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a b s t r a c t

Renewable energy techniques are now gaining more and more attention as the years pass by, not only
because of the threat of climate change but also, e.g. due to serious pollution problems in some countries
and because the renewable energy technologies have matured and can be depended upon an increasing
degree. The energy from ocean waves bares tremendous potential as a source of renewable energy,
and the related technologies have continually been improved during the last decades. In this paper,
different types of wave energy converters are classified by their mechanical structure and how they
absorb energy from ocean waves. The paper presents a review of strategies for electrical control of
wave energy converters as well as energy storage techniques. Strategies of electrical control are
used to achieve a higher energy absorption, and they are also of interest because of the large variety
among different strategies. Furthermore, the control strategies strongly affect the complexity of
both the mechanical and the electrical system, thus not only impacting energy absorption but also
robustness, survivability, maintenance requirements and thus in the end the cost of electricity from
ocean waves.

& 2013 The Authors. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Oceans cover two thirds of the earth's surface and large
amounts of energy is contained within its motion. This vast source
of renewable energy has the potential of meeting an important
part of the demand for non-polluting electricity for mankind.

Since the 1970s, following the oil crisis, research on renewable
energy has gained increasing support and this has also affected
the research on wave energy. So far, many types of wave energy
converters (WECs) have been invented, developed and tested in
small and large scale experiments.

When the electricity production from WECs depends on and
varies synchronously with the wave movement then the ampli-
tude and frequency of the converted electricity will naturally vary
dramatically during each wave period. This electricity is incompa-
tible with the electric grid since electricity supplied to the grid has
to have a voltage that is of constant amplitude and frequency.
Hence, some strategies of electrical control and storage as part of
the energy conversion play a significant role in wave energy
systems.

This paper is mainly concerned with electrical control strate-
gies for wave energy conversion. In Section 2 a short introduction
to wave energy absorption is presented. The purpose of this
section is to help the uninitiated reader to understand what the
control strategies are trying to achieve in terms of the interaction
with, and absorption of energy from the wave. In order to facilitate
relevant comparisons among control methods, the different types
of wave energy converters are classified with respect to their
mechanical structures in Section 3. In Section 4, electrical control
strategies with devices as examples are discussed. Section 5
presents energy storage strategies that are used during the energy
absorption.

This paper focuses on the control strategies and only provides
a brief overview of existing wave energy technologies, for a more
thorough review and classification of wave energy converters see
[10]. It is necessary to mention that for various reasons, such as
mechanical problems or lack of financial support, not all the
control strategies have been experimentally verified as proposed
and studied in their academic publications.

2. Energy absorption

Oceans transport huge amounts of energy, this energy is
transported in form of polychromatic waves. An ocean wave is
water particles moving in elliptical orbits, where the radius
decreases with the water depth [1]. The power transport per unit
width of wave front is given by the hydrodynamic pressure and
the water particle velocity, according to

J ¼

Z 0

� z

pivi dz
W

m

� �

ð1Þ

The integral is calculated from bottom to still water level. An
object or something else interacting with this incident wave will
create a radiated and a diffracted wave that will change shape of
the incident wave. To be able to take away energy from this

incident wave this “object” has to interact in an advantage way to
this wave. Being able to absorb energy from the waves, radiated
and diffracted waves has to be created to interfere destructively
with incident waves. A good wave absorber has to be a good wave
maker [2]. Assume an arbitrary shaped area of the ocean surface
(Fig. 1). The energy flux into this volume is denoted as Ei, and the
energy flux out from the area is denoted Eo. According to energy
balance the possible absorbable energy from the waves in the
given volume is given by Ei ¼ EoþEabs. Being able to absorb energy
an outgoing wave has to be created by the absorber.

Assume an undisturbed incident wave has the water particle
velocity, vi ¼ ðvi;x; vi;y; vi;zÞ and a hydrodynamical pressure po. The
same for the diffracted/radiated wave from the wave absorber unit
inside the volume, i.e. the outgoing wave from a wave absorber
unit have water particle velocity,vo ¼ ðvx; vy; vzÞ, and a hydrodyna-
mical pressure po. The total net flux of the energy in an arbitrary
volume of the ocean during a time 2t is then given by

Eabs ¼

Z t

� t

∮
S

Z 0

� z

ðpi�poÞðvi�voÞU n̂ dz ds dt ð2Þ

Note that for an undisturbed wave the absorbed energy is zero,
because the incoming energy to the volume is the same as the
outgoing energy.

In order to maximize the energy absorption from the ocean
wave, Eq. (2) has to be maximized. It can be seen in Eq. (2) that the
interaction is not momentarily, to maximize outtake of energy the
incident wave has to be known in advance.

Absorption is about to create a wave with right amplitude,
frequency and phase angle to cancel out incident wave.

3. Classification of wave energy converters based on

mechanical design

Several systems for the classification of WECs have been
proposed through the years, ranging from detailed to rough, see
[3,4]. For simplicity we have chosen a basic separation into three
types: Oscillating Water Column devices (OWCs), overtopping
devices, and attenuators (Fig. 2). OWCs and overtopping devices
are both available for offshore and inshore installations. The
attenuators are predominantly offshore devices.

Fig. 1. An arbitrary area of the ocean surface.
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3.1. Oscillating water column

The OWC (Figs. 2(A) and 3) device consists of a partially
submerged chamber with a water column that rises and falls in
response to the pressure from ocean waves [6]. Both the upwards
and downwards movement of the column drive air through a
turbine and the turbine drives a generator for electricity produc-
tion [7].

The water level in the column rises when a wave crest is
pushing against the WEC. This increases the pressure in the device
and forces air go through the turbine. Conversely, the pressure is
lowered during a wave trough, resulting in air being pulled back
through the generator. Both of these two processes drive the air
turbines [8], and the rotational speed of the turbines depends on
the air pressure in the column and the control system to the
turbines.

Whistling Buoy, a device used as a navigational buoy, is
patented by J. M. Courtney of New York, and is the earliest OWC
device recorded in 19th centuries [9].

Yoshio Masuda in Japan invented a navigation buoy situated
in Osaka Bay in 1947. It initially utilized an air turbine to supply
electricity [10]. An advanced version, called the Kaimei, was built
in 1976 and was owned by the Ryokuseisha Company. The Kaimei
had an output power of about 70–500 W [11]. During 1978–1980,
Kaimei Floating Platforms with rated power up to 125 kW was
built and tested [12].

During the 1980s and 1990s, technologies for wave energy
conversion were developed with increasing support as a result of
the oil crisis that broke out in 1973. Large amounts of OWC devices

from Norway, India, Japan and England, etc. were proposed at that
time, expressing their own unique designs and advantages.

Queen's University of Belfast developed a device with an
installed capacity of 75 kW positioned on Islay in 1991 [13]. This
was followed by the OWC LIMPET, which was installed in 2000
and rated at 500 kW. In 2010, the European Wave Energy Pilot
Plant(Fig. 3), which is located on the Azores [14], was operated
with a rated power of 400 kW. Its installation demonstrated the
technical viability of wave energy in a small island grid.

3.2. Overtopping devices

Overtopping devices are partially submerged wave energy
converter with reservoirs for capturing wave crests and water
turbines to produce electricity [16]. The kinetic energy of the
waves is converted to potential energy when incoming waves are
led up a ramp and is collected in the reservoir (Fig. 2(B)). The
water returns to the ocean from the reservoir through water
turbines, thus utilizing the potential difference between the ocean
and the reservoir to generate electricity.

A tapered channel wave power device, or Tapchan [17], utiliz-
ing this overtopping principle of operation, was installed on shore
in the 1980s. The device was rated at 350 kW and located at
Toftestallen, Norway [18]. Later on in 1998, a 1.1 MW Tapchan was
started to be constructed on the Indonesian island of Java.

Wave Dragon installed a prototype in scale 1:4.5 (58�33 m,
with a 28 m reflector and reservoir of 55 m3) constructed in 2003
at Nissum Bredning in Denmark [19]. It had a rated power of
140 kW (7 turbines each with a rated power of is 20 kW). It

Fig. 2. Mechanical design on three types of WECs [5]: (A) Oscillating water column device; (B) Overtopping device; (C) Attenuator.

Fig. 3. The Pico Plant on Azores Island in Portugal [15].

Fig. 4. The Wave Dragon deployed and tested in the sea [20].
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became the first offshore overtopping device in the world (Fig. 4).
Wave Dragon has started the development of 1.5 MW demonstra-
tor offshore Hanstholm at the test center DanWEC, Denmark [20].

3.3. Attenuators

Attenuators are devices where the water physically pushes and
induces motion in the WECs structure and energy is converted by
dampening this motion [21]. Fig.2(C) represents the concept of
attenuators. The devices are often constructions that float on and

interact with the ocean waves without being physically fixed in
place, e.g. the well-known Pelamis, but they can also be standing
on the ocean floor or on land.

The Archimedes Wave Swing, AWS, is a submerged device [22]
point absorber with a linear generator. A prototype was deployed
off the northern coast of Portugal in 2000 and tested during 2004.
It had a maximum power 2 MW [23].

Another example of a point absorbing attenuator is the WEC
utilized in the Lysekil Project and developed at Uppsala University.
Today nine 10–40 kW prototypes have been installed outside
Lysekil off the west coast of Sweden [24]. Its linear generator is
settled on the ocean floor and is driven via a connection line from
the top of the generator to a buoy floating on the ocean surface
(Fig. 5).

In 2007, a prototype of a floating point absorber with a linear
generator rated at 10 kW was developed by Oregon University and
deployed off Newport in Oregon State in the US [26].

Wavebob is composed of two heaving buoys [27]: a torus of
14 m in diameter and a float linked to a submerged tank with a
draught of 40 m. The Wavebob belongs to the heaving buoy point
absorber type. In 2007, Wavebob ltd. deployed its first test device
in Ireland and planned to install a more advanced version with
desired power production capacity in the order of several hundred
kW off the coast of Portugal in 2012 [28].

3.3.1. Point absorbers

Point absorbers are most commonly offshore devices that
mainly utilize heave motion for energy absorption [29]. They are
usually smaller size compared to other types of WECs. They can
mathematically be regarded as a point-like object in the ocean due
to their small size compared to the wave length of the wave from
which they capture energy [30]. They are equally good at absorb-
ing energy independent of the direction of the incoming waves.
This type of wave energy converters are also categorized as
oscillating body systems by Falcão.

Electrical controlling strategies devised for point absorbers vary
depending on the mechanical design of the WEC. Hydraulic system
and linear permanent magnet generator (LPMG) are, however,
most common.

3.3.2. Hinged attenuators

Hinged attenuators are made up of several body parts linked
horizontally by universal joints which allow flexing in two direc-
tions. Taking Pelamis [31] (Fig. 6) as the most known example, it
floats semi-submerged on the surface of the water and faces the
direction of waves. As waves pass down the length of the machine
and the sections bend in the water, the movement is converted
into electricity via hydraulic systems housed inside each joint of
the machine tubes, and power is transmitted to shore using
standard subsea cables and equipment.Fig. 6. The concept of the Pelamis with hydraulic conversion system [32].

Fig. 7. Technology used in a Pico OWC device to produce electricity from wave [91].

Fig. 5. The WEC developed in the Lysekil Project [25].
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4. Electrical control strategies for different types of WECs

4.1. Control strategies for OWCs

The performance of the OWCs lies in the combined efficiency of
different stages (Fig. 7 [33] proposes three types of turbine set) in the
conversion process [34], they are (i) wave to pneumatic conversion in
the capture chamber, (ii) pneumatic to mechanical conversion in the
turbine, (iii) mechanical to electrical conversion in the generator.

Due to challenges of the natural environment and device
limitations, such as a mismatch between wave frequencies and
the resonance frequency, variations in the air velocity, or varia-
tions in wave conditions, the efficiency of the overall system can
be affected significantly [35]. For these reasons the combined
efficiency has not been able to reach the theoretical values of
efficiency of 70–80% in real operation. Additionally, the impact
from flow oscillations onto the Wells turbine [36] also contributes
to the low actual efficiency, with results that are far from the
anticipated values.

In order to solve these problems, two control topologies are
presented by Falcão [37]. These two topologies are utilized to solve
the problems above to maximize the instantaneous power output
of the wave energy converter: (i) the rotational speed control [38];
(ii) air-flow control strategy. They are designed to match the
available wave level and the airflow control through the turbine,
to prevent or reduce the aerodynamic blade losses at the turbine
rotor blades.

4.1.1. A‐Turbine rotational speed control

The goal of the rotational speed control is to regulate the
output power of the generator according to the error signal caused
by abrupt changes in the fluid dynamics through the Wells
turbines. Several strategies on the rotational speed control are
proposed.

A variable frequency control strategy[40] is used as one
strategy for the rotational speed control, which is a feedback
control loop based on the cubic relationship between the fre-
quency of the rotor in the generator and the instantaneous power
of generator.

Falcão points out that improvement of the turbine efficiency
[41] depends strongly on the control strategy to the instanta-
neous rotational speed. Three methods are proposed on con-
trolling the turbine rotational speed within a limited range of
flow conditions around the optimal efficiency point, these are
(i) constant torque control depending on the power estimation
[42], (ii) speed control to a reference rotational speed, with
linear derivative function between torque and rotational speed,
and (iii) control within acceptable oscillation [43]. Numerical
simulations and analyses have been performed wherein the
conclusion is reached that the third method (iii), electric power
output controlled in the Programmable Logic Controller (PLC)
[44], seems to be the optimal control method in the OWC
device.

Srinivasa [45] also made comparison among three speed-
control topologies to Wells turbine by simulations, which are
(i) uncontrolled scheme, (ii) V/f (Velocity/Frequency) [46] con-
trolled scheme on the stator and (iii) V/f controlled scheme on the
rotor. Conclusion is that controlled scheme on the stator is the
optimal topology, as power fluctuations will bring serious harm
to the power factor in the grid under uncontrolled condition,
and rotor circuit will absorb power under the rotor controlled
condition.

Table 1 gives a summary of the control strategies to control the
rotational speed of the turbines.

4.1.1. B-Airflow control

As the efficiency of the Wells turbine depends strongly on the
flow rate, flow oscillations will have a strong effect on the efficiency
of OWC devices equipped with a Wells turbine. Thus, a method for
controlling air valves in the chamber, in order to prevent excessive
flow rate, has been proposed [47]. As Falcão describes in his article,
two schemes of airflow control are compared and discussed:
(i) valves mounted in parallel with the turbine; (ii) valves mounted
in the turbine duct. According to the simulations, it is concluded that
scheme (ii) is expected to achieve a better result [48,49].

In scheme (ii), error signals are induced by the difference
between actual output power and reference output power. The
reference power is set in accordance with the available pressure
drop with the goal of maximizing the power output by avoiding
the undesired stalling behavior. The control signal, attained by
both the error signal and pressure regulation signal, drives the
valve to adjust the pressure drop across the Wells turbine.

Furthermore, in practice, bypass valves with large capacity are
required in order to limit the air flow through the turbine under
extreme environmental conditions [50]. Table 2 gives a summary
of the control strategies of the airflow control for OWC devices.

4.1.2. Typical OWC type wave energy converters

a. LIMPET. A turbine-generator system [51] is utilized and a torque
control algorithm for the rotational speed control of the turbine is
designed for the inverter drive connected to generators settled in
LIMPET [52].

The system is composed of a simple switchboard feeding each
generator system and connecting the plant to the grid via a 400/
11 000 V transformer (Fig. 8). Each generator is controlled by the
supervisory plant controller [53] that in turn controls an inverter
drive connected to the machines.

Table 1

Summarized control strategies of rotational speed control for OWCs.

Control
strategy

Different topologies Conclusion

Rotational
speed
control

(a) Variable frequency
control

It is a feedback control method for
rotational speed control.

(b) (i) Constant torque
control

Numerical simulations show that
(iii) is the optimal strategy for speed
control.(ii) Speed control

(iii) Speed control
within acceptable
oscillation

(c) (i) Uncontrolled
scheme

Comparisons show controlled
scheme on the stator is the optimal
topology.(ii) V/f control on the

stator
(iii) V/f control on the
rotor

Table 2

Summarized control strategies of airflow control for OWCs.

Control
strategy

Different topologies Conclusion

Airflow
control

(i) valves mounted in parallel with
the turbine

(ii) is better topology compared
with (i) by avoiding the
undesirable stalling to enhance
the output power.

(ii) valves mounted in series
with the turbine duct
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Consisting of Insulated Gate Bipolar Transistor (IGBT) [54]
based inverters and an anti-parallel Thyristor converter, the
control system is used in LIMPET for adjusting the speed of the
rotor is to optimize the relationship between its rotational speed
and the velocity of the fluid flow. Three control strategies for
rotational speed control are posited: (i) constant speed control;
(ii) constant power control; (iii) constant torque control [55].
These three strategies are all implemented in the electric power
interface in order to adjust the mean rotational speed to achieve
the optimum speed by the generator's torque demand.

b. The Pico plant. The Pico plant was equipped with a horizontal
axis Wells turbine with fixed pitch blades with a rotational speed
is in the range of 750–1500 rpm [56]. An asynchronous generator
rated at 400 kW of the wound rotor induction type was adopted.
The by-pass valve for air flow relief was designed and installed on
the top of the air chamber so excessive energy can dissipate to the
atmosphere when stormy weather might otherwise cause damage
to the turbine-generator system.

The control and monitoring is achieved in a programmable logic
controller (PLC), with the use of an interface that allows visualization
of the main relevant parameters such as temperature, vibrations, the

lubrication system of the turbine bearings, and the position of the
valves, the power electronics and other electrical components.

Because of the complexity and the high cost of implementation,
and because the environment is not suitable for installation, direct
torque measurement at the turbine shaft was never installed [57]. As a
result, the lack of instantaneous torque measurements has led to a lack
of the possibility to apply control strategies to the generator.

Nevertheless, theoretical research has been pursued in spite of
this [58,59]. Based on stochastic modeling [60], Falcão pointed out
that the so-called cube-law utilized into a control algorithm of the
relationship between the electromagnetic torque and the rota-
tional speed, may be the optimal control strategy for the Pico
Plant. Furthermore, different rotational speed control methods
(with and without relief valve control) were compared and the
results (Fig. 9), thick and thin lines represent the cube-law method
without and with controlled valve respectively, while dashed lines
represent a simplified method. The result [61] showed that proper
control of the relief valves might lead to an increase of 37%.

4.2. Control strategies for overtopping device

Tapchan is a typical demonstration of overtopping device in early
years, however, the project stopped due to mechanical damage [62].
So far there is not any control information given out. In this section,
the well-known Wave Dragon is used as the example to illustrate the
electrical control to the WECs of overtopping devices. Fig. 10 gives an
illustration on the conversion stages from fluid power processed to
electric power of one Wave Dragon.

The Wave dragon, is a slack moored [63] floating device
consisting of two reflector arms and a central hull with a storage
reservoir. The reflector arms focus the waves onto the doubly
curved ramp on the front of the hull, where the waves run up and
fill the reservoir. The water in the reservoir, which is situated
above the mean sea level [64], is released back into the sea
through a set of specially designed low head water turbines.

Direct power control, utilizing Direct Power and Torque Space
Vector Modulation (DPTC-SVM) [66], is applied for the control of
the converters. Direct Torque Control with Space Vector Modula-
tion (DTC-SVM) is used on the Generator Side Converter to control
the variable speed [67], while Direct Power Control with Space
Vector Modulation (DPC-SVM) is used on Grid Side Converter with
Pulse Width Modulation.

In order to decrease the actual DC-link voltage fluctuation
during transients, the power is fed into the DC-link using a control
device named Active Power Feed-Forward (APF). Fig. 11 represents
the control system used in Wave Dragon. This approach shows
high performance in stabilizing the speed of the generator, and it
has shown to operate safely even during transient conditions.

A frequency power converter [68] is proposed and the current
controller of AC/DC/AC converters is designed and simulated in
dq0 frame, Fig. 12 shows the results of generated power and
generator rotational speed, which are regulated to values with the
maximum efficiency of turbine. Table 3 gives a summary of the
control strategies designed on the converters of Wave Dragon.

Fig. 10. Technology used in Wave Dragon to produce electricity from waves [91].

Fig. 9. Comparison of rotational speed control methods (with and without relief
valve control) [61].

Fig. 8. The electrical system of LIMPET [55].
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4.3. Control strategies for attenuators

4.3.1. A‐Hydraulic system

Hydraulic systems are typically efficient energy conversion
systems consisting of two energy conversion steps. The first step
is that mechanical energy from waves is absorbed by a floating
body and converted to hydraulic energy through a compression
unit [69], which functions synchronously with the motion of
floating body. Second, the generator or motor produces electrical
energy in relation to the pressure difference resulting from the
compression unit. A basic hydraulic system is explained in Fig. 13.
Components of a basic compression unit include a hydraulic
cylinder, two pressure accumulators and a valve-control system
(Fig. 17). The hydraulic cylinder is used to transfer the motion of
the floating body into that of direct-linked double-acting piston in
the cylinder. Two chambers are connected respectively to a high
pressure accumulator and to a low pressure accumulator, and the
cylinder motion leads to a varied pressure difference that results in
a torque on the generator/motor. Since unstable power output and
energy loss is due to the existence of irregular waves, the valve-
control technique is used to significantly smooth the power as well
as for achieving energy storage for better efficiency.

In the following section, two examples of WECs for hydraulic
system are illustrated with the control technologies, which are
summarized in Table 4.

4.3.1. B-Typical WECs for hydraulic system

a. Wavebob. In the hydraulic circuit of the Wavebob, two separate
elevated pressure levels are set next to the biased low pressure (LP)
level: the variable pressure (VP) and the high pressure (HP). They are
established for de-coupling of power output and input. The HP level
is used to maintain the displacement control through HP motor, in
order to maintain the working pressure for the hydraulic motor and
to compensate the variations. The VP level is used to provide a
defined damping force through the pumping module by defining
the backpressure [70].

A Hydraulic Parallel Circuit (HPC) is preferred to maintain
constant pressure and speed conditions within the limits set by
the accumulator capacity. The AC generator is driven by two
variable displacement motors—A HP motor and VP motor placed
in parallel on a common shaft. While the VP motor displacement
ramps up and down with the wave-dependent input flow, the HP
motor is used to maintain a constant generator speed.

According to the structure of a HPC, latching control [71] is
used as a method to control the damping force. The latching
control strategy is achieved by two different control methods: VP
motor control and HP motor control. Control of the VP motor is to
control the damping force and pressure linearly proportional to
the velocity of buoy system [72], while control of the HP motor is
to maintain the accumulator pressure by adjusting the flow rate of
the HP motor. Fig. 14 shows a schematic block of the function of
the hydraulic system in Wavebob [73]. And in Fig. 15, the one on
the top is the absorbed mechanical power by Wavebob, while the
bottom one represents the output electrical power from a Power
Take Off (PTO) system with non-linear damping control. The test
results conclude that Wavebob succeeds to gain smooth output
power under irregular wave conditions with the damping control.

In [69], a general hydraulic model is built theoretically attached
with a point absorber WEC. It could also be fitted to the Wavebob,
in spite of having been conceived for SEAREV. In the model, an
extra accumulator is designed for energy storage [74]. Controlled
valves with a PID controller are installed in each accumulator [75].
Fig. 16 represents the output electrical power with different
accumulators control method. When two accumulators are both
working, the electrical power is enhanced by up to 50% in

Fig. 11. DPTC-SVM with APF for Active and Reactive Power Control (P&Q Control) [65].

Fig. 12. Output power from generator and generator speed with current control
algorithm [67].

Table 3

Summarized control strategies of the examples for Overtopping system.

WECs Control strategies
on the converters

Conclusion

Wave Dragon DTC-SVM on the generator
side converter

The combined control is
possible to achieve
maximum efficiency of
the turbine.

APF on the DC/DC control
DPC-SVM on the grid side
converter
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comparison with power with no accumulator control. In spite of
the increase of the electrical power, this control strategy actually
decreases the efficiency of the PTO.

b. Pelamis. The Pelamis is a hinged wave energy converter
consisting of cylinders connected by the joints aiming at
pumping high pressure oil through hydraulic motors to drive
electrical generators to realize electrical conversion [76]. The

structure is stretched out along the direction of the moving
waves [77], its snake-like motion is caused by the forces from
waves and produces an angular relative motion between the
cylinders which in turn leads to the pressurization and de-
pressurization of the hydraulic system.

The hydraulic system is composed of two transmission parts.
One is the primary transmission, in which energy from wave
motion is converted into the hydraulic energy stored in the
accumulators [78]. The secondary transmission is the conversion

Fig. 13. Technology used in a hydraulic system to produce electricity from wave [91].

Table 4

Summarized control strategies of the examples for hydraulic system.

WECs Control strategy Description

Wavebob Latching control Control the damping force
of the buoy system

Pelamis Frequency tuning Control the rotational speed
and thus compressing motion in the cylinders

Fig. 14. Schematical block diagram of the control to WEC of the Wavebob [73].

Fig. 15. The absorbed power and the output electrical power from Wavebob [73].

Fig. 16. Output electrical power from the hydraulic system with extra accumulator
control [69].

Fig. 17. Simplified schematic system of the Pelamis [78].
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of the stored energy into electricity in the generators by use of
hydraulic motors (Fig. 17).

The efficiency of Pelamis can be enhanced [79] by the frequency
tuning, which is achieved by the control to the bias angle, leading to
the control of rotational speed and thus compressing motion in the
cylinders. The frequency tuning [80] mainly depends on the high-
pressure fluid inside the hydraulic system. Therefore, electronically
controlled valves are installed to control the flow of fluid and
consequently affecting and controlling the angular relative cylinder
motion of the Pelamis. Fig. 18 gives a simulated plot of absorbed and
generated power from full-scale Pelamis operating under regular sea
condition. The generated power shows that the smoothening effect
from the secondary transmission is achieved comparing with the
instantaneous power absorbed in the primary transmission. Addi-
tionally, Pelamis Wave Power Ltd. goes further with the theoretical
research on maximum wave energy absorption by volume con-
straints, more details in [81].

4.3.2. A‐Direct drive system

Direct drive system is a type of wave energy converter that
generally has a more simple mechanical structure compared to
that of hydraulic systems. It is employed in order to absorb the
available wave energy more efficiently. The direct drive system
with a linear generator [82] consists of a magnetic translator
which is driven to reciprocate synchronously with the motion of a
directly coupled buoy/floating body [83]. A simplified structure of
direct drive conversion system is shown in Fig. 19. The result is
directly induced three phase AC power without intermediate
energy converting steps.

Directly driven systems have the advantage of not requiring an
intermediate mechanical interface and thus avoiding the losses
that take place in these devices (turbines and hydraulic motors) in
other PTO systems. On the other hand, linear electrical generators
for wave energy applications are in need of power electronics in
order to convert the generated electricity to a form that is suitable
for the electric grid.

Table 5 gives a summary of the control strategies used in the
examples in the following section.

4.3.2. B-Typical WECs for direct drive system

a. The Lysekil Project. The linear generator developed in the Lysekil
Project [84] is settled on the sea floor, via the connection line from

the top of generator hinged to a buoy floating on the ocean surface
[85], as illustrated in Fig. 5. So far, three different control strategies
have been experimentally tested in the project. They are the
passive diode rectification, DC control [86] and resonance circuit
[87]. Future work will continue with the testing of marine
substation [88]. During 2011 and 2012, a novel passive rectifier
circuit was tested. The circuit can be seen in Fig. 20 and is a
combination of a diode rectifier and resonance circuit with
capacitors. The purpose with the circuit is to achieve a higher
damping, e.g. power absorption, and at the same time maintain a
high voltage output from the generator.

The generator is connected to the rectified circuit [89] and in
the experiments the translator's reciprocating motion was
achieved with the help of a crane. The result from the experiment
is presented in Fig. 21. The result [90] shows that the voltage
across the capacitor C2, is increasing when the translator speed is
decreasing to an operating frequency which is closed to the
resonance frequency [91].

b. Archimedes Wave Swing. The AWS consists of a submerged
floater [92] that oscillates with the frequency of the ocean waves
passing the device overhead. It is standing on a foundation fixed to
the sea floor. Its reciprocating motion is driven by the varying
pressure from the waves that act on an internal gas spring, causing
a synchronous motion relative to the waves [93]. Since the wave
energy is converted via the directly driven LPMG to produce
electrical energy, strategies on converter control is of significance
for extracting maximum energy from the waves.

Consisting of two voltage source converters (VSCs) and one
capacitor, a full scale back-to-back converter is used for the
converter system in AWS, with target of higher energy yielding
and the converted power fluctuation smoothening [94].

Fig. 18. Absorbed and generated power from hydraulic system with active control
strategy during continuous wave periods [78].

Fig. 19. Technology used in a direct drive system to produce electricity from wave [91].

Table 5

Summarized control strategies of the examples for point absorbers.

WECs Control strategy Description

The Lysekil
Project

Resonant circuit To achieve electric resonance with the
generator’s winding

AWS Feedback
linearization
control

To cancel the non-linear dynamics of the
generator in order to achieve closed-loop
linear control

Reactive control Control the output impedance to be equaled
to the complex conjugate of the intrinsic
impedance of generator

Phase and
amplitude
control

Control the floater’s vertical velocity in
phase with wave excitation force, and the
amplitude is also regulated

Latching control Control the water damper to prevent the
floater from moving

Stiffness and
damping control

Current control in the dq0 frame to control
the active and reactive power respective
stiffness and damping factor

The Oregon
University
L10

Vector control of
PADA system

Control the generated current’s phase to be
901 ahead of the flux inside the generator
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The generator side converter for AC/DC conversion is the one of
the VSCs connected to the stator of LPMG, while the grid side
converter for DC/AC conversion is also the VSC linked to the grid
on land [95]. As variable frequencies and magnitudes of power
induced in the generator will cause dramatically fluctuations in
the transmission, it is necessary to insert the storage unit—
capacitor to smooth the ripples and guarantee the constant output
of power to the grid.

Electrical control strategies to generator side converter of AWS
with anticipation for energy absorption have been proposed.
Feedback linearization control [96] was employed in the prototype
of AWS. Its aim is to provide a control action that cancels the non-
linear system dynamics [97] of the plant.

In spite of employing it into the realistic environment, obvious
increase of the energy absorption is obtained by the feedback
linearization strategies. Furthermore, several control strategies
including phase control and amplitude control [98], reactive
control, and latching control [99–101] are proposed and relevant
models are simulated comparatively. Fig. 22 shows the simulation
result from database from different strategies and comparison
with energy absorption without control is done [102]. From the
result the feedback linearization is found to be the best control
strategy, then following the latching control, the reactive control,
the phase and amplitude control.

Furthermore, a method of a dq0 model was proposed for
dynamics and stability analysis of the stiffness and for the
damping control on the generator instead of abc model that was
used to control the prototype. Results (Fig. 23) from simulation
show the proposed controllers are able to yield higher output
voltage [103], and higher reactive power with an increase of 14.3%,
and a higher sensation is as well achieved in tracking control
reference value, even under situation of small disturbance.

c. L10 of Oregon State University. The L10 consists of a deep-
draught spar, restricting the device body to heaving motion. The
motion of the linear generator is controlled by a stiff voltage
applied to the terminals produced in an active control module.

The Power Analysis and Data Acquisition (PADA) system [104]
for the electrical control to the generator is designed to fit in the
WEC with rated power 30 kW [105], including functions of vector
control [106], active and passive rectification [107,108], maximum
power point tracking, and power control[109].

PADA system has two main power electronic components
[110]: three-phase active rectified circuit and an output buck
converter. The three-phase rectifier is connected to the generator
and provides a path for the power flow into a common DC link.
The output buck converter connected to the backside of the DC
link provides control of the power flow to a fixed resistive load.
The schematic system is described in Fig. 24, PWM controllers and
phase controllers are comprised to control the IGBT Switch board
on both side of the converter, aiming at regulating the energy
absorption to maximum and to smoothen the power flow to the
grid. All data from the voltage and current sensor to the DC link
are sent through the remote monitoring.

Test results with active rectifier with PADA system show that
the DC link voltage is achieved to maintain the desired DC link

Fig. 20. Installed electrical system in the measuring station [85].

Fig. 21. Measured voltage across capacitor, C2, result from [85].

Fig. 22. Results of the energy absorption in March with comparison among
different control strategies [102].

Fig. 23. Instantaneous active power from LPMG with stiffness control and without
stiffness control [39].
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voltage maximum of 600 V [111]. Fig. 25 presents the result of
generated power with active control during one hour session,
showing that PADA system is promising to improve the power
factor of the generator over that of a passive rectifier.

5. Energy storage techniques for wave energy converters

The output of energy from WECs varies dramatically due to the
intermittent nature of the wave motion, both on the second scale
and on the scale of hours and days. The resulting fluctuations of
the harnessed energy affect the quality of the electricity supplied
the grid, and increase the costs of the transmission. Because of this
physical fact of the energy source, energy storage or buffer systems
are often deemed as particular necessary for smoothening the
variations and delivering high quality electrical power, and in
order to provide stable electricity to grid. Short time scale
variations of the input power from the WECs to the grid can be
handled by utilizing energy storage systems as the examples
described below.

5.1. Oscillating water column devices

In the case of the demonstration wave energy plant in India
[112], a high-speed flywheel type storage device was introduced
along with an inverter to the three phase load for short duration
energy storage. With the help of PID controller, the output load
was switched to maintain the frequency and the voltage of AC
supply within small variation, making it possible to gain balance

between the input power from generator and output power to the
load by adjusting the load value. Another solution is to place
Superconducting Magnetic Energy Storage (SMES) across the DC
link after the three-phase rectification with power electronic
controller.

5.2. Hydraulic systems

In the Pelamis' conversion system, short-term energy storage is
provided by high pressure accumulators that help to deliver a
smooth power flow to drive grid-connected electric generators
[113]. Storage takes effect whenever there is a fluid exchange
between the pressurizing chamber and the high pressure accu-
mulators. The main problems contributed to the energy loss are
related to mechanics, including the compressibility, bearing and
seal friction of the hydraulic cylinders, and flow losses through
valves and pipes.

5.3. Direct drive systems

Battery Energy Storage (BES) is proposed to be integrated into
the electrical converters of the AWS device in order to regulate the
power quality and smooth the output power via a DC/DC converter
[114]. In the case of a wave energy plant with multiple branches of
WEC connection, BES is a possible solution to balance the power
and phase difference between the instantaneous output powers
from each individual WEC to the power grid. Within acceptable
system disturbance, experiments have shown that BES is able to
smooth the active power of WEC with improvement of power
quality.

6. Conclusions

As an indispensable stage in the energy conversion process,
electrical control strategies are taking a more and more important
role and concern in how to harvest energy efficiently from ocean
waves. The intermittent nature of ocean waves is a challenge that
needs to be met in order to secure a good quality and reliability of
power supply.

This paper has categorized the WECs into three groups with
regard to the mechanism of the wave energy conversion. Different
control topologies of the conversion system utilized in typical
examples of WECs are explained. In Table 6, these three categories
are listed, and different WECs with related control systems are
presented and classified. Control strategies are also listed accord-
ing to the different WECs discussed in the paper.

Fig. 24. Schematic conversion system of the so-called L10 of Oregon University.

Fig. 25. Generated power with current reference during 1 h session [104].
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One conclusion is that the control strategies are very depen-
dent on the mechanical structure of the WECs. For example, OWCs
are mainly focused on rotational speed control of the turbine and
airflow control of the valve, while Point Absorbers are more
concerned with the electrical control of the WECs. Although
different control strategies are of course comparable when applied
to a specific WEC device, it is not easy to make parallel compar-
isons between different WECs even within the same basic cate-
gory, thus making it difficult to reach a conclusion on which
overall control strategy, if any, that is optimal for wave energy
extraction. Fundamental understanding of wave energy absorp-
tion, see Section 2, tells us what we are trying to achieve with the
electrical control, but the necessary mechanical and electrical
engineering choices taken in the design of a WEC strongly affects
and constrains the possible control strategies. Taking the Wave
Bob and the Lysekil Project as an example – in spite of both WEC
technologies being based on linear drive point absorbers, the
different power take-offs and choice of electrical system affects
the possibilities of applying, e.g. a reactive control strategy.
Conversely, for some control strategies on overtopping devices
and OWCs, i.e. the controls of the turbine and the generator, there
are similarities due to the form and purpose of the electrical
conversion stage.

As indicated by this paper, although many studies have been
performed on active control, the wave energy community would
benefit a lot from more comparative studies and experimental
verification of theory. Today the published knowledge of electrical
control varies a good deal between the three general concepts and
between the specific WEC technologies. Some technologies benefit
from long periods of operation, e.g. some OWCs, where different
control strategies have been developed and tested over time, while
other technologies still await the experiences from experiments in
the sea. The authors suggest that the control methods in Table 6 be
used as a starting point for future comparative studies. Further-
more, it is of course valuable to study practical experiments of
various control strategies carried out in the wave energy test sites,

and to compare the experimental results with that from simula-
tion modeling. Moreover, it is expected that much experience and
knowledge on control strategies and related energy absorption is
unpublished and owned by commercial wave energy developers.
Although this information would be much appreciated by the
scientific community that it is a lot to ask from industry to
disseminate some of their intellectual property.

Although not much research has been presented on energy
storage for wave energy as of yet, this often important and
integrated part of the energy conversion strategies has been
considered briefly in the paper. In wave energy, short time energy
storage is often needed for smoothening of the output power and
for improving the power quality and the dynamic response.
Because of the nature of oceans waves, with large power variations
on the second scale, the authors see energy storage as a natural
and important future research topic for wave energy.

In general, due to the necessity of large-scale offshore installa-
tions and experiments, wave energy research and development is
expensive. However, the physical nature of the resource, e.g. the
large potential as a source of renewable energy for the world's
societies, the relatively high density of energy, and its availability
and predictability, stands as clear motivations to the substantial
ongoing activity worldwide. Strategies for active control, often in
combination with energy storage, have the potential to dramati-
cally affect the absorbed energy and hence the economy of the
devices. The complexity of the electrical control strategies and
related technologies affect the risk of experiments in terms of
survivability and cost, which is something that needs to be taken
into consideration by the wave energy developers.
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