
https://doi.org/10.1007/s00170-021-07682-3

CRITICAL REVIEW

Review onmodel predictive control: an engineering perspective

Max Schwenzer1 ·Muzaffer Ay2 · Thomas Bergs1,3 ·Dirk Abel2

Received: 5 March 2021 / Accepted: 8 July 2021

© The Author(s) 2021

Abstract

Model-based predictive control (MPC) describes a set of advanced control methods, which make use of a process model to

predict the future behavior of the controlled system. By solving a—potentially constrained—optimization problem, MPC

determines the control law implicitly. This shifts the effort for the design of a controller towards modeling of the to-be-

controlled process. Since such models are available in many fields of engineering, the initial hurdle for applying control is

deceased with MPC. Its implicit formulation maintains the physical understanding of the system parameters facilitating the

tuning of the controller. Model-based predictive control (MPC) can even control systems, which cannot be controlled by

conventional feedback controllers. With most of the theory laid out, it is time for a concise summary of it and an application-

driven survey. This review article should serve as such. While in the beginnings of MPC, several widely noticed review

paper have been published, a comprehensive overview on the latest developments, and on applications, is missing today. This

article reviews the current state of the art including theory, historic evolution, and practical considerations to create intuitive

understanding. We lay special attention on applications in order to demonstrate what is already possible today. Furthermore,

we provide detailed discussion on implantation details in general and strategies to cope with the computational burden—

still a major factor in the design of MPC. Besides key methods in the development of MPC, this review points to the future

trends emphasizing why they are the next logical steps in MPC.
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1 Introduction

For the automation of technical systems, feedback controllers

(also called closed-loop controllers) compare a reference

r with a measured variable y determining a suitable value

for the manipulated variable u on the basis of the resulting

deviation e = r−y (Fig. 1). Based on the working principle,

they can be divided into the categories: classical controllers,

predictive controllers, and repetitive controllers. Classical

controllers, such as PID controllers, bang-bang controllers,
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or state controllers, only consider past and current system

behavior (i.e. they are “reactive” to a deviation). Predictive

controllers use a system model to predict the future behavior

anticipating deviations from the reference [101]. Repetitive

controllers, on the other hand, consider the system behavior

of the previous cycle and calculate an optimal trajectory for

the next cycle [46].

The PID controller is the best known controller with an

outstanding importance and spread in industrial applications

[4]. Although there exist several setup rules, it is often

difficult to find a parametrization—especially for nonlinear

or time-variant systems [131].

“The effectiveness of any feedback design is fundamen-

tally” limited by system dynamics and model accuracy.

Hence, even in theory, perfect tracking of time-varying ref-

erence trajectories is not possible with feedback control

alone—regardless of design methodology [58].

Special cases, such as technical limitations of actuators,

require individual solutions that are often heuristically

based, hard to understand, and maintain. Higher control

methods, such as sliding mode controllers or back-stepping

controllers, are similarly abstract and complex in their

interpretation [146].
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Fig. 1 Block diagram of a

classical feedback control loop

(e.g. PID control)

In fact, the founders of MPC theory ([34] and [104])

stressed that classic control suits 90% of all control problems

perfectly. Only for the remaining fraction advanced control

needs to be applied. Instead, we want to argue that MPC

is a decent approach in almost all problems—even in

those, which have not been controlled so far due to

a lack of control theoretic understanding or of missing

trust in feasibility. MPC is based on a repeated real-time

optimization of a mathematical system model [101]. Based

on this system model, the MPC predicts the future system

behavior considering it in the optimization that determines

the optimal trajectory of the manipulated variable u,

Fig. 2. Thus, MPC comes with an intuitive parameterization

through adjusting a process model at the cost of a higher

computational effort than classical controllers.

The anticipating behavior and the fact that it can

consider hard constraints makes the method so valuable

for controlling real systems. Aligned with the rise of

computational power and as models of complex processes

become more and more available for all kinds of different

systems, MPC now enables for the control of systems that

were previous unthinkable.

MPC relies on models, which are available in almost

every discipline. This allows to make use of this long-

grown knowledge and saves the tedious formulation of an

explicit control law—a task that is usually reserved for

control experts. Instead, MPC determines the control law

automatically through a model-based optimization. This

implicit formulation, the flexibility, and the explicit use of

models are the main advantages of MPC and the reasons for

us to campaign for MPC in the engineering community. This

paper shall give a summary from the application point of

view, but it shall not claim the MPC to be the optimal choice

over all control algorithms in every particular problem.

Fig. 2 Simplified block diagram of a MPC-based control loop

When MPC was new, several widely noticed review

paper have been published on both, theory [13, 44, 77, 85]

and applications [99]. In contrast, this review is driven by

the idea that MPC does not remain forever a topic for control

engineers. Today, the development of MPC theory is pulled

forward by application, in which manufacturing technology

just emerged to make an important contribution—often

having challenging requirements on reliability, constraints,

and time. The work should inspire non-control experts to

jump on the bandwagon and to develop new use cases

pushing the barriers of technological limitations further.

The article starts with the fundamental theory and a

rough sketch of the historic evolution to learn from the

visions and detours of the beginnings. The focus lies

on practical considerations of feasibility, stability, and

robustness together with representative applications. On

our way, we discuss the different flavors of MPC, of

which related keywords are DMC, model(-based) predictive

control, receding horizon control, etc. [12, 70, 101].

2 Theory

MPC is a set of advanced control methods, which explicitly

use a model to predict the future behavior of the system.

Taking this prediction into account, the MPC determines an

optimal output u by solving a constrained optimization

problem. It is one of the few control methods that directly con-

siders constraints. Often, the cost function is formulated in

such a way that the system output y tracks a given reference r

for a horizon N2, Fig. 3. Only the first value of the optimized

output trajectory is applied to the system. This prediction

and optimization is repeated in each time instance. This is

why MPC is also referred to as “receding horizon” con-

trol. In essence, the idea is that a short-term (predictive)

optimization achieves optimality over a long time. This is

assumed to be true since the error of a proximal forecast

is considered to be small compared to a distant prediction.

The combination of prediction and optimization is the main

difference from conventional control approaches, which use

precomputed control laws [77].

The prediction horizon N2 must be long enough to

represent the effect of a change in the manipulated variable

u on the control variable y. Delays can be considered by the

lower prediction horizon N1 or by incorporating them into

the system model. Often, the latter is more intuitive and the
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Fig. 3 Function principle of a

model-based predictive with

horizons N1, N2, Nu (in

accordance to [105])

lower prediction horizon is set to N1 = 1 to account for the

computation time (hence the computation is conducted in

one time step, the solution u is implemented not before the

next time step).

Assuming an arbitrary system

x(k + 1) = f (x(k), u(k)), (1)

y(k) = h(x(k)). (2)

MPC minimizes a user-defined cost function J , Eq. 3, e.g.

the tracking error between the reference vector r and the

model output y, Eq. 4:

min
u

J (x(k), u(·)) (3)

min
u

N2∑

i=N1

‖r(k + i|k) − y(k + i|k)‖ (4)

s.t. ulb ≤ u(k + j |k) ≤ uub

ylb ≤ y(k + i|k) ≤ yub

∀ i ∈ {N1, · · · , N2} and j ∈ {(0, · · · , Nu}.

This formulation uses an arbitrary norm ‖·‖.

We will refer to the predicted state k + i at time

point k as x(k + i|k). Bold written variables A indicate

higher dimensions, i.e. a vector (lowercase characters) or a

matrix (uppercase characters). A sequence of states will be

indicated by x(·):

x(k + i) ∀i ∈ (0, · · · , N2) ⇒ x(·),

u(k + i) ∀i ∈ (0, · · · , Nu) ⇒ u(·),

y(k + i) ∀i ∈ (N1, · · · , N2) ⇒ y(·).

In this way, the constraint formulation will be abbreviated

by

xlb ≤ x(·) ≤ xub ⇒ x ∈ Xf ,

indicating that the sequence x(·) being in the feasible set

Xf .

3 History

In the late 1970s, [105] and [24] independently laid the

foundation of MPC theory. With the upcoming digital

controllers, they were able to efficiently control com-

plex problems demonstrating a massive economic poten-

tial. [105] introduced model predictive heuristic control

(MPHC) in 1978, which already included all characteristics

of a MPC:

– an explicit process model, described by impulse

response functions (IRFs),

– a receding horizon,

– input and output constraints, and

– an iterative determination of the controls (value of the

manipulated variable u).

However, [105]) did not claim to obtain optimal controls.

Instead, the future controls where determined iteratively

until they met the constraints. The additional term

“heuristic” stressed the missing explicit control law. The

technique was developed for the process industry with

their multiple input multiple output (MIMO) systems,

distinctive delays, and long processing times [105]. They

even considered to identify the process model on-line—

although only for changes in the set points.

Roughly at the same time, [24] from Shell Oil Company

developed dynamic matrix control (DMC). They used

a piecewise linear model to predict the future behavior

of a catalytic cracking unit. Thus, the controller gained

awareness of the plant’s time delay and its dynamic system

behavior. Cutler and Ramaker used a receding prediction

horizon and updated the model coefficients based on

the error between the previously predicted output and

the currently measured output. They showed that DMC

outperformed classic cascaded PID control claiming that

DMC has been applied to control problems at Shell Oil

since 1974. The main difference to MPHC was that DMC

calculates optimal control variables. However, the matrix

formulation of the control problem restricts DMC to linear

process models.
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Both works laid the basis for a wide and fast spread

of MPC in the petrochemical process industry. Even with

linear models, the sampling times were several hours

[97]. At the beginning, the focus was on simplifying the

controller design and establishing a comprehensive theory

so that the method could be used in industry [24, 34, 105].

The potential of MPC was not solely based on prediction

but also on the fact that it can use non-linear models—both

not supported by classic control. In fact, the process model

formulation was a hot topic in the beginning of MPC theory:

impulse response formulation (IRF) [105], piecewise linear

step response functions [24], ARMA models [22, 23], or

state space formulations [56]. This flexibility in the choice

of model formulation was one of the key reasons for the fast

success of MPC.

The first approaches simply neglected model uncertain-

ties and process instabilities—because most chemical engi-

neering processes were open-loop stable [35]. From the late

1980s on, the research focus shifted to robustness and stabil-

ity of MPC, which was especially pursued by the research

group around MANFRED MORARI [13, 18, 19, 53, 144]. A

detailed discussion about stability and robustness of MPC

provides Section 4.

With a finite horizon, i.e. a fixed moving window,

the (linear) estimation problem could be formulated as

a quadratic programming problem [100], which was

computationally favorable. With computation pressing [14])

introduced “explicit MPC” which shifts the computation to

massive a priori optimization (Section 8.1).

With the millennium and computers becoming more and

more powerful, research shifted towards application. The

trend was coming from large problems and long calculation

times towards problems with less control variables and

much faster requirements to computational time.

4 Feasibility, stability, and robustness

One has to distinguish several aspects of MPC:

– feasibility of the open-loop optimization problem,

– stability of the closed-loop controller, and

– robustness regarding uncertainties.

The first concerns the formulation of the optimization

problem, the second the controller as a whole with regard to

disturbances, and the last mainly the accuracy of the process

model.

In a stable system, the controller manages to get the

output to a constant value at the end of the horizon N2,

in spite of disturbances to the control loop. Robustness,

in contrast, aims at uncertainties. It is mostly related

to model inaccuracies regarding the output prediction.

The model is the key element of MPC, but it is never

perfect [101]. However, for stability analysis, a perfect

model is assumed. Only in a subsequent step robustness is

examined. Furthermore, signal noise is an important topic

for robustness [13]. Garcia and Morari [34] pointed out

early that optimal control improves the control behavior but

complicates robustness examination. Robustness does not

follow from stability or vice versa [13] but a closed-loop

stable system always reduces the effect of disturbances.

This work draws crisp lines in the following between

those separated problems of MPC design.

4.1 Feasibility

Hard input constraints (on u) represent physical limitations

of, e.g. actuators, which in fact must not be violated. In

contrast, hard output constraints (on y) are often rather

desired than required. They may render the optimization

problem infeasible. Relaxing these output constraints by

introducing slack variables ξ to the optimization problem

creates an extra degree of freedom [84]. The extend of

violation is penalized in the objective function:

min
u,ξ

‖r(k + i|k) − y(k + i|k)‖Ww + ‖ξ(k + i|k)‖Wξ
︸ ︷︷ ︸

softening

, (5)

s.t. ulb � u(k + j |k) � uub,

ylb − ξ(k + i|k) � y(k + i|k) � yub + ξ(k + i|k),

where ξ � 0,

∀ i ∈ {N1, · · · , N2} and j ∈ {0, · · · , Nu}.

Both terms posse an individual weighting matrix W . If

the norm is quadratic, it can be resolved to a matrix

multiplication: ‖x‖2
W = x⊺ W x.

The weight Wξ is a trade-off between the amount and

duration of a violation [101]. The slack variables ξ do not

resemble a function but represent individual series for every

time step k. Note that they are vectors of length N2 − N1 as

they cover the prediction horizon.

All commercial (linear) MPC software packages soften

hard output constraints through slack variables to guarantee

feasibility [85].

Nevertheless, the input constraints are still hard and turn

the optimization problem to be non-linear [101]. A non-

feasible desired trajectory w provokes instabilities [112]. To

tackle the problem of unfeasible desired trajectories, [39]

suggested to filter the trajectory w generating a feasible

reference trajectory r. Thereby, the problem of stabilizing

a closed-loop system with input constraints was separated

from the problem of fulfilling these constraints [13, 39].

This approach was called “reference governor”. It avoided

constraint violations on the input by adjusting the desired

trajectory beforehand with regard to the response behavior

of the plant. This adjustment could be a simple smoothing
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of abrupt changes [13] or a dynamic optimization of its own

[112]. Even a second MPC could be used to build the new

reference trajectory r [112]. The separation was charming

as it was applicable to non-linear problems in discrete and

continuous time.

4.2 Stability

In its most basic formulation, stability is the property of a

system that a bounded input results in a bounded output: the

BIBO stability. In case that the transient behavior converges

against an equilibrium, the closed-loop system is called to

be asymptotically stable. Furthermore, if the equilibrium is

reached from every possible initial state, then the system

is labeled “globally asymptotically stable”. This can be

guaranteed for all linear time invariant (LTI) discrete time

systems with hard input and soft output constraints if the

optimization problem is solved over infinite horizons [144].

Infinite prediction and control horizon N2 = Nu = ∞

results in a linear quadratic GAUSSIAN (LQG) optimal

control problem, for which a comprehensive stability theory

exists: global asymptotic stability is guaranteed if and only

if all eigenvalues of the closed-loop system are located

inside the unit disk.

However, finite prediction horizon obviously is an

extreme restriction. Computational restrictions limit the

MPC in general to a finite horizon. To still guarantee

asymptotic stability, the optimal cost function of the MPC

must be monotonically decreasing over time.

To illustrate this, let us assume a system behaving as

illustrated in Fig. 4. It could constitute a continuous active

cooling of glass at the end of the production line. In

this case, the measurement y would be the temperature

difference between glass and environment. The same way,

the optimal control applied at time t0 would correspond to

u0, whereas the according value of the objective function

would be J 0.

The depicted output y as well as the change in u0 tend

towards the system’s equilibrium (as desired for the stable

closed-loop behavior).

The cost J is not explicitly a function of time, so the

desired monotonically decreasing behavior over time needs

to be artificially imposed on it. One way to do this is to

formulate an optimization problem that the control function

is bounded by a LYAPUNOV function.

A LYAPUNOV function is a continuously differentiable

scalar function V (x) : Rn → R with V (0) = 0. It is always

positive and does not increase over time:

V (x) > 0, ∀ x 	= 0, (6)

V̇ (x) ≤ 0, ∀ x 	= 0. (7)

The LYAPUNOV theorem essentially defines a prototypical

function resulting in a bounded system state over time.

Thus, the state of the art for stability schemes for (non-

linear) MPC is to define the cost function in such a way that

the optimal cost behaves as a LYAPUNOV function—or to

prove this to be the case respectively. For this purpose, the

optimization problem is extended by additional cost terms

or constraints.

An adequate LYAPUNOV function to the optimal cost J 0

of Fig. 4 is illustrated in Fig. 5, where the decreasing optimal

cost is depicted over two system states.

One approach to make the optimal cost J 0 behave

like a LYAPUNOV function is to introduce a terminal

cost J (k + N2). This nullifies the advantage of an infi-

nite horizon, since the cost stays the same until infinity

J (k + N2) ≈ J (∞) [75, 77]. Whereby, more constraints

to guarantee stability of the controller may again cause fea-

sibility problems of the optimization—especially for short

prediction horizons. Therefore, it is common practice to

constraint a terminal region instead of, e.g. a zero terminal

constraint ‖x(k + N2)‖ = 0.

Fig. 4 Example of an stable

closed-loop system with its

objective function
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Fig. 5 Example of an

LYAPUNOV function

The most common stability approach, which avoids a

LYAPUNOV analysis, is to introduce so-called “contraction

constraints” ensuring that (usually the euclidean norm of)

the state vector is decreasing over time [13]:

‖x(k + 1|k)‖ < ‖x(k)‖. (8)

Some applications even use both, a LYAPUNOV-based

cost function and contraction constraints, e.g. [116].

Mayne et al. [75, 77] concluded that stability of MPC-

controlled (linear) systems was at a “mature” stage in 2000,

whereas for robustness, only conceptual approaches existed.

With the understanding of stability analysis for linear

MPC, [44] pointed out that a stability analysis for non-linear

MPC became more urgent.

While the approaches to design a stable system that

was elaborated above (LYAPUNOV-based cost function or

contraction constraints) apply equally for linear and non-

linear systems, still, many implementations of MPC meet

non-linearity by successive linearization avoiding a non-

linear stability analysis [101], Section 7.

For a more complete discussion and mathematical

foundation regarding stability, the authors refer to [3, 72, 77,

98] and [31, 81, 87].

4.3 Robustness

In contrast to what have been claimed, [35] stressed that

MPC is not inherently more or less robust than classic

feedback control (e.g. PID controller).

Robustness follows stability of the closed-loop system

only if no input constraints are present [106]. “When we

say that a control system is robust we mean that stability

is maintained and that the performance specifications are

met for a specified range of model variations (uncertainty

range)” [85].

Essentially, robustness deals with model uncertainty,

which can be formulated in several ways [13]:

– by uncertainty intervals,

– by structured feedback, or

– by using a set of models.

For the latter, one describes the plant by multiple models

and optimize, e.g. the worst-case of them (L∞-norm) [19].

A similar approach was pursued by [53] distinguishing

different types of uncertainty: uncertainty in the gain, the

time constant, and time delay. They considered them all

simultaneously. The approach was taken up again later

as matrix formulation [25]. This assumes structured noise

in the feedback loop so that it can be considered in the

model. Assuming a linear time invariant (LTI) system and

(linear time invariant (LTI)) uncertainty to be present in the

feedback loop, robustness can be guaranteed if the norm of

the uncertainty matrix is lower than a defined threshold [13].

Uncertainty intervals can often be assigned to model

coefficients of an empirical transfer function. In this

idea, the model structure remains the same and only the

coefficients change. However, [13] concluded that allowing

model coefficients to vary within intervals is not sufficient

to achieve robustness. A comprehensible example is that

oscillating step responses would be allowed.

For all these approaches you need to quantify uncertainty

in the model of the system. The robustness calculations

come at the cost of performance (regarding optimality and

computation) [13].
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An entirely different approach is to define a cost function

that favors robustness by design: e.g. minimizing the

maximum error in the prediction horizon would result

in less extreme control actions, which in turn lead to a

smoother process guidance [18]. This suggests to use the

L∞-norm to formulate the optimization problem instead of

a—standard—least squares (L2) formulation.

‖ x‖2 =

√

x2
1 + · · · + x2

n (9)

‖ x‖∞ = max {x1, . . . , xn} (10)

In this case, the L∞ norm is the maximum of all errors

between the predicted model outcome and the desired

reference. [18] motivated its use with the smoothing

influence on the control outputs u. Using the L∞-norm

hinders the controller to make full use of the plant potential

due to very conservative control actions [13]. However,

if the process model is linear, the optimization problem

becomes quadratic if the cost function is expressed as a L2-

or a L∞-norm [13]—supposed that there are no constraints

present. Quadratic problems are favorable because they can

be solved efficiently.

Both approaches, a more elaborate model or a special

objective function, undermine the key advantage of MPC:

optimality. One idea to overcome this is to enforce

robustness by introducing a contraction constraint (similar

to stability), i.e. requiring the worst-case prediction to

contract [85, 144]. This let MPC still implement the optimal

trajectory as long as the additional constrained is fulfilled.

4.4 Summary on feasibility, stability, and robustness

Garcı́a et al. [35] noted that for every unconstrained, linear

MPC there exist an equivalent classic feedback controller

with all benefits of its well-proven stability theory.

However, not using constraints loses much of the charm

of MPC. Therefore, it is more an academic twitch than a

practical option. The same is true for infinite horizon MPC.

There exists an extensive stability theory for linear

MPCs. For systems in state space form, the stability analysis

is based on eigenvalues and on the unit disk as it is familiar

from the stability analysis of conventional (linear) control

[144]. However, optimization problems with hard input

constraints are often non-linear [101].

Establishing stability—especially robust stability—is

extremely difficult for non-linear problems. This is mainly

due to the lack of an explicit functional description of

the control algorithm, which is required for most stability

analysis [84]. Today, stability of non-linear, constrained,

finite-horizon MPC is achieved by formulating the cost

function as a LYAPUNOV function and introducing a

terminal set constraint [75, 77]. Using a terminal set

links the stability problem with the constraint satisfaction

problem [17]—ironically, additional constraints stabilize a

constrained, non-linear MPC.

Robustness is a trade-off to performance. Several

approaches increase robustness at the cost of computation

and optimality (e.g. L∞-norm). Nevertheless, it can only be

achieved if the amount of uncertainty can be quantified.

A practical compromise to maintain optimality—the key

feature of MPC—is to add the requirement the the worst-

case prediction must contract [85, 144].

5 Recent developments in MPC theory

Once again, motivated by the chemical process industry,

[58] integrated a MPC into an iterative learning control (ILC)

building a controller dedicated for batch processing. A clas-

sic iterative learning control (ILC) works during the process

as open-loop control but adjusts this profile of commands

between cycles or “iterations”. In this way, it approaches

the ideal profile incrementally from cycle-to-cycle and may

react to trends over multiple cycles. The essence is that the

“information gathered during previous runs can be used to

improve the performance of a present run” [57]. In con-

trast to this, MPC is a closed-loop controller but considers

repetitive tasks as independent of each other.

Combining both methods builds a system that reacts to

disturbances within a cycle or process (“as they occur”) and

minimizes the tracking error over multiple cycles. However,

integrating MPC to iterative learning control (ILC) limits

the use to fixed-time operations, i.e. the number of time

samples must stay the same over cycles [58]. Splitting both

techniques, let the iterative learning control (ILC) work

as an upper-level reference governor for the MPC as was

conducted, e.g. by [86], and may overcome such limitations.

In this combination, MPC introduces constraints to iterative

learning control (ILC) [57].

Li et al. [59] presented a third flavor of such a

combination effectively being an optimal iterative learning

control (ILC): They took the optimization part of MPC,

i.e. optimizing the manipulated variable over a horizon,

transplanting it into an iterative learning control (ILC).

The resulting system determined an optimal profile of the

manipulated variable(s) for each cycle. In a subsequent

work, [60] suggested to smooth the commands over cycles.

This essentially states that the optimal solution is not

entirely trusted. Such systems only touch MPC in general,

because they lack of a receding horizon and effectively filter

their optimal control recursively.

Among the works of [66] and [128] lies the combination

of iterative learning MPC and the uprising field of data-

based learning in control theory. The former extracts new

trajectories of a linear-quadratic regulator (LQR) based on

overall objectives and data of previous trajectories with the

1333Int J Adv Manuf Technol (2021) 117:1327–1349



help of the k-nearest-neighborhood algorithm. The latter

extends the idea of an iterative, data-driven adjustment of

trajectories to the application of MPC.

Although also applied to a repetitive task, [78] focused

on learning a model of the system dynamics rather than a

trajectory. The authors took advantage of data and weighted

linear BAYESIAN regression to model uncertainties of vehicle

dynamics on a repeating path. The same way [50] applied

GAUSSIAN process modeling to elaborate confidence

intervals on possible trajectories to guarantee safety.

Data-driven modeling, such as machine learning, can

be used for the system model that the MPC uses in its

optimization, or to approximate the solution space of an

explicit MPC, as e.g. in [45, 71, 88], Section 8.1.

The possibilities of learning are enhanced especially for

multi-agent systems, where every single agent contributes

to the data-acquisition and policy exploration. [68] utilized

such a swarm intelligence to learn the trajectory for a

distributed MPC. The learning problem for this purpose

was defined as a quadratic optimization problem under the

condition of collision avoidance as constraint.

6 Applications

The idea of optimal control in the presence of constraints

and the intuitive design of the control law as an optimization

problem has made MPC interesting for many different tasks.

Applications have spread wide recently throughout all fields

of engineering. The following highlights main movements.

6.1 Process industry

For a long time, the process industry used MPC almost

exclusively. This is not surprising as the petrochemical

industry promoted the development decisively [24, 97, 99,

105]. Motivated by its complex, multi-variable processes

with time delay, MPC spread quickly since optimal control

lead to significant economic benefit due to the large

throughput. Darby et al. [26] acknowledged that MPC

is “the standard approach for implementing constrained,

multi-variable control in the process industries today”.

In the founding paper of MPC, [105] described three

applications: a distillation column of a catalytic cracker in

oil refinery, a steam generator, and a polyvinyl chloride

(PVC) plant. The catalytic cracker had two manipulated

variables (mass flow rates) and three control variables

(temperatures), of which only one was constrained. The

plant was modeled through twelve impulse response

functions and the sample time was Ts = 3 min –

manageable only because it used a heuristic control law.

With the control of the polyvinyl chloride (PVC) plant,

they wanted to demonstrate the versatility of MPC by

controlling five subprocesses. The results showed a severe

reduction in variance of the controlled variables yielding

to higher quality and energy savings. The impressive

demonstration paved the way for the popularity of MPC.

Richalet later also described how a distillation column and

a vacuum unit was controlled in a refinery of MOBIL OIL

[104]. The objective function was already formulated as a

quadratic LYAPUNOV function, which—as was shown—is

favorable for stability. He did not address robustness but

mentioned a back-up control system in case of failure. The

results showed that the controller reduced the variance in the

quality criteria resulting in a payout time of less than a year.

Oil companies were the promoters of model-based

advanced controllers. Cutler and Ramaker [24] used a

piecewise-linear model to control the furnace of a catalytic

cracking unit at SHELL OIL. With a prediction horizon of

N2 = 30 and a control horizon of Nu = 10, they exploited

the predictive potential.

Prett and Gillette 97 used even longer horizons (N2 =

35, Nu = 15) with a sampling time of “a few hours”.

They successively linearized a non-linear process model

determining the optimal operation point of the reactor and

the regenerator of a catalytic cracker.

With distillation being one of the workhorses of the

chemical process industry for the separation of molecules, it

is still today a popular application examples for MPC, as in

[21, 80], which both were a simulation study on linear MPC.

Only that [80] successively linearized a non-linear model of

a methanol/water mixture to apply linear MPC.

Piche et al. [95] introduced a neural network (NN) in

MPC to control the set point change in an polyethylene (PE)

reactor. A neural network (NN) is a non-linear empirical

model based on historic data. This type of machine

learning model is experiencing extraordinary attention

nowadays. Linear dynamic models were constructed from

conventional (open-loop) plant tests to control the plant at

its set points. Piche et al. achieved 30% faster transitions

and an overall reduction in variation of the controlled

variables. The idea is still under active research. Li et

al. [63] also explored successive linearization of a neural

network (NN) in MPC but to control the temperature

of a stirred reactor—a common application in process

industry, e.g. for bioreactors. Shin et al. [117] used a neural

network (NN) (fully connected, 14-15-2) with MPC for a

propane devaporizer (e.g. specialized distillation column).

Although claiming that neural network (NN)–based non-

linear MPC achieved better performance than linear MPC,

they benchmarked the new controller on conventional PI

control demonstrating a 60% quicker settling time (35

min with neural network (NN)-MPC to 92 min with PI

control). They further stressed easier modeling of data-

driven models as an additional benefit of using NNs in

conjunction with MPC. Nunez et al. [89] used a more
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complicated neural network (NN) structure, a recurrent

neural network (RNN) (in fact, an attention-based encoder

decoder recurrent neural network (RNN) with 23,000 free

parameters) to model an industrial past thickening process.

The sampling time was Ts = 5min giving the controller

enough time to conduct a global optimization with particle

swarm optimization (PSO) – a rather unusual choice – for

a prediction and control horizon of N2 = 10 and Nu =

5 respectively. Presenting one rare example of an actual

industrial deployment, they demonstrated the effectiveness

of the control on an industrial plant for a working day. The

recurrent neural network (RNN)–based MPC was capable of

maintaining the target concentration of the paste thickener

in spite of a severe disturbance when a pump failed. A

recurrent neural network (RNN) structure was also used to

control chained stirred reactors [136]. There are applications

with further network types with distinct features, such as

echo state networks to model time delay of buffer tanks, e.g.

for a refrigerator compressor test rig with (non-linear) MPC

[9].

In general, besides oil and gas, and the chemical industry,

pharmaceutical and biology industry use MPC to manage

the non-linearity coupled with large time-delays of their

processes, e.g. in a fermentation process [42]. Ławryńczuk

[6] compared linear MPC to non-linear MPC again for a

stirred reactor and for a distillation column. He concluded

that, in particular for the distillation process, the non-

linear controller was more economic. On this background,

he suggested to combine both approaches reducing the

computational burden of pure non-linear MPC: applying

non-linear optimization only for the first time instant k = 1

and using a linearized model for the other steps 1 < k < N2.

To the knowledge of the authors, such an approach has not

been examined further.

Prasad et al. [96] took a different route, preferring to

use multiple linear models rather than a single non-linear

one. They controlled the filled-height of a conical shaped

tank. Since the diameter varies continuously with the height,

they suggested to identify three separate linear models at

different heights, to design one controller for each and

combine the outputs as an ensemble to obtain a general

output for the manipulation variable (the inlet flow rate).

In 2003, [99] already counted over 4 600 industrial

applications reviewing the available commercial software

packages for MPC. They differed in the model structure,

its identification, and in how constraints were implemented

(as hard constraints or as an additional penalization term

in the cost function). Nevertheless, all models were linear,

time-invariant, and derived by empirical test data. Online

adaption of the model was not supported by any software,

although there had been (academic) works on this issue

already from the beginning, e.g. [105].

Although stability theory is at a mature level, ASPEN-

TECH as a major vendor of commercial MPC software

assumed an infinite horizon control to ensure stability,

which was implemented in practice by a prediction horizon

much larger than the reaction time of the system [33]. With

regard to academia, the software MATLAB/Simulink from

THE MATHWORKS is very popular, e.g. [80, 96, 108].

Today, process industry is still the major user of MPC

[76] evolving towards faster, mechanical processes such as

paper machines [145] or stone mills [108, 124].

Again, a report of an industrial application was presented

by the ANGLO AMERICAN PLATIUM company, where a

linear MPC (to be more precise: (DMC)) outperformed

a back-than famous fuzzy controller [124]. The power

consumption of a large stone mill was reduced by 66% using

the commercial system from ASPENTECH. Nevertheless,

no fully thrusting the novel control method, the established

fuzzy controller was run as back-up option for abnormal

states.

Olivier and Craig [92] and coworkers [55] detected faults

of actuators within the process to update the available

manipulated variables of the MPC maintaining the control

performance. They used a particle filter in order to estimate

whether a certain actuator could still be used or not (binary

decision). Self-awareness was especially important for

continuously-running large systems in rough environments.

They simulated a mill of a mining facility to grind ore. The

simulation demonstrated that the MPC can manage actuator

failure if it knew about it.

Table 1 summarizes the key parameters of the discusses

works in process industry. Only works are listed that

provided their implementation details on MPC. The order

has no significance besides order of publication.

MPC often served as a supervisory control of classic

PID controllers forming a cascaded control loop. Large

multiple input multiple output (MIMO) systems, empirical

models—mostly derived through step or impulse tests

[99]—and long calculation times Ts > 1h favored MPC

in process industry. Today, the sampling times have largely

decreased to the region of minutes and seconds [26],

Table 1. Complex couplings between process variables

require empirical, nonlinear models, which are at the

beginning often linearized.

6.2 Power electronics

Not until the mid 2000s, an opposite trend has taken shape

in power electronics. These extremely fast single input

single output (SISO) systems used pure analytical models

to work at sampling frequencies below the ms-range [15,

52, 65, 129]. The characteristics are diametrically different

to process industry. Richalet [104] foresaw this counter
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Table 1 Overview of the tuning parameters of MPC in process

industries

Reference Ts N2 Nu sim/exp MPC

[105] 3 min ? ? exp L

[24] ? 30 10 exp L

[97] few h 35 15 exp L

[95] 3 min (10) ? sim N

[6] 1 min 10 3 sim L+N

[124] 1 min 60 (60) exp L

[42] 1 s 6 2 sim L

[108] ? 50 20 sim L

[92] 1 min 20 3 sim N

[55] 1 min 18 3 sim N

[9] 200 ms 50 5 ? N

[21] 1 s 76 16 sim L

[80] 1 s 10 2 sim L

[63] 1 min 10 2 sim N

[89] 5 min 10 5 exp N

[117] 1 min 15 3 sim N

[96] 10 s 150 2 exp L

sim simulation, exp experiment, L linear, N non-linear,

() deduced numbers, ? unknown parameter

movement early reporting from an application to control a

servo drive with a sampling time of Ts < 1ms. To achieve

such short sample times, relatively simple models, short

horizons, and often an explicit solution of the optimization

problem were used. Explicit MPC solves the optimization

in advance for a variety of cases to obtain a polytope of

explicit (linear) control laws [14]. This increases the overall

computational effort but shifts it to offline optimization.

Linder and Kennel [65] applied MPC for “field oriented

control” of electrical AC drives using such an explicit

MPC. The results were sobering: there was hardly any

improvement to a conventional PID controller for large

signal steps. For small steps, the MPC reached the new

target value faster and better, but in summary, Linder and

Kennel attributed potential of MPC more due to features like

intuitive tuning and constraint satisfaction.

Nevertheless, Bolognani et al. [15] saw MPC as being

ideal for electric motor control since there existed analytical

linear models describing the motor behavior accurately.

They also used an explicit MPC formulation to achieve an

sample time of Ts = 83ms. Since the prediction horizon

N2 = 5 was far from covering the complete drive dynamics,

the assumption of an infinite prediction horizon did not

hold, making stability a major (unconsidered) concern. The

control was perfect if the load torque matched the design

torque of the MPC design. Otherwise, there occurred an

offset between the desired and the actual values (current,

voltage, etc.). Nevertheless, the controller worked stable and

enforced the current and voltage limits reliably.

Kouro et al. [52] examined MPC regarding control

of power converters. Power converters have only a

finite number of discrete states n. This handicaps an

optimization requiring heuristic approaches (mixed-integer

optimization). They took a brute force approach testing

every possible control action resulting in an exponential

increase of calculations: nN2 . With n = 7 converter states

the prediction horizon was limited to N2 = 2 in order

to achieve a sample time of Ts = 100ms. Compared to

a classic PID control, they concluded that the advantage

of MPC is its flexibility regarding control variables and

constraints—similar to [65] before.

Geyer et al. [38] used MPC for direct torque control of

electrical drives. The control problem consisted of keeping

the motor toque, the magnitude of the stator flux, and the

inverter’s neutral point potential within their (hysteresis)

bounds minimizing the switch frequency of the inverter.

To reduce the computational complexity and to solve the

MPC within Ts = 25ms, the control and prediction horizon

were limited to Nu = N2 = 2. As a compromise between

computational effort and system behavior, the value of the

prediction horizon was extrapolated linearly 100 steps to

roughly recognize future system behavior. The simulation

results showed that MPC respected the constraints only

slightly better but reduced the switching frequency on

average by 25% thus reducing the power dissipation.

As an experimental validation for this, Papafotiou et al.

[93] implemented MPC for direct torque control on a 1.5

MW motor drive. Again, the major concern was on the

computational speed, so that the control horizon was further

reduced to a single step Nu = 1. The two control tasks,

motor flux and motor speed, were split into separate control

tasks with different execution times (25 ms and 100 ms

respectively). The results could not hold the euphoria of

the simulation above. On average the control reduced the

inverter’s switching frequency by 16.5% maintaining the

same output quality as standard control. For motor drives

of this size, the achieved faster torque response was even

more valuable for certain applications. Especially high-

voltage applications, such as motor control, must consider

the time delay of the converter [10]. Converters often exhibit

a programmed time delay after switching in order to avoid

a shoot-through. Model-based predictive control (MPC) can

manage this naively, e.g. in the system model [10].

The number of applications in power electronics

increased so rapidly that Vazquez et al. [129] felt impelled to

give an extensive review of the academic implementations.

They concluded that the lack of proper models is still

the major obstacle towards an industrial application. And

MPC for power converters and rectifiers (electrical devices

that convert alternating current (AC) to direct current
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(DC)) is still subject of active research due to their

ubiquity. It is likely to increase even further due to the

transformation of society in the context of combating

climate change and the accompanying electrification of

whole industries. Efficiency is prime and researchers found

MPC to provide valuable contribution, e.g. for determining

optimal switching sequences of converters and rectifies

already for mid-level voltage ratings [40, 83]. Although

computation is still an issue, e.g. [2], both formulations are

still competing in the this field of very fast control problems

in power electronics: The standard implicit formulation

of MPC with solving the control problem online and the

explicit formulation where the optimization problem is

solved a priori for all cases. A detailed general discussion

on explicit MPC includes Section 8.1.

Again, Table 2 provides a condensed overview of the

works on the application of MPC in power electronics.

It emphasizes the diversity of the used parameters of

MPC in this field. Having started with the control of

individual electrical components, in particular converters,

the application in electrical engineering has widened

towards the control of systems of multiple components as

the next section will show.

6.3 Building climate and energy

Since 2010, MPC has attracted notice to the community of

building climate control. Analytical and empirical models

were combined in non-linear multiple input multiple output

(MIMO) systems with long prediction horizons. Typical

sample times were in the order of minutes to 1 h with

prediction times usually smaller than 48 h [113]. The

objective was always to reduce the energy consumption

Table 2 Overview of the tuning parameters of MPC in power

electronics

Reference Ts N2 Nu sim/exp MPC

[65] 10 ms 3 (3) sim L

[127] 20 ms 40 ? sim L

[26] 1 ms 1 1 exp N

[15] 83 ms 5 1 exp L

[93] 24 ms 1 1 exp L

[38] 25 ms 2/(100) 2 sim L

[52] 100 ms 2 ? sim L

[10] 62.5 ms ? ? exp L

[29] 1 ms 1 1 exp L

[125] 100 ms 3 1 sim L

[40] 200 ms ? ? exp L

[114] 200 ms 50 50 sim L

sim simulation, exp experiment, L linear, N non-linear,

() deduced numbers, ? unknown parameter

while maintaining a certain (thermal) comfort. The success

of MPC in this field was due to that it allows to incorporate

statistical uncertainties and even weather forecasts [5], e.g.

as in [90].

MPC for heating, ventilation and air conditioning

(HVAC) had been applied to a broad range of buildings,

starting from a single room to large spaces as airport

buildings or multi-room problems as office buildings [1].

The overwhelming majority of the works addressed non-

residential buildings, where only 4% included residential

buildings often as one energy sink among others in a micro-

grid [74]. In their latest review, they noted that heating,

ventilation and air conditioning (HVAC) plays an important

role in the field of building energy management systems

with more than 50% of all publications; and that MPC is the

most used strategy. The authors ascribed this to its native

consideration of weather and occupation forecasts, e.g.

demand forecasting. Google reported that MPC increased

the efficiency of the air handling in one of their data centers

so that they cut cooling costs by 9% [54].

Most works in the field of climate and energy man-

agement were simulations due to the large implementation

effort and the risk of discomfort. Gunay et al. [43] actu-

ally demonstrated their findings on an actual room of their

university offices; and Ma et al. [69] implemented a MPC

controller to the cooling system of their university building.

The main component was a cold water storage tank, whose

operation was controlled (when to fill, how fast to fill, how

cold should the water input be—coming from the chillers,

etc.). They reduced the energy costs by 19%, introducing

the interesting idea of optimizing financial costs instead of

pure energy consumption, [1] later picked-up again in this

filed. With “MPC”, nowadays a dedicated term for such

formulations exist.

Yu et al. [141] conducted a whole benchmark of

different temperature control approaches on a small mock-

up building in a thermal chamber. Model-based predictive

control (MPC) outperformed the other approaches—

including a commercial thermostat with a programmable

schedule—and reduced the energy consumption by 43%

compared to a constant temperature controller. However, the

results suggested that for small buildings the main benefit

came from an enhanced temperature measurement.

Industrial applications of MPC in building climate

control are still rare, which is due to the enormous modeling

effort (being up to 70% of the control effort) [5, 94].

Often, individual rooms were modeled as capacity

resistor elements [82, 90, 91, 107]. Coupled resistance-

capacitance models based on physical principles and pure

empirical approaches are the two main types of modeling

building energy systems for MPC [113].

One way to approach the modeling effort and the related

requirement of domain knowledge was to use black box
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modeling approaches, namely from the field of machine

learning. Already Qin and Badgwell [99] noted that NNs

were popular to model unknown non-linear behavior for

MPC. Afram et al. [1] used NNs to model the individual

subsystem of an energy management system, such as

ventilation, heat storage, or a heat pump. The increase

in model accuracy came at the cost of a non-linear

optimization in the MPC. The system was tested on historic

weather data—assuming an ideal weather forecast at every

point as it is common practice, e.g. also in [36, 90, 91].

Unfortunately, no details on the MPC parameters were given

in [1]. The objective was to optimize the cost of the energy

consumption and not the amount of consumption itself.

For this, the proposed neural network (NN)–based MPC

shifted the energy consumption to the off-peak hours of the

electricity price using the mass of the building as a storage.

This worked excellent for moderate weather conditions but

failed at extreme conditions as in midsummer when such

passive thermal storage are not sufficient.

The interlaced individual models in building climate con-

trol let to a complex optimization problem, where gradient-

based algorithms may fail and heuristic-based global opti-

mization were more desirable [82]. This increased the com-

putational effort further and, thus, enlarged the sample time,

which was seldom a problem due to the inertial nature of

thermal behavior. If the number of rooms became large, the

control problem was broken down into multiple decoupled

MPCs achieving a near optimal solution at a lower compu-

tational cost [82]. Shaltout et al. [5] plead for a distributed

network of MPC controllers cooperating with each other.

Gunay et al. [43] claimed that shorter sample time

favors temperature control (Ts,short = 10min compared to

Ts,long = 1h, both N2 = 6) since the model accuracy

usually deteriorates with the predicted time. Furthermore,

long horizons may be torpedoed by stochastic disturbances

such as the occupancy behavior. They claimed that a short

prediction horizon of TN2
= 6h would have even eliminated

the need for accurate weather forecasts and make the MPC

more reactive. Yu et al. [141] supported the finding that

shorter horizons enabled for a more accurate tracking of a

given temperature reference. In contrast, [91] argued that

TN2
= 24h should be used as a prediction horizon for

heating, ventilation and air conditioning (HVAC) systems.

Park and Nagy [94] identified MPC as recent trend in

heating, ventilation and air conditioning (HVAC) control

through mining the keywords of publications and predict

that it will spread towards the control of smart grids.

Another recent review on MPC for heating, ventilation and

air conditioning (HVAC) systems [113] stressed that it is

importance will increase in step with the transformation in

power generation towards renewable sources and its higher

variability. And in fact, the increasing pressure to integrate

flexible sources and sinks into power grids (introduced by

renewable energy plants and PEVs) called for advanced

control methods, e.g. [126].

In particular, the ability to include stochastic models

and, thus, modeling uncertainty explicitly was considered a

unique feature especially in the field of energy management

[11]. Oldewurtel et al. [91] formulated the MPC problem

as a probability problem considering the uncertainty of

weather forecast. Instead of using weather forecasts,

Morrison et al. [86] learned the day-to-day changes in solar

radiation due to seasonal trends. The algorithm learned the

behavior of humans in terms of hot water demand over

days and weeks, while the MPC implements this learned

reference on a lower-level (TN2
= 12h). In a simulation

study, they mimicked four weeks from midsummer to

midwinter for the considered thermal-storage-tank system.

Also in the field of renewable energies, Dickler et al.

[27] applied a time-variant MPC for load alleviation and

power leveling of wind turbines, where the model for

the mechanical demand on the turbine was linearized at

every control step for the current prediction and control

horizon. The wind speed as one major load on the

mechanical structure was handled by incorporating wind

speed predictions. Sun et al. [125] used MPC to smooth

the effect of fluctuations in wind speed for wind turbines

on resulting frequency of the power generation. The idea

was to consider both, the dynamics of the turbine and of

the wind itself, in a linearized MPC. Shaltout et al. [114]

picked up the same idea coupling the wind turbine with an

energy storage system. Targeting multiple objectives, some

with non-technical motivation, they formulated a so-called

economic MPC. Adding fluctuating energy consumers to

such a system, [126] simulated a (connected) micro grid

with an wind power supplier and 100 PEVs. The objective

was to minimize the overall operation costs: maximizing the

consumption of wind energy and minimizing the exchange

to the main grid, i.e. balancing the energy consumption over

consumption and production peaks. PEVs could be used as

sources or sinks as long as they were fully charged at the

end of a working day. The energy demand of the PEVs

was modeled as a truncated GAUSSIAN model; the supply

of a wind turbine in an auto-regressive integrated moving

average model (ARIMA). They proposed a two-layer MPC

where the top layer balanced the overall power demand

aggregating the PEVs to a single value, while the underlying

MPC handled the energy distribution to the individual

PEVs. The top layer optimized the cost of the energy and

the risk, which was determined through a MONTE CARLO

simulation and stochastic models. A simulation showed that

the costs was be reduced by more than 30% compared

to an immediate maximum charge strategy, in which the

batteries were charged to full capacity as soon as it was

connected to the grid. This may exacerbate the energy

imbalance of the micro grid at peak hours. Schmitt et al.
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[109] optimized energy management for hybrid electric

vehicles by establishing also a two-layer MPC. On the

higher level non-linear MPC, the driving strategy including

a rule-based gear selection was optimized, and the control

and actuation of the physical system were realized on the

faster lower level linear MPC.

In the advent of the electrification of the mobility, MPC

experiences a new blossom, e.g. in balancing the fuel

consumption of a hybrid-electric vehicle taking also the

individual driving behavior into account [61], or in health-

aware battery charging [147].

Again, the mega trend of energy transition and energy

efficiency will lead to an increasing demand of intelligent

strategies for energy balancing in (micro) grids and for

building energy management systems. This in turn will

call for more applications of advanced control strategies,

especially MPC [74, 113]. The field has developed from

the control of pure heating, ventilation and air conditioning

(HVAC) systems to entire consumer-producer systems

(or grids). The complexity of the models represent this

evolution, Table 3.

6.4 Manufacturing

Manufacturing is a comparably new field for MPC and can

be considered representative for a new development: MPC

does not substitute existing controllers anymore but exploits

new control tasks.

Table 3 Overview of the tuning parameters of MPC in building

climate and energy

Reference Ts N2 Nu sim/exp MPC

[90] 1 h 24 24 sim N

[69] 1 h 24 (24) exp N

[91] 1 h 24 24 sim N

[43] 10 min, 1 h 6 ? sim L

[36] 1 h 8 (8) sim N

[1] 100 ms 10 5 sim L

[141] 15 min (60) (60) exp L

[54] 30 s ? ? exp L

[126] 5 min ? ? sim L

[147] 1 s 10 ? exp L

[139] 1 s 20 5 exp N

[125] 100 ms 3 1 sim L

[27] 100 ms 40 8 sim L

[114] 200 ms 50 50 sim L

[109] 40 ms, 1 s 5 5 sim L+N

sim simulation, exp experiment, L linear, N non-linear,

() deduced numbers, ? unknown parameter

We want to emphasize the field of manufacturing in

general and cutting technology in particular, where several

papers already showed the potential benefit of advanced

control, e.g. on a conceptual basis [28].

Nevertheless first, fixed-gain controllers for the position

control loop of machining centers were substituted to

achieve higher precision [122, 123]. Compensating the

dynamics in high-precision milling with MPC is still

an active field of research, e.g. [73]. Nonetheless, the

application evolved towards introducing additional high-

level control with MPC. The control turned into process

control rather than implementing machine tool settings,

creating before unseen benefit. Mehta and Mears [79]

described a concept for controlling the deflection of slender

bars in turning. And Zhang et al. [142] examined MPC

to avoid chatter—an undesired resonance phenomenon—

in milling. The MPC used a linearized oscillation model

assuming that mass, damping, and stiffness were given. The

controller manipulated an external force actuator at the tool

holder. In simulation, the system enlarged the chatter-free

region by 60%.

The first constrained MPC for force control in milling

was implemented at the RWTH Aachen University,

Germany [111, 112, 119, 120]. They manipulated the feed

velocity in order to achieve a constant force in this highly

dynamic process. Later, a black box model (support vector

regression (SVR)) was added to consider non-linearities of

machining centers [7, 8].

Staying in the area of metal processing, Liu and Zhang

[67] introduced MPC-based control to welding. Predicting

the N2 = Nu = 5 next steps (Ts = 0.5s), they controlled the

penetration depth of the weld as a measure of quality. While

the first approach relied on a dedicated vision system and a

linearized model of the penetration depth, a newer approach

dropped the vision system: [148]. The feedback loop was

closed by identifying a model online, which described the

relation to the penetration depth. This was a similar set-up as

for the milling process above. The approaches demonstrated

the control of system variables that were hard to impossible

to control without MPC.

Wehr et al. [133] applied a linear MPC to control the gap

during precision cold rolling of thin and narrow strips. The

structure of the given process is anatomically overactuated

by the existence of two redundant actuators for gap control.

The overactuation and computational effort of the MPC are

tackled at the same time by the introduction of a single time-

varying optimization variable, which exploits the different

availability of the actuators during the process.

A different field of production technology addressed Wu

et al. [135], who optimized the air-jet to insert the weft in

weaving. This is the key to reduce the energy consumption

(in terms of compressed air) of weaving machines.
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And for injection molding of plastics, Reiter et al.

[103] (conceptual) and later Stemmler et al. [121] built a

MPC controlling the pressure within the mold. The idea

was to obtain constant weight of the product as a quality

criterion. It was standard to control the process with separate

controllers for the different phases (injection and packing

phases), while MPC was able to handle both phases and

optimizing the transition (which was originally a switch of

the controller) [121]. The contribution to a higher usability

of the MPC was the main driver in this work.

A bit more general, the field of “production” adds

automation and handling systems to the scope. These are

often graph or state-based modeled, e.g. by Petri Nets

as Cataldo et al. [20] did with a palette transportation

and processing system. Using an MPC, they enabled the

system to adapt to faults on the transportation line such as

a blocked section. Automation applications with discrete

states present mixed-integer optimization problems. They

require dedicated solver, which often are heuristic-based

and come with a larger computational burden than gradient-

based optimizers.

Table 4 provides a quick overview on the chosen

parameters. The sampling times are quite low with rather

large prediction horizons compared to the early works on

power electronics.

6.5 Further applications

Apart from these main movements, the range of applications

in engineering is immense. From balancing walking robots

[134], hanging crane loads [110], and cruise control for

heavy duty trucks [62, 140], to optimizing buffering and

quality in video streaming [138]. Even for path tracking of

Table 4 Overview of the tuning parameters of MPC in manufacturing

Reference Ts N2 Nu sim/exp MPC

[122, 123] 100 ms 50 4 exp L

[119] 20 ms 12 12 exp L

[120] 10 ms 13 13 exp L

[67] 500 ms 5 5 exp L

[103] 8 ms 25 1 sim L

[135] 1 ms 25∗ 2 sim L

[121] 8 ms 12 3 exp L

[20] ? 7 2 sim N

[8] 20 ms (13) (13) exp L

[133] 1 ms 8 6/1 exp L

[148] ? 8 8 exp L

[73] 976 ms 2 (1) exp L

[111] 20 ms 10 10 exp L

sim simulation, exp experiment, L linear, N non-linear,

() deduced numbers, ? unknown parameter

This work uses a lower prediction horizon: N1 = 5

underwater robots, MPC was applied [116]. In almost all

applications, MPC outperforms classic controllers.

In particular, robotics is an emerging field of applications

of MPC, e.g. [47, 88, 134]. While humanoid robots are a

special case [134], industrial robots are ubiquitous in the

shop floors today. The success of light-weight, economic,

and collaborating robots has contributed to a significant

increase of MPC related works in this field. Nubert

et al. [88] improved the tracking robustness in general with

a robust MPC. While [47] made use of the force feedback

of a lightweight robot to polish the free-form surface of a

metal workpiece. The MPC maintained a given pressure on

a varying area while moving over the surface.

With the upcoming of new concepts of how vehicles

are powered was accompanied with new applications of

control strategies and applications of MPC. Be it traction

control of in-wheel electric motors [? ], cruise control [61,

62], or path planning for autonomous driving [48]. The

focus of advanced cruise control is yet on larger commercial

vehicles, such as (hybrid) electric buses [61, 137], due to

its faster return on invest. It seems that the electrification

of the power train spread electrical-engineering know-how

to the development cycle of vehicles and with it, control

engineering expertise.

6.6 Notes

While many researchers show an extraordinary meticulous-

ness when describing the models they have used, some miss

to provide basic information on MPC tuning. We want to

emphasize that at least the sample time Ts and all horizons

(lower prediction horizon N1, upper prediction horizon N2,

and the control horizon Nu) should be listed, as Table 1 to

Table 4 demonstrate.

Ideally, also the cost function should be provided

including the weights of the slack variables ξ . With the

horizons given, applications can be compared and and

the computational effort can be estimated. The exact cost

function is required to reproduce the results ensuring good

scientific practice.

7 Controller design and tuning

The initial hurdle to use MPC is relatively small—provided

you have an adequate model describing the process in

question. The effort is shifted from controller design

towards modeling [35, 104, 105]. Nonetheless, the MPC

offers an enormous flexibility regarding its design and

tuning [37]. The most significant effect have:

– the model,

– the cost function,
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– the constraints (what is constrained and how it is:

bound, inequality, or non-linear constraints), and

– the choice of the solver itself.

The model is the essence of a MPC. As [101] put

it: “models are not perfect forecasters, and feedback can

overcome some effects of poor models, but starting with

a poor process model is akin to driving a car at night

without headlights; the feedback may be a bit late to be truly

effective”.

Both, theory and commercial application software favor

linear models or a linear MPC. To apply linear control even

to non-linear systems successive lineraization can be used,

e.g. [6, 8, 63, 80, 97, 147], or model switching, e.g. [95].

The idea is to take advantage of a linear optimization, i.e.

linear MPC, with a comparably low computational burden

and a non-linear prediction.

Few applications use non-linear MPC meeting the fact

that often the available models are non-linear. However, not

all check stability. Others focus explicitly on the stability

aspect in their applications, e.g. [116]. In particular with

the popularity of machine learning model, non-linear MPC

applications increase. A sometimes ignored drawback of

non-linear MPC is the larger computation of non-linear opti-

mization. However, there was a new computation scheme

introduced recently: RTI. Gros et al. [41] summarizes this

approach presenting linear MPC as a special case of it. The

main idea is as simple as it is charming, making use of the

previous solution. At time step k, the controller calculates a

solution for time steps k+1 to k+Nu. A good optimization

given, the solution for time step k + 2 presents a rationally

good starting point for the next optimization at time step

k + 1. Thus, one can limit the number of iterations of each

optimization assuming that the next optimizations continue

improving the solution of the trajectory of the manipula-

tion variable. “The RTI approach consists in performing the

NEWTON steps always using the latest information on the

system evolution” [41]. This idea of “warm starting” relies

on a sufficiently high sampling frequency to ensure only

small changes between iterations. Because the RTI scheme

implements one single full NEWTON step per time step,

it generally works better if the non-linearity between time

steps is mild and if the prediction horizon is longer.

Controlling large multiple input multiple output (MIMO)

systems with a single MPC may be difficult [32], that

is why cascaded or hierarchical MPC structures are some

times suggested, e.g. a two-layer MPC [112, 126] running

at different sample rates.

Slack variables soften constraints moving it to the cost

function where the amount of its violation is penalized. This

generates the additional tuning factor Wξ , which is a weight

matrix ensuring feasibility by softening constraints on the

model output (and with this, on the reaction of the system).

It is usually an identity matrix, whose entries are several

orders higher than the weight matrix of the control error Ww.

A trade-off between accurate tracking of the reference

and smooth control behavior can be performed by

considering the change of the manipulated variable in the

cost function:

min
u,ξ

N2∑

i=N1

‖r(k + i|k) − y(k + i|k)‖Ww +

Nu−1
∑

j=1

‖∆u(k + j |k)‖Wu +

N2∑

i=N1

‖ξ(k + i|k)‖Wξ
. (11)

The same constraints apply as before in Eq. 5. The cost

function minimizes the deviation from the reference r over

the prediction horizon N2. It additionally considers the

change in the manipulated variable ∆uk = uk − uk−1. The

last term includes the slack variables ξ , which quantify the

violation of output constraints. It must be tuned manually

until the controller reflects the desired behavior. To the

experience of the authors, a good starting point lies within

Wu = (0.01 I, 1 I), with the lower values let the MPC use

its potential unhindered at the exchange of more (usually

small) violations of the boundaries.

Typical solvers are based on linear programming (LP)

or quadratic programming (QP) [26]. If one uses the

commercial tools, i.e. from the popular program MATLAB

by THE MATHWORKS, the choice of an optimization

algorithm is not a question. But, for deeper dives into the

design, a good option for a solver is quadratic programming

online active set strategy (qpOASIS). It is an open-source

optimization algorithm for linear problems, which has

“several theoretical features that make it particularly suited

for model predictive control (MPC) applications” as the

project stated [30]. The choice of the solver influences the

demand of computational resources.

Besides those major design building blocks, the MPC

exhibits a whole slew of tuning parameters: the horizons

(N1, N2, Nu), the weights in the cost function, Eq. 11, and

the time step or sampling time Ts . It is unique for every case

but this review can provide tips and best practices for the

other tuning parameters.

The horizons are crucial of the system’s performance and

must be determined for every case. The prediction horizon

N2 must be long enough to capture the effect of a change of

the manipulated variable u. In this way the minimum length

of the manipulation horizon Nu can be estimated by

Nu = N2 −

⌊
Td

Ts

⌋

. (12)
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To reduce the complexity of algorithmic tuning, [118]

suggested to neglect the difference of the prediction and the

manipulation horizon: N2 = Nu. The effect on computation

is small if the time delay of the system is small in terms of

multiples of the sampling time.

The lower prediction horizon describes the time delay of

the system. It is best practice to consider this in the model

of the system and, therefore, setting N1 = 1. This considers

that the manipulated variable is not implemented instantly,

which would make the exact moment indeterministic as

it depends on the time the MPC requires for solving

the optimization problem. Instead, the obtained optimal

command u is implemented at the next time step. These

considerations reduce the problem of finding suitable

prediction horizons to the problem of determining the

necessary prediction horizon N2. Its choice can be estimated

using the system model by simulating all possible step

changes in the manipulated variable(s). If the combination

that has the longest effect on the control variable is known,

it is sufficient to simulate this.

8 Computation

It does not help to talk about MPC, i.e. repeatedly solving

an optimization problem online, without talking about its

computational effort. In the control of power electronics,

the prediction horizon was often limited to N2 = 1 due

to tight time requirements [38]. Nevertheless, there are

more sophisticated strategies to reduce computation than

wrecking prediction. Morari [84] argued that computational

effort was irrelevant based on the computing power

in 1994. This is remarkable from today’s perspective:

although computing power increased exponentially, Fig. 6,

at the same time control intervals have shrunken and thus

computation is still an issue.

MOORE’s law states that the number of transistors on a

microprocessor doubles roughly every two years [132]. That

usually implies that computational performance doubles too

– and prices dropped in sync, Fig. 6. This comfortable

development may not continue forever; in fact, special-

purpose chips are on the advance (think of low energy

CPUs that power smartphones) letting the microprocessor

landscape diverge. The tremendous success of machine

learning techniques and the increasing parallelization in

software were paved by the replacement of CPUs for GPU

chips. At the same time, the clock speed had been limited

because of the heat dissipation in the resistors. To still

keep up with MOORE’s law, multiple cores were integrated

on the same chip from the early 2000s on. With this in

mind, strategies to reduce the computational load become

very well important again. With increasing computational

Fig. 6 Overview of the evolution of the computation power (data taken

from [49, 132])

resources, more demanding systems were controlled that

were not even imaginable before.

8.1 Explicit MPC

In the year 2000, [14] still claimed that MPC was

only applicable to slow or small systems due to the

computational effort that solving an optimization problem

imposes. Parallel to the increasing computational power,

many dedicated approaches have been introduced bringing

MPC towards more efficiency. As an intermezzo hybrid

MPC or explicit MPC approaches popped up [13]. They

combine an offline solved optimization problem with online

control. The optimization problem—and thereby the control

law—is solved for a multitude of possible situations and

stored in a look-up table. This shifts the task of computation

to a non-time-critical offline calculation. Essentially, MPC

in this was becomes an online gain-scheduling algorithm.

The advantage is that closed-loop control can be performed

at higher rates which, in some cases, made closed-loop

control feasible in the first place and, in other cases,

improved the control behavior due to quicker feedback.

The major drawback is the increasing computational

effort solving the problem for all possible situations in

conjunction with the increasing memory demand. It lacks

of flexibility regarding unexpected disturbances and of the

opportunity to adjust the process model.

Explicit MPC increases the overall computation because

every possible state needs to be calculated a priori . This

might be the reason why it emerged from the control of

power converters with simple (mostly binary) problems,

short horizons, and almost no time for calculation [130]. For

complex systems, the advantage at execution is somewhat

diminished if searching the a priori solved result takes
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long [122]. The solution space scales exponentially with the

problem size making look-up-table-approaches inefficient –

this is sometimes dubbed “curse of dimensionality” [102].

One way to reduce the general computational effort is

to approximate the solution-space by a non-linear function.

Recent studies suggested to use NNs for this [64, 143].

This sped up the required online computation by a factor

of 65–100 in [143]. Approximating the solution space by

a function let the MPC work with near optimal solutions

but shifts the computational burden may allow to decrease

the online computation time. [143] built a second model

to quantify the approximation error at every point in the

solution space. The charm of an approximation through

machine learning is that the training can be flexibly stopped

if a defined accuracy is reached. Hertneck et al. [45] took

this thought focusing on accurate learning of the solution

space by the neural network (NN). They quantified the

probability of a wrong approximation. In this way, they

were able to adjust and extend the training until it reached

the desired quality. The procedure was demonstrated on a

simple numerical example reducing the computation time

by a factor of 200—at the cost of a training effort of 20

days. Only recently the idea was tested on an industrial

robot as real system [88]. The to-be-approximated MPC was

designed for robust control with regard to the output of the

MPC. In this way, measurement noise—or an inaccurate

approximation of the solution space through the neural

network (NN)—did not affect the stability of the to-be-

controlled system.

Maddalena et al. [71] generalized the idea proposing a

neural network (NN) with two linear layers and a parametric

quadratic program layer in between to learn the control

law of any linear MPC with A quadratic cost function.

They showed that the resulting explicit MPC was still

closed-loop stable in the sense of LYAPUNOV by using

out-of-the-box the certification technique proposed by [51].

The technique was applicable because the neural network

(NN) structure essentially presented a linear mapping

with polynomial inequalities. In fact, [102] concluded that

NNs—in particular with rectified linear units (ReLUs)—

present a continuous piece-wise linear mapping ideal

for approximating large solution spaces of explicit MPC

policies.

8.2 Move blocking

Move blocking strategy for MPC (in sense of input blocking

as its most common formulation) is a scheme, where the

degree of freedom for the optimization is reduced by

trimming the number of calculated control outputs. Thereby,

the control output is held constant at defined steps over

the control horizon. In this way, the computational burden

decreases because the control output does not have to

be calculated at every time step over the control horizon

anymore.

Overall, the result of move blocking strongly depends on

the choice of blocked time steps. One conceivable approach

is to block the later time steps to obtain a higher degree

of freedom at the beginning of the control horizon. Such

an approach is appealing for uncertain systems, where

the predicted system behavior is more trusted at early

time steps. Nevertheless, one has to be aware of the

aforementioned drawback. A more sophisticated, but also

more computationally expensive, approach is to optimize

the choice of blocked time steps as a mixed-integer problem

[115].

One major drawback of the strategy is that the continuity

of the optimization for a receding horizon can no longer

be ensured. This is due to the shift of fixed (or blocked)

time steps with the receding horizon between iterations.

Therefore, the degree of freedom at a certain point in

time in the future cannot be guaranteed at the following

iteration of the optimization. In the worst case, neither

the satisfaction of constraints for the optimization, nor the

controller stability can be met. One way to overcome this is

to adapt the fixed time steps, such that the degree of freedom

is defined at the same time [16].

9 Conclusion

Popularity of MPC “comes in great part from the fact that

a suitable model being given, the controller can be easily

implemented with a direct physical understanding of the

parameters to be tuned and easy constraints handling”

[104]. With the great advances in microprocessors and

the omnipresent availability of models, this is more true

than ever. One key characteristic of MPC is the implicit

determination of the control law by solving the constrained

optimization problem online. The incorporation of physical

constraints in the optimization problem shifts the effort

of designing a controller towards modeling the to-be-

controlled system [35, 104, 105].

The hurdle to overcome for a lasting impact of MPC

on industry is the complexity of modeling and algorithmic

tuning. In most cases, the potential benefit is not worth

the effort of building up expert knowledge in modeling,

optimization, and control theory.

Modeling is often the most time consuming activity

[44]. As the age of microprocessors removed computational

resources as the largest obstacle and paved the way for an

enduring success of MPC, the second era may be herald

by the use of data-driven modeling lowering the barriers

even more. Machine learning enables an easy description of

complex systems lowering the hurdle of applying MPC to

new processes.
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For applications first the extreme have been covered:

large and complex multiple input multiple output (MIMO)

systems with long sample times (petrochemical industry).

Then, almost as a counter movement, fast systems with

short sample times and often an explicit formulations were

developed (power converters). These days, the craziness

has settled leaving the field to reasonable sample times.

Although computational power has increased tremendously,

even today, an efficient calculation should always be the

dictum but requires expert knowledge in programming

hindering a plug&play usage. Forbes et al. [32] concluded

that a higher usability of existing techniques is required by

industry rather than new MPC algorithm. Nowadays, it is

almost as if the focus has shifted from theory to application

letting both advance in conjunction. The theory becomes

application-driven again—as it was in its beginnings.

We are convinced that the global mega trend of

decarbonization will further boost MPC applications in

electronics, due to the expansion of electrification as well

as the constantly pressing demand for high efficiency

of electric components. Model-based predictive control

(MPC) can contribute to efficiency in many fields, e.g.

in climate control systems (precisely heating, ventilation

and air conditioning (HVAC)) They deal with sluggish

systems and comparably precise forecasting models, e.g.

for room occupations or for the weather, what makes MPC

predestined for them.

The buds of the new trends and the thick trunks of the

established disciplines suggest, to our eyes, that one step

way from an exponential increase in the number of MPC

applications.

Model-based predictive control (MPC) enables control-

ling high-level objectives rather than machine tool set

points. This review shall encourage domain experts to apply

this intelligent control method to their fields seeding the

next level of manufacturing.
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