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Transformers are playing an increasingly significant part in energy conversion, transmission,
and distribution, which link various resources, including conventional, renewable, and
sustainable energy, from generation to consumption. Power transformers and their
components are vulnerable to various operational factors during their entire life cycle,
which may lead to catastrophic failures, irreversible revenue losses, and power outages.
Hence, it is crucial to investigate transformer condition assessment to grasp the operating
state accurately to reduce the failures and operating costs and enhance the reliability
performance. In this context, comprehensive data mining and analysis based on intelligent
algorithms are of great significance for promoting the comprehensiveness, efficiency, and
accuracy of condition assessment. In this article, in an attempt to provide and reveal the current
status and evolution of intelligent algorithms for transformer condition assessment and provide
a better understanding of research perspectives, a unified framework of intelligent algorithms
for transformer condition assessment and a survey of new findings in this rapidly-advancing
field are presented. First, the failure statistics analysis is outlined, and the developing
mechanism of the transformer internal latent fault is investigated. Then, in combination
with intelligent demands of the tasks in each stage of transformer condition assessment
under big data, we analyze the data source in-depth and redefine the concept and architecture
of transformer condition assessment. Furthermore, the typical methods widely used in
transformer condition assessment are mainly divided into rule, information fusion, and
artificial intelligence. The new findings for intelligent algorithms are also elaborated,
including differentiated evaluation, uncertainty methods, and big data analysis. Finally,
future research directions are discussed.

Keywords: transformer condition assessment, information fusion, artificial intelligence, big data analysis,
uncertainty method, condition-based maintenance

1 INTRODUCTION

Energy, underpinning human activities, is crucial for the development of modern economies
(Borunda et al., 2016; Azmi et al., 2017). The contradiction has become quite intense between
traditional energy supply and the increasing demand for energy in the development of the global
economy (Lu et al., 2022). To alleviate the dependence on traditional energy sources, bridge the gap
between electricity supply and demand, and reduce environmental pollution, more and more
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renewable and sustainable energy sources are being used to
generate electricity (Chen and Chang, 2015; Fu et al., 2015;
Rauf et al., 2015; Rahbar et al., 2018; Fu et al., 2020). In
addition, the third industrial revolution represented by new
energy technology (IEEE-SA Standards Board IEEE Std
C57104-2019, 2019) and energy internet technology is on the
rise, and the power network has evolved from local small-scale
networks to cross-regional interconnected power grids (Li et al.,
2022a). Hence, it is imperative to ensure the safety, reliability, and
high efficiency of power grids (Li et al., 2022b).

As smart grid technology thrives rapidly, power transformers
are playing an increasingly significant role in power systems.
However, transformer defects and failures may be caused by
overload, overvoltage, internal insulation aging, and the natural
environment, which will not only lead to huge economic losses
and affect the daily lives of power consumers but also influence
public safety and cause serious social losses (Malhara and Vittal,
2010; Miranda et al., 2012; Gang et al., 2014; Li et al., 2016a).
Conventional periodic maintenance (e.g., preventive
maintenance) has been over-estimated because the time-based
strategy may fail when faults cannot be detected during the time
intervals between planned maintenance periods (Trappey et al.,
2015). In such cases, condition-based maintenance (CBM) is
necessary, which can support proactive maintenance, alter
scheduled maintenance, prolong the service life, and reduce
maintenance costs, thus making maintenance work more
scientific (Wang et al., 2015). CBM strategies are jointly
determined by condition monitoring (Kou et al., 2022) and
assessment. Therefore, in order to prevent undesirable failures
and defects, it is important to keep monitoring and evaluating the
operating condition of power transformers, grasp the rules of
their operation state, and provide suggestions for transformer
condition maintenance and asset management (Saha et al., 2015).
To this end, there is an increasing need for better non-intrusive
diagnostic and monitoring techniques to evaluate the overall
operating condition of the transformers (Wang et al., 2002).

At present, condition assessment for power transformers
mainly analyzes and judges the health condition mainly through
one or a few state parameters and unified diagnostic criteria (Sheng
et al., 2018; Wu et al., 2020), which fails to comprehensively take
advantage of defects, maintenance history, family quality history,
etc. The thresholds are determined by statistical analysis of a great
deal of experimental data and subjective experience. Moreover,
transformer state information is scattered in various business
application systems and is characterized by a complex and
diverse structure as well as uneven quality. As a result, it is
difficult to obtain transformer data integration, an accurate
description of the fault or defect evolution, as well as associated
rules between the transformer state parameters. The accuracy,
pertinence, and timeliness of the diagnosis and evaluation
results may differ from the actual operation and maintenance of
power transformers (Wu et al., 2021). Hence, it is significantly
necessary to exploit new techniques to optimize and improve the
existing research structure for transformer condition assessment
and further benefit attempts for CBM and asset management.

In the last decade, various power utilities, research institutions,
equipment-operating units, and manufacturers have striven to

develop emerging technologies, such as big data, cloud
computing, Internet of Things, mobile Internet, and artificial
intelligence, which are widely applied to power grids. These new
technologies can promote rulemining among transformer-operating
information, environmental data, and power grid operation data. As
for operation and maintenance of power transformers, advanced
measurement infrastructures have been deployed in smart grids, and
transformer state data has gradually emerged as large-volume,multi-
type, and fast-growing, thus paving the way for the application and
development of big data, artificial intelligence, and other
technologies in transformer condition assessment. Hence,
integrating intelligent algorithms into big data and knowledge
analysis is valuable for transformation condition assessment.

Until now, several methods for transformer condition assessment
have been applied to the theoretical investigation and various
research (Flores et al., 2011; Liao et al., 2011; Arias Velasquez
and Mejia Lara, 2018; Zhou and Hu, 2020). At the same time,
several surveys on transformer condition assessment have been
carried out from different perspectives (Wang et al., 2020a). A
variety of condition monitoring methods and diagnostic tests
were investigated in (Wang et al., 2002), (Islam et al., 2018a) and
(Xie et al., 2020), including dissolved gas analysis (DGA), tap
changer condition, frequency response analysis, insulation
resistance measurements, partial discharge, turns ratio, oil testing,
and power factor. De Faria et al. (2015) reviewed operational lifetime
degradation factors and the major techniques employed for
predictive maintenance based on DGA. In addition, the
Doernenburg, Rogers, IEC ratio, Duval triangle, and key gas
methods were introduced in detail (Faiz and Soleimani, 2017).
Bakar et al. (2014) presented several methods for measuring the
concentrations of dissolved gases in transformer oil and provided
several interpretations of DGA. Singh and Verma (2008) presented
an overview of transformer fault diagnosis (Shi et al., 2009) based on
AI techniques, including fuzzy logic, neural networks, and neuro-
fuzzy-based expert systems. Time-domain polarization
measurements and physicochemical-based diagnostic techniques
were investigated respectively in (Saha, 2003) and (Sylvestre
N’cho et al., 2016) to assess the insulation condition in aged
transformers. Since the health index well reflected the health and
operating condition of transformers, Azmi et al. (2017) examined the
previous mathematical equation/algorithm of the health index in
terms of combination of scoring, scoring, and ranking method,
ranking and tier method, multi-featured factor assessment model,
and matrices. Wang et al. (2020b) provided a comprehensive review
of the existing work for transformers from two perspectives,
including fault diagnosis and operating condition prediction.

However, none of the previous work has been dedicated to a
comprehensive survey of intelligent algorithms applied in
transformer condition assessment, considering the intelligent
demands of the tasks in each stage of condition assessment
under big data. To this end, this article aims to provide a
uniformed framework for transformer condition assessment,
from data acquisition, data processing, and data analysis to
visual application, to cope with various patterns of transformer
failures and tackle the intelligent demands of big data analysis.
Moreover, various data acquisition modules, data system, and the
relevant data types with respect to transformer condition
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assessment are explored in detail. Furthermore, the intelligent
algorithms applied in data analysis for transformer condition
assessment are exhaustively reviewed in this article. The main
contributions can be summarized as follows:

• The statistical analysis of transformer failure locations and
types is investigated. Moreover, the main factors related to
the operational condition of a power transformer and
operating mechanism in the developing process of an
internal latent fault are comprehensively analyzed.

• To cope with various patterns of transformer failures and
comprehensively investigate large amount of transformer
stat data, a uniformed framework for transformer condition
assessment, from data acquisition, data processing, and data
analysis, to visual application, is proposed.

• The data acquisition and data types related to transformer
state are exhaustively investigated, and the basic concept
related to transformer condition assessment is discussed.

• A holistic study of traditional condition assessment methods
is presented, including rule-based method, information
fusion method, and artificial intelligence method.

• In addition, the state-of-the-art efforts made in three
established topics about transformer condition
assessment are surveyed under big data, including
differentiated evaluation, uncertainty evaluation, and big
data analysis.

In the following, the statistical analysis of transformer failures is
presented in Section 2, including transformer failure locations,
failure types, and operating mechanism of latent fault. Section 3
discusses the data source, concept, and architecture of transformer
condition assessment. Several traditional methods for transformer
condition assessment are investigated in Section 4. Section 5
explores the new findings related to transformer condition
assessment. Finally, some possible further advancement is discussed.

2 TRANSFORMER FAILURE STATISTICS
AND ANALYSIS

Large power transformers are generally working under high
voltage, high current, suffering from wind, frost, rain, and snow,

etc. frequently, and the operating environment is harsh. Moreover,
as operating time increases, the dielectric strength and mechanical
strength of transformer insulation materials decrease, which may
increase failure probability and reduce residual life (Su et al., 2022).
According to the 1983 CIGRE working group’s statistics of large-
scale transformer failure records with a service life of less than
20 years from 1968 to 1978, the order of transformer failure
locations is generally on-load tap-changer, winding, bushing,
tank, core, and relay, as shown in Figure 1 (Bossi et al., 1983).

As shown in Figure 2, power transformers are extremely
complex systems, involving circuits, magnetic circuits,
insulation, and mechanical mechanisms (Xiao et al., 2022).
They are subject to a variety of internal and external stresses
(electrical, magnetic, mechanical, and thermal) and influence
factors. The inner insulation condition is affected by the
multi-field coupled working environment, such as electric
field, magnetic field, and temperature field. The water content,
impurities, defects, and other factors will also affect inner
insulation and safe operation of transformers. At the same
time, external factors (e.g., strong lightning strikes (Chen
et al., 2021a), corrosive gases, current and load impact
generated by power grid operation, monitoring information
transmission safety) could cause a major uncertainty in the
safe and reliable operation of transformers. The statistics of
common transformer fault causes are shown in Figure 3
(Xiang Zhang and Gockenbach, 2008).

Since transformers have complicated structures and many
factors, the correlation of failure causes and components is not
always obvious, and some faults have characteristics of inductivity
and compliance. That is, a fault may be caused by another fault,
and it may induce the other faults. Even sometimes, a variety of
failures happen together; that is, faults have the characteristic of
concurrency. For example, when a short circuit accident occurs in
the power system, two or more faults such as deformation, solder
joint breakage, or insulation damage occur simultaneously. The
fundamental reason for transformer faults is that the internal
insulation (including solid insulating materials and insulating oil)
of the transformer has gradually decreased, which results in
transformer outages. At the same time, the harmonic in the
power system network could increase transformer losses and
cause an abnormal rise in temperature, which will decrease
efficiency, insulation aging, and the expected lifetime
(Henderson and Rose, 1994; Elmoudi et al., 2005; Elmoudi
et al., 2006). Transformer overload operation will lead to
decomposition of solid insulation materials and a large
amount of gas is generated, which affects its mechanical
properties, electrical properties, and insulation properties. The
development mechanism is shown in Figure 4. Moreover, there
exist complex relationships between transformers and other
power equipment in electrical and informational aspects. It is
often the case that clearly good assets and clearly bad assets are
given appropriate scores, but it is the journey and rete of travel
between two states that is of interest. Therefore, it is vitally
important to accurately judge the operating condition and
detect the potential faults through modern electrical science,
information science, data science, and mature system science
methods, which are also the key points of this article.

FIGURE 1 | Defective components of a transformer (OLTC: on-load tap
changer).
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3 OVERVIEW OF TRANSFORMER
CONDITION ASSESSMENT

The degradation of most transformers, a changing, dynamic, and
non-linear process, begins from early defect, latent fault, or
deterioration to failure because of long-term bombinated
stresses of “electric–magnetism–force–heat” and external
environments. In an attempt to counterattack these undesirable
situations, it is imperative to assess the performance of
transformers according to the results of condition monitoring
(Velasquez-Contreras et al., 2011). Considering that
transformers have an inherent complex structure, intricate
degradation mechanism, and variable operational conditions,
transformer condition assessment should not only integrate
state parameters and properties related to themselves and their
components, but also take into account environmental
information, power grid operation, and so on. Only in this way
can the operational state of transformers be reflected and judged
from different perspectives.

The goal of transformer condition assessment is to combine
the DGA, oil quality, furan content, and oil insulation as well as
inspection observations in different subsystems, analyze the
correlation of these state parameters, and obtain the health
and operating condition of the power transformers based on
standards, algorithms, and expert knowledge (Rudin et al., 2012;
Chen et al., 2016; Zhang et al., 2017). The assessment results can
be used to support condition monitoring decisions, maintenance
planning, and asset management.

3.1 Flowchart of Transformer Condition
Assessment
The overall structure of transformer condition assessment, “data
acquisition—data processing and mining—comprehensive data
analysis—visual presentation of user demand,” is illustrated in
Figure 5. Transformer condition assessment requires various
state parameters that can reflect the operating condition of a
power transformer, such as DGA data, electrical testing data, oil
testing data, historical data, family defects, load, economic
dispatch, and operating environment.

As depicted in Figure 5, multi-modal data processing involves
text mining, image recognition, and waveform analysis. After data
cleaning, feature extraction, and data fusion, the assessment of the
actual transformer operating condition is carried out from
different perspectives, such as feature recognition, anomaly
detection, fault diagnosis, and prediction (Kou et al., 2021),
which can provide powerful economic and technical
justifications for planned asset replacement, maintenance costs,
and statistical analysis of family defects. In addition, as
determined by the optimal balance among capital investment,
operating maintenance, and asset maintenance cost, the
maintenance strategy includes monitoring, repair, maintaining,

FIGURE 2 | Main factors related to transformer operation.

FIGURE 3 | Transformer failure causes.

Frontiers in Energy Research | www.frontiersin.org May 2022 | Volume 10 | Article 9041094

Wang et al. Review on Transformer Condition Assessment

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


replacing, or contingency control (Azmi et al., 2017). Thus,
transformer condition assessment is expected to bridge the
contradictions between the benefits of electricity power
production and asset maintenance budgets.

3.2 Data Source
Data is the basis for the transformer condition assessment. The
data required for the analysis of the transformer operating state
(Figure 6) mainly comprise transformer operation attributes,
inspection records, inspection, live detection, online
monitoring, system operation data, fault and defect records,
maintenance records, weather information, and so on. The data
are scattered in each sub-business systems, including
production management system (PMS), equipment condition
monitoring system, geographic information system (GIS),
energy management system (EMS), weather forecasting
system, lightning location system, and mountain fire/ice
warning system. According to different sources of

transformer state data, transformer condition information
can be divided into internal data (e.g., transformer operating
and maintenance records, transformer online monitoring, and
live detection data, etc.) and external data (e.g., power grid
operation data, and environmental meteorology
information, etc.).

4 TRADITIONAL METHODS FOR
TRANSFORMER CONDITION
ASSESSMENT
The traditional methods for transformer condition assessment
represent that these methods are widely used in assessing the
operating condition of power transformers. Several common
transformer condition assessment methods can be classified
into rule-based, information fusion-based, and artificial
intelligence-based methods.

FIGURE 5 | Flowchart of transformer condition assessment.

FIGURE 4 | Developing mechanism of a transformer’s internal latent fault.
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4.1 Rule-Based Method
Doernerburg, Rogers, modified Rogers, Duval Triangle, IEC
60599, and other DGA criteria interpretations (Trappey et al.,
2015) were developed to evaluate the condition of oil and paper
insulation and detect faults indirectly from the gases. The IEEE
(IEEE-SA Standards Board IEEE Std C57104-2019, 2019;
IEEE-SA Standards Board IEEE Std C57106-2015, 2016)
guides classify DGA results into three types, including “DGA
Status 1” (low gas levels and no indication of gassing), “DGA
Status 2” (intermediate gas levels and/or possible gassing), and
“DGA Status 3” (high gas levels and/or probable active gassing).
In addition, since IEEE and IEC (International Electrotechnical
Commission IEC 60422-2013, 2013; International
Electrotechnical Commission IEC 60567-2011, 2011) standards
classify the evaluation grade into “normal,” “attention,”
“abnormal,” and “serious,” the obtained results of transformer
state assessment are usually presented in the form of a state grade
or health index (Naderian et al., 2008; Jahromi et al., 2009). Some
other state parameters, such as interfacial tension, water content,
and dielectric breakdown voltage, are judged by limited values for
different voltage classes.

Although rule-based condition assessment is relatively simple,
easy, and widely used, there are three problems facing existing
standards: 1) it is difficult to apply the unified calculation model
parameters, weightings and thresholds of the standards to
diversified transformers for different types, regions and
manufacturers; 2) the uncertain impacts of multiple data
sources, degradation mechanisms, etc. are neglected; and 3)
the transformer evaluation process mainly relies on DGA data,
oil test and electrical test data.

4.2 Information Fusion Method
Given that there are many state parameters related to power
transformers and the information obtained from a single sensor is
incomplete, it is essential to combine different information from
multiple data sources to acquire an accurate description of the
health and operating condition of power transformers. Moreover,

multi-source information fusion can enhance the viability of
transformer condition assessment and fault diagnosis (Li et al.,
2009).

The existing research mainly concentrates on feature level
fusion and decision level fusion. Li et al. represent different
aspects of the power transformer with an index based on
DGA (HIC•H), insulating paper health index (HIiso), main
health index (HIm), and an index based on oil quality factor
(HIoil). The weight of each index parameter was calculated
through an analytic hierarchy process, and the final HI was
obtained by summing the weights of the four indexes (En-
Wen and Bin, 2014). Cui et al. (2016) proposed using a
Bayesian Network (BN) based multisource data and
information fusion method to assess the overall health
condition of a transformer. Li et al. (2018) established a
hierarchical Bayesian belief network to calculate a probabilistic
health index and then assessed the operational state of power
transformers. The method comprises four layers, which are index
layer, component layer, factor layer, and data layer. Islam et al.
(2018b) studied the long-term degradation of different
subsystems, such as tap changer condition operations,
impurity analysis, insulation condition, bushing condition,
internal components, and other parameters, and then
combined them into a condition-based HI score. Moreover,
the maintenance history and loading information were
considered. In terms of policy-making level fusion, Ma et al.
(2011) adopted Bayesian fusion and Dempster–Shafer fusion to
integrate the diagnosis results obtained from the conventional
diagnosis algorithm, utility practices, predictive learning
algorithm, and expert judgments. The detailed investigation of
advantages and limitations is illustrated in Table 1.

To sum up, these methods only consider part of the state
parameters. If there exists a big difference in different assessment
layers, it is liable to lead to misleading assessment results.
Meanwhile, there is little research on data-level fusion from
the perspective of data science for transformer condition
assessment.

FIGURE 6 | Transformer data collection and classification.
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4.3 Artificial Intelligence Method
Owning to the artificial intelligence (AI) technologies with robust
capacity in feature extraction and classification, several AI
methods such as, artificial neural network (ANN) (Illias et al.,
2016), fuzzy logic (Flores et al., 2011) support vector machine
(SVM) (Li et al., 2016b), and deep belief network (DBN) (Dai
et al., 2017) were introduced into transformer condition
assessment and fault diagnosis. The detailed investigations of
artificial intelligence methods are shown in Table 2. The pre-
determined DGA gas content and existing DGA ratios (Roger
ratios, IEC ratios, etc.) are used as input parameters of AI models
(Zhang et al., 2021). Li et al. proposed classifying different fault
types of power transformers by the use of a genetic algorithm
(GA) and SVM (Li et al., 2016b). Dai et al. adopted the DBN to
reflect the mathematical correlation between dissolved gas ratios
and transformer faults (Dai et al., 2017). Flores et al. put forward
the type-2 fuzzy logic system for assessing the condition of the
paper-oil insulation (Flores et al., 2011).

Given that some gas ratios are not capable of transformer fault
diagnosis, some researchers adopt GA (Jahromi et al., 2009; Sahri
and Yusof, 2015), particle swarm optimization (PSO) (Lee et al.,
2007), rough set (RS) (Zang and Yu, 2009; Zhi-bin, 2012), and
principal component analysis (PCA) (Trappey et al., 2015; Kari
and Gao, 2017) to select optimal DGA ratios and eliminate
redundant DGA ratios that affect the correct rate of fault

diagnosis, thereby enhancing the accuracy and reliability of
transformer fault diagnosis results. Although these artificial
intelligence methods have achieved better accuracy, they
require large amounts of sample data and expert experience
and a great deal of time for computation, which is not
practical in the actual electrical equipment evaluation. The
following are the specific drawbacks for these methods: 1)
overlooking the differences of the transformer under different
operating environments; 2) neglecting the uncertainty of the
complex nature of the transformer, data sources, uncertain
variables in the health condition assessment models; 3) facing
great difficulties in heterogeneous data fusion and correlation
analysis because power transformer data has typical big data
characteristics.

5 EVALUATION OF INTELLIGENT
ALGORITHMS FOR TRANSFORMER
CONDITION ASSESSMENT
With the development of online monitoring techniques, cyber-
physical systems, and the Internet of Things, the obtained
transformer data also has characteristics of big data. Therefore,
it is indispensable to explore new findings that can facilitate the
operating condition analysis of transformers and tackle the

TABLE 1 | Investigations of the information fusion method.

Author Year Method Used state
parameter

Advantage Limitation

Li et al. (En-Wen
and Bin (2014)

2014 Analytical method Including 13 state parameters, such as CO,
CO2, H2, CH4, micro-water, and acid value

Simple and convenient Heavy workload; neglecting the
differences of transformers; only
considering part of state parameters

Cui et al. (2016) 2016 Bayesian network Including 12 stat parameters, such as core
earthing current, moisture, unbalanced DC
resistance of winding, and partial discharge

Visual presentation Only considering part of state
parameters; cannot adapt to all
transformers with different voltages

Inferring using conditional
probability

Li et al. (2018) 2017 Bayesian belief
network

Including 14 state parameters, such as
lightning capacity, overvoltage times, and
short circuit capacity

Convenient; visual
presentation; inferring using
conditional probability

Weighting calculation is subjective and
complex

Islam et al.
(2018b)

2018 General regression
neural network
approach

A dataset of 345 power transformer
including insulation condition, impurity
analysis, and bushing condition

Improving the accuracy Network structure and parameters are
difficult to determine

TABLE 2 | Investigations of artificial intelligence method.

Year Method Method introduction and
advantage

Limitation

2016 ANN (Illias et al., 2016) ANN is characterized by strong data processing and learning ability, which is
widely used in classification and prediction problems

Depending on data samples; easy to fall into local
optimum

2011 Fuzzy logic (Flores
et al., 2011)

Fuzzy logic method uses the fuzzy set methods to enable fuzzy comprehensive
judgment

Several human factors involved

2016 SVM (Li et al., 2016b) SVM is a widely used binary classification algorithm, which can use the kernel
method to done non-linear classification

It may lead to overlapping or indivisible classification for
multiple classification problems

2017 DBN (Dai et al., 2017) DBN is a deep neural network composed of restricted Boltzmann machines,
with strong feature extraction and fault tolerance

Depending on data samples

Frontiers in Energy Research | www.frontiersin.org May 2022 | Volume 10 | Article 9041097

Wang et al. Review on Transformer Condition Assessment

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


challenges of big data analysis for transformer condition
assessment. Therefore, this section summarizes the more
recent literature on intelligent algorithms for transformer
condition assessment.

In particular, a brief elaboration of the differences between
traditional methods and the evolution of intelligent algorithms is
presented. The traditional methods depend on the IEC and IEEE
standards, which classify the state grade into “normal,”
“attention,” “abnormal,” and “serious.” Furthermore, the
obtained results of transformer condition assessment usually
appear in the form of a state grade or health index (Naderian
et al., 2008; Jahromi et al., 2009). Although traditional methods
are relatively simple, easy, and widely used, there are three
problems with existing standards, including: 1) it is difficult to
apply the unified calculation model parameters, weightings, and
thresholds of the standards to diversified transformers for
different types, regions, and manufacturers; 2) the uncertain
impacts of different data sources, degradation mechanisms,
etc., are not considered; and 3) these methods cannot
comprehensively explore and make the best of large amounts
of state data with respect to the operating condition of
transformers.

To sum up, compared with the traditional condition
assessment methods based on guides, information fusion, and
artificial intelligence, the evolution of intelligent algorithms has
the following four characteristics:

• quickly extracting key state parameters;
• effectively mining the universality and individuality of the
transformer to achieve differentiated assessment of the
transformer state;

• deeply excavating the association relation and evolution rule
between the transformer fault and state parameter;

• involving a data-driven evaluation process, which not only
effectively avoids the interference of human factors but
enhances the objectivity of the evaluation results.

5.1 Differentiated Evaluation
In general, the threshold comparison method is usually used to
compare the monitored value of the state quantity with the preset
threshold in condition assessment, and the operating state of the
transformer is merely classified into healthy and non-healthy
depending on whether the thresholds are deviated from the preset
values. This method is so ambiguous that it is not conducive to
maintenance decisions. In addition, the preset threshold in the
above method is usually based on other countries’ threshold
corrections. However, transformers in different countries have
great differences in voltage level, processing technology, and
operating environment (Qi et al., 2020). Moreover, thresholds
are divided for different types of devices, and the threshold
partitioning method is rough, which leads to the evaluation
results being too rough and the accuracy not being high. It is
difficult to achieve a differentiated and refined evaluation of
transformers of different types and regions. Therefore, this
part will attempt to give an overview of existing research
results with respect to differentiated evaluation.

The DGA diagnostic standard of the State Grid Corporation of
China is “DL/T 722 Guide to the Analysis and Diagnosis of Gas
Dissolve in Transformer Oil” (STATE GRID Corporation of
China DL/T722-2014, 2014), which is established based on the
recommended values in IEEE standards and IEC 60599. IEC
60599 (International Electrotechnical Commission IEC 60599-
2015, 2015) collected a large amount of the global gas
concentration data, which covered the different individual
valves observed worldwide and surveyed by IEC and CIGRE.
There were great differences between foreign transformers, such
as voltage level, manufacturer, operating and loading practices,
and climate. The attention values and absolute gas production
rates of the volume fraction of H2 (hydrogen), C2H2 (acetylene),
total hydrocarbons, CO, and CO2 were provided in the DL/T 722
Guide. However, the voltage level was merely classified into
“above 330 kV” and “below 220 kV,” which failed to provide
warning thresholds for all dissolved gases of the power
transformer under different voltages.

These issues also exist in the condition assessment of the
power transformer. Therefore, several countries adopt different
methods for parameter threshold determination. The
United States and the United Kingdom calculate the threshold
values depending on voltage level classification. Germany takes
the influence of operating years and voltages into consideration.
Japan presents the threshold values according to the equipment
rated capacity and voltage level (DUVALM., 2004). The statistics
on fault rate and defects of transformers from three different
voltage grades of 110 kV, 220 kV, and 500 kV (Zhang et al., 2015)
showed that the distribution model of dissolved gas composition
and gas production rate accorded with the Weibull distribution,
and the attention values and alarm values of each gas were
obtained by the inverse cumulative distribution function. The
field experience data demonstrated that the calculated attention
values and alarm values were more suitable for the actual
operation and maintenance. Qi et al. (Qi et al., 2020) obtained
meticulous and personalized warning results for power
transformers with different properties and operating
conditions by investigating the differentiated warning rules.
Attentional and alarming values under different operating
ages, voltage levels, and oil types were calculated and verified
by the actual data. The extensive verification showed that both the
gas concentration and gas increase rate conformed to the Weibull
distribution with an accuracy rate of 98.21%.

In this context, it is urgent to achieve the differentiated
warning values of dissolved gases and other state parameters
of diversified transformers with different properties and
operating environments, and classify more detailed
transformer state information for elaborated and personalized
condition monitoring and health condition assessment.

5.2 Uncertainty Evaluation
Power transformers are complex systems that contain many
components with different state parameters related to the
transformers. The relationships between state parameters and
operational state are complicated and invisible. For example, the
amount of any gas generated in a transformer is expected to be
affected by the duration of use, loading, thermal history, the
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duration of any faults, the presence of one or more faults, and
external factors such as voltage surges (Mirowski and LeCun,
2012). Transformer condition assessment is a process of
combining multiple data sources and obtaining a specific
health grade for operation and maintenance planning. There is
inherent ambiguous and uncertain information in transformer
condition assessment. Therefore, this part aims to provide a
literature review for previous works with respect to
uncertainty evaluation.

The uncertainty during transformer condition assessment is
derived from four aspects: 1) the complex nature of the
transformer, including its structure, degradation mechanism,
and defect development law (Aizpurua et al., 2019a); 2) data
sources and expert knowledge such as error-prone
measurements; 3) uncertain variables in condition assessment
models such as the selection and weight of health index, and the
ambiguous reflection between the health grade and transformer
conditions (Liao et al., 2011; Aizpurua et al., 2021); and 4)
external factors such as the operating environment, the
operation of power grids, and the incorporation of
intermittent renewable energy and applications (e.g.,
photovoltaic solar power generation, electric vehicles, wind
energy) (Mirowski and LeCun, 2012).

The data sources and expert knowledge of uncertainty directly
influence the final transformer health state evaluation. Aizpurua
et al. (2019a) combined the different sources of expert knowledge
to infer the confidence intervals of transformer health condition
for decision-making under uncertainty. Given that the winding
hotspot temperature (HST) was inferred from indirect
measurements, a Bayesian inference framework was proposed
in Aizpurua et al. (2019b), quantifying the uncertainty-informed
remaining useful life (RUL) and analyzing the impacts of
temperature and load measurement errors on RUL prediction.
Dey et al. (2010) utilized the uncertainty envelope to eliminate
noise in dielectric response measurements for transformer
condition monitoring. Ma et al. (2010) took DGA and
depolarization current as examples to demonstrate the
difficulties in obtaining diagnosis conclusions under
measurement-originating uncertainty and developed a SVM
algorithm to deal with any measurement-originating
uncertainties.

Other research mainly concentrates on uncertainty-based
methods, such as Dempster–Shafer evidence theory (Akbari
et al., 2010), Bayesian network (Li et al., 2018), matter element
theory (Liang et al., 2013), and rough set (Tang et al., 2004; Chen
and Yang, 2014), which can effectively combine key state
parameter sets and provide a soft decision for transformer
condition assessment. On the other hand, some scholars adopt
the fuzzy theory (Sun et al., 2016), cloud theory (Liao et al., 2014),
set pair theory (Li et al., 2015; Liu et al., 2018) and other uncertain
reasoning methods to deal with uncertainty conversion between
qualitative concepts and quantitative representations, which
avoid absolute boundaries of evaluation criteria to a certain
extent.

Future research should focus on combining multiple data
sources and expert knowledge, exploring the intricate
relationships between health grades and indices, and

comprehensively assessing the health state of transformers to
obtain more accurate decision-making concerning operation and
maintenance.

5.3 Big Data Analysis
Since big data has been involved in power transformer data,
conventional data processing and analysis can no longer meet the
analysis of the health and operating condition. As depicted in
Figure 4, big data in transformer condition assessment is
characterized by various sources (e.g., PMS, EMS, and GIS),
high volume (several TBs), wide variety (e.g., DGA data,
textual defect records, infrared images, videos, and partial
discharge patterns), varying velocity (e.g., online monitoring,
daily inspections, and quarterly/yearly maintenance), veracity
(e.g., missing data, redundancies, and malicious information),
and values (e.g., operational, technical, and economic) (Dijcks,
2012; Zinaman et al., 2015). In such cases, it is indispensable for
power utilities to extract valuable information from large volumes
and varieties of both real-time and historical data to make data-
driven decisions. In particular, big data analysis contributes to
better monitoring, operation, and maintenance of power
transformers (Bhattarai et al., 2019).

At present, big data analysis technology has been preliminarily
applied to the condition assessment of power transmission and
transformation equipment, and certain research results have been
obtained, mainly including abnormal state identification
(Catterson et al., 2010; Liang et al., 2018; Lin et al., 2018;
Zhang et al., 2018; Liu et al., 2020), association rule mining
(Sheng et al., 2018), differentiated warning value calculation (Qi
et al., 2020), transformer condition assessment (Yan et al., 2018),
and fault diagnosis and prediction (Sheng et al., 2018; Zhou et al.,
2019). Given that data loss and abnormalities result from
environmental interference, internal fault, and sensors’ failures
(Catterson et al., 2010), Lin et al. used association rules and
wavelet neural networks to identify the abnormal sensor data and
the abnormal state of the transformers (Lin et al., 2018). Several
anomalous state detection methods were also applied to
distinguish the normal and abnormal behavior, including
auxiliary feature vector and density-based spatial clustering of
applications with noise (Liu et al., 2020), improved K-means
clustering (Liang et al., 2018), improved Canopy model (Zhang
et al., 2018). Research by (Sheng et al., 2018) utilized the
probabilistic graphic model to reflect the association rules
among various state parameters of the transformer. The mined
association rules contributed to improve the prediction accuracy.
Qi et al. (2020) used fuzzy c-means (FCM) and Euclidean
distance to identify the optimal transformer properties. In
these studies, they identified operation age, voltage grade, and
oil type to better characterize the differences between
transformers based on dissolved gas data analysis. A
differentiated warning rule could be obtained by the
calculation of three selected optimal classification properties
through the association analysis between distribution
characteristics and defect/fault rate, which effectively reduced
the rate of false positives and false negatives. Zhou et al. (2019)
transferred the waveform processing to the distribution
characteristic analysis of partial discharge signals via
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maximum likelihood estimation, which improved the accuracy of
partial discharge estimation, particularly in low signal noise ratio
conditions. Dai et al. (2017) adopted multi-layer and multi-
dimension mapping to extract more detailed differences
between fault types based on DBN, exploring different training
datasets, different characterization parameters, and sample
datasets. Moreover, the effect of discharge and overheating
multiple faults on the diagnosis model was studied.

6 CONCLUSION AND FUTURE TRENDS

CBM is to obtain the transformer maintenance decisions
according to its conditions, and transformer condition
assessment is a prerequisite and basic work for CBM in
transformer asset management. In other words, transformer
condition assessment can provide powerful economic and
technical support and decision-making strategies for
transformer CBM and asset management. Therefore, we
summarized the statistical analysis for components and types
of transformer failures that are prone to occur and found that on-
load tap-changer, winding, bushing, tank, and core are more
likely to fail, and electrical factors, lightning, and insulation are
the most important causes of transformer failures. To cope with
various patterns of transformer failures and comprehensively
investigate large amount of transformer stat data, this article
provides a uniformed framework for transformer condition
assessment, from data acquisition, data processing, and data
analysis, to visual application. With regard to data acquisition,
the data required for transformer operating condition comes
from different subsystems with different condition monitoring
techniques (e.g., inspections, frequency response analysis, and
infrared thermography), which can be classified into internal data
(e.g., transformer operating and maintenance records, DGA,
furan, and insulation resistance) and external data (e.g., load,
system faults, economic factors, and power grid dispatching).
Furthermore, aiming at data analysis for transformer condition
assessment, a comprehensive overview of the traditional
condition assessment method is presented by surveying the
previous studies, including advantages and limitations. With
the advancement of smart grids, data acquisition, artificial
intelligence, and renewable energy technology, several state-of-
the-art research studies on transformer health state evaluation
have been conducted. The new findings for intelligent algorisms
are comprehensively surveyed from three new perspectives,
including differentiated evaluation, uncertainty evaluation, and
big data analysis. Compared with traditional assessment methods,
the evolution of intelligent algorisms can quickly extract key state
parameters, effectively mine the universality and individuality of
transformers, deeply excavate the association relations, and
implement data-driven evaluation.

Transformer condition assessment is an indispensable tool for
the safe and reliable transmission of electricity energy, which
deserves and needs constant attention. With the development of
green and clean power, there has emerged an inexorable trend
that energy consumption relies more on green and clean
electricity. Ultrahigh high-voltage (UHV) technology of long-

distance power transmission provides an excellent chance for
concentrated development of green energy. At the same time,
power equipment faces new requirements. Power transformers
tend to be larger and more complicated. Large-size transformers
possess CPS characteristics and their components are close
coupled, which pose great challenges to condition assessment
and fault diagnosis (Li et al., 2016a). Owning to the increasing
research interest in transformer condition assessment, the
following trends and tendencies for transformer condition
assessment are recommended to be further investigated.

6.1 Enhancing New Manufacturing
Technology
Novel smart sensors have the potential to enhance the
advancement of power systems and power equipment. With
the advancement of Internet of Things and mobile Internet
technologies, reliable and low-cost distributed intelligent
sensor networks will be widely deployed in smart grids.
Moreover, a large number of smart sensors with high
precision (Chatterjee et al., 2013), such as gas sensor arrays
(Uddin et al., 2016; Jang et al., 2018), infrared spectroscopy
(Zhao et al., 2014), photoacoustic spectroscopy (Mao and
Wen, 2015), gas chromatograph techniques (Fan et al., 2017),
solid oxide fuel cell chromatographic detector (Fan et al., 2020)
have been studied, manufactured and applied, providing a more
comprehensive data basis for big data analysis. Another trend is
the novel smart transformer (Saha et al., 2015). The development
of power transformers is following the direction of large capacity,
high voltage, reliability, intelligence, energy efficiency, and
environmental protection. Smart transformers with self-
diagnosis functions are an important issue in the current
transformer industry. Compared with existing transformers,
smart transformers are equipped with more electronic devices,
smart sensors and actuators, a good communication interface,
operating information management, condition diagnosis and
evaluation, operation data monitoring, and fault alarm
function. In particular, smart transformers (hybrid
transformers) that can resist the large-scale penetration of
intermittent new energy sources and applications (e.g.,
photovoltaic power generation, electric vehicles) should be
further implemented and investigated (Hunziker et al., 2020).

6.2 Improving Data Quality
At present, research institutions, power utilities, and
manufacturers have collected a large amount of power
transformer data, including operating conditions, oil tests, live-
line detection, online monitoring, maintenance records, and fault
defects. However, the transformer state data is characterized by
heterogeneity, uneven data quality, and asynchrony, which is
stored in different formats in scattered, disparate sub-systems.
Due to error-prone measurements, data duplication, and data
missing, the accuracy of transformer condition assessment is
poor. In the case of low data quality, the results of transformer
fault diagnosis and predictive analysis will deviate from the actual
results (Li et al., 2016a). Therefore, it is extremely significant to
improve the quality of transformer data. In the future, data
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quality evaluation and data governance should be carried out
further to ensure smooth research on the evaluation work from
the source.

6.3 Making the Best of Unstructured Data
A large amount of unstructured data (e.g., infrared thermal
images, videos, ultraviolet images, partial discharge pattern,
frequency response, and waveform curves) are collected by
manual inspection, online monitoring techniques and smart
measurements, which can help effectively diagnose the
transformer defects and failures such as oil leakage, cooling
system malfunction, winding distortion or displacement, and
partial discharge, and provide an important decision-making
for transformer condition assessment and fault diagnosis. For
instance, enormous textual documents such as trouble and
defect records, operating tickets, and logs of operation and
maintenance are valuable for transformer condition
assessment. Therefore, it is indispensable to carry out
unstructured data mining, feature extraction and structural
conversion of acoustic signals, images and text related to
transformer state, improve the statistical analysis and
knowledge mining of transformer data, and support multi-
dimensional and comprehensive evaluation of transformer
operating conditions via text mining technology, pattern
recognition technology, image processing technology,
machine learning and deep learning technology. In terms of
text mining, Xie et al. (2016) used hidden Markov model-based
text reprocessing to extract the key information from fault and
defect elimination record texts to assess the operating condition
of distribution transformers and combined them with typical
power-off tests and live line detecting results. To identify the
causes of transformer failures, Ravi et al. (2019) studied 393
terms and 103 documents and found that “lightning,” “leak,”
“cable,” “animal,” and “temperature” were the major causes.
Wangfang and Liuquan (2019) utilized knowledge graph
technology to construct an error recognition model of power
equipment defect records.

6.4 Conducting Small Sample Data Learning
A typical characteristic of transformer state parameters is that
there is massive normal operating data and small sample fault
data. In essence, state data concerning the health and operating
condition of power transformers have increased dramatically,
and big data technology has already become a powerful data-
driven tool in equipment condition assessment. It should be
noted that there are still several limitations: 1) due to some
factors (e.g., transformer sensor types, operation and
maintenance mode, state information acquisition), state
parameters of the transformer exhibit “pseudo big data” and
only several types of state parameters are obtained; 2) public
transformer data are not available because of national security,
enterprise privacy, and trade secrets; and 3) most power
transformers are under good operation and maintenance
management, which makes train/test data for intelligent
algorisms insufficient.

In addition, power transformer faults are small-probability
events and the fault case records are not comprehensive, which

leads to the lack of abnormal transformer samples. As a result,
unbalanced transformer datasets cause great difficulty in the
applications of machine learning and big data methods and
poor results in transformer condition assessment (Cheng et al.,
2019). Machine learning generally has quantitative requirements
for training samples. However, transformer anomalies and fault
samples are relatively small, which limits the effectiveness of
machine learning. Hence, it is essential to construct a unified fault
sample information management system in which fault records
are collected and supplemented. On the other hand, it is critical to
further study the machine learning method that can be applied to
small sample datasets.

6.5 Applying Expert Knowledge to Data
Mining
From the cybernetic point of view, transformers are typically
complex “grey box” systems. It is necessary to focus on a scientific
research paradigm that combines mechanism analysis and data-
driven methods for transformer condition assessment. On the
one hand, knowledge and experience related to the transformer
state are accumulated in the long-term electricity production,
which are valuable for actual guidance. On the other hand,
machine learning technology demonstrates its great advantages
in intelligently analyzing the data, discovering potential
problems, and excavating hidden laws. Therefore, how to
integrate the expert experience of equipment state assessment
into machine learning, combine knowledge analysis with data
mining, and establish a mechanized expression model of expert
experience and a knowledge-driven learning model are important
challenges that need to be overcome for expert knowledge sharing
and inheritance (Liu et al., 2019; Kou et al., 2020). Knowledge
graph technology is becoming a key enabler for large-scale
processing of massive collections of semantic knowledge from
structured web data, text, and images (Fensel, 2019), which has
been widely applied in various modern domains (Wang et al.,
2021;Wang et al., 2022). It is believed that knowledge graphs offer
an effective solution that merges large-scale data processing and
expert knowledge with robust semantic technologies (Galkin
et al., 2017).

6.6 Analyzing Failure Mechanism
The failure mechanism refers to the correlation rules between
fault features and transformer state parameters through
theoretical or experimental analysis. How to combine
machine learning with the existing under-fault mechanism to
perceive the “correlation” of complex transformer faults and
effectively extract key features of transformer operating
condition are challenging issues for transformer condition
assessment. Moreover, the transformers display the
characteristics of CPS, with the information network and
physical world being closely coupled. The power system CPS
theory may be used to study the strong coupled relationships
between the transformer and different states of information,
which helps establish an effective and accurate mapping
between the data space and the physical entity and supports
operating condition assessment and CBM.
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6.7 Integrating Multiple Methods
Existing condition assessment models are still far from “compatibility”.
Due to the fact that various methods have their own superiorities, it is
difficult to generalize them. Therefore, it is urgently critical to integrate
multiple methods for transformer condition assessment to
complement each other and obtain the mutual coordination of
different models. However, employing hybrid models on small
training sets may increase the risk of overfitting the training data,
thereby resulting in worse “generalization” performance on the out-of-
sample test set (Mirowski and LeCun, 2012).

6.8 Incorporating External Factors
The external factors of the transformer mainly include
environmental meteorology data, grid operation data, and
malicious data attacks. In recent years, the worldwide harsh
and extreme weather has frequently occurred, contributing to
an increase in domestic and international power grid accidents.
External extreme environmental factors (e.g., lightning, heavy

rain, strong winds, dense fog, high temperatures, low
temperatures, freezing rain) may cause catastrophic damage
to t power transformers and other electrical equipment (Chen
et al., 2009; Schexnayder, 2009; Chen et al., 2021b). Meanwhile,
loads and harmonics of the power grids also present several
challenges to the transformer, and false data injection attacks
(Wang et al., 2018) and other transformer-substation
communication network attacks threaten the safety and
reliability of power substations and power networks (Kerr
et al., 2010).
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