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Abstract
In this review paper, the authors investigate the state of technology for hybrid- and multi-material (MM) manufacturing of 
metals utilizing additive manufacturing, in particular powder bed fusion processes. The study consists of three parts, cover-
ing the material combinations, the MM deposition devices, and the implications in the process chain. The material analysis 
is clustered into 2D- and 3D-MM approaches. Based on the reviewed literature, the most utilized material combination 
is steel-copper, followed by fusing dissimilar steels. Second, the MM deposition devices are categorized into holohedral, 
nozzle-based as well as masked deposition concepts, and compared in terms of powder deposition rate, resolution, and 
manufacturing readiness level (MRL). As a third aspect, the implications in the process chain are investigated. Therefore, 
the design of MM parts and the data preparation for the production process are analyzed. Moreover, aspects for the reuse of 
powder and finalization of MM parts are discussed. Considering the design of MM parts, there are theoretical approaches, 
but specific parameter studies or use cases are not present in the literature. Principles for powder separation are identified for 
exemplary material combinations, but results for further finalization steps of MM parts have not been found. In conclusion, 
3D-MM manufacturing has a MRL of 4–5, which indicates that the technology can be produced in a laboratory environment. 
According to this maturity, several aspects for serial MM parts need to be developed, but the potential of the technology has 
been demonstrated. Thus, the next important step is to identify lead applications, which benefit from MM manufacturing 
and hence foster the industrialization of these processes.
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1 � Introduction and motivation

Functionally graded materials (FGMs) are characterized by 
a variation of material properties over the dimensions of a 
part [1, 2]. This allows tailoring material properties within a 
part corresponding to the local material requirements. Thus, 
FGMs enable advanced opportunities to optimize products 
and foster innovations. The production of FGMs can be real-
ized by several manufacturing processes, which are investi-
gated by El-Galy et al. [3], but additive manufacturing (AM) 
is especially suitable for producing FGMs [1].

In general, additive manufacturing is considered an 
important technology trend in production industry [4]. This 
has been demonstrated by a strong market growth in AM 
over the last years, for processing of metals especially since 
2012 onwards [5]. The additive manufacturing technologies 
are split into seven process classes, defined in ISO/ASTM 
52900 [6]. The most important process class in metal-based 
AM is powder bed fusion (PBF) and within this class, the 
process of laser-based powder bed fusion [7] (PBF-LB) [6]. 
Furthermore, the process of electron beam melting (PBF-
EB) [6] belongs to this process class. Following Popov et al. 
[8], the production of FGM is “is one of the modern unique 
options provided by the PBF-systems”. Moreover, follow-
ing Schleifenbaum et al. [4], one of the current limitations 
of the PBF-LB process is the lack of AM-tailored materials 
and multi-material processing.

The benefits of FGMs, which are especially graded mate-
rials or hybrid materials, are frequently discussed in the 
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context of AM [1, 3, 8–12]. This paper reviews the current 
state of hybrid- and multi-material- manufacturing (MM) 
for PBF processes and summarizes the state of technology 
in this field. This includes the current limitations, technology 
potential, and development perspective.

2 � Definitions

A multi-material part in the context of this review consists 
of an FGM with a discrete or graded material transition. 
Several AM processes allow the manufacturing of material 
combinations and FGMs. The investigation of this paper is 
focused on metal-based PBF processes, which is set into 
the context of the seven functional AM principles in Fig. 1. 
More general literature overviews, which also take other 
metal-based AM principles into consideration are given by 
Reichardt et al. [7], Zhang et al. [12], Wei et al. [11] as well 
as Bandyopadhyay and Heer [13].

The ability of AM to produce FGMs is defined in ISO/
ASTM TR 52912 [14] as “a layer-by-layer fabrication tech-
nique that intentionally modify process parameters and 
gradationally varies the spatial of material(s) organiza-
tion within one component to meet intended function.” For 
FGMs produced by AM, the abbreviation FGAM is intro-
duced [14].

A holistic definition of multi-material in the context of 
AM has been proposed by Girnth et al. [15], which is con-
cretized by Koopmann [16]. In this definition, MM is cat-
egorized depending on the geometrical dimensions in which 
the material is graded. Moreover, the number of different 
materials is considered, whereby two materials are named 
as hybrid-material and three or more materials within one 
part as multi-material.

Another definition is stated by Vaezi et al. [17], differ-
entiating by the layer-wise PBF build process in “material 
change between layers,” “material change within layers,” 
and “material change between and within layers.” Further 

definitions, which incorporate the prior perspectives are 
stated in [18, 19]. The type of material transition can be 
discrete or graded [20, 21].

Considering these references, there are two perspec-
tives to define MM parts: the first logic is based on the PBF 
machine coordinate system and the other one uses the mate-
rial gradient within the part structure.

The coordinate system for AM systems is defined in 
ISO/ASTM 52921 [22]. The layer-based perspective cor-
responds to this definition, describing the material transition 
between layers as 2D structure with a material change along 
the z-axis and the transition of material within and between 
layers as 3D structure. The definition is depicted in Fig. 2.

In this paper, the MM structures are categorized by geo-
metrical dimension into 2D structures, which cover material 
transitions in one dimension and 3D structures, which cover 
material transitions in at least two dimensions.

Besides the combination of two materials, the term 
hybrid additive manufacturing is also used to describe the 
combination of different manufacturing processes [23, 24]. 
Therefore, in this study, a 2D material transition, in which 
Material A is a conventionally manufactured material and 
Material B is additively built on top of Material A, is named 
as hybrid additive manufacturing approach. A convention-
ally manufactured material is mainly produced by subtrac-
tive or formative technologies as defined in ISO/ASTM 
52900 [14].

As one criterion to assess the maturity of the investigated 
MM approaches, the concept of manufacturing readiness 
level (MRL) [25] is used which is closely linked to the tech-
nology readiness level (TRL) [26]. The MRL scale covers 
ten levels, starting from identified manufacturing implica-
tions (MRL 1) to full rate serial production (MRL 10) [25].

3 � Research approach

The literature review presented in this paper is based on 
two leading statements, which are derived from the research 
objective. The first leading question clarifies if a literature 
source describes a multi-material approach under the scope 
of this review:

“A metallic material is processed utilizing a PBF prin-
ciple in combination with another material”

The second lead statement identifies specialized systems 
and devices, which are proposed to manufacture MM parts:

“A specialized material delivery system is described 
for the manufacturing of MM parts”

The literature identified by these leading questions 
was collected and structured. For the structuring the prior 
definitions applied, but were differentiated by additional 
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Fig. 1   Focus of the review in the context of AM principles
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subcategories. The findings are analyzed in three perspec-
tives. First the material combinations are derived and com-
pared. Moreover, the functional principles of systems for the 
production of MM parts are investigated. As a third aspect, 
the implications of MM for the AM process chain are con-
cluded, considering the pre-, in- and post-process. Lastly an 
overall summary of the state of technology for MM parts is 
concluded and discussed.

4 � Hybrid‑ and multi‑materials overview

In this section, the material combinations of 2D- and 3D- 
MM are investigated. For each source, the specific PBF pro-
cess, MM deposition approach, and material combination is 
stated. For each material, the base alloy component is stated, 
and in addition the precise definition of the material, if stated 
by the author.

In general, the material transition consists of four differ-
ent zones, which were investigated by Link et al. [27] for 2D 
hybrid manufacturing. The four zones are depicted in Fig. 3.

The first zone is Material A, which is produced by another 
manufacturing process for the case of hybrid manufactur-
ing or with the corresponding AM process parameters to 
process Material A. The following heat affected zone occurs 
in hybrid manufacturing and when there is a change in the 
production parameters within the AM process, especially if 

the deposited energy per volume unit increases significantly. 
The heat affected zone forms as a result of the AM process 
parameter change in the mixing zone. The mixing zone is 
characterized by the mixing up of Material A and B in the 
microstructure and the transition of process parameters. 
Lastly, the fourth zone is pure Material B with correspond-
ing process parameters. In the investigation of Link et al., the 
heat affected zone and the mixing zone are approximately 
150 µm each [27].

For a 3D-MM approach, the material transition zone has 
the shape of a freeform surface. Thus, the angle between 
the direction of material transition and the build direction 
(z-axis) is not constant, which requires a joining strategy 
adapting to the local requirements. This joining strategy 
must at least consider the adaption of process parameters, 

Fig. 2   Definition of 2D and 3D 
multi-material structures
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order of exposure, and geometrical overlap of material zones 
[28].

4.1 � 2D‑multi‑material

2D-MM approaches are described by 33 literature sources. 
These approaches split into 17 hybrid manufacturing 
approaches, which cover building of additively manufac-
tured material on top of a conventional manufactured one, 
and 16 fully additive approaches, investigating the bond-
ing between two AM materials. Appendix Table 3 (see 
Appendix) provides an overview of the literature sources 
for 2D-MM approaches. For the 2D hybrid manufacturing 
approaches, the base material is listed as Material A. The 
references in Appendix Table 3 are sorted by descending 
publication date.

Almost all sources utilize the PBF-LB process for the 
2D multi-material approach. Only Jurisch et al. [29] state 
a hybrid manufacturing process for electron beam melting 
(PBF-EB) and Regenfuss et al. for a micro PBF-LB process 
[30]. Moreover, in all references the material transition is 
along the building direction (z-axis, 2 Dz MM), except for 
Beal et al. [31], proposing a coater system with chambers 
to vary the material over the deposition coater axis (y-axis, 
2 Dy MM). This approach allows varying the material in 
one dimension, but has no material change between layers.

4.2 � 3D‑multi‑material

3D multi-materials (3D-MMs) are described by 17 literature 
sources. Based on the maturity of the MM process, the lit-
erature sources are categorized into three levels of maturity. 
The first level is the proposal of a theoretical concept with-
out proofing the functionality in a prototype or demonstrator. 
These literature sources cover only theoretical approaches 
to manufacture MM parts. On the second maturity level, the 
references demonstrate the deposition of a MM layer, but 
without the solidification by an AM process. On the third 
maturity level, the manufacturing of a MM part is presented, 
demonstrating the functionality of the proposed 3D-MM 
manufacturing system.

Appendix Table 4 (see Appendix) lists the literature ref-
erences for 3D-MM. Fourteen references demonstrate the 
building of a 3D-MM part by a PBF process. Moreover, 
two references present deposition systems to prepare a MM 
layer without integrating it into an AM system or building 
a 3D-MM part [32, 33], whereas Gerstgrasser et al. state a 
theoretical concept of a nozzle deposition system [34].

To manufacture a 3D-MM part, specialized machine 
equipment is required to generate a MM layer of metal 
powder, which can be realized by three different deposition 
concepts: holohedral concepts, which coat the whole powder 
bed; nozzle-based concepts, which deposit powder through 

a nozzle or nozzle array and masked concepts, which allow 
to selectively apply different powders. The deposition con-
cepts to manufacture 3D MM parts are discussed in detail 
in Sect. 5.

4.3 � Material combinations

The analysis of material combinations shows that there is a 
strong focus on steels as one part of the material combina-
tion, (see Table 1). The most investigated material transition 
is between steel and copper, which is stated in 21 references. 
The second most utilized material combination, stated in ten 
references, is to bond steels together. Whereas the focus for 
the steel-copper combination is in 3D-MM, the bonding of 
two steels is mainly investigated in 2D hybrid manufactur-
ing. Further material combinations, which are investigated 
by 2–5 references, focus on three aspects: the bonding of 
aluminum alloys to other metals, the bonding of steel and 
Ni-base alloys, and the bonding of steel and ceramics. The 
bonding of aluminum alloys is investigated as the combi-
nation of aluminum alloy to aluminum alloy within a 2D 
hybrid approach, aluminum alloy to copper, and aluminum 
alloy to steel.

Considering the MM approaches, 2D hybrid manufactur-
ing is mainly utilized to join similar metals, e.g., two steels 
or two aluminum alloys. A material combination of metal 
and non-metal utilizing a 2D hybrid manufacturing approach 
was not identified in the review. When both materials are 
made additively with a 2D-MM approach, the bonding of 
steels and aluminum alloys to other materials is investi-
gated. In contrast, the 3D-MM approach has a strong focus 
on steel–copper combinations (13 references), followed by 
the bonding of metals and non-metals (6 references).

In general, it is remarkable that some common materi-
als for PBF-LB were not identified in the review of MM 
approaches. Especially, titanium and titanium alloys were 

Table 1   Overview of MM material combinations
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not identified for MM manufacturing, despite the fact that 
they are often utilized in the medical and aerospace sector.

5 � Deposition devices for 3D‑multi‑material

For the application of two different powder materials to 
manufacture 3D-MM parts, extended powder deposition 
techniques are required. Neirinck et al. give an overview 
and detailed descriptions of existing technical concepts 
[35]. Comparing all concepts, three generally different 
overarching approaches can identified: holohedral deposi-
tion concepts, nozzle-based concepts, and masked deposi-
tion concepts. To compare the three types and evaluate their 
potential, solutions presented in the literature are described 
and assessed in terms of powder deposition rate, deposition 
resolution in terms of minimal feature sizes, and manufac-
turing readiness level (MRL). First, the deposition rate is 
considered as an estimator for the amount of powder that can 
be deposited during a certain amount of time. The mono-
material coating process can serve as a benchmark. Second, 
the resolution of the processes is assessed to estimate the 
minimum size of powder features as well as solidified part 
features, which have been created in past studies. Third, the 
MRL in accordance with the definition by the Department 
of Defense (DoD) is assessed [25]. Figure 4 summarizes the 
results of the comparison, which is discussed in detail in the 
following section.

5.1 � Holohedral deposition concepts

Holohedral coating mechanisms spread respective materi-
als evenly across the entire build plate. MM capabilities 
are achieved by separation of powder storage and delivery 
chambers within the coater. Although not applied for MM 

parts and thus not considered for further evaluation, 3D-MM 
capabilities can be enabled by separation of the coater’s 
powder chambers parallel to the powder coating direction 
[31] combined with a hybrid manufacturing approach (see 
Sect. 4.1). Anstaett and Anstaett et al. presented a solution 
with separation of the powder chambers perpendicular to 
the coating direction [19, 28, 36–38]. 3D-MM capability is 
achieved by a suction unit, which removes unsolidified pow-
der material after exposure of the respective layer with the 
laser. Without lowering the build plate, the second powder 
material can be applied to the same layer. After solidifying 
the second material, the build plate is lowered and the pro-
cess is repeated.

This concept requires a minimum of four travels of the 
coater per layer: first cycle deposition Material A, second 
cycle suction of loose powder Material A, third cycle depo-
sition of Material B, fourth cycle suction of loose powder 
Material B. Given a coating time of 7 s for mono-material 
processes in mid-size PBF-LB systems [39, 40], effective 
layer heights of 75–110 µm [41], and powder densities of 
40% [42] to 56% [43], the system presented by Anstaett 
and Anstaett et al. [19, 28, 36–38] has an estimated depo-
sition rate of 60–140 mm3/s, compared to 240–560 mm3/s 
for mono-material PBF-LB. The minimum feature size is 
determined by the laser and is thus comparable to mono-
material parts, being 130–240 µm [44], plus nominal over-
laps of 100–200 µm at a layer height of 30 µm for, e.g., 
the transition zone of tool steel 1.2709 and copper alloy 
CW106C [38, 45]. Part features of copper alloy CW106C 
considerably smaller than 1 × 1 × 1 mm3 have already been 
demonstrated in tool steel 1.2709 parts [46]. Due to the fact 
that technology demonstrators have been manufactured in a 
laboratory environment [46], holohedral deposition concepts 
are considered to have a MRL between 4 and 5.

5.2 � Nozzle‑based deposition concepts

Nozzle-based deposition concepts for MM PBF date back 
to the early 1990s [47]. The majority of systems rely on 
interparticular forces, which prevent powders from flow-
ing freely through a nozzle’s orifice. Actuators fluidize the 
powders for defined deposition while moving the nozzle 
over the powder bed or the previously solidified part to cre-
ate single powder lines. Work conducted by Kordaß et al., 
where metal powder filled pastes are extruded by nozzles, is 
the only exception [48, 49]. Generally, 3D MM capabilities 
are achieved by combining two [15, 16, 50], three [33], or 
entire arrays [34, 51] of nozzles depositing different materi-
als. Alternatively, one or more nozzles can be combined with 
a holohedral powder coater to deposit the second or third 
material, respectively [18, 52]. Sometimes, an additional 
suction nozzle is used to locally remove unsolidified excess 
material from the powder bed before a different material 
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is applied [15, 52]. Girnth et al. summarized six different 
approaches to apply and—if necessary—remove two differ-
ent powder materials using nozzle-based powder dispensers, 
a holohedral coater, and a suction unit [15].

Depending on the deposition method, process times can 
vary [15]. For comparison of the deposition concepts, the 
deposition rate of a single nozzle is considered. A nozzle 
travel speed of 5–15 mm/s, led to deposition rates of 10 
and 30 mg/s for copper and SnPb, respectively [33]. Zhang 
et al. achieved deposition rates of up to 32 mg/s for stainless 
steel 316L [50], whereas Al-Jamal et al. measured feed rates 
of 10–13 mg/s for copper and H13 steel [53]. Koopmann 
achieved feed rates of 64.2, 48.3, 22.3, and 19.7 mg/s for 
copper, a copper alloy, steel 1.2367 as well as a mixture of 
Al2O3 and ZrO2 powder, respectively [16]. Considering the 
respective materials’ densities and again assuming powder 
densities of 40 [42] to 56% [43], across all previously men-
tioned sources deposition rates between 0.4 and 4.1 mm3/s 
per powder nozzle are estimated. Minimum feature sizes 
have to be divided into powder feature sizes and part fea-
ture sizes. Regarding the former, powder feature sizes in 
the range of 85 µm [33], 555 µm [50], and 1.3 mm [15] for 
track heights of 100 µm [15] to 150 µm [50] were achieved. 
Regarding the latter, Wei et al. printed part features with a 
nominal layer height of 50 µm and horizontal cross-sections 
of 1 mm as well as lattice structures with a strut thickness of 
150 µm [52]. Koopmann created irregular circuit paths with 
a width of 2 mm and a height of 0.2 mm, which contained 
build defects [16]. In terms of MRL, nozzle-based deposi-
tion concepts vary between the levels 4 and 5.

5.3 � Masked deposition concepts

Masked deposition concepts are able to deposit complex 
shapes of at least two different powder materials with a 
single travel of the powder coating mechanism by masking 
defined areas for powder pick-up and/or deposition. Cur-
rently, two different masking mechanisms have been identi-
fied. First, photo-masking and electrostatic attraction can be 
used to pick up defined powder patterns and deposit them 
accordingly [32]. This principle is referred to as photocon-
ductor and can be compared to the basic xerography prin-
ciple transferred to fine metal powders. The second mask-
ing mechanism utilizes a pressure-based principle. Due to 
a gas flux and resulting negative pressure inside a cylindri-
cal drum consisting of fine meshes with diameters smaller 
than the finest particle to be processed, the pressure-based 
module suctions thin powder layers onto the outer surface 
of the sieve drums. A matrix of valves can locally offset 
the negative pressure and thus deposit the powder from the 
sieve drum onto a substrate plate [54]. Two rotating drums 

combined in a single coater enable deposition of 3D-MM 
powder layers [54, 55].

The photoconductor principle has been used to deposit 
MM powder layers in a laboratory environment outside 
a PBF machine [32] and was found to have potential for 
3D-MM PBF-LB [36]. Due to a MRL of 2 and the early 
development stage, powder deposition rates are not avail-
able. Powder features with about 1 mm in diameter have 
been created, but minimum feature size has not yet been 
studied [32].

Based on a demonstration video of the company which 
markets the solution, a 3D-MM powder layer with a length 
of 150 mm was created by the pressure-based module in 
about 8 s [56]. Transferring the deposition speed to a mid-
size PBF-LB machine with a build plate of 250 × 250 mm2 
and assuming the powder layer has the same thickness and 
density of conventional coating systems (see Sect. 5.1 for 
comparison) leads to an estimated powder deposition rate 
of 130–290 mm3/s. Based on published images of created 
powder layers, single line widths of deposited powder fea-
tures are 0.8–1.6 mm [55]. Although the system has been 
implemented in a PBF-LB system and a part has been cre-
ated [57], minimum feature sizes of solidified materials have 
not yet been studied. The maturity of the pressure-based 
system is considered at a MRL level of 3–4.

6 � Implications of multi‑material 
manufacturing in the additive process 
chain

A generalized AM process chain is defined in VDI 3405 
[58], consisting of pre-process, which are all process steps 
before an AM manufacturing process can be executed, the 
in-process, which covers all steps performed at the AM sys-
tem, and the post-process, which includes all required pro-
cess steps to obtain the technical functionality of the AM 
part. In the following sections, the implications of MM for 
the pre-, in- and post-process are discussed.

6.1 � Pre‑process: design and data preparation

The discussion of the pre-processing is split into two parts. 
At first, the general implications to develop a design for a 
MM part are investigated. These design approaches are not 
limited to a specific MM process. Second, the preparation 
of the manufacturing task and setting of suitable process 
parameters for the MM system (build job) is presented in 
detail.

The design of MM parts is investigated in the context of 
general design approaches for AM. A MM design is seen 
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as an opportunity, which is enabled by AM manufacturing 
processes [9, 59], but also bears additional complexities 
through the combination of the materials [60]. The chal-
lenges occur from the definition of an ideal material distribu-
tion, the prediction of material properties, appropriate mate-
rial selection, the definition of material properties on a local 
level, and software limitations [20]. In general, established 
design processes of parts and the supporting software (e.g., 
computer aided design, CAD; finite element analysis, FEA) 
are based on a geometrical representation with monolithic 
material properties. To develop MM parts, this approach 
must be overcome, allowing to model material properties 
on a local level within the part [61]. Furthermore, a MM 
design process demands starting with the intended material 
properties instead of a geometrical representation [61, 62]. 
An approach to represent material gradients in a volumet-
ric model, based on subdivision schemes, is proposed in 
Altenhofen et al. [63]. In addition, a topology optimization 
approach, considering multi-materials is described in Zou 
and Saitou [64].

After developing a MM design, it must be prepared for 
the manufacturing process in the MM system. For that, a 
geometrical representation of the MM part, including the 
material gradients is required. Moreover, the process param-
eters for the AM process must be assigned.

In the current data preparation process for a coater-based 
MM concept, each volumetric section with specific process 
parameters is represented by a separate STL file, which 
describes the surface of the volume section [52, 65, 66]. 
A nozzle concept requires a separate CNC code to oper-
ate the nozzle kinematic, which is derived from the origin 
geometry [15].This process is considered to be complicated 
and thus prone to errors in the data preparation [19]. Due 
to the representation as STL files, the process is not capable 
of manufacturing gradient material transitions. Moreover, 
process parameter must be adapted to the local geometry of 
the material transition area [16].

A data format that supports gradient materials within the 
represented volume enables a more efficient data preparation 
process [19, 65]. An overview of such data formats (e.g., 
AMF, 3MF, FAV, SVX) is provided in Loh et al. [61], but 
several state-of-the-art AM systems do not implement them 
[65]. Additionally, a first approach based on machine learn-
ing algorithms to predict suitable scanning parameters for 
the gradient materials and the mixing zone is presented by 
Rankouhi et al. [67].

6.2 � In‑process

Aspects for the in-process are mainly caused by the AM and 
powder deposition systems, which are discussed in Sect. 5. 

Additional aspects, however, include strategies for process-
ing multiple materials and understanding of metallurgical 
processes in the mixing and heat affected zones as well as 
process monitoring solutions.

Models for the simulation of metallurgical process of 
multi-material PBF and in situ alloying as well as respec-
tive validations are presented by Küng et al. [68], Wei et al. 
[66] and Gu et al. [69]. Haokun et al. investigated the transi-
tion zone of Al, Cu and Al–Cu-powder mixtures on stain-
less steel substrate and derived melt pool simulations for the 
material combinations [70]. More generally, Reichardt et al. 
gathered alloy compatibilities and predominately occurring 
defects for relevant material combinations in metal-based 
MM AM [7]. A general review of metallurgical aspects and 
overall process implications is provided by Sing et al. [71].

In terms of process monitoring, bonding of layers of dif-
ferent materials as well as powder deposition inaccuracies 
and cross-contaminations need to be considered. Binder 
et al. used active thermography for multi-material powder 
layer monitoring. Initial tests enabled detection of copper 
alloy CW106C contamination in tool steel 1.2709 and vice 
versa [65]. Kleszczynski et al. observed foreign particles 
during the process with a charge-coupled device (CCD) 
camera [72]. Furthermore, Jamshidinia et al. were able to 
detect agglomerates and single particles of tungsten dur-
ing the in-process of Inconel® 625 using a spectrometer, a 
photodetector, and an optical camera, with the photodetector 
being the most promising [73].

6.3 � Post‑process: powder separation and part 
finalization

Post-processing includes the finalization of MM parts to 
meet technical specifications [58] and often consists of ther-
mal treatments, pressing, and surface modifications. These 
processes need to be adjusted for MM parts [65]. Yet no 
publication was found to address the post-processing of MM 
parts created by PBF. Yang and Zhao, however, suggested 
that MM parts cannot be fully recycled [9].

The post-process also includes the reconditioning of 
unsolidified powder material, since cross-contaminations 
cannot be fully avoided during the MM PBF in-process. 
Because remaining foreign particles can lead to inferior 
material properties, the powder materials need to be sorted 
before their reuse [74]. Contamination levels arising during 
the in-process depend on the facilitated deposition device 
and have not been studied for every concept. For the holohe-
dral deposition concept presented by Anstaett [19], contami-
nation levels vary between 14 and 40 weight percent (wt.%) 
in the rear powder overflow as well as the front powder over-
flow and suction unit, respectively [65]. For their suggested 
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powder deposition methods, Girnth et al. concluded that 
increased MM powder deposition rates lead to increased 
levels of powder cross-contaminations [15].

Due the particle size, the requirements in terms of pow-
der quality, and the physical similarity of processed powder 
materials existing recycling methods from other industries 
are only partially applicable to MM PBF powder mixtures. 
Therefore, Horn et al. conducted a utility value analysis and 
identified nine process groups relevant for PBF powders 
[75]. Among the most promising ones are sieving and ferro-
magnetic separation, which have previously been suggested 
by Chivel [76] and Sing et al. [77] as well as Sing et al. 
[77], respectively. Powder separation based on ferromag-
netic properties of one component can either be conducted 
manually [19, 75] or automated [78]. However, for manual 
separation, the non-ferromagnetic component yielded puri-
ties above 99 wt.%, whereas the ferromagnetic powder mate-
rial remained below 80 wt.% purity [75]. Automated sorting 
trials were below these purity levels [78]. Processing pow-
der materials with different particle size distributions over 
three 3D-MM PBF-LB process cycles and sorting them via 
sieving yielded powder purities above 97.6 particle percent 
(part.%) and good powder recovery rates. Furthermore, Horn 
et al. investigated the applicability of sedimentation pro-
cesses and found tungsten to be separable from aluminum 
and titanium alloys [79]. If applied to non-corrosive flu-
ids, the powders are also not expected to pick up oxygen, 

nitrogen, or hydrogen during wet dispersion separation pro-
cesses [79].

7 � Conclusion and outlook

The vision for multi-material (MM) manufacturing through 
AM is to produce parts that utilize different materials speci-
fied by local requirements, which means to produce FGMs 
with a discrete or graded material transition. In this review, 
the focus is set on metal MM manufacturing by powder bed 
fusion (PBF) processes. The current state of research is sum-
marized in Fig. 5, following the process steps of the general-
ized AM process chain.

Considering the technological aspects in the pre-pro-
cessing, the design of MM parts is just in the beginning 
stages. First publications discuss processes and tools on a 
theoretical level, but specific results, like parameter studies 
or use cases are not available. Moreover, the data preparation 
for the AM process is based on STL files, which represent 
only geometrical information. Thus, the current preparation 
process is manual and error-prone. In the context of MM 
especially, the benefits of advanced data formats for AM are 
discussed, which allow defining material properties within 
the part geometry. If these data formats become a new stand-
ard in the AM sector, the modeling and representation of 
MM parts is facilitated.

In the in-process, the manufacturing of 3D-MM parts is 
demonstrated with holohedral, nozzle-based, and pressure-
based masked deposition devices. MM powder deposition 

 
� MM design processes and tools are discussed 

on a theoretical level in the literature
� Specific MM design guidelines were not 

identified (e.g., parameter studies, case studies)
� Data preparation is a manual process based on 

inadequate data format (STL)

� Manufacturing of 3D-MM parts is demonstrated 
with holohedral, nozzle, and masked concepts

� All 3D MM concepts are in a prototype state with 
poor integration into the AM system

� The available material range is narrow and 
mainly focused on steel-copper combinations

� Principles for powder separation are identified 
and tested to overcome the contamination

� Post-processing steps (e.g., heat treatment, 
machining) are not investigated for MM aspects

Pre-process

In-process

Post-process

Fig. 5   Development state of multi-material processes

Table 2   Maturity level of multi-material in PBF

 

Manufacturing readiness level MRL
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(Pressure-based)
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performance varies between deposition strategies. While 
masked deposition devices have the lowest MRL, their depo-
sition rate is comparable to the lower end of mono-material 
processes. If powder deposition resolution is increased, 
these technologies show large potential. Nozzle-based solu-
tions have a higher MRL, yet deposition rates are roughly a 
hundred times lower than masked and holohedral devices. 
Low levels of cross-contaminations and minimum material 
requirements, however, make nozzle-based systems relevant 
for the creation of thin layers or small features, like circuit 
paths or the processing of expensive materials. Holohedral 
deposition concepts currently have a high MRL, high reso-
lution, and a high deposition rate. The latter could also be 
increased by, e.g., combining the suction with the deposition 
step. But their major drawback is the high level of cross-con-
taminations. All in all, currently only prototype AM systems 
in a research environment are capable of manufacturing MM 
parts. These systems are utilized as a proof-of-concept, but 
do not allow the manufacture of MM parts with the reliabil-
ity required for production. For the 2D hybrid manufacturing 
approach, serial applications are proposed by manufacturing 
companies [80]. The available material range in MM is lim-
ited. The most investigated material combinations are steel-
copper and steel-steel. To proceed in the development of 
MM manufacturing a reliable AM system, capable of MM, 
is required. Moreover, the material range can be extended by 
integrating results from related technology fields {e.g., weld-
ing of dissimilar materials [81, 82]}. In terms of process 
monitoring, basic concepts for MM PBF-LB have been iden-
tified. Process understanding, however, needs to be deepened 
and monitoring solutions need to improve to be transferred 
to industrial applications.

In the post-processing, cross-contamination for the metal 
powder is investigated. Here, the literature is reviewed on 
separation principles that have been tested exemplarily on 
specific combinations of materials. Ferromagnetic particle 
separation and sorting based on particle size via screening 
are already in use in laboratory applications. Further process 
steps to finalize a MM part (e.g., heat treatment, machining) 

are not discussed in the analyzed literature, despite MM 
parts requiring an adjusted process chain to obtain techni-
cal functionality.

Economic aspects for MM parts are difficult to assess, 
because of the current state of technology maturity. In sev-
eral process steps, the effort for manufacturing a serial MM 
part is unclear {e.g., machine runtime when utilizing a MM 
application device, conditions, and quality of powder separa-
tion techniques [83]}. Hence, a cost estimation for MM parts 
must be based on vague estimations. Nevertheless, it can be 
stated, that the additional efforts required to produce MM 
parts will cause costs, which exceed the current costs of the 
PBF-LB process for mono-material parts.

In conclusion, multi-material manufacturing offers the 
potential to utilize different materials on a local level within 
a part. PBF processes demonstrated the capability to pro-
duce such parts. However, the overall technology maturity 
of 3D-MM in PBF is assessed as manufacturing readiness 
level 4–5 {MRL; defined in [25]}, which can be consid-
ered as pacemaker technology. A 2D hybrid manufacturing 
approach is already utilized for serial products, thus it has 
a MRL of 7-9. The 2D full AM approach has a MRL of 
6-7 (see Table 2). In a study from 2017, 60% of participants 
stated that MM manufacturing by PBF will not be techni-
cally feasible prior to 2026 [84]. Thus the development of 
MM manufacturing by PBF is expected to cover at least a 
10 year timespan.

The further development of MM technologies must be 
driven by applications utilizing the benefits of MM parts, 
which will cause AM system manufacturer to develop appro-
priate manufacturing systems. Considering the development 
of the PBF-LB process, it is expected that such applications 
can be identified at first in the medical and aerospace sector. 
This comprehensive review of MM in PBF processes sup-
ports this identification by summarizing the state of research 
in materials, MM deposition devices, and the implications 
for the process chain.
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Appendix

Table 3   Literature sources for 2D multi-materials

MF manual feedstock change, AF automated feedstock change, N Nozzle-based concept, C coater-based concept
a PBF-EB process
b Material transition along coater axis
c Micro PBF-LB process

MM approach Reference Deposi-
tion 
approach

Material A
(hybrid: conv. material)

Material B

2D AM on conventional material 
(hybrid approach)

Bai et al. [85] Fe (cast CrMn steel) Fe (MS 1)
Tan et al. [86] Cu (C 11000) Fe (MS C 300)
Tan et al. [87] Fe (CS 45)

Fe (SS 304)
Fe (MS C 300)

Bhaduri et al. [88] Al (AA6082) Al (AlSi10Mg)
Jurisch et al. a[29] Fe (1.2343) Fe (FeCr10V)
Nguyen et al. [89] Fe (316L) Al (pure)
Tan et al. [90] Cu W (pure)
Shakerin et al. [91] Fe (H13) Fe (MS1)
Cyr et al. [92] Fe (H13) Fe (MS1)
Leuteritz et al. [93] Al (casted Al-7075)

Al (casted Al-6082)
Al (AlSi10Mg)
Al (AlSi10Mg)

Link et al. [27] Fe (1.4301) Fe (1.4404)
Santos et al. [94] Fe (AISI H13)

Fe (stainless steel AISI 420)
Fe (AISI 18Ni300)

Tan et al. [87] Cu Fe (maraging steel)
Zghair and Lachmayer [95] Al (casted Al-7075)

Al (casted Al-6082)
Al (AlSi10Mg)
Al (AlSi10Mg)

Hallmann et al. [96] Fe (1.4301)
Fe (1.0330)

Fe (1.2709)
Fe (1.2709)

Wallis et al. [97] Cu (2.0090) Fe (1.2709)
Yeong and Chen [98] Fe (316L) Cu (Hovadur K220)

Full AM Wits and Amsterdam [99] Fe (316L) Ni (In718)
Chen et al. [100] Fe (316L) Cu (CuSn10)
Nadimpalli et al. [101] N/AF Fe (440C) Fe (316L)
Yusuf et al. [102] Fe (316L) Ni (IN718)
Schmid [103] MF Al (AlSi12) Mg (AZ91)
Chueh et al. [104, 105] N Fe (316L) Polymer (PLA, PET)

Cu (CuSn10)
Hansen et al. [106] N/AF Fe (316L) Fe (MS1)
Koopmann et al. [107] Fe (X38CrMoV5-3) Ceramic (ZrO2-Al2O3)
Nadimpalli et al. [108] N/AF Fe (316L) Fe (MS1)
Demir and Previtali [109] AF Fe (pure) Fe-Al-mixture (55/45)

Al (AlSi12)
Sing et al. [77] C Al (AlSi10Mg) Cu (C18400)
Liu et al. [110] C Fe (316L) Cu (C18400)
Beal et al. b[31] C Fe (H13) Fe-Cu-mixture (50/50)
Mumtaz and Hopkinson [111] Ni (Waspalloy) Ni-ceramic-mixture (90/10)
Regenfuss et al. c[30] C Ag Cu
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