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As a popular research direction in computer vision, deep learning technology has promoted breakthroughs in the field of 

object detection. In recent years, the combination of object detection and the Internet of Things (IoT) has been widely used 

in the fields of face recognition, pedestrian detection, unmanned driving, and customs detection. With the development of 

object detection, two different detection algorithms, one-stage, and two-stage have gradually formed. This paper mainly 

introduces the one-stage object detection algorithm. Firstly, the development process of the convolutional neural network 

is briefly reviewed, Then, the current mainstream one-stage object detection model is summarized. Based on YOLOv1, it 

is continuously optimized, and the improvements and shortcomings are summarized in detail. Finally, a summary is made 

based on the difficulties and challenges of one-stage object detection algorithms. 
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1. Introduction

Object detection is one of the most fundamental and 

challenging tasks in computer vision. It not only needs to 

perform image classification on the categories existing in a 

picture, but also needs to accurately locate objects that may 

exist in a picture, where classification refers to matching the 

correct category label, and positioning refers to finding out 

the corresponding picture frame position. Therefore, the 

process of object detection is more difficult and more 

promising. At present, it is closely related to the 

development of the Internet of Things (IoT), which has been 

highly recognized by the society in the fields of video 

surveillance and intelligent transportation [1-3]. 

According to whether the candidate frame area needs to be 

generated in advance, the object detection algorithm is 

divided into two-stage and one-stage detection algorithms. 

The two-stage algorithm is represented by R-CNN [4], 

also known as the object detection algorithm based on 

candidate regions. Simply speaking, first, generates 

candidate regions in the image, and then performs 

classification and regression processing on each 

candidate region [5-7]. The one-stage algorithm is 

represented by YOLOv1 [8], also known as the  

regression-based object detection algorithm. It means 

that the input image is no longer processed by the 

candidate area, and the object in the image is directly 

located and classified. In general, the two algorithms 

have their advantages. The two-stage algorithm has high 

accuracy, but it takes a long time to pass through the 

selective search algorithm during detection [9, 10]. 

Conversely, one-stage algorithms are faster but less 

accurate. The object detection algorithm based on deep 

learning is shown in  Figure 1. 
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Figure 1 Different Object detection algorithm 

The (a) shows the two-stage object algorithm flow, which 

has a separate candidate region extraction module, not an 

end-to-end operation. For example, the (b) network structure 

can be found to be an end-to-end network, and the input 

pictures can be output directly through the neural network. 

In recent years, with the continuous improvement of the 

YOLO series, not only has the training speed of the one-

stage algorithm been improved but also many innovative 

algorithms and architectures have also been proposed. This 

paper mainly describes the development process of the one-

stage object detection algorithm and conducts an in-depth 

analysis of the module structure [11] in the development 

process. Finally, the comparison between the one-stage 

object detection algorithm and the two-stage object detection 

algorithm is made, and the existing problems in this field are 

pointed out. 

2. Convolutional Neural Network

The Convolutional Neural Network (CNN) is the most 

representative model of deep learning. It is composed of the 

input layer, convolution layer, pooling layer, and full 

connection layer [12-16]. Most of the current networks are 

based on a series of improvements made by CNN. 

Originally, in 1998, LeCun [17] proposed the LeNet 

network for handwritten digit recognition and applied CNN 

to the field of image recognition. As an early neural network, 

LeNet only contains three full connection layers, two 

convolution layers, and two pooling layers. Because the 

model is small, it cannot fit other data well, which limits the 

development in computer vision fields [18, 19]. 

In 2012, Krizhevsky proposed the AlexNet network and 

won the championship in the ILSVRC2012 image 

classification task, which caused a strong learning upsurge in 

the field of computer vision. Many researchers [20-23] have 

also applied it to the object detection task, constructing R-

CNN, OverFeat [24], MultiGrasp [25], and other classical 

object detection algorithms. They applied deep learning to 

large-scale image classification for the first time and 

achieved the best results. 

In 2013, ZFNet [26] made minor adjustments to the 

AlexNet network, mainly introducing a new visualization 

technology. In the past, CNN was a black box; there was 

no corresponding theory or method to explain the 

optimization and improvement process of the network. 

ZFNet shows the visualization of the intermediate feature 

layer through deconvolution [27,28]. They won the 

ILSVRC championship [29]. 

In 2014, Simonyan [30] proposed the VGG model, 

which studies the effect of network depth on accuracy. 

Unlike AlexNet, VGG uses multiple stacked 3x3-sized 

convolution layers to replace large-size filters. The 

advantage of the model is that the structure is simple and 

effective, and it can be well migrated to other networks, 

but the disadvantage is that the parameters are too large 

and easy to fit. Scholars have used VGG in many fields 

successfully [31-33]. 

GoogLeNet [34] is the 2014 ImageNet champion, and 

the network not only studies the impact of depth but also 

takes into account the breadth of the network. The network 

removes the last full connection layer and skillfully puts 

forward the 1x1 convolution operation to reduce the 

dimension and avoid the over-fitting problem caused by 

too large network parameters. 

In 2015, He et al. [35] proposed the ResNet residual 

network and residual connection. It mainly solves the 

problems of network degradation caused by increasing the 

depth or width of the network, and solves the problem of 

gradient disappearance through residual connection, so that 

the depth of the network can reach 152 layers. The network 

uses a small amount of pooling layer and a large number of 

downsampling, which improves the forward propagation 

efficiency of the network and achieves the best image 

recognition effect at that time, which proves the feasibility 

of residual connection [36-38]. 

In 2017, Liu et al. proposed DenseNet [39], which won 

the best paper award at CVPR2017. Drawing on the 

ResNet network's method of deepening the depth and 

width of the network can also ensure the accuracy of the 

model. DenseNet constructed a typing network. One layer 

of information is concatenated (dimensionally connected) 

with all the other layers. DenseNet can effectively reduce 

the number of parameters and enhance the reusability of 

features between different convolutional layers [40-42]. 

It is because of the strong feature representation ability 

of convolution neural networks in deep learning that 

classical feature extraction networks such as VGG [30], 

GoogLeNet [34], and ResNet [35] are produced. They can 

do an excellent job of image extraction. It has been found 

that they can be used not only for image classification tasks 

but also for backbone architectures in more complex object 

detection tasks [43-47]. 

In 2014, Girshick et al. proposed a two-stage object 

detection algorithm, R-CNN [4], instead of the traditional 

manual feature selection DPM [48] algorithm, and finally 

got good results, but it is time-consuming. Therefore, the 

next part of this paper shows that the single-stage object 

detection algorithm not only has high speed but also has 

better accuracy. 

3. One-Stage Object Detection Model
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3.1. YOLOv1 

YOLOv1 was proposed in 2016 and published on CVPR. 

YOLO is the first one-stage object detection algorithm that 

achieves good results in both accuracy and speed. The 

network structure is improved based on GoogLeNet, in 

which the inception layer is replaced by a 1x1 or 3x3 

convolution operation. The core idea is to regard object 

detection as a regression task. 

The algorithm flow is very simple and straightforward: 

divide the picture into an s×s grid, and each grid cell is only 

responsible for predicting the object where the central point 

falls in the grid [49]. At the same time, we also need to 

predict the b bounding box. Each bounding box contains (x, 

y, w, h) and confidence, as well as the category information 

N of the specified data set. Then each bounding box needs to 

predict (4+1+N) dimensional information. The final 

dimension size generated by YOLOv1 is (s×s, b×(4+1+N)). 

But once it is set to b = 2, only two rectangular boxes are 

generated for each square, and finally, a rectangular box with 

greater confidence is selected as the output. That is, only one 

object can be predicted for each square in the end. The 

YOLOv1 model architecture is shown in  

Figure 2. 

Figure 2 The YOLOv1 model 

YOLOv1 does not extract candidate regions, so the 

detection speed is greatly improved. It can achieve 45FPS in 

the VOC2007 data set and can reach 63.4 maps. At the same 

time, YOLOv1 has strong migration ability and can be 

applied to other new fields (such as flower object detection 

combined with the IoT). Because each grid can only predict 

one category, when there are multiple classes in a grid at the 

same time, all categories cannot be detected, which is not 

better for small population detection. Moreover, due to the 

setting of the loss function, there are differences in the 

processing of large and small objects, and the final detection 

accuracy is not good enough. 

The formula of YOLOv1 object loss function is shown 

in(1). 
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It can be seen from the above that the loss function is 

composed of three parts. They are confidence loss, class 

loss, and object loss. The function used to calculate the loss 

is the sum-squared error. The reason for the square root of 

𝑤 and ℎ is that when calculating the IoU loss, when the 

prediction boxes of different sizes have the same offset, it 

is obvious that the IoU of the larger prediction box is 

larger, which results in particularly poor detection results 

for small objects. Adding to reduce the impact of  𝑤  ℎ , 

which makes the model pay more attention to small 

prediction boxes. 

In addition, the 𝐶î value is 1 in 1𝑖𝑗
𝑜𝑏𝑗

, which means that

the prediction frame contains objects, and the 𝐶î value is 0

in 1𝑖𝑗
𝑛𝑜𝑜𝑏𝑗, which means that the prediction frame does not 

contain objects. The category loss in the last line also uses 

the mean square error and only performs category 

prediction for positive samples.  𝛌  represent the weight 

balance factor, where 𝛌𝒄𝒐𝒓𝒅 =5 means that the coordinate

loss occupies a larger weight so that the model pays 

attention to the regression loss. In the early stages of 

training, many cells generate many low-quality boxes. To 

reduce the model's learning of these low-quality boxes. 

Assigning 𝛌𝒏𝒐𝒐𝒃𝒋 =0.5 reduces the loss of confidence in

predictions that do not contain object boxes. 

3.2. YOLOv2 

In 2017, Redmon et al. proposed YOLOv2 [50] based on 

YOLOv1, focusing on solving the problems of recall rate 

and positioning accuracy faced by YOLOv1. The test 

speed is 67FPS on the VOC2007 data set, and the accuracy 

can reach 78.6% mAP. Specifically, YOLOv1 uses the 

final full connection layer to predict the bounding box, 

while YOLOv2 draws lessons from the idea of Faster R-

CNN [51] and introduces the anchor mechanism, which 

can generate a priori frame in advance and use the K-

means clustering method to generate an a better anchor 

template. Among them, YOLOv1 has only 98 bounding 

boxes, while YOLOv2 can reach more than 1000 bounding 

boxes [52-54], which is nearly 10 times more than the 

bounding box, which can significantly improve the recall 

rate of the algorithm. 

The network combines the fine-grained features of the 

image, which is to fuse the feature maps of different sizes 
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through a certain technology, which can combine the high-

resolution shallow texture features and low-resolution deep 

semantic features to improve the detection ability of small-

sized targets. Different from YOLOv1, this algorithm 

designs a new full convolution feature extraction network 

Darknet-19 as the backbone, which includes 19 convolution 

layers and 5 maximum pool layers. For each layer of 

convolution, batch normalization is added for preprocessing. 

It can be seen that YOLOv2 summarizes many deep learning 

techniques and finally has a high improvement in accuracy 

and speed. The Passthrough layer used for fine-grained 

features is shown in  

Figure 3. 

Figure 3 The Passthrough layer 

3.3. YOLOv3 

In 2018, the author Redmon made a further improvement 

based on YOLOv2 and proposed YOLOv3 [55]. Using the 

residual structure of ResNet as a reference, it is proposed that 

DarkNet-53 make the backbone network deeper (from 

DarkNet-19 in YOLOv2 to DarkNet-53 in YOLOv3, which 

is comparable to ResNet-101, ResNet-152 in accuracy and 

faster in speed) [56, 57]. At that time, it was one of the most 

classical and popular algorithms for achieving the best 

tradeoff between accuracy and speed. 

Specifically, multiple logical regression classifiers are 

used instead of softmax classifiers to achieve multi-label 

classification (in YOLOv2, the algorithm can only determine 

that the current object belongs to one category, but in some 

complex scenarios, the object label has the problem of multi-

class labeling. 

For example, in a fruit transaction scenario, an object 

belongs to both an apple and a fruit. If softmax is used for 

classification, the results are mutually exclusive. That is, if it 

belongs to an apple, it is no longer a fruit, which is not true 

in some specific data sets and belongs to a single-label 

classification. If the final output of the network determines 

that the goal is both apple and fruit, this is the so-called 

multi-tag classification). 

In addition, the feature pyramid network (FPN) 

architecture is introduced to sample the deepest feature map 

of the network twice. Combined with the output of the 

shallow network, different anchors are set on the final three 

feature maps to predict the object areas of different sizes. 

The coordinate prediction method of the bounding box is 
similar to that of YOLOv2, in which the center point of the 

bounding box is predicted relative to the coordinates of 

the upper left corner of the grid (C𝑥,𝐶𝑦), and each 

bounding box is predicted to get five values (𝑡x, 
𝑡𝑦, 𝑡𝑤 , 𝑡ℎ) and t𝑜 . At the same time, to limit the center 

point of the bounding box to the grid, the Sigmoid 
function δ is used to normalize the ( 𝑡𝑥, 𝑡𝑦), and the 

value is constrained between 0 and 1, and the final 
prediction result is still within the size of the grid. The 

stability of the early training of the model is 
significantly improved, and the coordinate prediction 

mode of YOLOv3 is shown in  
Figure 4. 

Figure 4 The coordinate prediction mode of YOLOv3 

The traditional image pyramid is to extract features 

from different feature layers. It mainly uses artificial 

extraction features, and cannot combine the information 

from the upper and lower feature layers. Since each layer 

makes predictions, this approach increases the training data 

in disguise, making the algorithm time-consuming. 
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When the feature pyramid network (FPN) is used [58], 

multi-scale information can be used, and the upsampling 

from the high-resolution feature layer can be combined 

with the feature layer information of the original scale. To 

make up for the loss of information caused by multi-scale 

changes, experiments have shown that the network can 
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learn stronger feature information through the feature 

pyramid structure [59-61]. A comparison of the traditional 

pyramid and FPN is shown in Figure 5. 

3.4. YOLOv4 

In 2020, Alexey Bochkovskiy et al. put forward YOLOv4 

[62]. The real-time monitoring speed in the MSCOCO data 

set reaches 65FPS and the accuracy reaches 43.5%AP. 

The improvement to YOLOv4 is that the backbone 

network is CSPDarknet53. The SPP (improved structure 

inspired by SPP-net [63] and PANet [64] modules are used, 

and the activation function of the backbone is changed to the 

Mish activation function. In addition, the SPP module is 

added to the neck part, which can significantly increase the 

receptive field of the feature graph, effectively combine the 

network characteristics of the context, and will not reduce 

the running speed of YOLOv4. The activation function 

formulas and images of Mish and LeakyReLu are shown in  

Figure 6. 

Figure 6 Mish and LeakyReLu formulas and images 

The literature [62] uses CSPDarknet53 as the backbone 

network, and the design inspiration comes from the CSPNet 

[65], proposed by Chen-Yao Wang et al. The CSPNet 

network proposes an innovative structure from the 

perspective of network structure design to solve the problem 

of information redundancy when the gradient is returned and 

updated, and to reduce the amount of network computation 

while ensuring that the accuracy does not drop. 

The literature [65] found that adopting this new structure 

can not only enhance the feature learning ability of the 

backbone extraction network but also reduce the 

computational cost. The module comparison between 

CSPDarknet53 and Darknet53 is shown in Figure 7. 

Figure 7 The CSPDarknet53 and Darknet53 module 

3.5. YOLOx 

The YOLO series is constantly optimizing its speed and 

accuracy. In recent years, some people have questioned 

whether YOLO can still be improved. In 2021, Liu et al. 

published YOLOx [66], which is similar to the YOLOv5 

model but also uses different network structures such as 

YOLOx-s, YOLOx-m, YOLOx-l, YOLOx-x, and so on, 

besides designs a YOLOX-Nano, YOLO-Tiny lightweight 

network to realize the dynamic selection model according 

to demand. YOLOx has a simple structure, users can 

quickly deploy the model architecture, and it has strong 

flexibility. 

Literature [66] takes into account that YOLOv4, v5 may 

over-optimize anchor, so a series of improvements have 

been made under the condition of YOLOv3-SPP. Taking 

YOLOx-DarkNet53 as an example, there are mainly the 

following points: not only Mosaic data enhancement but 

also MixUp data enhancement is used on the input side, 

and Decoupled Head, anchor free, Multi positives, and 

other improvement measures are adopted in the prediction 

module. 

The Decoupled Head specifically embodies the splitting 

of a single output of the original network into three 

different outputs. The regression parameters of category, 

confidence and bounding box prediction box were 

corresponding, respectively. The detection heads used in 

the original YOLO series may lack the expression ability 

and the network optimization ability. Using Decoupled 

Head, the AP value increases from 38.5 to 39.6, and it is 

found that not only is the accuracy improved, but also the 

convergence speed of the network is accelerated. The 

schematic diagram of the Decoupled Head structure is 

shown in  

Figure 8. 

Figure 8 The Decoupled Head and coupled head 

3.6. SSD 

Liu W et al. put forward the SSD [67] algorithm in 2016, 

which is mainly based on the improvement of YOLO 

location inaccuracy, insufficient accuracy, and low recall 

rate at that time. 

The improvement of the SSD algorithm mainly has the 
following points: Feature fusion is carried out for 

feature extraction of different sizes, which improves the 
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robustness of network training and enables the learning 
of more deep contexts; instead of using the operation of 
YOLO to predict the object after the full connection layer 

[61, 68, 69], CNN is added to the backbone network to 
predict directly. Combined with the anchor mechanism in 

Faster R-CNN, the candidate regions are obtained by 
using different prior boxes, and the recall rate is 

improved. But the disadvantage is that the accuracy of 
the model for small object detection is not high, and the 

positive and negative samples are extremely uneven. The 
schematic diagram of the SSD algorithm is shown in 
Figure 9. 

Figure 9 The SSD algorithm 

3.7. RetinaNet 

In 2018, Lin et al. proposed RetinaNet [70] and published it 

in ICCV2017. They believe that the fundamental reason why 

the accuracy of the regression-based object detection 

algorithm (one-stage) is lower than that of the candidate 

region-based object detection algorithm (two-stage) is the 

serious imbalance between positive and negative samples in 

the single-stage algorithm [71-73]. The high accuracy of the 

two-stage algorithm is due to the existence of region 

proposal network (RPN) network extraction to filter out a lot 

of useless background frames and alleviate the problem of 

category imbalance. 

At that time, the one-stage algorithm directly generated 

the candidate regions in each grid and predicted the 

regression directly in the results, which contained a large 

number of redundant candidate boxes, which undoubtedly 

added great difficulty to the fine classification of network 

training. Therefore, although the detection speed of the one-

stage object detection algorithm is fast, the accuracy is not 

ideal. 

The Focal loss function is proposed in the literature to 

solve the problem of mismatch between positive and 

negative samples. Through this method, the proportion of the 

weight of the samples that are easy to distinguish is low, so 

the network mainly trains those samples that are difficult to 

distinguish, towards the correct optimization direction. The 

Focal loss mathematical formula is shown(2). 

(1 ) log( )      y=1
      

(1 ) log(1 )  

y

y

p p if
FL p

p p otherwise





 − −
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（ ）= (2) 

In the above formula, 𝑝 represents the probability that the 

model is a positive sample. In order to solve the problem of 

sample imbalance, the balance factor α ranges from 0 to 1. 

The introduction of y makes the range of indistinguishable 

samples larger and more obvious so that the Focal loss can 

focus on training indistinguishable samples. 

3.8. CornerNet 

At present, most object detection networks include anchors 

for regression operations; the final candidate box is 

screened out, and good results have been achieved. 

However, the introduction of the anchor mechanism leads 

to some problems, such as uneven positive and negative 

samples, poor training in the early stages of the model, and 

the difficulty of decreasing the loss function.  

In addition, because the initial size of the anchor is 

clustered and screened by the K-means algorithm in 

advance (different sample distributions of data sets will 

generate different anchor shapes), these fixed anchors are 

not suitable for other object detection tasks, which means 

that they cannot be well migrated to other model tasks. In 

addition, the size, aspect ratio, and the number of anchors 

are very sensitive to the detection performance. By 

adjusting the parameters, the model can improve the AP by 

nearly 4%. 

So in 2018, Law et al. proposed CornerNet [74] in 

ECCV2018. This object detection algorithm is anchor-free 

and detects objects according to a pair of key points (upper 

left and lower right coordinates). A new network structure 

called the CornerNet is proposed, which includes an 

hourglass network (usually used in attitude estimation 

tasks) and a new pooling method, Corner Pooling, and 

finally produces three different outputs: heatmaps, 

embeddings, and offsets. 

The advantages of the model are that there is no anchor 
box, fast detection speed, and high accuracy, which 

solves the problems of sample imbalance and adjusting 
super-parameters caused by the anchor box. The 

disadvantage is that the information inside the 
bounding box is not taken into account, and the 

detection accuracy of complex small objects or multi-
object groups is poor. The CornerNet structure diagram 

is shown in  
Figure 10. 

Figure 10 The CornerNet structure 

As shown in the final three outputs, heatmaps output the 

predicted vertices information and are responsible for 

predicting the position of corners. In the training phase, the 

corner positions in the area with ground-truth as the radius 

are set as positive samples [75]. Since heatmaps generate a 

lot of corner information, how to determine which two 

points belong to an object, Embedding is useful because it 

is responsible for minimizing the distance between the two 

corners of the same object. In the previous object 
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detection, the offset represents the offset information 

between the predicted box and the real box, and the offset 

output by CornerNet represents the accuracy loss 

information generated during calculation. 

3.9. FCOS 

In 2019, Chun-Hua Shen et al. published FCOS [76], a 

brand-new pixel-level-based single-stage object detection 

algorithm that surpassed the state-of-the-art single-stage 

models at the time. 

Overall, FCOS adopts the popular anchor-free algorithm, 

which reduces the amount of computation and eliminates the 

influence of unstable network prediction structures caused by 

adjusting the anchor hyperparameters. At the same time, it is 

combined with FPN to assign objects of different sizes to 

different feature layers, which enables FCOS to detect 

various object overlaps, crowding occlusion [77], small 

object detection, and other problems, and improves the recall 

rate. 

Since anchor is not used, how does FCOS define positive 

and negative samples? It generates ( 𝑥, 𝑦 ) coordinates by 

mapping each point of the feature map back to the original 

image size. If the position (𝑥, 𝑦) is in the ground-truth, it is 

considered a positive sample, otherwise it is considered a 

negative sample. In addition (𝑙∗, 𝑡∗, 𝑟∗, 𝑏∗) is defined, that is,

the distance from this point to the left, top, and right, and 

bottom of the object frame. The specific formula is as 

follows(3)(4). 
( ) ( )* *

0 0,   
i i

l x x t y y= − = − (3)

( ) ( )* *

1 1,   
i i

r x x b y y= − = − (4) 

Among them, (x0, y0), and (x1, y1) represent the upper 

left corner and lower right corner information of the ground-

truth box. 

The YOLO series only selects one bounding box in the 

corresponding grid cell to participate in the loss function 

calculation, while FCOS selects many boxes as positive 

samples, which can speed up the regression. However, since 

most of the positive samples are low-quality detection 

frames far from the center point, the loss cannot be reduced. 

The literature [76] proposes center-ness so that the 

regression boxes participating in the training are all around 

the center point. After adopting this method, the AP of larger 

objects has been significantly improved. 
* * * *

* * * *

min( , ) min( , )
*

max( , ) max( , )

l r t b
centerness

l r t b
=  (5) 

4. Conclusion

This paper briefly summarizes the development process of 

the classical CNN network, and then describes the 

development process of the single-stage object detection 

algorithm [78-81], from the single-stage object detection 

algorithm based on anchor-based to the popular anchor-free 

single-stage detection algorithm in recent years. It is mainly 

pointed out that the improvement is in the following aspects: 

using a better pyramid structure to extract the feature layer; 

proposing deeper and wider network agent architecture; 

improving the anchor-free mechanism [68, 82, 83]; 

stronger image enhancement strategy; and many other 

details. 

Deep learning based on the single-stage algorithm is 

developing rapidly, mainly because the single-stage 

detection algorithm has a simple structure and can be 

combined with the Internet of Things to deal with real-time 

application scenarios, such as fire monitoring, online 

detection, high-altitude work online monitoring, online 

speed detection on expressways, and so on. Although the 

single-stage detection algorithm is still in the process of 

continuous improvement, it is still not accurate enough in 

location, small object detection, multi-background, and 

multi-domain detection [84-86], and it still faces many 

thorny problems. How to reduce the decline inaccuracy 

caused by complex background or domain differences, low 

network recall, and other issues will become a hot research 

direction in the object field. 
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