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This paper reviews the-state-of-the-art of electromagnetic (EM) metasurfaces and emergent applications in advanced integrated
devices and instruments from the design method to physical implementation. The design method includes the analytical
coupled mode theory model and commonly used building blocks to construct functional metasurfaces. The modeling approach
creates a common design basis of metasurface devices for optical beam steering, focusing, modulation, lasing, and detection.
The proof of concept of metasurfaces has been established and is translating to practical applications. Previous studies
demonstrated promising applications of metasurfaces including but not limited to optical imaging instruments, biochemical
sensing devices, and multifunctional microoptoelectromechanical systems (MOEMS). Significant performance improvement of
devices and instruments has been achieved due to the implementation of specially tailored metasurfaces. This review provides
an alternative for researchers to step forward on the way of advancing devices and instruments by the deployment of metasurfaces.

1. Introduction

Metamaterials, consisting of subwavelength unit cells, repre-
sent a type of artificially engineered materials with effective
properties, including permittivity [1], permeability [2], chirality
[3], and other physical properties [4]. In metamaterials, the
shape, geometry, and constituent elements of the subwave-
length unit cells and the array fashion jointly determine the
effective properties of these artificial materials. Ideal meta-
materials are the three-dimensional (3D) array of unit cells,
exhibiting bulk, effective electromagnetic (EM) responses [5].
However, due to the difficulties in constructing truly 3D meta-
materials and the high insertion loss in the bulk metamaterials,
the two-dimensional arrays of subwavelength unit cells, namely
metasurfaces, have been proposed to efficiently manipulate the
propagation of EM waves [6-8]. Following the pioneer work of
infrared (IR) metasurfaces [6, 7], emerging interests have been
ignited aiming to control the wave propagation across the EM
spectrum with ultrathin engineered metasurface devices.

Metasurfaces can be optimized to efficiently manipulate
the wavefront by carefully engineering the amplitude and
phase response of the meta-atoms through the unit cell
structure design. Extraordinary effects, including anomalous
deflection and reflection [1, 9], high-efficiency beam focus-
ing [10], polarization conversion [11], and orbital angular
momentum (OAM) generation [12, 13], among others
[14], have been demonstrated by metasurfaces across the
EM spectral from microwave and terahertz to IR and visible
regimes. In addition, metasurfaces are capable of generating
significant near-field effects by the resonantly local field con-
finement, thereby initiating giant nonlinearities [15]. The
high degrees of freedom in controlling the metasurface
properties enable unprecedented functionalities, such as rec-
iprocity breaking in the magnetic-free conditions by using
spatial and temporal modulation [16, 17] and unidirectional
propagation of EM energy by engineering the distributed
loss and gain [18]. These functions have led to break-
throughs in the systems of light detection and ranging
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(LiDAR) [19], advanced imaging [20], biological and chem-
ical sensing [21], communication [22, 23], energy manage-
ment [24, 25], light emission [26, 27], and augmented
reality/virtual reality (AR/VR) [28].

Due to the versatile design space to achieve desired opti-
cal properties, metasurfaces are increasingly outstanding
with the development of micro/nano fabrication, micro/
nanoelectromechanical systems (MEMS/NENS), and micro-
systems. The early metamaterials and metasurfaces were
demonstrated in the microwave regime since the well-
established printed circuit board (PCB). With the develop-
ment of micro- and nanotechnologies, the subwavelength
unit cells were fabricated and implemented by using
advanced micro/nanoscale fabrication techniques, leading
to artificially designed metasurfaces, which improved the
performance of MEMS, microsystems, and optoelectronic
devices. For instance, the large-scale optical metalenses have
been developed as the deep ultraviolet (deep-UV) photoli-
thography processes are available [29]. On the other hand,
the unique functionalities of metasurfaces, such as perfect
absorption, have enabled novel micro/nanodevices, such as
near-zero power IR detectors [30], facilitating the develop-
ment of microsystems. Therefore, the emerging metasurface
technique allows us to interact with EM waves in new fash-
ions, enabling microsystems with improved performance
and novel functions. The metasurface technique is a poten-
tial factor in creating the virtuous circle of advanced micro-
system devices and instruments. In this review, we start with
fundamental theories of metasurfaces, describing the code-
sign framework of metasurface devices. Then, we present lat-
est progresses on the integrated metasurface devices and
instruments. Finally, we conclude with challenges in meta-
surface devices and outlook of the future direction.

2. Design and Implementation
Methods of Metasurfaces

Metasurfaces manipulate the propagation of EM waves, or
light, through the engineering of the local amplitude and
phase response of each meta-atom, which acts like a sub-
wavelength antenna. The interference of meta-atoms collec-
tively determines the scattering characteristics of the
metasurfaces, analogous to a phased-array antenna, enabling
a wide design space to achieve various functions, as shown in
Figure 1. When designing a metasurface, we first calculate
the amplitude and phase responses of meta-atoms with var-
ied parameters at designated frequencies using analytical
models and finite element simulation to build a lookup table.
Then, the assembly of meta-atoms is designed based on the
interactions in the metasurfaces for specific applications.
Finally, the full-wave simulation of the metasurface device
will be performed to optimize the metasurface by consider-
ing the local and nonlocal coupling among meta-atoms.

2.1. Modelling Metasurfaces. To achieve full control over the
propagation of EM waves, independent manipulation of
amplitude and phase responses, as well as the 27z phase cov-
erage, is desired by varying the design parameters in meta-
atoms. The Pancharatnam-Berry (PB) phase is an efficient
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FIGURE 1: Overview of the functionalities and applications of
metasurface devices. Reproduced under the terms of the Creative
Commons  Attribution license (CC BY 4.0). https://
creativecommons.org/licenses/by/4.0/  [13]. Reproduced with
permission. Copyright 2019, American Chemical Society [29].
Reproduced with permission. Copyright 2019, Wiley-VCH [31].
Reproduced with permission. Copyright 2019, Wiley-VCH [17].
Reproduced with permission. Copyright 2013, APS physics [32].
Reproduced with permission. Copyright 2018, Wiley-VCH [33].

approach to control the phase response by the inherent geo-
metric phase property in the circularly polarized EM waves,
which are widely discussed elsewhere [34]. Another
approach to manipulate the phase response is to exploit dis-
persive, resonance modes of meta-atoms, including the plas-
monic resonance [35], dipolar or multipolar resonance [36],
and waveguide modes [37]. Owing to the flexibility in
dynamically tuning the resonant modes, we focus on the
resonance-based metasurfaces in this section.

The resonating behavior of the metasurface may be mod-
eled theoretically by various approaches, including the equiv-
alent circuit model [38], the Lorentz-like effective medium
model [39], and the coupled mode theory (CMT) [40]. Among
these approaches, CMT provides concise and accurate
description on the resonant behavior and unveil the effects
of coupling between distinct resonant modes, attracting
increasing attentions in the metasurface community.

According to CMT, a single-mode resonator
(Figure 2(a)) may be modeled by [41]
da )
d_tl = (jwor = 1)@ (1)

in which a, represents the mode amplitude of the resonant
mode, w,, is the resonant frequency, and y, is the decay rate
due to both intrinsic (y,) and radiative (y,) losses in the reso-
nator. For the excitation with a specific frequency (w), we can
obtain the mode amplitude and transmission/reflection
response by solving Equation (1) in the frequency domain
[41, 42]. Without loss of generality, we assume y, to be
0.005 x w,; and use the normalized frequency difference dw
= (w — wp; )/wy, in the calculation. As shown in Figure 2(b),
the phase of the transmission coefficient is bounded by -90°
and 90°, and the amplitude varies significantly due to the
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F1GURE 2: The illustration of theoretical modeling and building blocks. The illustration of (a) a single-mode resonator and (b) corresponding
response. Illustrations of (c) various approaches to achieve the Huygens’ condition and (d) the ideal amplitude and phase response of
Huygens’ metasurfaces. (e—j) Metasurfaces to achieve the 360 phase coverage by various approaches. (e) Reproduced with permission.
Copyright 2013, APS physics [32]. (f) Reproduced with permission. Copyright 2019, Elsevier [50]. (g) Reproduced with permission.
Copyright 2013, American Chemical Society [51]. (h) Reproduced with permission. Copyright 2018, Wiley-VCH [37]. (i) Reproduced
with permission. Copyright 2012, American Chemical Society [54]. (j) Reproduced with permission. Copyright 2014, American Chemical

Society [55].

resonance, indicating that the amplitude and phase of the
metasurface are coupled leading to a limited design space.
The limitation of amplitude and phase response may be
broken by taking multiple resonators or resonant modes into
the systems [42]. Without loss of generality, we may con-
sider a resonator exhibiting two distinct resonant modes
(Figure 2(b)), the response of which may be modeled by

(43, 44]
; lall i
dt | g,

in which g, represents the mode amplitude of the resonant
modes, w; is the resonant frequency, y; is the decay rate, and
Ky =1 (i, j € {1,2} and i # j) are the coupling factor between
the modes. As shown in Figure 2(c), distinct resonant modes
can be achieved by varied approaches, including multipolar
resonances, waveguide modes, and the Fabry-Perot mode in
the reflection configuration [45]. Herein, waveguide modes
refer to the eigenmodes of the meta-atom due to the longitudi-
nal multiple reflections. For a coupled resonator in the ideal
condition (two orthogonal modes with matched resonant fre-
quencies and decay rates), a 360° phase coverage may be
achieved without amplitude variations [42], as shown in
Figure 2(d), allowing it to be a qualified building block of Huy-
gens’ metasurfaces. CMT provides a lumped-parameter
description of the resonating metasurface and can be exploited
to design the unit cell structure through quasinormal modes
(QNM) expansion [46].

After obtaining the response of constituent meta-atoms,
the overall metasurface array will be designed for various
applications. The overall response of a metasurface is gov-
erned by Huygens’ principle, where every point on a wave
front is a source of wavelets emitting waves with the same
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speed as the source wave to form the new wave front [47].
On the metasurface, waves reflected and transmitted by each
meta-atom generate different amplitude modulation and
phase shift, thereby leading to an arbitrarily desired wave
front due to the interreference effect. The response of the
designed meta-atoms and metasurface should be designed
and simulated by using numerical approaches, including
finite difference time domain (FDTD) simulation, finite ele-
ment analysis (FEA), and finite integral techniques (FIT)
[48]. Recently, inverse design approaches enabled by deep
learning attract increasing interests due to the capability of
efficiently identifying the global optimal solution for the
metasurface design [49].

2.2. Building Blocks. Meta-atoms of Huygens’ metasurfaces
are implemented by metals or dielectrics with judiciously
designed geometries, which support coupled modes and
generate desired phase distribution for wave front manipula-
tion. In early efforts (Figure 2(e)), the electrical dipoles
induced by the cut wires and magnetic dipoles induced by
the split ring resonators were combined to generate the
360° phase variations in the transmission to steer the wave
front with over 80% efficiency [32]. A similar approach is
stacking multiple layers of metasurfaces, as shown in
Figure 2(f), to achieve efficient wave manipulation via the
collective interlayer mode coupling [50]. In dielectric meta-
surfaces, the low-loss nanoparticles support both transverse
electric (TE) and transverse magnetic (TM) modes governed
by Mie resonances, giving rise to the full-range phase cover-
age when the two modes overlap with each other [51], as
shown in Figure 2(g). The amplitude and phase are indepen-
dently controlled by combining the PB phase and scattering
strength control in dielectric metasurfaces [52]. The emerg-
ing bound states in the continuum (BIC) provide another
paradigm to achieve the Huygens’ condition through



controlling the coupling between distinct modes [53]. In
addition, high aspect ratio dielectric scatters that support
waveguide modes lead to the high-efficiency phase control,
even for large incident angles (Figure 2(h)) [37]. These
examples demonstrate that meta-atoms possessing multiple
modes can serve as building blocks of metasurfaces for
transmissive wavefront manipulation.

Metasurfaces can be configured in the reflection mode as
well by adding a ground plane at the back of the subwave-
length meta-atoms. In the reflection mode, the metasurfaces
block the transmitted waves and manipulate the reflected
waves. Such metasurfaces are considered a resonator
coupled to one port, and the full range of phase coverage
may be achieved by tailoring the loss factors [56]. When
the intrinsic loss is larger than the radiative loss, meaning
that the metasurface is overdamped, the phase of the reflec-
tion spectrum may cover the full 360° variations [41]. By tai-
loring the thickness of the low-loss spacer between the
metasurface and the ground plane, the relation between
losses may be modified to control the phase response. Both
metallic (Figure 2(i)) [54] and dielectric (Figure 2(j)) [55]
subwavelength structures serve as the meta-atoms of the
high-efficiency reflective metasurfaces. These basic building
blocks in either transmission or reflection configurations or
their variations form a toolbox, from which the designers
may choose and optimize targeting to specific functions
and applications.

In addition to manipulating the propagation of EM waves,
metasurfaces provide a platform to engineer or enhance the
near-field interactions. The metasurface may tailor the effec-
tive surface impedance to achieve perfect absorption [57-60]
and superabsorption [61], thereby improving the conversion
of EM energy to other types of energy, including heat [62]
and electric potentials [63]. The electric and magnetic field is
confined in the vicinity of subwavelength meta-atoms, arising
significant field enhancement with ratios ranging from tens to
hundreds of times. Therefore, improved nonlinear response
and lasing effects are facilitated by near-field enhancement
[14, 31, 64]. Metasurfaces with engineered near-field proper-
ties enable the enhanced performance and novel functions of
devices and instruments, including MEMS and optoelectronic
microsystems [65]. In this review, we mainly focused on the
metasurfaces for imaging, bio/chemical sensing, and optoelec-
tromechanical systems. Metasurfaces for other applications,
such as wireless communication [66], energy harvesting [67],
and thermal management [68], can be found elsewhere.

3. Application Cases of Metasurfaces

3.1. Metasurfaces for Enhancing Imaging Microsystems.
Metasurface lenses (metalenses) are alternative solutions to
traditional lenses for integrated imaging instruments due
to the small size, low cost, scalability, and compatibility with
semiconductor processing technologies [69-75]. In addition,
metalenses with great capabilities of EM wave manipulation
enable unprecedented functionalities, such as aberration-free
focusing, flexible phase profile design, arbitrarily definable
focal spots [76], polarization selectivity, dual-polarity opera-
tion [77], and ultralarge numerical apertures (NA) [78-81],
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which open up possibilities for a simplified, miniaturized
design of imaging instruments.

Aberration correction of lenses remains a challenge and
adds complication to various imaging instruments. Defined
by the phenomenon that rays emitted from a point object do
not meet all at the same image point, aberrations are simulta-
neously caused by monochromatic and chromatic effects [82].
When operating at a single wavelength, metalenses are natu-
rally able to perform aberration-free focusing under normal
illumination [83], and elementary corrections are needed for
their adoption in practical imaging applications requiring a
large field-of-view. Methods for monochromatic aberration
correction of metalenses include incorporating a curved sur-
face [82] and doublet lens design [84, 85] based on ray tracing
analysis, and the former may be impractical due to
manufacturing complexities. Arbabi et al. proposed a minia-
turized optical planar camera composed of a metalens doublet
and an image sensor, featuring a fisheye type photography
with an angle-of-view larger than 60° x 60°, a small footprint
of 1.6 x 1.6 x 1.7 mm?>, and a nearly diffraction-limited reso-
lution, operating at the wavelength of 850 nm [84], as shown
in Figure 3(a). Further miniaturization of the camera and the
potential for multicolor and hyperspectral imaging will be
enabled by doublets designed for different frequencies and
fabricated side by side on a single chip.

Metasurfaces are capable of mitigating the chromatic
abbreviation through the flexible phase profile design. Apo-
chromatic or superachromatic lenses typically refer to lenses
that are corrected for chromatic aberrations at three or four
wavelengths, respectively. Unlike their traditional counter-
parts, metalenses suffer from large phase dispersion. However,
judiciously designed metalenses provide an achromatic per-
formance at not only several discretized wavelengths [86-88]
but also a continuous bandwidth [89-91] with a single layer
of metasurface, as well as a metalens-cascading method [92].
Due to the lack of phase dispersion compensation capabilities,
simultaneously achieving a large numerical aperture,
polarization-insensitive operation, and broadband achromatic
focusing remains a great challenge. The integration of a band-
pass color filter and a multiwavelength achromatic metalens
may be a practical solution, as shown in Figure 3(b). Red-
green-blue (RGB) light beams were selected after the broad-
band incident light passing through a bandpass filter com-
posed of distributed Bragg reflectors (DBRs) and defect
dielectric layers deposited on the backside of the substrate,
and then deflected to the same focal spot by the metalens fab-
ricated on the front side [93]. Moreover, simultaneously cor-
recting monochromatic and chromatic aberrations is critical
for practical applications, and doublet metalens design has
been theoretically demonstrated as an efficient approach
[94]. In the midinfrared regime, Ou et al. proposed an imple-
mentation scheme of broadband and achromatic metasurfaces
based on the birefringent silicon nanopillars to achieve polar-
ization-sensitive/insensitive varifocal metalens and optical
vortex generation in the midinfrared regimes [95, 96]. The
principle incorporating the Jones matrix in the metasurface
phase profile design represents a general approach to enable
broadband and arbitrary optical beam manipulation for the
imaging and detection applications.
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FIGURE 3: (a) Schematics of a metasurface-based miniaturized camera and the experimental setup for imaging quality characterization of the
camera. Reproduced under the terms of the Creative Commons Attribution license (CC BY 4.0). https://creativecommons.org/licenses/by/4
.0/ [84]. (b) A schematic of the sandwich configuration bandpass filter, SEM images of the fabricated metalens and its achromatic
performance, and images captured under white light with (left) and without (right) the bandpass filter by the same metalens.
Reproduced under the terms of the Creative Commons Attribution license (CC BY 4.0). https://creativecommons.org/licenses/by/4.0/
[93]. (c) Experimental assembly of the endoscope with metalens, images captured with a ball lens configuration (left) and a metalens
configuration (right) endoscope. Reproduced with permission. Copyright 2018, published by Springer Nature [97]. (d) The light-field
imaging system based on a metalens array, SEM images of the metalens array, and rendered images with different focusing distances.
Reproduced with permission. Copyright 2019, published by Springer Nature [101].

Metalens also provides a pathway for the effective cor-
rection of existing imaging instruments. Figure 3(c) exhibits
an endoscope in which a metalens replaced a conventional
microlens to eliminate spherical aberrations and astigma-
tism, and the tailored chromatic dispersion was found to
be helpful in achieving a larger imaging depth [97]. The fiber
was responsible for delivery and subsequent collection of the
light and sending the endoscope to hard-to-reach destina-
tions. A higher image quality with the metalens compared
to the conventional ball lens configuration was observed.
Another metalens-based tomographic imaging instrument
was proposed by redesigning the phase profile for spherical
incident waves [98]. Exploiting metasurfaces to control
other properties of light will enable more types of tomogra-
phy and facilitate biochemical research and disease
diagnosis.

Metasurface can arbitrarily design the focal spots, giving
rise to novel functions, such as in-sensor computation.
Three-dimensional depth sensing based on metalenses has

been developed over the last few years [99-101]. For exam-
ple, inspired by the light-field imaging theory, Lin et al. uti-
lized an array containing 60 x 60 broadband achromatic
metalenses to acquire a subimage array, and reconstruction
of the scene was realized through arbitrarily rendering the
images with different focusing distance based on these subi-
mages [101], as shown in Figure 3(d). Inspired by the fact
that jumping spiders decode depth information from a series
of simultaneously obtained defocus images, Guo et al. uti-
lized a metalens incorporating phase profiles of 2 off-axis
lenses to split the incident light and the depth map was cal-
culated by point spread function (PSF) analysis of 2 images
with different defocus on the same sensing plan [102], as
shown in Figure 4(a). Their methods require a low budget
of computation; thus, a real-time operation is possible for
compact systems.

The ultrathin, large NA metalenses are also a potential
approach to address the challenges in minijaturized optical
systems for augmented/virtual reality (AR/VR) [28, 103].
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permission. Copyright 2018, AIP Publishing [107].

Lee et al. finished a prototype of AR glass system achieving a
large field-of-view (90°) by incorporating a metalens with a
relatively large diameter of 20 mm fabricated by nanoim-
printing [28], as shown in Figure 4(b). For circularly polar-
ized light, the metalens based on geometric phase design
acts as transparent glass for copolarization transmission
and a converging or diverging lens for cross-polarization
transmission. This feature enabled the fusion of actual
scenes and virtual objects, and the optimization was per-
formed for copolarization mode to circumvent the distor-
tion [28].

Capabilities of polarization-sensitive detection enable
metalenses to acquire information unavailable from inten-
sity or spectral analysis, which facilitates the implementation
of polarization imaging using one optical component
[104-106]. Recently, in order to circumvent the image blur-
ring in underwater detection, Zhao et al. developed a
metalens-based polarization imaging instrument assisted by
the differences of polarization states between the light
reflected from target objects and from unwanted back-
ground particles, and a proper estimation of extinction coef-
ficients of the propagation medium begot accurate depth
information (Figure 4(c)) [106].

Metalens arrays are applicable to implement high-
performance IR focal plane arrays (IR-FPAs) with sup-
pressed spatial cross talk and increased sensitivity operating

at the room temperature [107, 108]. Zhang et al. designed an
architecture of the back-illuminated IR-FPA with a solid-
immersion metalens array fabricated through directly etch-
ing the GaSb substrate, the focal spots of which are located
on pixels of the detector array embedded in the substrate
[107], as shown in Figure 4(d). Implementation of the IR-
FPA requires a large meta-atom array and monolithic inte-
gration with the detector array, and this will be enabled by
the constant developing progress of the batch fabrication
methods [29, 109]. The perfect absorbers enabled by infrared
metasurfaces provide a new architecture of spectral selective
infrared detectors [110]. Multifunctional metasurfaces con-
sisting of structured metals and pyroelectric materials
exploit the same structure for both optical enhancement
and electrical readout. The metasurface-based detector pro-
vides a potential solution to implement compact, multicolor,
and highly responsive infrared detectors for hyperspectral
imaging.

In addition to the aforementioned research, metasur-
faces have shown significant potential in light sources.
Applications such as structural light projection [111],
enhanced LED light extraction [112], radiation sources of
X-ray [113], vacuum ultraviolet light [114], and IR light
[115, 116] have been demonstrated. The versatile metasur-
faces have enabled compact, multifunctional imaging
systems.
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image of the optofluidic system based on metasurface technologies for cancer biomarker detection (left) and SEM images of the
metasurface integrating in to the optofluidic (right). Reproduced with permission. Copyright 2018, Elsevier [121].

3.2. Metasurfaces for Biological and Chemical Sensors. Meta-
surfaces consisting of subwavelength and periodic structures
enable high-performance biological and chemical detection.
The resonant frequency of metasurfaces is controlled by
the structures of the meta-atoms. High selectivity of meta-
surfaces based on the resonating nature and local field
enhancement effects is achieved by matching the resonant
mode of metasurfaces with the target. With the advantages
of label-free, high-sensitivity, and good selectivity, some
typical examples of metasurfaces are introduced herein to
demonstrate the great potential to work as biochemical
Sensors.

3.2.1. Metasurfaces in Biological Sensing. Metasurface-based
cancer cell detection method exhibits the capabilities of
label-free, real-time, and in situ analysis of the cell prolifera-
tion to meet the requirements in modern cellular biological
sensing. In order to increase the sensitivity, Liu et al.
exploited the metasurface-based terahertz polarization sens-
ing to analyze the antiproliferation of tumor cells with aspi-
rin, as shown in Figure 5(a). The quality factor is 4~5 times
higher with the terahertz (THz) polarization approach. The
polarization ellipse of the output THz waves from the tumor
cells (293T, B16, and HepG2) shows significant difference
after aspirin treatment [117]. The polarization sensing tech-
nology amplifies the tumor cells’ spectrum difference before
and after the aspirin treating. The result demonstrates that
the well-designed and portable THz metasurface provides a

new route to the detection of antiproliferation in the tumor
cell research area as well as other medical fields, potentially
widely adopted in future clinical practices.

Mainstream antimicrobial susceptibility testing (AST)
technologies of the current clinics have made a great
improvement to the modern medical science. Combined
with the metasurface, a new technology namely phase-shift
reflectometric  interference spectroscopic measurement
(PRISM) was developed for AST [118], as shown in
Figure 5(b). While the conventional AST technologies take
around 20 hours to finish the entire process, the PRISM
takes less than 5h. The effect of antibiotic treatment can be
identified by measuring the temporal responses of PRISM,
determining the minimum inhibitory concentration (MIC).
PRISM can find the most effective recipe of antibiotics for
a special patient in a short time among a wide range of anti-
biotics. With the development of artificial intelligence, meta-
surface technologies may detect the mutation of the bacteria
gene and the status of the porins on the bacteria membrane,
thus providing more accurate information for doctors to
find the suitable therapies.

Mid-IR spectrum, on the other hand, offers a nonde-
structive and label-free approach for biological molecule
(proteins, lipids, and DNA) detection. However, due to the
mismatch between mid-IR wavelengths and dimensions of
molecules, the sensitivity of mid-IR is not enough to detect
the nanometer-scale samples (biological membranes). In
order to improve the sensitivity and tell the unique
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fingerprint of the nanometer-scale biological molecules
(protein, lipids, and DNA), a new method based on the
mid-IR metasurface is proposed. When the resonance spec-
trum of the metasurface is overlapped with the absorption
fingerprints of the molecules, either the frequency or the
strength of the resonance will be changed. This concept is
called surface-enhanced IR absorption (SEIRA) [21], as
shown in Figure 5(c). Distinct biological molecule absorp-
tion fingerprint is originating from the amid I and amid II
vibrational bands located near 1660cm™ and 1550cm™,
respectively. With the special structural design, the mid-IR
metasurface has the extremely high Q (Q >200) absorption
spectrum peaks between 1350cm™ and 1750cm™ with a
gap 60 cm™, which is much narrower than the spectral fea-
ture size of the individual amide I and II absorption band.
Therefore, the SEIRA metasurface can easily distinct the dif-
ferent biological molecules and quantify the molecules con-
centrations with artificial intelligence (AI), facilitating the
improvement in biosensing. The ubiquitous SEIRA is fore-
seeable by decreasing the cost in material and fabrication
processes of the nanostructures [119]. Aluminum plasmonic
disks were fabricated using colloidal mask processes to form
infrared metamaterial perfect absorbers. The absorbers were
functionalized using phosphonic acid and enhance the
absorbance response of bovine serum albumin by at least 8
times with the surface plasmonic enhancement effect. These
works pave a way to achieve highly sensitive biomolecule
detection using SEIRA.

In addition to bacteria and biomolecule detection, meta-
surface can provide an efficient tool for virus screening and
detection. For example, in order to realize fast diagnosis of
COVID-19, IR metasurface is developed as an alternative
approach to achieve high-efficiency patient screening.
COVID-19 is induced by a new coronavirus consisting of
single-stranded positive-sense RNA genome and four struc-
tural proteins (spike surface glycoprotein (S), small envelope
protein (E), matrix protein (M), and nucleocapsid protein
(N)) [120]. Each of them has different resonance frequen-
cies. The normal and mutation viruses are capable to be dis-
tinguished with these 5 absorption peaks by artificial
intelligence IR metasurface. This metasurface biosensor with
an ultrahigh sensitivity (1.66%/nm) has a wide detection
range within the diversity detection environment (gas/lig-
uid), as shown in Figure 5(d). It provides a pathway towards
the ultrarapid, label-free, multifunctional, and unique IR fin-
gerprint detection of the COVID-19. The ability of the
mutation virus detection can make great efforts to address
the current global pandemic.

Besides standalone metasurface membranes for biologi-
cal spectrum detection, metasurfaces can be integrated into
lab-on-a-chip devices to achieve advanced functions. For
example, classical microfluidic devices based on the binding
assays which require fluorescent or enzymatic tags have
done the great contributions to biological detection [121].
Metasurface integrated into the microfluidic devices called
“optofluidic” is the label-free assays which eliminate the
need for time-consuming labeling process and can monitor
binding kinetics in real time. In order to realize the early
diagnosis of cancer patients, a novel lateral flow-through
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biosensor consisting of a metasurface with a two-
dimensional (2D) periodic array of silicon nanoposts (SNPs)
is reported to detect cancer biomarker, as shown in
Figure 5(e). With the incident angle 1°, the absorption peaks
of the metasurface will get the highest Q value [121]. By the
spectral analysis, the antigen and antibody binding process
can be observed as the spectral shifts. Overall, the optofluidic
devices offer a new insight of the biomolecule detection tech-
nology and give a new direction of the metasurfaces inte-
grated devices. Combined with the deep learning
technologies, this system may have the great potential in
diagnosis of a wide range of diseases.

3.2.2. Metasurfaces in Chemical Sensing. Gaseous target
detection and quantitative remote sensing attract massive
efforts in metasurface-assisted spectral analysis technologies.
In order to achieve highly sensitive gas detection, metasur-
faces integrated with metal organic frameworks (MOFs)
are introduced. It provides both excellent absorption selec-
tivity and high gas affinity [122]. With the design of the
metasurface, the absorption peaks are adjusted to the wave-
length range between 4.25um and 7.66 um to match the
vibration modes of the CO, and CH, as shown in
Figure 6(a) [122]. After modifying the surface with MOFs,
the absorption peak value increases from 0.022 to 0.221.
The MOEF-SEIRA platform achieves simultaneous on-chip
sensing of CO, and CH, with the fast response time
(<605), high accuracy (CO2: 1.1%, CH4: 0.4%), small foot-
print (100 x 100 um?), and excellent linearity in a wide
dynamic range (0 — 2.5 x 10* ppm).

To meet the demands of rapid, low cost, and portable
deployment, a metasurface based on the multiwalled carbon
nanotubes is developed to detect chemical residues, such as
pesticides. The limited performance of the traditional meta-
surface with metallic meta-atoms is mainly due to inherent
losses in metals. Alternatively, carbon nanotubes with the
outstanding electrical and optical properties offer the new
opportunities for applications in THz science and technol-
ogy, as shown in Figure 6(b). Different concentrations of
pesticides (2,4-dichlorophenoxyacetic and chlorpyrifos solu-
tions) can be detected by this new platform with lowest
detection mass of 10ng and the sensitivities of 1.38 x 1072/
ppm and 2.0 x 1073/ppm, respectively [123]. Good linear
relationship between transmission amplitude and pesticide
concentration, acceptable reliability, and stability can be
achieved in this multiwalled carbon nanotube metasurface-
based chemical sensing platform.

In addition to pesticides, metasurface may also be
employed in quantitative sensing of specific drugs for
healthcare applications. In order to monitor the harmful
effects of the drug abuse, a rapid, noninvasive, accurate
detecting method is highly desired. To meet these demands,
the metasurface is a candidate due to the improved signal to
noise ratio in the spectroscopy. A new metasurface based on
the hybrid Au/Ag hybrid nanoparticles is proposed to work
as a surface-enhanced Raman spectrometry (SERS) sub-
strate, as shown in Figure 6(c). Combining with the Raman
spectroscopy, the obvious Raman peaks of cocaine at
1001cm™, 1027cm’™, 1275cm™, and 1598cm™ can be
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FIGURE 6: (a) Schematic of gas detection and analysis metasurface with MOFs modified (left) and intrinsic vibration spectrum of the
different gases (right). Reproduced with permission. Copyright 2020, Wiley-VCH [122]. (b) Hllustration of carbon nanotubes metasurface
platform for pesticides residue detecting (left) and transmission spectrum of the different concentrations of the pesticide (right).
Reproduced with permission. Copyright 2020, American Chemical Society [123]. (c) Conceptual image of metasurface platform based on
the hybrid of Au/Ag nanoparticles for drug (cocaine) quantitative analysis. Reproduced with permission. Copyright 2018, Wiley-VCH
[124]. (d) Hlustration of gas sensing system “photonic nose” based on mid-IR metasurface for different gases sensing. Reproduced under
the terms of the Creative Commons Attribution license (CC BY 4.0). https://creativecommons.org/licenses/by/4.0/ [125].

observed with the concentration as low as 10 yg/mL. Con-
sidering the metasurface area 20 mm’, the average of the
detection limit is 5ng/mm which is outperforming previous
results [124]. Therefore, metasurface is a potential solution
to develop highly sensitive, low cost sensors for therapeutic
drug monitoring.

Metasurfaces can be integrated in the optoelectronic
detectors to form a compact system for chemical detection.
In order to detect the target gas, the IR detector has to pair
with a band pass filter making the sensor bulky and expen-
sive. A new gas sensing platform is proposed by integrating
the pixeled metasurface absorber into the detector to solve
this shortcoming, as shown in Figure 6(d). By modifying
the geometry of metallic plasmonic resonators, the central
wavelength of each pixeled cell can be independently fitted
the characteristic absorption bands of different target gases.
With the metasurface design, the platform can sense differ-
ent gases, including H,S, CH,, CO,, CO, NO, CH,0O, NO,,
and SO, with the detection limits of 489, 63, 2, 11, 17, 27,
54, and 104 ppm, respectively [125]. The concentrations of
gases in mixtures can be detected by multiple narrowband
detectors. In the future, with the development of the MEMS
technologies, integrated multiplexed gas sensors with minia-
turized dimension can be achieved.

3.3. Metasurfaces for Multifunctional Optoelectromechanical
Systems. Metasurfaces, composed of subwavelength meta-
atoms, have demonstrated unprecedented capabilities for
manipulating EM waves from the microwave to optical
regimes [126-128]. However, most of early generation meta-

surfaces were static, and their EM responses were immutable
due to the fixed configurations. Tunable and reconfigurable
metasurfaces are able to achieve dynamic manipulation of
EM waves towards multifunctional optoelectromechanical
systems. Since the EM responses are tuned in the subwave-
length scale, the modulation efficiency of the device is high,
fulfilling the requirements of intelligent and integrated
devices and instruments, such as advanced wireless commu-
nications [129, 130], LiDAR [19], and dynamic holography
[131, 132]. In the microwave range, active electronic devices
(varactors, diodes, and semiconductor switches) have been
integrated with the meta-atoms to control the EM waves
dynamically [133, 134]. Combined with the digital control-
lers, the programmable metasurface systems are realized
[135]. When the working wavelength of reconfigurable
metasurfaces moves from the microwave to the THz, IR, or
even the visible regime, additional tuning mechanisms based
on various materials, including liquid crystals [136, 137], 2D
materials [138-140], phase change materials (PCMs) [141,
142], and epsilon-near-zero (ENZ) thin films [143, 144],
have been explored to dynamically control EM responses.
The demonstration of an on-chip electrical switching
metasurface platform based on the PCM, such as Ge,Sb,
Se,Te (GSST), was developed to enable binary switching
and beam steering at the 1550 nm wavelength, as shown in
Figure 7(a) [141]. In this design, a large-scale GSST Huy-
gens’ metasurface was fabricated on an optimized metallic
heater (reflector), and the device was wire bonded and
mounted onto a PCB. The phase (amorphous/crystalline)
of the PCM was changed by electrical pulsing to tune the
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2021, published by Springer Nature.

amplitude and phase responses. This electrically reconfigur-
able metasurface is capable of deflecting beam with an angle
of 32°. In addition, ENZ thin films, such as doped semicon-
ductors and transparent conducting oxide (TCO) materials,
have also been employed in metasurfaces to realize advanced
optical systems. As shown in Figure 7(b), an array of Au
plasmonic nanoresonators (top layer) and an Al mirror (bot-
tom layer) were separated by an indium tin oxide (ITO)
layer (middle layer) [143]. The charge depletion layers were
formed at the upper and lower interfaces between the ITO
layer and the insulting oxide layers by applying two appro-
priate gate voltages to shift the phase responses in a wide
range. The integrated spatial light modulator consisted of
an active metasurface, including 550 individually address-
able nanoresonators, and the driving electronics have been
applied in constructing LiDAR in the NIR regime.

High-resolution spatial light modulators are a class of
optical devices that create arbitrary light patterns. Metasur-
faces enable efficient spatial light modulation at long-wave
infrared, terahertz, and microwave regimes. Spatial light
modulators based on tunable metasurfaces with semicon-
ductors [145] and liquid crystals [146] have given rise to sin-
gle pixel and computational imaging systems. More
comprehensive overview of metasurface-based spatial light
modulator may be found in the latest review [147].

Besides, MEMS-based tunable/reconfigurable metasur-
faces are capable of manipulating the near-field interactions
between meta-atoms significantly by the mechanical defor-

mation to achieve tunable response [148, 149]. Massive
efforts have been made to develop MEMS-based reconfigur-
able metasurfaces due to their large tunability and high-
power handling capabilities [150].

3.3.1. Modulation of Amplitude and Polarization. The
homogenously reconfigured metasurfaces can efficiently
modulate the amplitude [151-153] and polarization [33,
154, 155] of EM waves. For example, arrays of split ring res-
onators were fabricated on bimaterial cantilevers to form the
first integration scheme of a mechanically reconfigurable
metasurface [151]. In this design, the bimaterial cantilevers
underwent mechanical deformation by a thermal stimulus,
and the EM responses were tunable. Many mechanically
reconfigurable metasurfaces were then developed from the
terahertz to optical regime. To increase the diversity of func-
tions, a MEMS-based reconfigurable metasurface with
multiple-input-output (MIO) states was demonstrated, as
shown in Figure 8(a) [129, 130]. In this design, logic opera-
tions (XOR, XNOR, and NAND) were exhibited with two
independently controlled electrical inputs and an optical
output at terahertz frequencies. The device served as an
important tool for the cryptographically secured terahertz
wireless communication. Recently, a novel reconfigurable
metasurface platform with combined tuning mechanisms
has been demonstrated to be capable of realizing the effi-
ciently multidomain control of terahertz waves [156]. As
shown in Figure 8(b), a microcantilever array was fabricated
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FIGURE 8: MEMS-based reconfigurable metasurfaces for amplitude and polarization modulation. (a) MEMS metasurfaces for logic
operations at terahertz frequencies. Reproduced under the terms of the Creative Commons Attribution license (CC BY 4.0). https://
creativecommons.org/licenses/by/4.0/ [130]. (b) Independent manipulation of amplitude and frequency responses by reconfigurable
microcantilever at terahertz frequency. Reproduced with permission. Copyright 2021, Wiley-VCH [156]. (c) MEMS-tunable metasurface
transmission waveplate at terahertz frequencies. Reproduced under the terms of the Creative Commons Attribution license (CC BY 4.0).
https://creativecommons.org/licenses/by/4.0/ [33]. (d) Chiral metasurface based on 3D bended split ring resonators. Reproduced with
permission. Copyright 2021, Wiley-VCH [155]. (e) Electromechanically reconfigurable nanokirigami at optical wavelengths. Reproduced
under the terms of the Creative Commons Attribution license (CC BY 4.0). https://creativecommons.org/licenses/by/4.0/ [169]. The unit
cell of the metamaterial: (a) P, =110 ym and P, =75 um, (b) 120 ym, and (e) 2.25 ym.

on an ion-irradiated silicon substrate to achieve the
advanced spatiotemporal modulator. In this design, the
MEMS tuning and femtosecond laser pulses provided large
spectral tunability and ultrafast amplitude modulation,
respectively.

In addition to tuning amplitude, the polarization of EM
waves is also desirable to be modulated dynamically. To
obtain ultrathin tunable optical components, a birefringent
reconfigurable metasurface was proposed to replace tradi-
tional polarization modulators based on birefringent mate-
rials. In this design, an Au nanograting was fabricated on
the out-of-plane electrostatic MEMS actuator [157]. The
retardation was modulated from 21.5" to 46.8° at a wave-
length of 633 nm with an actuation voltage of 0-200 V.

The anisotropic behavior for different polarization
angles is introduced by the asymmetrically structured unit
cells [158, 159]. MEMS actuators not only break the symme-
try of symmetrical meta-atoms [154] but also generate dif-
ferent EM responses in asymmetrical meta-atoms [36,
160]. With a microcantilever array design, the anisotropic
reconfigurable metasurface was able to change the polariza-
tion of transmitted EM waves from circular to linear at
0.81 THz by a voltage of 40V, as shown in Figure 8(c)
[33]. In the polarization tunable metasurface, the single-

layer microcantilevers were fabricated on a silicon substrate,
which was coated with an insulating silicon nitride thin film
using surface micromachining. This CMOS-compatible
reconfigurable terahertz metasurface is able to be applied
in material characterization and enhanced imaging. Further-
more, chiral metasurfaces are important for numerous appli-
cations such as optical circular polarizers, chiral light
imaging [161], and quantum computing [162]. As depicted
in Figure 8(d), an array of asymmetric bended split ring res-
onators (SRRs) exhibited giant chiroptical responses at
5.2um due to the symmetric breaking along z-axis [155].
The bending angle of the 3D SRR was tuned by the tensile
stress resulted from focused ion beam (FIB). The measured
CD was -0.29 for the forward incidence and 0.71 for the
backward incidence at a bending angle of 60°.

Different from the standard MEMS processes, nanoori-
gami/kirigami provides an efficient microfabrication/nano-
fabrication for transforming planar sheets into 3D
structures [163, 164]. To date, origami/kirigami-based meta-
surfaces have been applied in modulating amplitude [165,
166] and chirality responses [167, 168]. In an electrome-
chanically reconfigurable optical nanokirigami shown in
Figure 8(e), the modulation contrast achieved 88% and
494% at 953nm and 1734nm by controlling the applied
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FIGURE 9: MEMS-based reconfigurable metasurfaces for wavefront manipulation. (a) Active multifunctional MEMS metasurface devices
used in wavefront deflection and holograms. Reproduced with permission. Copyright 2016, Wiley-VCH [36]. (b) Dynamic beam shaping
with silicon metasurfaces. Reproduced with permission. Copyright 2019, AAAS [171]. (c) Dynamic piezoelectric MEMS-based optical
metasurfaces. Reproduced under the terms of the Creative Commons Attribution-NonCommercial license (CC BY-NC 4.0). https://
creativecommons.org/licenses/by-nc/4.0/ [172]. (d) A MEMS-tunable dielectric metasurface lens. Reproduced under the terms of the
Creative Commons Attribution license (CC BY 4.0). https://creativecommons.org/licenses/by/4.0/ [173]. (e) MEMS-actuated metasurface
Alvarez lens. Reproduced under the terms of the Creative Commons Attribution license (CC BY 4.0). https://creativecommons.org/
licenses/by/4.0/ [174]. The periodicity of the silicon nanowire array in (b) is 300 nm.

voltage, respectively [169]. The dynamic modulation fre-
quency was measured up to 200 kHz, which exhibited a high
modulation speed in electromechanical optical reconfigura-
tions. Recently, eight electromechanical nanokirigami struc-
tures with different azimuth angles were proposed to cover
the 27 phase difference under a single-voltage control at vis-
ible wavelengths [170].

3.3.2. Dynamic Wavefront Manipulation. To manipulate
wavefront dynamically, the early scheme of MEMS-based
reconfigurable metasurface with the local control strategy
was presented at terahertz frequencies [36]. As shown in
Figure 9(a), the suspension angle of each bimorph cantilever
was precisely controlled by the applied voltage. In this
device, beam steering and holographic display was realized
through 1D and 2D encoding of unit cells, respectively.
However, the global control approach was commonly used
due to the feature size of the meta-atoms operated in the
IR and visible range [171-174]. As shown in Figure 9(b),
the dynamic wavefront shaping was achieved by silicon
antenna arrays, which were fabricated by the standard
silicon-on-insulator (SOI) technology [171]. In this scheme,
the width of the high-index Si nanobeams (100 nm thick)
increased from 80 nm to 160 nm. The gap between the Mie

resonator-based metasurfaces and the Si substrate was chan-
ged with the different actuation voltage (<4V), and the
deflection angle was changed from 2° to 12° at a wavelength
of 600nm. Gap surface plasmon- (GSP-) based gradient
metasurfaces are possible solutions for controlling light at
the nanoscale [175, 176]. As depicted in Figure 9(c), an opti-
cal metasurface (OMS) has been combined with a thin-film
piezoelectric MEMS mirror to form the GSP-based MEMS-
OMS platform [172]. The phase and amplitude of the
reflected light were well modulated by varying the small air
gap between the OMS and the MEMS mirror. By adjusting
the applied voltage within the range of 3.75V, dynamic
polarization-independent beam steering and reflective 2D
focusing have been experimentally demonstrated. The beam
steering efficiency reached about 50% at an operating wave-
length of 800 nm, and the rise/fall times of the MEMS-based
device were less than 0.4 ms.

Tunable metalenses are an important component for
intelligent optical systems [173, 177]. In the early concept
of dynamic metalens based on MEMS technology, a 10 ym
thick metasurface-based flat lens was attached onto the proc-
essed MEMS actuator [177]. However, the monolithic inte-
gration of MEMS and metasurfaces was not realized in this
design, and it required delicate operation to combine the
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two components. Subsequently, a focal-tunable metalens
with two layers of all-dielectric metasurfaces generated more
than 60 diopters changes at 915nm wavelength when one
metasurface moves 1 ym, as shown in Figure 9(d) [173]. In
this design, the stationary and moving metasurfaces were
patterned on a glass substrate and a silicon nitride mem-
brane, respectively. The focal point was modified by control-
ling the distance between the two Si metasurfaces using
electrostatic forces. In addition, the optical intensity is able
to be modulated by Alvarez lenses, which consist of paired
optical elements with complementary cubic surface profiles
[178, 179]. According to the Alvarez principle, the focal
length is varied when there is a relative lateral displacement
between the two identical elements. Currently, an ultrathin
Alvarez lens based on metasurfaces was presented to replace
the conventional bulky optical element that needs the com-
plicated fabrication [180, 181]. As illustrated in Figure 9(e),
a silicon nitride metasurface-based Alvarez lens yielded a
total in-plane displacement of 6.3 ym with an actuation volt-
age of 20 V, and a tuning range of 68 ym in focus was pro-
duced at 1550 nm wavelength [174].

The MEMS-based tunable metasurfaces are an alterna-
tive approach to conventional optical MEMS devices, such
as digital mirror devices (DMDs), in some applications.
DMDs are well known for the capability of modulating the
amplitude of light using micro mirror arrays. They are
widely employed in displays, laser 3D printing, adaptive
optics, and optical imaging, among others [182]. The dimen-
sion of each MEMS mirror in DMDs is usually larger than
10pm x 10um, and the band of the dynamic tuning is
~1kHz, enabling fast modulation and wide-angle optical
beam manipulation. The MEMS-based tunable metasurfaces
may not only modulate the amplitude but also provide addi-
tional functions, such as modulating the phase, wavefront,
and polarization. Moreover, the tunable meta-atoms may
modulate light at the subwavelength scale, giving rise to
larger tuning range of the optical response with microscale
physical displacement [171]. However, metasurfaces exhibit
high dispersion and limited spectral bandwidth, while
DMDs can efliciently modulate light over a wide spectrum.
Therefore, the MEMS-based tunable metasurfaces may be
an alternative approach and provide additional tunability
to DMD for narrow band applications.

4. Conclusion

Metasurfaces provide a platform to manipulate EM waves in
classical optics, and the interests in exploiting novel func-
tions based on flat, metasurface optics in the quantum optics
are increasing dramatically. The quantum states of photons
include, but not limited to, the polarization, momentum,
and orbital angular momentum, which might be controlled
by metasurfaces as discussed above. For instance, metalens
array fabricated on the nonlinear crystal, such as barium
borate (BBO), is capable of generating the spontaneous para-
metric down-conversion photon source to demonstrate the
multiphoton quantum entanglement for on-chip, integrated
quantum devices. The metasurfaces, or meta-atoms, can be
modulated in space and time, giving rise to dynamically tun-

13

able quantum correlation for nonreciprocal quantum
routers and isolators. In addition to quantum phenomena,
photonic topological insulators, parity-time symmetry, and
exceptional points are enabled by coupled metasurfaces,
which hold the promise to control the propagation of pho-
tons and EM waves in desired ways and bring novel func-
tions. It is difficult to cover every aspect of metasurfaces in
a review article. The development of metasurface theory
and physics may be found in other review articles, such as
[5, 8, 9, 60], and the myriad applications of metasurfaces
may be found elsewhere [47, 65, 74]. As complementary to
the published review articles, our review provides insights
of metasurface applications in advanced devices and
instrument.

In summary, metasurfaces can manipulate the propagat-
ing wavefront and near-field confinement by engineering
meta-atoms. The extraordinary optical response may
improve the performance of microsystems for imaging and
sensing applications. In turn, the integration of MEMS with
metasurfaces enables dynamically tunable optical responses,
paving the way towards intelligent microsystems with capa-
bility of arbitrary control over the EM waves.
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