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Abstract

The primary objective of the present literature review is to provide a constructive and systematical discussion based on the
relevant development, unsolved issues, gaps, and misconceptions in the literature regarding the fields of study that are
building blocks of artificial intelligence-aided life extension assessment for offshore wind turbine support structures. The
present review aims to set up the needed guidelines to develop a multi-disciplinary framework for life extension management
and certification of the support structures for offshore wind turbines using artificial intelligence. The main focus of the
literature review centres around the intelligent risk-based life extension management of offshore wind turbine support
structures. In this regard, big data analytics, advanced signal processing techniques, supervised and unsupervised machine
learning methods are discussed within the structural health monitoring and condition-based maintenance planning, the
development of digital twins. Furthermore, the present review discusses the critical failure mechanisms affecting the
structural condition, such as high-cycle fatigue, low-cycle fatigue, fracture, ultimate strength, and corrosion, considering
deterministic and probabilistic approaches.

Keywords Offshore wind; Life extension; Artificial intelligence; Fatigue; Structural integrity; Corrosion-related cracking;
Risk-based maintenance

1 Introduction climate change and enabling sustainable energy produc-
tion. This success could not be possible without the aid of

Europe has achieved its goal for 2020 regarding fighting offshore wind farms. Moreover, offshore wind farms have
continuously expanded with larger and more powerful oft-

Article Highlights shore wind turbines (Diaz and Guedes Soares, 2020a). The
SET-Plan objectives published by the European Commis-
sion for the medium term (2020-2030) urge continuous

* The historical background and new developments in intelligent
structural integrity management are discussed within the scope of

the life extension of offshore wind turbine support structures; growth in both onshore and offshore wind farms, the ex-
* Big data analytics, advanced signal processing techniques, super- pansion of deep offshore technology on an industrial scale,
vised and unsupervised machine learning methods are discussed and further cost reductions. Moreover, the installed capaci-
within the scope of structural health monitoring and condition- ty reaches 400 GW, annual installations reach 20 GW, half

based maintenance planning; offshore in 2030, and wind energy is expected to account

for 33% of EU electricity consumption. For the long-term
(2030-2050), the primary energy market will be offshore
wind and is expected to provide 50% of the EU’s electrici-

Relevant literature on high-cycle fatigue, low-cycle fatigue, frac-
ture, ultimate strength, and corrosion are critically reviewed within
the context of the structural integrity of offshore wind structures;

The risk-based structural assessment is highlighted for an early

warning and optimal remedial action for ageing support structures. ty needs (Amanatidis, 2019).
Despite a promising future for offshore wind, the ex-
b4 Y. Garbatov pected levelised cost of energy (LCOE) for offshore wind
yordan.garbatov@tecnico.ulisboa.pt turbines (OWT) is still higher than onshore (Castro-Santos
' Centre for Marine Technology and Ocean Engineering (CENTEC), et al., 2016). Moreover, unforeseen operational cost relat-
Instituto Superior Técnico, Universidade de Lisboa, Lisbon, ed to corrosion and corrosion-induced cracking has caused
Portugal LCOE to be much higher than the targeted values (Hilbert
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et al., 2011). The unprecedented corrosion issues in mono-
pile foundations in the European offshore zone, particular-
ly in the North Sea (Momber, 2011), were one of the first
warnings that indicated a paradigm shift in the life-cycle
design of OWTs. Hence, the greatest challenge for offshore
wind is to reduce costs significantly to achieve the EU’s
long-term targets.

From the structural assessment standpoint, OWT struc-
tures have been treated as though they are very much simi-
lar to conventional offshore Oil & Gas platforms, which
can be valid to some extent. However, offshore wind tur-
bine structures differ considerably from the traditional off-
shore platform, both fixed and floating, from the loading,
operation, consequence, risk-involved and risk management.

For instance, offshore wind farms have been capital-in-
tensive engineering projects as the capital cost may go up
to 80 per cent (Aswathanarayana and Divi, 2009). Conse-
quently, the design philosophy has been towards the “safe
life” philosophy. However, as the number of OWTs in a
wind farm and useful service life increases, the operational
costs increase; consequently, the importance of finding op-
timal inspection and maintenance strategies is expected to
be more important than ever.

All the life-cycle phases, design, construction and opera-
tion are intertwined and must be dealt with in a holistic ap-
proach that incorporates all life-cycle phases and interac-
tions between them. Substantial progress in reducing
LCOE can be achieved by holding a holistic view, cover-
ing construction, inspection and maintenance of the OWTs,
which may mean not only maintenance planning would un-
dergo some update but also the design (Yeter et al., 2019a).
In this sense, the design philosophy is called “design for
maintainability”, in which the importance of operation and
maintenance is paramount during the project development
and design phases.

Decommissioning has been seen as the last phase of a
life cycle of an offshore wind farm by default. Apart from
decommissioning, the project owners can also decide to ex-
tend the service life of the assets, and this decision can be
put into practice in various forms, such as retrofitting and op-
erational intensity reduction, so long as the appropriate certi-
fication is provided for the continuation of the service life.

The life extension can be seen as a viable option for the
ageing offshore wind turbines as long as the profit (bene-
fit) obtained from the operation overcomes the economic
consequence of structural failure (cost). Nevertheless, be-
fore going with the life extension decision, the life exten-
sion projects need to be certified by classification societ-
ies. In this regard, DNV (2016a) and DNV (2016b) report-
ed principles, technical requirements and guidance for the
lifetime extension of offshore wind turbines, which finds
both practical and analytical assessments to ensure the in-
tended life extension without compromising the operation-
al safety and serviceability of offshore wind turbines.

From the practical assessment standpoint, structural com-
ponents of the offshore wind turbine should go through in-
spections of the wind turbine, taking into account the main-
tenance/ operational history. The practical part can be en-
hanced by continuous structural health monitoring and sen-
sors. Furthermore, DNV (2016a) and DNV (2016b) also
suggest three analytical assessment approaches that can ac-
company the practical assessment part: simplified approach,
detailed approach and probabilistic approach.

The simplified approach focuses on the fatigue limit state,
ensuring the structural integrity of all components based
on a comparison of the fatigue loads. The detailed approach
also focuses on the fatigue limit state and structural integri-
ty; however, it requires the wind turbine design documen-
tation and site-specific environmental conditions (wind,
wave, temperature, humidity, ice aggregation, salt content
of the air etc.), soil conditions, and the influence of wind
farm configuration. A detailed approach is a deterministic
approach, neglecting the uncertainty associated with the
wind load calculation, the fatigue failure mechanism and
the numerical and analytical assessment methods. To solve
this issue, the probabilistic approach involving structural
reliability analysis is suggested.

There are many challenges identified with the life-cycle
extension certification and decisions, although the guide-
line provided by classification societies give some insight
regarding the life extension certification. As of now, there
is no up-to-date guideline that is comprehensive enough
for the life extension assessment incorporating emerging
technological development and economic conjuncture.

For optimised life extension performance, the introduc-
tion of intelligent monitoring and maintenance systems us-
ing artificial intelligence is inevitable. Appropriate input
can be supplied for the supervised machine learning algo-
rithms to create predictive models, whereas unsupervised
machine learning techniques can provide information re-
garding unprecedented damage. Furthermore, the interven-
tion schemes gain higher effectiveness once the risk-based
assessment is incorporated into the intelligent life exten-
sion management systems.

The present work aims to contribute to the literature by
reviewing the most relevant and recent publication with re-
spect to the life extension assessment of offshore wind sup-
port structures aided by artificial intelligence (advanced sta-
tistical analysis, signal processing techniques, machine learn-
ing and deep learning algorithms). The present work pres-
ents the literature review under four sections that are deemed
to be the main building block of Al-aided life extension as-
sessment for offshore wind turbine support structures.

The first section focuses on the acquisition, pre-process-
ing and analysis of the big data gathered from the condi-
tion monitoring system and non-destructive inspections.
The second section discusses the structural integrity assess-
ment for life extension within the context of high- and low-
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cycle fatigue, crack growth subjected to underload/over-
load, corrosion-induced cracking, and the ultimate strength.
The following section reviews a selection of studies that
discuss the development of data-driven intelligent mainte-
nance management systems. Particular attention is given
to early warning systems for potential failures and mini-
mal human involvement in inspection and maintenance.
The final section is dedicated to the multi-dimensional
risk-based framework for life extension assessment of off-
shore wind turbine support structures, covering the struc-
tural reliability of correlated failure-prone components, the
target reliability for life extension, and the probabilistic
evaluation of life extension performance accounting for
both technical and economic criteria.

2 Big data collection, preprocessing and anal-
ysis using artificial intelligence

In a careful attempt to push the limits of the possible de-
sign space without taking drastic measures in terms of safe-
ty margins, structural health monitoring (SHM) systems have
risen as an appropriate answer to meet the growing de-
mand for inexpensive offshore wind energy. The responsi-
bility of the SHM system is to detect and identify damages
so that necessary measures can be taken promptly to se-
cure structural integrity and serviceability.

In this regard, the concept of an Al-aided maintenance
system integrated into life-cycle management has a vast
potential; yet, there is much to explore and investigate as
the use of such complex systems is in its infancy. Further,
introducing an integrated intelligent maintenance system
within the scope of life extension and certification poses
an interesting multi-disciplinary optimisation problem. This
optimisation problem covers all the costs associated with
developing such complex systems, implementation to the
offshore wind farm, substantial storage and processing ca-
pacities, and the monetary consequence of not implement-
ing such systems.

Lian et al. (2019) emphasised the importance of data-
driven structural integrity management by stating that sev-
eral failure cases where the failures from different parts of
the OWTs could have been avoided if the decision-makers
had provided more information or data and the proper meth-
ods to analyse the given big data. They also considered in-
sufficient supervision together with insufficient structural
strength, fracture, resonance and human faults as the pri-
mary cause of failures. An overview of failure data of
wind turbines can be found in Santos et al. (2015a).

The current economic losses caused by unprecedented
maintenance actions due to the lack of information on the
structural condition indicated the significance of the struc-
tural health monitoring systems combined with the safety
evaluation techniques for offshore wind turbine compo-
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nents. Some applications of condition-based maintenance
and SHM for wind turbine components were reviewed by
Martinez-Luengo et al. (2016) and Lian et al. (2019) with
a thorough presentation of monitoring system techniques,
data acquisition, feature extraction and safety evaluation.
However, the development of a framework for intelligent
maintenance management fed with the structural condition
data from the SHM systems lacks the support structure
subjected to environment-assisted degradation mechanisms
such as corrosion and fatigue.

Martinez-Luengo et al. (2016) suggested employing su-
pervised and unsupervised machine learning techniques. It
was recommended that after proper treatment of noisy data
using sophisticated signal processing approaches such as
wavelet time-frequency analysis (Antoniadou et al., 2015),
the multilayer ANN for the pattern recognition and predic-
tion model can be employed for the SHM procedure incor-
porated into the intelligent maintenance system.

Antoniadou et al. (2015) discussed the latest advances
in structural health monitoring (SHM) and condition-based
maintenance systems for wind turbine components. The
study indicated that data-driven vibration-based analysis
methods appear to be very promising, although difficulties
exist related to the operational conditions of wind turbine
systems. In this case, the resulting non-stationarity should
be considered. Advanced signal processing methods such
as time-frequency analysis or co-integration could success-
fully perform the feature extraction part of a complete SHM
system integrated into intelligent maintenance systems.
Antoniadou et al. (2015) also highlighted the importance
of pattern recognition and machine learning approaches
for the SHM procedure, as it was stated.

Ziegler et al. (2018) argued that the life extension as-
sessment of OWTs could benefit from training the big data
provided by SCADA and sensors fatigue life of critical
hotspots. The discussion highlighted the fact that condition
monitoring does not involve model uncertainty, whereas it
is subjected to measurement uncertainty. It was also stated
that the trained model could be used for other OWTs; how-
ever, the study did not mention how the correlation be-
tween the OWTs could be included in the trained artificial
intelligence models. To deal with the whole offshore wind
farm, Weijtens et al. (2016) proposed the fleet leader con-
cept, in which a limited number of representative turbines
are instrumented with accelerometers and strain gauges.
The fatigue damage assessment is based on the damage
equivalent loads for different turbulence and site condi-
tions. The results from these turbines are extrapolated to the
entire farm using an empirical formula.

The offshore wind industry has widely employed super-
visory control and data acquisition (SCADA) systems and
condition monitoring systems to be able to monitor struc-
tural health. The wireless networks of sensors can measure
and transmit big operational data such as vibrational accel-
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eration, displacement, strain, temperature and wind speed
and direction, rotor speed, output active and reactive pow-
er at the different sampling rates to detect possible damag-
es and inform their criticality through structural integrity as-
sessment.

However, the development of such complex systems is
a challenging task. The big data collected through structur-
al health monitoring systems, embedded sensors and acous-
tic emission require to be cleaned from artefacts using the
denoising and nonlinear detrending methods. Due to the
number of channels and variables, dimensionality reduction
techniques need to extract the most significant features that
explain the damage output.

In this regard, Yeter et al. (2021) performed a systemati-
cal data analysis of structural health monitoring data for
ageing fixed offshore wind turbine support structures fol-
lowing the methodology presented in Figure 1.

The methodology presented involved several steps, start-
ing from the time-domain wind load simulation combined
with the noise originating from different resources. The re-
sulting noisy time signal goes through a data pre-process-
ing procedure involving mean-centring, detrending and high
and low-pass filtering. Subsequently, the methodology
checks whether the original signal and the reprocessed sig-
nal come from the same population via parametric and non-
parametric statistical tests to confirm the success of the data
pre-processing procedure.

The methodology illustrated below was developed to be
applied to the time-domain structural assessment of a 5 MW
NREL wind turbine supported by a monopile structure,
where the mean wind speed (U) is 11.8 m/s, the turbulence
intensity (/) is 0.12, and the natural frequency is 0.218 Hz,
which is needed for the dynamic amplification factor (DAF).

In terms of high pass filters to smoothen the noisy sig-
nal, the Gaussian filter, running mean, and running median
can be applied, as illustrated in Figure 2. Figure 2 (a) illus-
trates the mudline bending moment time signal filtered by
the Gaussian filter, and Figure 2 (b) shows the running me-
dian using a kernel size (window width) of 40 ms.

Both the running mean and the Gaussian filter can
smoothen the noisy data provided that the kernel size is
chosen carefully. Nevertheless, both filters can yield erro-
neous results when the measurement is subject to sharp
and sudden irregularities. To address this issue, Yeter et al.
(2021) suggested using the Teager-Kaiser energy operator
(TKEO) (see Figure 3 (a)) in combination with the run-
ning median. Figure 3 (b) demonstrates the success of the
running-median filter when it comes to denoising the faulty
measurement merged with noisy data.

As TKEO calculates the instantaneous energy of a signal
at varying frequency bands, revealing the sudden change in
instantaneous energy level, the running median smoothens
the signal because it is insensitive to outliers.

Within the scope of the Al-based structural health moni-
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Methodology for the SHM data preprocessing (Yeter et

toring data preprocessing, the Principal Component Analy-
sis (PCA) and the Welch method can also be discussed. PCA
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Figure 2 Different denoising techniques (Yeter et al., 2021)

can deal with feature extraction, separating the artefact da-
ta from the measurements, yielding the SHM data with few-
er dimensions that account for most of the spread in the
original data. Whereas the Welch method provides a fre-
quency domain solution to deal with a noisy time signal,
especially when the SHM data shows a nonstationary be-
haviour or has a low signal-to-noise ratio.

In the example presented in Figure 4, a comparison be-
tween a noisy time signal collected from a sensor on a
monopile support structure and the data generated using
the obtained principal components. The data generated based
on the first two principal components seem to be very much
coherent with the measured data, which allows for the ex-
tracted core features, in turn, the principal component (PC),
to simulate new data for further analysis. Also, PCA can
be considered a very useful tool to deal with the multivari-
ate time series that are emerged from the same origin and
are subjected to different intermediary processes or noise
caused by environment or machine operation.

In Figure 5, the difference between the power spectra
obtained through the static FFT and short-time Fourier
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Transform is shown. It is evident that the Welch method
smoothens the power spectrum of a cleaner signal, which
allows for a much more accurate replication of the time sig-
nal to be used for further analysis related to structural integrity.

15
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Figure 5 Comparison of between static FFT and the Welch Method
(Yeter et al., 2021)

In addition to the above, Martinez-Luengo et al. (2016)
gave a detailed review regarding other advanced monitor-
ing technologies employed at offshore wind farms, such as
laser interferometry, photogrammetry, X-ray imaging and
laser Doppler vibrometry. In addition to the condition mon-
itoring technologies, thermography technologies can de-
tect abnormalities in the material based on the subsurface
temperature gradients by using infrared cameras. The dam-
age in the material can be seen by observing the change in
thermal diffusivity. Also, combined technologies such as
vibro-thermographic and acoustic emission ultrasonic wave-
based monitoring can locate cracks and measure their di-
mensions.

Although these advanced methods have been promising
for support structure implementation, the cost-benefit anal-
ysis of the implementation has yet to be demonstrated. In
this regard, (Carden and Fanning, 2004) suggested several
issues resulting from the noise in the measures, which
makes the measurements, in turn, analysis, less reliable.
The noise is usually caused by instrumentation, hostile en-
vironments, marine growth, corrosion and temporal chang-
es in the condition of the support structure.

Acoustic sensors (AE) have also been an efficient way
to detect corrosion of different types, such as uniform cor-
rosion, corrosion pitting, stress corrosion cracking, and ero-
sion-corrosion. The advantages of using AE to investigate
stress-corrosion cracking and corrosion pitting have been
shown in numerous studies. Calabrese et al. (2016) stated
that different damage mechanisms could be identified with
the help of AE, such as hit duration and rise time, burst av-
erage frequency, crack index, and hit energy. Low energy
hits, low rise-time and low duration, are associated with

the pit initiation and growth, while high energy hits, high
rise-time and high duration are associated with the crack
opening mechanisms.

Another study by Delaunois et al. (2016) regarding chlo-
ride-induced stress corrosion cracking on stainless steel Al-
SI 304L found that the rise-time and amplitude were the
most significant AE parameters. Alvarez et al. (2012) ob-
served similarities between the acoustic emission signals
originating from both transgranular and intergranular SCC
under the same experimental conditions and concluded
that similar AE parameters could be valuable for monitor-
ing SCC via AE. Kova¢ et al. (2015) have also proposed
employing AE parameters such as burst time and power
spectra features to monitor and detect stress corrosion
cracking stainless steel material. Jomdecha et al. (2007)
used the AE technique to identify short- and long-range
crack propagations as a result of high stress intensity at the
nucleated SCC crack tip and anodic dissolution at the
crack tip, respectively. Wu et al. (2016) stated that the low-
energy signals originated from the hydrogen-bubble evolu-
tion inside the pits, while the high-energy signals were at-
tributed to the pit rupturing during pit growth.

Despite the successful application of the AE technique
for monitoring overall corrosion and the extent of the dam-
age caused by corrosion, there are still challenges in find-
ing the local corrosion pits and pit dimensions. For this sake,
the scope of the data acquisition needs to be extended. In
this regard, Price and Figueira (2017) highlighted the im-
portance of monitoring to increase the level of understand-
ing of conditions inside the foundations. Manual or online
data acquisition regarding corrosion parameters can include
dissolved oxygen, temperature, salinity, pH values, and po-
tentials. From the condition-based maintenance and health
monitoring point of view, it is essential to use the field da-
ta like strain sensors in the remaining fatigue life of offshore
wind turbine structures.

Prior to developing and training the prediction models
with machine learning techniques, the collected big data
needs to go through data pre-processing. The data pre-pro-
cessing involves removing missing data, filtering or de-
noising noisy measurements, completing the missing data
with statistically appropriate values, outlier identification
and treatment. Yeter et al. (2021) suggested using nonpara-
metric statistical tests to confirm the SHM data pre-pro-
cessing appropriateness. Figure 6 (a) shows the processed
SHM data tested and failed to comply with the normality
assumption; thus, a nonparametric statistical test was found
appropriate to confirm the success of the SHM data pre-
processing, as seen in Figure 6 (b).

Depending on the nature of the data, the techniques
used for pre-processing can vary. Moreover, these tech-
niques should be applied carefully because the algorithm
used for filtering or outlier detection can easily corrupt actu-
al meaningful data even though the aim is to decrease the
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error level. Thus, expertise in data analysis and the phe-
nomenon on which the data analyst works is essential. A
careless application or overdoing can jeopardise the suc-
cess of both data Al-based prediction models.

As far as damage extraction is concerned, machine learn-
ing algorithms combined with signal processing techniques
can provide reliable mathematical relationships that ex-
plain the damage status based on the structural natural fre-
quency. Marti-Puig et al. (2018) suggested predefining the
absolute and relative ranges of variables based on the ex-
pertise to not miss out on any failure state of the wind tur-
bine due to outlier filtering methods such as quantile filter,
extreme studentised deviate test and the Hampel identifier.
Stetco et al. (2019) gave an extensive review of the ma-
chine learning methods for wind turbine condition moni-
toring. The review covered several filtering and feature se-
lection methods that can be used for more efficient ma-
chine learning modelling. Some of these methods such as
wrapper methods for which a forward or backward selec-
tion can be adopted. The forward selection starts with a
small number of features, and more features are added to
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the system to improve the prediction performance, where-
as backward selection starts with all features and based on
the performance, the features are filtered (Kohavi and John,
1997). In addition to the wrapper methods, there are em-
bedded methods that take the feature selection as part of
the model’s training and filter methods that rank and filter
the features based on the significance test between feature
and outcome (Langley, 1994).

The Fourier transform and the wavelet transform can be
employed to translate a time-domain signal into its constit-
uent frequency components. The wavelet transform pro-
vides information on both the time and frequency do-
mains. Both the Fourier transform and the wavelet trans-
forms lose their suitability when the signal is trended or
non-stationary (Riera-Guasp et al., 2014).

The expert opinion becomes useful not only in filtering
but also in selecting variables to process as well. This phase
is named feature selection. In the feature selection phase,
the most relevant variables that would be used to predict
the desired outcome are identified. While the methods men-
tioned above are for feature selection, feature projection
transforms the multi-dimensional collected data into space
with fewer dimensions, such as the principal component
analysis. In this regard, linear and nonlinear principal com-
ponent analysis can yield the desired solution; however,
Postma et al. (2009) stated that linear techniques are often
more successful than non-linear dimensionality techniques.
Jiménez et al. (2018) and Jiménez et al. (2019) presented
an approach based on signal processing and machine learn-
ing techniques for detecting and diagnosing the delamina-
tion of wind turbine blades. The effects of environmental
and operational variation were dealt with through a nor-
malisation of the signal and the signal denoised by wavelet
transform.

There is a vast literature on big data collection and anal-
ysis for SHM systems, damage identification, signal pro-
cessing and machine learning. However, the literature be-
comes very limited in terms of interdisciplinary research
covering the mentioned fields of study within the scope of
life-cycle assessment and life extension certification. Fur-
thermore, the long-term economic implications of using
Al-aided structural health monitoring systems have yet to
be studied thoroughly. The majority of the studies regard-
ing OWTs focused on the blades, gearbox, and tower are
performed under laboratory conditions for a single struc-
ture, which means there are still many unresolved issues
for the ageing offshore wind farm with multiple OWTs ap-
proaching the end of their service life.

3 Structural integrity assessment of ageing
offshore wind support structures

The structural condition is a key parameter for the life
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extension decisions, which directly affects the inspection
and maintenance cost, in turn, offshore wind projects’ prof-
itability. A structural capacity above the permissible limit
within the desired service life is a prerequisite for offshore
wind turbine structures to be certified to extend their use-
ful service life.

The allowable limit must cover all possible failure mech-
anisms that affect the serviceability of an offshore wind
turbine (OWT) support structure. Therefore, it is impera-
tive to reassess the structural capacity with respect to dif-
ferent failure mechanisms so that the structural condition
is verified for the continuation of the service life. Structur-
al reassessment not only provides the means to verify the
structural design but also gives a chance to validate or up-
date the assumptions on the design basis, such as offshore
site conditions and structural condition.

The extended lifetime estimation would undoubtedly
benefit from the updated knowledge as the results of a struc-
tural reassessment would be more precise due to the need
for fewer assumptions. Thus, optimal life extension man-
agement can be planned, aiming to keep the OWTs operat-
ing as much as possible with minimal operational cost. Fur-
thermore, decision-makers need to consider repowering or
reducing the power capacity of the wind turbine depending
on the reassessment of the structural condition. The num-
ber of years for life extension, maintenance policies, and
power output are many parameters that form a complex
multi-dimensional optimisation problem.

The remaining life of marine structures can be estimated
based on the S-N approach and fracture mechanics, where
the S-N approach is oriented towards the fatigue design
life, and the fracture mechanics approach (Paris and Erdo-
gan, 1963) is oriented towards the remaining life of struc-
tural details with an initial crack (Shittu et al., 2021). The
S-N approach is considered to be a more reliable design
approach than fracture mechanics as fracture mechanics re-
quire more additional input variables to be considered (e.g.
crack growth rate, toughness, and residual stress distribu-
tions) (Anderson, 2017). Nevertheless, several limitations
exist with the S-N data approach concerning offshore wind
turbine structures, such as design for inspection, the effect
of larger defect size, new welding processes, new materi-
als, and the shakedown effect (Amirafshari et al., 2021). In
the S-N approach, three stress approaches can be em-
ployed: nominal stress, hot spot stress and effective notch
stress (Niemi et al., 2004). Moreover, the hot spot stress
approach is one of the most practical methods for fatigue
damage assessment (Niemi et al., 2004; Niemi et al., 2018a;
Niemi et al., 2018b; Hobbacher, 2009).

The fatigue design methodologies used for OWT sup-
port structures have benefited immensely from the experi-
ences gained from the wind turbine industry and offshore
oil & gas industry (Barltrop et al., 1991). With the intro-
duction of powerful numerical tools and the studies carried

out to verify the existing codes (IEC 61400-3, 2009), the
approaches used for the dynamic analysis of OWT support
structures have aimed to integrate load and strength analy-
ses in the time domain (Brennan et al., 2012). The rain
flow cycle (RFC) counting method (Rychlik, 1987) is the
most commonly used technique to address the fatigue dam-
age of structures using the time history of either stress or
strain (Singha and Ranganatha, 2007). Yeter et al. (2015a)
adopted the three-point cycle counting technique in the
time-domain fatigue damage assessment of a fixed OWT
support structure. The study compared the time-domain so-
lution with the spectral approach (Yeter et al., 2014a) (fre-
quency-domain solution) and closed-form approach (Yeter
et al., 2014b) (analytical solution) for the fatigue damage
assessment.

van der Tempel and de Vries (2005) stated that the fully
coupled time domain simulations captured the non-lineari-
ty of the wind turbine operation accounting for the entire
structural assembly and dynamic control system. Neverthe-
less, it was also stated that the spectral approach as an al-
ternative, especially in the absence of a complete model of
offshore wind turbine characteristics. Yeter et al. (2015a)
showed that the success of the time-domain and spectral
approach in predicting fatigue damage depends very much
on the bandwidth of the loading spectrum acting on a
structural detail. Several different methods have been pre-
sented for that purpose in terms of using a correction fac-
tor (Wirsching, 1980; Benasciutti and Tovo, 2004; Oritz
and Chen, 1987; Kim et al., 2007; Benasciutti, 2004), de-
riving equivalent stress in a closed-form (Chaudhury and
Dover, 1985) and proposing more complicated statistical
models to predict the long-term stress distribution based
on the statistical moments of the stress spectrum (Tunna,
1986; Zhao and Baker, 1992; Dirlik, 1985). Benasciutti
and Tovo (2006) reviewed the fatigue analysis on the wide-
band Gaussian stochastic process, and a comparison of
these methods has been reported in (Halfpenny, 1999;
Mrsnik et al., 2013). Yeter et al. (2016a) reviewed the
methods developed based on both narrow and wide-band
load assumptions and evaluated the predictive success of
these methods based on the Akaike (1973) information cri-
terion (AIC) (see Figure 7).

Furthermore, Gentils et al. (2017), Alati et al. (2013),
Yeter et al. (2017a) and Dong et al. (2011) also conducted
fatigue damage assessment based on the S-N approach so
as to verify the structural design of fixed offshore wind tur-
bine support structures.

The high-cycle fatigue (HCF) prediction can be a statis-
tical estimate with a large scatter allocation to establish an
allowable stress range within the material’s elastic limit
for intact structures. However, the low-cycle fatigue (LCF)
prediction method is a deterministic measure aiming to
find the actual number of cycles to failure Ramberg and
Osgood (1943) at the local level covering both elastic and
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Figure 7 Spectral fatigue damage model evaluation (Yeter et al.,
2016a)

plastic strain ranges. Low-cycle fatigue (LCF) is also
deemed the leading cause of the rapid crack formation af-
ter several large-scale plastic strains (Kim et al., 2005),
which may happen under high-stress concentration due to
deterioration mechanisms such as corrosion, fatigue and
plastic deformations. Yeter et al. (2015b), Yeter et al.
(2016Db), and Yeter et al. (2018) conducted some of the few
existing studies addressing the rapid crack initiation using
the local strain-based approach for OWT support struc-
tures. Figure 8 demonstrates the stress ranges normalised
by the material’s yield stress as a function of the number
of cycles to initiate a crack size of 0.1 mm.
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Figure 8 Relationship between stress ranges and the number of
cycles under LFC loading regime (Yeter et al., 2015b)

When the crack size exceeds the threshold presumed for
a physical crack size, the failure mechanism is best ex-
plained by fracture mechanics. Fracture mechanics pro-
vide the techniques to assess crack growth and monitor its
criticality. Through experiments, it is well-known that fa-
tigue crack growth follows a particular curve (Suresh, 1998),
which can be divided into three regions based on two char-
acteristic stress intensity factor ranges threshold stress in-
tensity factor (Ibrahim, 1989) and the critical stress intensity
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factor (Irwin, 1957).

Stable crack growth is observed over the central region
between the threshold stress intensity and the critical stress
intensity factors (Anderson, 2017). Paris et al. (1961) sug-
gested using the Irwin stress intensity factor range (Irwin,
1957) to describe the crack growth rate per cycle, presum-
ing that the central region includes the dominating part of
the fatigue life.

The Paris crack growth law is widely used to calculate
the crack life in offshore and ship structures since the re-
maining crack life can be directly estimated by integrating
the Paris law. Further, the cycle-by-cycle approach accounts
for the load interaction (retardation) and sequence effect of
random variable amplitude loading, which are neglected
by the characteristic approach employing the statistically
equivalent constant amplitude loading (Barsom, 1976). More
details on this type of analysis are given in (Skinn et al.,
1994; ASM, 1996). The mechanism underpinning the retar-
dation phenomenon is similar to the plasticity-induced
crack closure, which provides the basis of other retarda-
tion models called the yield-zone retardation model, most-
ly known as the Wheeler model (Wheeler, 1972) and the
Willenborg model (Willenborg et al., 1971). A more exhaus-
tive review on the yield-zone retardation phenomenon is
given in (Anderson, 2017; Suresh, 1998; Schijve, 2001).

In terms of the application of fracture mechanics in the
remaining life estimation of offshore wind structures, there
is rather a limited number compared to other marine struc-
tures such as ship and offshore oil & gas platforms. Fur-
thermore, the crack growth assessments have been mostly
conducted to aid the decision-making process regarding
the inspection and maintenance actions.

Ziegler et al. (2016) investigated the impact of weather
seasonality on the structural integrity of monopile OWT
support structure and concluded that the effect of loading
sequence on the crack propagation was negligible; howev-
er, it becomes considerably relevant in case of a detected
crack under overloads. Moghaddam et al. (2020) carried
out a parametric study of plate thickness, and load ratio for
both singular and multiple cracks on a spar-type floating
offshore wind turbine, which concluded that the cracks un-
der severe corrosion might lead to failure within 20 years
of service life. Long et al. (2020) calibrated the fracture
mechanics model with the S-N curve to quantify in-service
deterioration for the structural integrity management of
welded-tubular joints of OWT structures. Amirafshari et
al. (2021) presented a fracture mechanics framework for
optimising the design and inspection of offshore wind tur-
bine support structures. Jacob and Mehmanparast (2021)
stated that a corrosive environment has a more pronounced
effect on the fatigue crack growth rate at the beginning of
the propagation than in the later stages of propagation of a
long crack.

Fajuyigbe and Brennan (2021) presented a fitness-for-
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purpose assessment of a cracked offshore wind turbine
monopile based on the failure assessment diagram, which
involves linear elastic, elastic-plastic and plastic failure
mechanisms. A cycle-by-cycle approach that sums up the
incremental crack growth related to each load cycle is pro-
posed and applied to estimate the overall crack life (Yeter
et al., 2015¢c; Yeter et al., 2015d).

In this regard, Yeter et al. (2022a) explained the cycle-
by-cycle approach for the crack growth assessment within
a structural integrity assessment framework, which con-
sists of three main parts (see Figure 9).

As seen in Figure 9, the first part is related to the struc-
tural health monitoring data analysis, which is followed by
a crack growth assessment accounting for the load interac-
tion effect (both acceleration and retardation). The final
part involves the remaining crack life estimation through
the failure assessment diagram and the O&M cost analysis.

Yeter et al. (2022a) pointed out that the overloads and
underloads can significantly alter the crack growth projec-
tion; therefore, a structural integrity assessment account-
ing for load interaction effects is essential to achieve a
more reliable crack life prediction, which is translated into
a more reliable availability and annual energy production
estimate.

A detailed look into the crack growth simulation out-
come for retardation over a short period of ongoing retar-
dation is shown in Figure 10 (b). This implies that by con-
sidering the load interaction effects, the study was able to
achieve a less conservative crack monitoring capability, re-
sulting in optimal maintenance and life extension decisions.

Past experiences regarding corrosion on monopile OWT
enforce current management strategies to prevent costly
mistakes from repeating for life extension decisions. In
this sense, it is imperative to study corrosion and corro-
sion-related failure mechanisms more in-depth, consider-
ing the cost associated with the actions, such as galvanic
cathodic protection or epoxy coating, without neglecting the
environmental consequence of the remedial actions.

Corrosion-related failure mechanisms can be investigat-
ed under two categories. The first one is the structural in-
tegrity assessment, and the latter one is the ultimate strength
assessment.

In the presence of a tensile stress perpendicular to an ex-
isting crack, the crack opens, letting more electrolytes in
and causing further crack propagation. This electromechan-
ical process causes substantial structural integrity problems
reducing the remaining life of structures. In this context,
there are two prominent failure types: corrosion fatigue (CF)
under cyclic load and stress-corrosion cracking (SSC) un-
der sustained load (Bayoumi, 1996).

The susceptibility of a metal that suffers from SCC
tends to increase with the materials’ yield strength. Further-
more, it is suggested that there is a threshold related to the
yield strength for SCC to occur. In this regard, Crooker
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(1983) stated that if coupled with SCC, corrosion-induced
fatigue posed long-term threats to advanced high-strength
ship structures’ reliability and life-cycle costs. The given
statement is also valid for offshore structures such as off-
shore wind turbines, as they are made of high-strength steel.

The present work aims to tackle emergent corrosion
problems on monopile OWTs by investigating to what ex-
tent corrosion may affect the structural capacity and ser-
viceability of ageing OWTs. Within the scope of this sec-
tion, the corrosion and the effect on the load carrying ca-
pacity and structural integrity are reviewed thoroughly.

The corrosion degradation coupled with a cyclic or con-
stant mechanical load is identified as the most significant
danger to the structural integrity of the OWTs structures
by Momber (2011), as repeatedly reported for the internal
part of monopiles that are designed not to have coating
protection (Hilbert et al., 2011).

The hydrogen in the seawater caused may give rise to
hydrogen penetration into the material. Consequently, the
resulting hydrogen embrittlement may cause a significant
reduction of bulk elastic modulus following the deforma-
tion of larger grains, cracks, and blisters(Wasim and Dju-
kic, 2020, Djukic et al., 2014). Further, the resulting hydro-
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gen embrittlement of the material may accelerate the initia-
tion of surface flaws under cyclic loading (Suresh, 1998).
The microstructure, fabrication method, welding proce-
dure, residual stresses, mean stresses, material, environ-
ment, load conditions, frequency and stress ratio are
among many factors influencing the corrosion-assisted fa-
tigue crack growth (FCG) (Adedipe et al., 2016). All the
effects mentioned above may generate a degraded structur-
al state, which jeopardises structural safety, and they are to
be included in damage-tolerant assessments for life exten-
sion decisions.

Concerning the corrosion and corrosion protection of
OWTs, Momber (2011) has given a matrix that links corro-
sion types to major structural parts of OWTs. The matrix
associated the foundation, like the flange and tower sur-
face, with several types of corrosion, such as uniform cor-
rosion, pitting corrosion, aeration cells, galvanic corrosion,
and stress corrosion cracking. Masi et al. (2018) also re-
viewed materials and solutions against corrosion in OWT
structures, mainly focusing on the coating system selec-
tion. It was stated that the coating cost is not fully correlat-
ed with the coating thickness since the labour cost of ap-
plying the coating is much higher than the applied paint.
For this reason, only by reducing the number of layers in
coating a reduction in coating cost can be achieved, which
also brings reliability and durability issues since less re-
dundant coating application would mean higher chances of
having a through coating defect.

Nghr-Nielsen (2018) identified areas of concern for
both the internal and external sides of the monopiles. For
the external side, distance to the anodes and high current
demand, durability of the coating and clashing with sup-
port vessels are the main concerns in terms of corrosion
protection. The internal side, whose corrosion protection
was somehow neglected, may suffer from stress corrosion
cracking, hydrogen-induced stress cracking, and microbio-
logically influenced corrosion around the mud zone.

Duguid (2017) claimed that there was a perceived lack
of guidance from industry standards based on interviews
with experts from the offshore wind industry. It was stated
that the current standards were often considered inappro-
priate because the standards have not been developed for
OWT per se; rather, they were derived from the outdated
standards of other industries. Moreover, Black et al. (2015)
highlighted the need for an update for further documenta-
tion and guidelines on corrosion protection of OWT sup-
port structures based on the experiences reported within
the industry over the last decade.

Corrosion degradation is generally assumed as uniform-
ly distributed, approximated as 0.1 mm/year steel in sea-
water is approximately 0.1 mm/year, which has been sup-
ported by multiple studies (Garbatov et al., 2007). Howev-
er, it may also exhibit a very large scatter depending upon
the location in the structure. In this sense, corrosion can be
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modelled as a random time-variant surface (Silva et al.,
2013) accompanied by changing material properties (Gar-
batov et al., 2014a; Garbatov et al., 2014b) during the ser-
vice so that the corrosion effect is explicitly accounted for
in the structural integrity assessment.

Although corrosion cannot be singled out as a prevail-
ing failure mechanism, its effect on the ultimate strength
and fatigue cracking cannot be overlooked. The initial stud-
ies on fatigue in corrosive environments date back to 1930
(Gilbert, 1956). These studies were oriented to study the
fatigue behaviour of both intact structures and structures
with a fracture initiated by pitting or slip bands under cy-
clic loading. Most of the fatigue life is spent in crack nu-
cleation; however, under a corrosive environment, the crack
propagation phase dominates fatigue life by large.

The degradation affects the performance of the material
by increasing the crack growth rate. In this regard, even
pits of the order of a grain size may considerably degrade
a material. Wallace et al. (1985) named the cause of corro-
sion pits as localised chemical or mechanical damage to
the protective oxide film due to acidity, low dissolved oxy-
gen concentrations, and high chloride concentrations (as in
seawater). Besides, Grolvlen et al. (1989) investigated the
effect of corrosion pits on the fatigue strength of welded-
tubular and multi-planar joints of offshore platforms to
give an insight into the inspection and repair measures.
Similarly, Ricles et al. (1995) assessed the residual strength
of offshore platforms’ dented and corrosion-damaged tubu-
lar brace members.

Hoeppner (1979) introduced a conceptual model by
combining the pit growth rate theory with the Linear Elas-
tic Fracture Mechanics (LEFM), aiming to estimate the
time to crack initiation for a Mode I crack from a pit under
cyclic loading. The presented conceptual model was for-
mulated using an empirical pitting rate curve and a Weibull
fit of the appropriate crack growth data. Jakubowski (2015)
studied the influence of stresses on the general corrosion
rate and corrosion pit nucleation and growth rate using
two distinct approaches: either a pit as a stress riser or an
equivalent crack. It was also discussed in detail the relation
between the statistical distribution of pit depth and corro-
sion fatigue.

Kawai and Kasai (1985) showed that a corrosion pit
could be treated as an elliptical crack with a similar depth
and surface length, which allows developing a method to
determine a reasonable, allowable stress level in corrosion
fatigue. Smith et al. (2003) conducted an experimental test
on the fatigue life of laboratory-produced corrosion pits to
an electro-discharged machined (EDM) semi-circular disc-
shaped flaw, and the test revealed that the EDM notch and
corrosion pits of similar size had similar fatigue lives un-
der high local stress.

Kondo (1989) showed that the corrosion-fatigue life of
material could be determined by estimating the critical pit

level using the SIF relation and the pit growth rate rela-
tion. Lindley et al. (1982), too, adopted the concepts of
LEFM in an attempt to describe the development and
growth of cracks originating from shallow corrosion pits.
Rokhlin et al. (1999) analysed the crack initiation and growth
from artificial pits with different depths using a 3-D fracture
mechanical model to derive a relation between the pit depth
and the crack life. Mao et al. (2014) assumed semi-ellipsoids
for the morphology of the corrosion pit, which was charac-
terised by the aspect ratio. In terms of the time to initiate a
crack, the proposed model and experimental data available
in the literature showed a good agreement.

The studies mentioned above indicated that the total cor-
rosion fatigue life could be reasonably estimated based on
the assumptions such as modelling corrosion pits in a
hemispherical geometry and defining critical pit depth em-
ploying the stress intensity relation. Simplifying these as-
sumptions is also possible by assuming the volumetric pit
as a sharp crack and isolating the mechanical and environ-
mental contributions separately. However, the simplified
models have shown low generality and high dependence
on the varying system conditions. This assertion was con-
firmed by Larrosa et al. (2018) in a review article. The ef-
forts made to address corrosion-fatigue life for various ma-
terials by both academia and different industries.

In the numerical studies on the modelling and analysis
of stress-corrosion cracking, Moghaddam et al. (2019) as-
sessed the crack growth originating from corrosion pits us-
ing the XFEM technique. Non-uniform random distribu-
tion is used for pit dimensions in 3D, and elliptical cracks
are embedded at critical points of weldment for a spar-type
floating OWT. Shi et al. (2019) conducted a numerical
study of SCC in corrosion pits based on the recently devel-
oped peridynamic method to simulate cracks in pitted
pipes. The study aimed to find critical loads to initiate a
macroscopic crack. In addition, Shittu et al. (2020) carried
out a corrosion-induced crack growth analysis using the fi-
nite element method accounting for the stochastic nature
of the critical pit depth, applied stress range, material’s fa-
tigue properties, the shape of the corrosion pit, thrust force
and final crack depth.

A comprehensive analysis recommended that the pre-
ventive measures are of utmost importance for safety and
economic reasons. Wu et al. (2019) suggested that in-situ
acoustic emission (AE) monitoring could detect localised
corrosion and corrosion-related cracking; thus, AE can be
used to monitor against SSC-related failures. For the corro-
sion case, a low-frequency cluster was related to corrosion-
induced cracking, whereas a high-frequency cluster was re-
lated to hydrogen-bubble evolution. Kirchgeorg et al.
(2018) investigated the long-term environmental effects of
OWTs and found no clear evidence of a negative impact of
corrosion protection systems on the marine environment
due to the chemical emissions; however, they also pointed
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out that it may become more relevant for the marine envi-
ronment with increasing numbers of OWTs.

The ultimate strength is affected by corrosion because
the degradation in the material leads to the loss of structur-
al load-carrying capacity. Further, localised damage, such
as pitting, can also cause the structure to reach the buck-
ling phase earlier than the intact condition.

From the ultimate strength standpoint, Feng et al. (2020)
conducted an experimental and numerical analysis to study
the effect of pitting corrosion on the strength of steel plates.
A positive linear relationship was observed between the
degree of pitting and ultimate strength reduction. The study
also suggested that the degree of pitting above one-fourth
of the thickness of the intact plate could be deemed as a
threshold for the considerable ultimate strength reduction.

Yeter et al. (2020a) conducted a multi-dimensional fail-
ure assessment for three jackets offshore wind turbine
structures (see Figure 11), which coupled the loss of gradu-
al structural integrity and the ultima load-carrying capacity
within a single numerical FEA.

40 m 60 m 80 m
;E B - —
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Module C Module D
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X

Figure 11 Modular design concept for the jacket support structure
(Yeter et al., 2020a; Yeter et al., 2019b)

The results in Figure 12 ruled out some possible assump-
tions such as: the longer the leg length is, the lower the ul-
timate strength becomes because of the additional redun-
dancy and stiffness; also, the deeper are the waters the jack-
et OWT structure is designed for, the higher its ultimate
strength and stiffness become. Furthermore, the loss of
structural integrity due to the low-cycle fatigue load was
simulated in 10 steps, and a significant decrease (min 60%)
was determined in the global ultimate strength of “redun-
dant” jacket OWT structures.

Yeter et al. (2020a) extended the scope of the previous
analysis to study the effect of the loss of the leg compo-
nents on the ultimate strength. When the structure lost all
the leg components up to Module F, the calculated ulti-
mate strength is almost six times lower than an intact jack-
et support structure (see Figure 13).
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Figure 12 Ultimate strength of Jacket OWTs subjected to a pro-
gressive rupture (Yeter et al., 2020a)
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Figure 13  Ultimate strength of a jacket OWT after the leg compo-
nents are fully ruptured (Yeter et al., 2020a)

In light of the mentioned studies, it can be claimed that
there are three requisites for stress corrosion cracking to
occur: a susceptible material, a corrosive environment, and
a (high) stress or stress intensity factor. Depending on the
combinations of these requisites, other corrosion-related
mechanisms also occur, such as material degradation un-
der only corrosion under no stress-strain or the corrosion-
fatigue mechanism. The corrosion-related cracking mecha-
nisms can lead to catastrophic failures if the life-cycle
management of offshore wind turbine structures does not
involve both prevention and control to be able to deliver
an acceptable useful lifetime. The decision-makers, such
as designers, operators, project owners, and project survey-
ors, need to acknowledge these failure mechanisms and
then need to have the expertise to deal with them if or when
they happen. Hence, the life extension assessment must in-
volve prediction models for the significant failure mecha-
nisms given the resources to design the most effective strat-
egy that maximises the performance with minimum cost.

In essence, the approach to stress corrosion cracking
would cover crack nucleation in a probabilistic manner, fol-
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lowed by fracture mechanics formulations with adequate
adjustments, including threshold stress intensity factor. The
approach would yield an estimated cracking life and struc-
tural safety measure such as a reliability index. The risk-
based inspection and maintenance present the most ad-
vanced way to manage the life-cycle of the OWT structures
subjected to corrosion, fatigue and corrosion-related dam-
age mechanisms.

4 Condition-based maintenance planning for
support structures

Given that the unattended degradation on a structure can
cause loss of structural integrity or ultimate load-carrying
capacity over time, leading to costly catastrophic failure,
the risk associated with the structural degradation needs to
be managed through remedial actions such as maintenance
or repair. Thereby, a maintenance system that manages the
risks by means of preventive actions at minimal cost is es-
sential for already operative OWTs, the life extension of
these OWTs, and also the future wind farms.

The monitoring systems such as SCADA, condition
monitoring (CM), and structural health monitoring (SHM)
systems provide important information for the structural
health system on the history of the structural condition and
the operational condition. The acquired information can be
used to identify damages and extract significant damage
features. Moreover, mathematical relationships can be es-
tablished between the operating conditions such as wind
speed, wave height, temperature, salinity, and the predic-
tion models to be used in the maintenance planning can be
created provided that these relationships are given as a
function of time. For instance, a comprehensive monitor-
ing system can correlate the frequency of measurements
with the overall structural performance of the monopile
foundations by strategically located bidirectional acceler-
ometers, as reported in (Yang and Jiang, 2011). Liu et al.
(2018a) also dealt with the optimal location of sensors for
the damage identification model developed for a more
complex structure like jacket structures(Liu et al., 2018b,
Liu et al., 2018c¢).

The operational modal analysis and system identifica-
tion techniques can also identify the events affecting the
structural performance, such as resonance, foundation in-
stability, and yielding of the structural material, based on
the acceleration responses (Gomez et al., 2013).

The introduction of artificial intelligence (AI) in the
shipbuilding and offshore industry has opened many op-
portunities to improve the efficiency of engineering proj-
ects at every phase. From design to manufacturing, from
operation to life extension, artificial intelligence-based mod-
els can deliver a tremendous amount of tasks that humans
cannot perform. The success of Al in engineering projects

goes along with the ever-increasing computational power,
which allows benefiting from the use of big data. All afore-
mentioned statements are also valid for the offshore wind
industry as well.

With state of the art machine learning techniques, histor-
ical and new data can be used to learn existing patterns and
trends without human interaction. These machine learning
models can be trained to make accurate predictions that re-
sult in higher success in the decision-making process relat-
ed to maintenance planning and life extension.

The structural integrity assessment is one of the critical
elements of an intelligent maintenance system. A system
that defines the action to be taken to prevent structural fail-
ure requires profound and interdisciplinary modelling. The
multilayer artificial neural network (ANN) can read the
big data coming from multiple monitoring systems to learn
the complex degradation mechanisms affecting structural
safety and can provide prediction and classification mod-
els. This helps decision-making related to maintenance plan-
ning and life extension. In the case of not having any spe-
cific outcome as a failure, the associated data can be used
to classify abnormalities to be able to make an educated
guess on the subject by unsupervised learning.

In this regard, Nasiri et al. (2017) gave an extensive re-
view of the application of artificial intelligence methods
on mechanical fault detection. The studies existing in the
literature were discussed under four topics: (a) failure
mode and failure mechanism identification, (b) damage
and failure detection and diagnosis, (c) fault and error de-
tection, diagnosis and (d) mechanical fracture and fracture
parameters. Also, recently, Stetco et al. (2019) reviewed
the machine learning methods used for the condition moni-
toring of OWTs. The study stated that Al-aided condition
monitoring mostly utilises SCADA and simulated data,
and there were few cases where the experimental data or
image and audio data were used. The classification ap-
proach for learning from categorical data has been used
more than the regression condition monitoring of wind tur-
bine components.

Stetco et al. (2019) also highlighted the fact that the
deep ANN has recently gained overall recognition for be-
ing capable of learning complex non-linear functions, achiev-
ing superior performance compared to the other models,
especially when dealing with big data.

The use of machine learning methods is not limited to
condition monitoring. Hameed and Wang (2012) addressed
the maintenance of offshore wind turbines using ANN,
aiming with a special focus on access, weather, and logis-
tic issues. The study followed an approach that consisted
of cluster analysis and the categorisation of similar wind
turbines using Self Organizing Map ANN. The prediction
of the expected power output of OWTs within the same
cluster was strongly correlated with the failure rate.

Lu et al. (2018) adopted ANN to be able to predict failure-
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time distribution using the condition monitoring data, which
was later used for an optimisation problem aiming to achieve
the lowest expected maintenance cost. The opportunistic
maintenance strategy was explored with the use of a thresh-
old associated with two-level failure probability, aiming to
minimise the maintenance expenditure.

Jiménez et al. (2018) addressed the delamination prob-
lem in blades and their maintenance. Prior to developing
the prediction models using different classifiers, the time-
signals were pre-processed by filtering using Wavelet
(Daubechies) Transform and denoising by normalisation.
The study also ranked the used classifiers, such as quadrat-
ic discriminant analysis, k-nearest neighbours, decision trees,
and multilayer perceptron ANN in the recall, specificity,
precision, and F-score.

Fu et al. (2019) showed that the deep neural network
method is a promising solution regarding the big data prob-
lems emerging with the increase in the number of wind
farms. The time signal data provided by the SCADA are
used to build convolutional neural networks with multiple
filters that can extract data features and the hidden topolog-
ical feature.

Yeh et al. (2019) predicted the long-cycle maintenance
time of OWT using the real-time data obtained from the
sensor placed in two different wind farms. A hybrid neural
network was built based on the deep neural networks and
support vector machine (SVM) method to deal with this
task. Santos et al. (2015b) reported a comparison between
deep neural networks and the SVM technique. The results
indicated that the SVM method needed much less training
and tuning time, whereas the prediction accuracy of the
two methods was similar. Kang et al. (2020) also used
SVM in condition-based maintenance of offshore wind tur-
bines, which expanded the scope of their earlier studies on
opportunistic maintenance policies (Kang and Guedes
Soares, 2020; Kang et al., 2019).

Bach-Andersen et al. (2018) stated that the performance
of the deep learning techniques was superior to more shal-
low architectures for automated drive train fault detection.
The developed prediction models could detect a fault sig-
nal even months before the human non-causal expert. The
study mentioned that the probabilistic output provided by
the model could be of great use for decision support sys-
tems. Ray et al. (1996) attributed the increasing number of
applications of ANN techniques to several problems in na-
val architecture and marine engineering to the fact that
ANN techniques can handle problems with highly nonlin-
ear and complex data, even if the data is imprecise and
noisy.

Ok et al. (2007) applied ANN to derive empirical formu-
lae to study the effects of localised pitting corrosion on the
ultimate strength of unstiffened plates using the data ob-
tained from nonlinear FE analyses. It was reported that the
prediction model related to the single-edge pitting corro-
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sion was slightly more accurate than the one related to
double-edge pitting corrosion.

Nasiri et al. (2017) claimed that the success of Al appli-
cations in solving problems related to fracture failure mech-
anisms could only increase when a hybrid intelligent sys-
tem is provided. Also, Cheng (2002) processed the data re-
lated to the corrosion fatigue crack growth monitoring us-
ing the ANN method and concluded that the corrosion-fa-
tigue life prediction model provides a practical solution
that only requires the relation between the length of the
crack and the number of cycles of the given load and the
data on the material and environment parameters were not
needed.

Gope et al. (2015) successfully predicted crack growth
direction after training ANN using experimental test re-
sults. The experiment was performed for less than 100
samples considering different crack sizes and configura-
tions. The ANN model consisted of nonlinear logistic (sig-
moid and tangent hyperbolic) activation functions and two
hidden layers. The prediction capability of ANN has en-
couraged many other studies that deal with complex prob-
lems in the research fields of fatigue and fracture, such as
fracture mechanics and crack growth (Dinda and Kujawski,
2004; Pidaparti and Palakal, 1995; Sadananda et al., 1999;
Zhang et al., 2016), S-N curve development (Artymiak et
al., 1999; Bucar et al., 2006) and strain-life fatigue proper-
ties (Genel, 2004).

A decision support tool such as an intelligent mainte-
nance system must cover all aspects influencing structural
safety and provide an optimal manner to maintain the struc-
ture above the required safety levels with minimum cost.
Many studies attempted to incorporate maintenance with
monitoring systems in various industries and achieved con-
siderable improvement in maintenance efficiency (Hameed
et al., 2010; Marquez et al., 2012; Tian et al., 2011; Ossai
et al., 2016; Bangalore and Patriksson, 2018). A rare study
focusing on the economic side of implementing the moni-
toring systems was reported by Martinez-Luengo et al
(2016). The study showed that an increase in the percent-
age of instrumented assets would reduce operational ex-
penditure, and this reduction was considerably higher than
the cost of SHM implementation.

Although these studies are promising within the scope
of their research, these studies were limited to improving
modelling and optimisation techniques for certain compo-
nents. As Lian et al. (2019) suggested, there are serious
doubts about the application in practice for large-scale off-
shore wind farms, including other components beyond the
wind turbine as such (Liu et al., 2010; Kusiak et al., 2013).

Moreover, the size of the OWT farm and its distance to
the shore are other factors that most probably change the
way the industry approaches operation and maintenance
(Yeter et al., 2018). Extending the service life and retrofit-
ting are the topics that need to be incorporated into the re-
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search to provide more insightful decision-makers. Howev-
er, as new issues are emerging, the difficulties concerning
big data acquisition, transmission, and analysis have yet to
be fully resolved. The comprehensive condition frameworks
that involve the integration of online health monitoring
and reliability evaluation are far from being devised. Nev-
ertheless, establishing a maintenance framework based on
big data analysis is of great significance for innovating the
techniques used for monitoring, inspection and mainte-
nance methods.

5 Risk-based life-cycle assessment of offshore
wind assets

In the previous sections, a detailed review of the Al-aided
structural assessment of offshore wind turbine support struc-
tures for life extension. Firstly, a discussion is given on how
to process and analyse the structural health monitoring data
through advanced statistical, signal processing and machine
learning techniques. Later on, the structural integrity assess-
ment for ageing offshore wind turbine support structures is
discussed from the standpoint of prevailing failure mecha-
nisms such as high- and low-cycle fatigue, corrosion-in-
duced cracking, crack growth and ultimate strength. Subse-
quently, considering the failure mechanism mentioned above,
the development of condition-based maintenance planning
using artificial intelligence and machine learning techniques
is discussed.

The discussions regarding how to assess the structural
condition of offshore wind turbine support structures and
maintain it above an acceptable level through remedial ac-
tions were made using deterministic approaches. However,
following a probabilistic approach would be more appro-
priate for accurate and precise estimates of structural safety.

An advanced life extension analysis requires a probabi-
listic approach where the uncertainties involved in model-
ling, loads, structural response and material properties are
taken into account in structural reassessment. The structur-
al reliability analysis is a fundamental element of the intel-
ligent maintenance system. It is, in this way, possible to
create an early warning system accounting for both physi-
cal and modelling uncertainties associated with the multi-
ple failure mechanisms.

Both fatigue damage assessment and ultimate strength
assessment involve several steps consisting of several pa-
rameters with uncertainty. These parameters need to be
modelled as stochastic variables. The uncertainties can be
characterised as the physical uncertainty donating the natu-
ral variability, the statistical uncertainty due to the limited
sample sizes of observed quantities, the measurement un-
certainty related to imperfect measurements, and the mod-
el uncertainties regarding imperfect knowledge (Serensen
and Toft, 2010).

To deal with the uncertainties associated with the struc-
tural failure mechanism and structural assessment, the
structural reliability method has been proven to be useful.
The structural reliability is often analysed based on the as-
sumption that the probability of failure during a period is
equal to the probability of occurrence of any crossing of
the processes out of the safe domain during that period.
This approach can be further elaborated to find a system
structural reliability estimate considering the failure mech-
anisms have a certain correlation, and the probabilistic na-
ture of these failure mechanisms is time-variant.

The structural system reliability can be done by using
the Monte Carlo simulations, first-order reliability method
(FORM) and second-order reliability method (SORM),
these methods have a long history to assess marine struc-
tures probabilistically (Yeter and Garbatov, 2022).

The first-order second-moment method, too, has an ex-
tensive application in structural reliability. It is considered
suitable to use in cases that far more sophisticated models
cannot be solved with the given stochastic models (Guedes
Soares and Garbatov, 1996).

In terms of the structural integrity of the ship and off-
shore structures, the studies regarding the fatigue reliabili-
ty based on the S-N approach mainly focus on the design
optimisation, and the studies regarding the structural reli-
ability based on the fracture mechanics focus on the in-
spection and maintenance planning. In this regard, Moan
(2008) stated that reliability methods could be used at the
design stage to assess the optimal choice of scantlings and
materials as well as the inspection plan. Besides, these
methods can continuously be employed to evaluate safety
during the operation to provide information in updating
the inspection plan and other safety measures to maintain
the safety level.

A maintenance strategy that allows the use of informa-
tion continuously acquired from the SCADA, condition
monitoring and inspections can evaluate the confidence in
the OWT asset to perform its intended service by means of
a reliability index. This approach can be elaborated even
further by considering that failure mechanisms have a cer-
tain correlation, and the probabilistic nature of these fail-
ure mechanisms is not time-invariant. Yeter et al. (2020b)
suggested a risk-based approach where the reliability in-
dex estimation can be extended to multiple dimensions con-
sidering possible measures for a given reliability index.
Consequently, risk-based life-cycle management is achieved
via intelligent maintenance strategies that use their capaci-
ties to keep the OWT asset functional so long as it is profit-
able. This implies that the global and local economic condi-
tions under offshore wind projects must also be considered.

Duguid (2017) listed these challenges: lack of a stan-
dardised approach and requirement for scheduled inspec-
tion; reactive inspection and maintenance approach rather
than proactive; lack of a risk-based approach that supports
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proactive and flexible measures and learns from the experi-
ence. Life extension management can also be optimised by
correcting some of the practices and misconceptions inher-
ited from the traditions of other industries. In this context,
the consequences of structural failure for OWT structures
is lower than the consequences of failure for oil & gas plat-
forms; therefore, the safety constraints defined of OWT
structures, such as reliability target for unmanned plat-
forms, need to be revisited. The revaluation of the target
reliabilities presents more opportunities for further cost re-
ductions (Yeter et al., 2019a).

There is a vast literature on the application of structural
reliability methods for marine structures, especially in ship
structures. Only very recently, there have been a few publi-
cations on the fatigue reliability of OWT support struc-
tures. They are mostly centred on creating the basis of a
framework for optimum inspection planning.

Serensen and Tarp-Johansen (2004), Serensen and Tarp-
Johansen (2005) studied the reliability of the tower turbine
structure accounting for wind and wave loading, economic
aspects and optimal inspection intervals. The benefits of
reliability and risk-based inspection and maintenance plan-
ning were reported by Straub et al. (2006). The reliability-
based approach has also been employed to calibrate the fa-
tigue design factor for support structures in (Marquez-
Dominguez and Serensen, 2012; Serensen, 2012). As far
as the support structure is concerned, Dong et al. (2012a)
performed the fatigue reliability assessment of a jacket
OWT in the time-domain accounting for the effect of cor-
rosion, inspection and repair. Furthermore, fatigue reliabili-
ty assessments were performed for different support struc-
tures such as monopile, jacket and tripod (Serensen, 2012;
Dong et al., 2012a; Karmakar et al., 2016).

Brennan (2013) discussed the methodologies to opti-
mise life-cycle costs by adopting probabilistic approaches
for OWT support structures’ risk-based design, inspection,
and maintenance. Dong and Frangopol (2015) addressed a
multi-objective optimisation problem accounting for struc-
tural deterioration scenarios and various uncertainties. The
objective function was formulated to find the optimum in-
spection and repair planning of ship structures through a
genetic algorithm by considering the flexural failure and
the expected total inspection and maintenance cost as inde-
pendent objectives.

Serensen (2006) formulated a reliability-based design
optimisation of wind turbine parks where the design pa-
rameter is the distance between wind turbines. Serensen
and Toft (2010) presented an integrated reliability-based
design method for wind turbine blades within a numerical
example that considers both ultimate and fatigue limit
states. Partial safety factors for use in the traditional deter-
ministic design are estimated using stochastic models.
Moreover, Thoft-Christensen and Murotsu (1986) and Mad-
sen and Serensen (1990) integrated an inspection and repair
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strategy for the reliability-based optimal design problem.

Song et al. (2018) presented an integrated optimisation
of offshore wind farm layout design and turbine opportu-
nistic condition-based maintenance. In the first stage, GA
optimisation is used to search candidate locations for the
optimal number of turbines and their corresponding place-
ment. Then, a pattern search algorithm is applied to further
improve turbine placement by searching continuous loca-
tion variables to maximise profit. Nguyen and Chou (2018)
also proposed an optimal maintenance schedule for both
one turbine and multiple turbines with the objective of mi-
nimising the maintenance cost. The proposed approach took
into account the parameters that are usually overlooked,
such as system reliability, weather condition, maintenance
duration, power generation loss during maintenance, and
offshore wind system location.

Within the scope of the life-cycle assessment, Madsen
and Serensen (1990) and Madsen et al. (1991) formulated
the mathematical modelling of design, inspection and
maintenance optimisation. The total expected cost for the
life-cycle of the marine structure was aimed to be mini-
mised. Event trees involving the possible events from de-
sign until the end of the service life were modelled con-
cerning different repair strategies. Serensen et al. (1991)
and Faber et al. (1992) presented a framework for optimal
inspection and repair planning. They addressed the optimi-
sation problem to minimise the total expected cost in the
structure’s life-cycle. The number of inspections, inspec-
tion times and efforts, repair, and crack size limit were de-
scribed as optimisation variables.

Moan (1998) addressed the target levels for structural re-
liability and the risk analysis of offshore structures. Moan
(2005) also studied the reliability-based management of in-
spection, maintenance and repair of offshore structures.
Shafiee et al. (2015) presented the optimisation model for
a condition-based maintenance policy for a wind turbine
subjected to stress corrosion cracking. The maintenance
policy involved both opportunist and preventive mainte-
nance in such a way that the condition-based assessment
alerts the system for opportunist maintenance for a blade;
meanwhile, preventive maintenance was to be performed
for the other blades, aiming to minimise the average long-
run maintenance cost per blade.

Onoufriou (1999) emphasised the importance of using a
more refined system reliability approach, which can be im-
plemented to study and compare various inspection plan-
ning strategies, including a range of inspection methods
and acceptance criteria. Shabakhty et al. (2003) estimated
the system reliability of the jack-up structure by consider-
ing the sequence of fatigue failures. The results pointed
out the significant effect of systems, which the probability
of structural failure is larger than the probability of failure
for an individual section.

Moan and Song (2000) analysed the influence of the in-
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spection of certain joints on the reliability of a series sys-
tem. They found that the system reliability is significantly
affected by the implemented inspection policies. Ayala-
Uraga and Moan (2002) formulated the occurrence of two
fatigue failures in sequence for highly correlated compo-
nents in a simple parallel system to visualise the potential
implementation of system reliability and updating proce-
dures in offshore structures subjected to fatigue and over-
load. While Madsen et al. (1987) also discussed that updat-
ing after inspection and repair could be carried out simply
by using the FORM applied to parallel systems.

The system reliability of offshore wind turbines has not
been addressed broadly. However, some works have been
published on the fatigue reliability of offshore wind tur-
bine support structures, such as (Marquez-Dominguez and
Serensen, 2012; Dong et al., 2012b; Yeter et al., 2015¢;
Yeter et al., 2015f).

Besides, machine learning methods, especially supervised
learning using ANN, have been employed to build predictive
models for other research fields. One prominent example of
it is structural reliability analysis. Deng (2006) and Deng et
al. (2005) trained the multilayer and radial basis function
ANN by using a small batch of data obtained by FEA to ap-
proximate the implicit limit state function values for the
Monte-Carlo Simulation and the first and second-order de-
rivatives of limit state function. The proposed approach
achieved a very similar reliability index with less computa-
tional effort. Gomes and Awruch (2004) also claimed that
multilayer ANN and response surface method with qua-
dratic polynomials were alternatives to the Monte Carlo
simulation and first-order structural reliability method.
The study also suggested using multilayer neural networks
for the nonlinear large structural system. Papadrakakis et
al. (1996) applied a backpropagation neural network algo-
rithm to deal with the structural reliability of a system sub-
jected to plastic collapse. The approach successfully pro-
duced approximate estimates of the critical load factors
and, thus the very close prediction of the probability of
failure independent of the complexity of the problem. Pa-
padrakakis and Lagaros (2002) implemented an ANN algo-
rithm into an evolutionary optimisation algorithm to re-
duce the computational cost in reliability-based optimisa-
tion problems of structures with elastoplastic behaviour.
The computational cost was reduced by one order of mag-
nitude in sequential and by two orders of magnitude in par-
allel mode with the neural network technique. Additional
references can be found in Chojaczyk et al. (2015), who
presented a review of the applications of ANN models in
reliability analysis of steel structures.

Yeter and Garbatov (2021) developed a risk-based ap-
proach to find optimal solutions for life extension manage-
ment for OWTs based on Markowitz’s modern portfolio the-
ory, adapted from finance. The study utilised the A-means
unsupervised machine learning algorithm to classify off-

shore wind assets with different expected returns and risks.

The k-means unsupervised machine learning algorithm
aims to reduce the variance within a cluster and maximise
the distance cluster through an iterative process. Since the
k-means algorithm cannot determine the number of clus-
ters by default, qualitative and quantitative tests can be em-
ployed to measure the performance of the k-means algo-
rithm in terms of the number of clusters. Figures 14 and 15
show qualitative (visual) and quantitative (metric-based)
tests for the ki-means clustering algorithm.

ROI
ROI

ROI
ROI

stdDev stdDev

Figure 14 Qualitative test for k~-means clustering (Yeter and Garbatov,
2021)

The elbow test

The silhouette test

Number of clusters

Figure 15 Quantitative test for k-means clustering (Yeter and Gar-

batov, 2021)

As far as the quantitative test is concerned, the silhou-
ette test measures how similar a data point is, and higher
values indicate the appropriateness of the clustering. The
other way of assessing the success of clustering is the el-
bow test which measures the intra-cluster Euclidian dis-
tance relative to the inner-cluster Euclidian distance. Un-
like the silhouette test, the elbow test seeks the minimum
test score; hence, it can be argued that k =2 or k=3 is a
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reasonable choice for the number of clusters.

From a life extension assessment point of view, the prob-
abilistic techno-economic assessment can provide such risk-
return diagrams that allow for the classification of offshore
wind turbine life extension decisions.

The finding of the studies reported by Yeter and Garbatov
(2021) and Yeter et al. (2022b) suggested that it was possible
to develop a dynamic life extension management strategy.

A reasonable scenario would be starting in the region
with high-risk and high-return. The offshore wind assets
can move into low-risk and low-return regions by manipu-
lating the operational intensity and hedging options at the
later stages of the life extension (see Figure 16).

Early-stage
* Full load operation
* Less frequent inspection
* Floating rate

Expected return

o
>

Risk

Figure 16 Framework for a dynamic life extension management

Yeter and Garbatov (2021) also stated that the size of
the OWT farm and its distance to the shore are other fac-
tors that most probably change the way the industry ap-
proach operation and maintenance. The extension of the
service life and retrofitting are the topics needing more at-
tention in future works to provide more insightful tools for
decision-makers.

The overall life-cycle cost per unit of energy production
is influenced strongly by the risk associated with the OWT
support structure since any permanent damage occurring
in the support structure may cause the serviceability of the
OWT. Nonetheless, only a few studies include the risk in
life-cycle cost modelling (Koukal and Breitner, 2013). In
contrast, some studies can be found in literature focusing
on the life-cycle-oriented optimisation of design, inspec-
tion, and maintenance of marine structures, as reported in
(Rouhan and Schoefs, 2003; Okasha and Frangopol, 2009;
Barone and Frangopol, 2014; Lee et al., 2016; Soliman et
al., 2016). Frangopol (2011) highlighted the importance of
a risk-based approach for assessing the life-cycle perfor-
mance of structural systems.

Thons et al. (2013) also developed a framework for
quantifying the expected life-cycle costs for wind turbine
structures to facilitate and support optimal decisions. The
framework was built upon the approaches of structural reli-
ability theory and Bayesian decision theory. Levitt et al.
(2011) performed an analysis of the breakeven price of
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electricity for offshore projects in various countries with a
cash-flow model considering the variances in the invest-
ment or operating costs through a sensitivity analysis. Lev-
itt et al. (2011) also argued that the levelised cost of ener-
gy could be a useful way to evaluate the support structure
and find an optimal structure accounting for all the costs
associated with the life-cycle. The past, present and future
of the levelised cost of offshore wind were reported in sev-
eral studies (Kost et al., 2013; Lantz et al., 2012; Greena-
cre et al., 2010), and the possible cost reduction pathways
were discussed by Davey and Nimmo (2012).

Blanco (2009) assessed the roles and tendencies of its
cost components in the life-cycle of offshore wind tur-
bines. The study argued the usefulness of learning curves
as a tool to predict the long-term cost reduction potential
of this industry and the role that public policies can play in
the economics of wind energy. The life-cycle assessment
for marine structures has been the focus of many studies.

These studies have emphasised the risk management
planning that is appropriately integrated into a comprehen-
sive life-cycle framework (Rouhan and Schoefs, 2003;
Okasha and Frangopol, 2009; Soliman et al., 2016; Fran-
gopol, 2011; Thons et al., 2013; Yeter et al., 2017b). Fur-
thermore, a decision support system for assessing offshore
wind energy potential in the North Sea was presented by
Schillings et al. (2012). The study aimed to aid the conflict
between cost assumptions for offshore wind farms and
their expected electricity yield, which leads to the identifi-
cation of desirable areas for offshore wind energy deploy-
ment in the North Sea. Studies for the optimal location of
wind farms have also been conducted using multi-criteria
decision making together with GIS and spatial planning
principles by Diaz and Guedes Soares (2020b) and Ramos
etal. (2021).

The life extension process involves several steps. The
structural reassessment considering the health monitoring
system, decides the estimated extended life of each asset
in an offshore wind farm. The framework also consists of
an adequate inspection and maintenance strategy that will
maximise the revenue obtained from the offshore wind farm,
provided that the annual probability of failure of structural
components is still acceptable.

Votsis et al. (2018) stated that the parties involved in the
management of marine structures realise the benefits of
monitoring, and there is an ongoing research effort in the
academic and industrial community to enhance further the
current methods, equipment and monitoring systems to im-
prove the effectiveness of a management system. Also, the
review of the pertinent literature on the topic of integrity
monitoring of offshore structures showed that it is a fast-
growing sector with developments in sensing technologies,
data acquisition and processing customised for the harsh
marine environment.

Ziegler et al. (2018) provided one of the few studies re-
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garding the life extension for wind energy assets. The study
presented a detailed review varying for different countries.
It was stated that the countries with favourable legal and
economic conditions for repowering and market prices of
electricity uneconomic for small wind turbines were likely
to experience less interest in life extension in the follow-
ing years. The uncertainties regarding lifetime extension
assessments and market prices were identified as the pri-
mary challenges.

Ziegler et al. (2018) extended the scope of the earlier
study and developed a framework for the life extension as-
sessment for monopile OWT. The developed framework
involved a data acquisition system for fatigue load and the
supervised machine learning technique K-nearest neigh-
bour to predict equivalent damage loads. Although the study
is far from complete, the Al-aided monitoring and mainte-
nance system showed promising results.

Rubert et al. (2018) presented a methodology to support
an economic life extension. The proposed method reduces
LCOE considerably by manipulating the life extension pa-
rameters such as extension duration, input economic as-
sumptions such as pessimistic, central, optimistic, and in-
vestment types such as retrofits.

Yeter et al. (2022b) investigated the appropriate key met-
rics to be used for measuring the operational performance
of offshore wind farms at different life extension stages.
The key performance metrics are the gross profit margin
(GPM), the return on tangible asset (ROA), the levelised
cost of energy (LCOE), and compounded annual growth
rate (CAGR). The study involved a probabilistic techno-eco-
nomic assessment that resulted in statistical descriptors of
the studied key performance metrics (see Figure 17).

ROA

%.1 0.2 0.3 0.4
Bins (values)

LCOE

0.04 0.06 0.08
Bins (values)

CAGR

00.04 0.06 0.08 0.10
Bins (values)

43 44 45 46
Bins (values)

Figure 17 Histograms of performance metrics (Yeter et al., 2022b)

The probabilistic techno-economic assessment accounted
for the uncertainty propagation throughout the life extension,
divided into five phases. In this regard, the study assumed
higher variability and lower correlation among the offshore
wind assets towards the later phases of the life extension.

To be able to interpret and compare the metrics, the results
are normalized by the maximum value encountered through

different phases. How the performance metric change over
the life extension is shown in terms of the normalised mean
value and the normalised coefficient of variation (COV) in
Figure 18.
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Figure 18 Statistical descriptors of the key performance metrics at
different phases of life extension (Yeter et al., 2022b)

The results shown in Figure 18 indicate that the normalised
mean value decreases over time for all performance met-
rics except for the levelised cost of energy. In particular,
compounded annual growth rate, which represents com-
pounded return on investment over multiple years, decreas-
es substantial compared to the return on asset and the gross
profit margin. This can be explained by the fact that the re-
turns in the future are reduced with a higher discount fac-
tor towards the later phases of life extension. Figure 18 al-
so shows that COV increases over the course of the life ex-
tension, especially during Phase IV. Like the normalised mean
value, LCOE is the exception to the general trends observed
in GPM, ROA, and CAGR.

Yeter et al. (2022c) employed the key performance met-
ric CAGR to present the risk-return diagram for a fictitious
ageing offshore wind farm with ten offshore wind assets.
The modern portfolio optimisation was performed to the
maximum risk-adjusted ratio, namely the Sharpe ratio. The
findings of this study, shown in Figure 19, indvicated that
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a less riskier operational strategy can be achieved by opti-
mising the operational intensity of offshore wind turbines
instead of keeping the operational intensity the same for
offshore wind turbines.

Nielsen and Serensen (2021) suggested reconsideration
of the target reliability index, stating that the economic
consequences in case of failure would not be the same for
a new offshore wind asset and one considered for life ex-
tension. The study showed that the target reliability £ could
be below 2.5 when the internal rate of return is much high-
er than the interest rate the project is subjected to. Nielsen
and Serensen (2021) also compared the probabilistic ap-
proach for the life extension decision of wind turbine struc-
tural components to the deterministic approach. The study
revealed that probabilistic fatigue damage assessment
would yield longer fatigue life (beyond 25 years of service
life), which potentially lead to higher profitability of off-
shore wind project. Moreover, if the lower target reliability
is to be accepted such as f = 3.1, an additional 15 years of
fatigue life.

Yeter and Garbatov (2022) discussed the future trends
in intelligent integrity management systems. It was point-
ed out that structural integrity management systems should
be enhanced by probabilistic approaches to deal with un-
certainties propagating over the service life of support struc-
tures, with an independent objective of minimising human
involvement in both inspection and maintenance actions.
Moreover, probabilistic modelling and assessment would
be expected to gain more importance, especially for the dig-
ital representation of physical assets.

Yeter and Garbatov (2022) also stated that the target reli-
ability index considered for the OWT support structures
needed to be revisited. To achieve an optimal target reli-
ability index for life extension, the study recommended
conducting a techno-economic life cycle assessment whose
main objective is to come up with dynamic maintenance
policies reducing the standard deviation of the expected re-
turn, in turn, the discount rate used for the levelised cost of
energy.

The main conclusion to be deduced from the studies dis-
cussed above is that life extension is viable so long as the
profitability metrics are strong relative to the overall risk
of the offshore wind project, however, in an economic en-
vironment where high O&M costs and low power prices
can hinder the profitability of offshore wind projects and
affect life extension decisions.

6 Conclusions and future work

The present study provided an extensive review of the
risk-based life extension assessment for ageing offshore
wind structures using supervised and unsupervised ma-
chine learning techniques. The review focused on the ap-

plication of artificial intelligence together with statistics
and advanced signal processing on the data acquisition,
pre-processing, structural integrity assessment, condition-
based maintenance and risk-based life-cycle and life exten-
sion assessment. The current corrosion issues on monopile
foundations were addressed from the structural integrity
standpoint. Even though corrosion is not a direct cause of
catastrophic failure, corrosion-induced cracking can lead
to failure with high monetary consequences.

Following the review presented in the present paper, it
can be argued that continuous structural health monitoring
with Al-based predictive models could be of great use for
intelligent life extension management systems. The suc-
cess of Al applications in the offshore wind industry is pos-
sible by incorporating data pre-processing techniques, sta-
tistics, and signal process methods. Moreover, analysing
such big data also gives rise to the possibility of collecting
more data, which dramatically changes the way the opera-
tion has been managed for many years.

The maintenance systems can benefit from Al in myriad
ways, such as online, operational data analysis for fault de-
tection, robotics for remote inspection, image processing
for the degree of structural degradation and high-fidelity
remaining life prediction models for optimal autonomous
and intelligent maintenance decisions in real-time.

The economic aspect of these implementations cannot
be overlooked either. In this regard, the test equipment and
embedded onboard diagnostics for condition monitoring
increase the cost in the short term; however, it is expected
to pay itself off due to the saving coming from system lo-
gistics, operation and maintenance footprint if it is imple-
mented correctly, which is also another common worry.

Another aspect is that the severity of the failure conse-
quence can justify the increase in the structural cost. The
failure consequence, including the opportunity cost due to
the interrupted energy production, due to the maintenance
and repair actions, may be so severe that a higher level of
structural reliability may be required. Therefore, perform-
ing a risk-based techno-economic assessment is recom-
mended to measure profitability and target reliability in-
dex for life extension projects. Moreover, the difference
between the compounded annual rate of return on initial in-
vestment and the weighted average cost of capital can be
considered an appropriate key metric for life extension per-
formance.

Finally, one cannot think of operation as an isolated life-
cycle phase that needs to be optimised. The operation is in-
terconnected with the other phases: design, manufacturing,
structural health system, life extension, and life extension
certification. Hence, more advancement in Al in the off-
shore wind industry is expected with wider topics and a
greater number of applications.

A paradigm shift in offshore wind asset reliability manage-
ment has already started to take place with the introduction
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of high-performance computing, advanced machine learning,
efficient meta-heuristic optimisation algorithms, the internet
of things, and autonomous ocean vehicles. Consequently,
there has been a significant increase in terms of research that
focused on the integration of big data-driven models with
physics-based analytical and numerical simulations.

Based on the trends seen in the literature and the off-
shore wind industry, it is reasonable to argue that signifi-
cantly more research on the development of big data-driv-
en machine learning models with real-time prediction ca-
pabilities should be expected. The rise of artificial intelli-
gence-aided offshore wind asset reliability management
leaves the door wide open for applying a model-based sys-
tems engineering approach.

The model-based systems engineering approach allows
for multi-disciplinary and integrated engineering models
that could be tailored-made based on the stakeholder’s de-
mands. The substantial growth in the development of digi-
tal twins for offshore wind asset management is a clear in-
dication to see where the future lies. The digital representa-
tion of any infrastructure assets must consist of data acqui-
sition, processing, analysis, probabilistic future prediction,
and an intelligent decision-support system, which is essen-
tially what was covered within the scope of the present work.
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