments

alone. Thus, according to the authors suggestions, the syner-

gistic effect of ACE2 and uMSCs may be used as a promising

novel treatment for lung injury [94].

As suggested by Ulrich & Pillat [95], it is possible that

CD147, the second incoming receptor for SARS-CoV-2, is

expressed by untransformed lung stem and progenitor cells, but

there is still no experimental evidence. This bone marrow recep-

tor can be expressed by tissue-specific stem cells [96]. Soon, it is

realized that the loss of airway epithelial cells caused by infection

and viral replication suggests another possibility for the lack of

cell regeneration considering that regenerating cells and stem

cells can be equally lost or infected [95].

Final Considerations

Anti-inflammatory therapies for patients with ARDS

have been developed using stem cells offering a great

promise for managing ARDS [70, 97, 98]. MSCs related

cell-therapies demonstrate high efficacy in preclinical

data allowing their clinical usage [99]. For COVID-19

research and headStartclinical trialsheadEnd, it is impor-

tant to consider the blood biomarkers involved in the

pathophysiology of the disease which provide therapeu-

tic targets and thus improve the clinical care. Moreover,

it is essential to understand the role of endogenous lung

progenitor cells during the repair of lung injury and also

Fig. 1 Stem cells sources in

headStartclinical trialsheadEnd

Fig. 2 Effects of MSCs-therapy before and after of transplantation on cy-

tokine storm. Source: Leng, et al., (2020). Transplantation of ACE2-

headStartMesenchymal Stem CellsheadEnd Improves the Outcome of

Patients with COVID-19 Pneumonia. Aging and Disease, 11(2), 216–228
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the mechanism of lung development for developing nov-

el therapeutic strategies [100, 101]. Han et al. [102]

mentioned some obstacles in clinical practice that must

be considered for COVID-19 as, for example, the low

mobilization of transplanted MSCs at the injury site

and their low survival rate. The comprehensive interac-

tion between MSCs and the host tissue is a key to the

successful therapeutic application whereby experimental

studies play a major role in developing lung diseases in

clinical translation [37].

Since we know that the mitochondrial disorder caused

by the overactivation of Nlrp3 inflammasome is determi-

nant to the pathogenesis of SARS-CoV-2, Nlrp3

inflammasome inhibitors must be taken into account re-

garding their therapeutic applicability [87–89, 92]. An ex-

ample for this inhibitory potential is the MCC950 molecule

which could affect the binding of SARS-CoV-2 to cells

and inhibit the amplification of the intracellular virus, and

also the ComC inhibitors that assist in modulating the ac-

tivity of the innate immune system [93]. Another possible

inhibition therapy against SARS-CoV-2 is the use of

ACE2 +MSC-derived small extracellular vesicles (sEVs)

overexpressed, as suggested by Inal [103].

Regarding the combat against the cytokine storm in the

lungs during viral pneumonia, some studies highlighted

that the leukemia inhibitor factor (LIF) released by the

MSCs may not be expressed enough to supply the damage

caused by the disease [104, 105]. As an innovative and

technologica l a l te rna t ive , there are MSCs wi th

“LIFNano”, nanotechnology that represents a 1000-fold

increase in power compared to not using nanotechnology.

“LIFNano” acts on damaged tissues and reduces the cyto-

kine storm. Therefore, it represents a therapeutic agent

ready to act beneficially against viral pneumonia [106].

Significant advances have been made in three-dimensional

(3D) cell culture to develop organoids. These are able to reca-

pitulate the complexity and functionality of different organs.

Human lung organoids and bud tip progenitor organoids are

composed of cells that are highly similar to the developing

human lung. They are ideal for studying developmental biol-

ogy and tissue engineering. Considering that the cells are spe-

cific to the patient’s genetics, the organoids that mimic lung

disease may be critical for designing personalized medicine

and screening for therapeutic responsiveness [107].

Conclusion

With the COVID-19 boom, many headStartclinical

trialsheadEnd are being carried out using different sources with

an emphasis on MSCs. We look forward to the results of the

ongoing headStartclinical trialsheadEnd to find a treatment for

the disease. Researchers around the world are joining forces to

help fight COVID-19. Stem cells used in the current clinical

studies are a new therapeutic promise for COVID-19 where

pharmacological treatments seem insufficient.
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