
Citation: Mohamad Radzi, P.N.L.;

Akhter, M.N.; Mekhilef, S.; Mohamed

Shah, N. Review on the Application

of Photovoltaic Forecasting Using

Machine Learning for Very Short- to

Long-Term Forecasting. Sustainability

2023, 15, 2942. https://doi.org/

10.3390/su15042942

Academic Editors: Jesús María

López-Lezama, Oscar Danilo

Montoya and Nicolás

Muñoz-Galeano

Received: 26 November 2022

Revised: 16 January 2023

Accepted: 1 February 2023

Published: 6 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sustainability

Review

Review on the Application of Photovoltaic Forecasting Using
Machine Learning for Very Short- to Long-Term Forecasting
Putri Nor Liyana Mohamad Radzi 1,*, Muhammad Naveed Akhter 2, Saad Mekhilef 1,3,*
and Noraisyah Mohamed Shah 4

1 Power Electronics and Renewable Energy Research Laboratory (PEARL), Department of Electrical
Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia

2 Department of Electrical Engineering, Rachna College of Engineering and Technology (A Constituent College
of University of Engineering and Technology Lahore), Gujranwala 52250, Pakistan

3 School of Software and Electrical Engineering, Swinburne University, Hawthorn, VIC 3122, Australia
4 Department of Electrical Engineering, Faculty of Engineering, University of Malaya,

Kuala Lumpur 50603, Malaysia
* Correspondence: 17013615@siswa.um.edu.my (P.N.L.M.R.); smekhilef@swin.edu.au (S.M.)

Abstract: Advancements in renewable energy technology have significantly reduced the consumer
dependence on conventional energy sources for power generation. Solar energy has proven to
be a sustainable source of power generation compared to other renewable energy sources. The
performance of a photovoltaic (PV) system is highly dependent on the amount of solar penetration to
the solar cell, the type of climatic season, the temperature of the surroundings, and the environmental
humidity. Unfortunately, every renewable’s technology has its limitation. Consequently, this prevents
the system from operating to a maximum or optimally. Achieving a precise PV system output
power is crucial to overcoming solar power output instability and intermittency performance. This
paper discusses an intensive review of machine learning, followed by the types of neural network
models under supervised machine learning implemented in photovoltaic power forecasting. The
literature of past researchers is collected, mainly focusing on the duration of forecasts for very short-,
short-, and long-term forecasts in a photovoltaic system. The performance of forecasting is also
evaluated according to a different type of input parameter and time-step resolution. Lastly, the
crucial aspects of a conventional and hybrid model of machine learning and neural networks are
reviewed comprehensively.

Keywords: machine learning; forecasting; renewable energy; photovoltaic; artificial neural network;
recurrent neural network; convolutional neural network

1. Introduction

The rapid development of renewable energy technologies (RET) as new energy sources
has made it possible to mitigate our dependency on using conventional resources (fossil
fuels, coal, natural gas, etc.) for electricity generation. Electricity is essential for technolog-
ical advancement and economic development in order for one country to achieve rapid
urbanization and industrialization. As the demand for energy grows, so does the demand
for power generation and distribution. Governmental and intergovernmental organizations’
policies help to prepare and strengthen the way for renewables to be employed on a larger
scale [1,2]. In the upcoming years, the European Union is targeting to reduce greenhouse
gas emissions by up to 80% by 2050 and to generate 100% of electricity from renewable
energy sources. Based on the statistics in [3], it is estimated that the total power generated
would suffice to support the electricity demands of all continents. The earth’s geological
surface receives approximately 1367 Wm−2 of solar irradiation per day, and the total global
absorption is approximately 1.8 × 1011 MW.
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Renewable energy resources (RES) are expected to expand at a consistent rate in the
upcoming decades, becoming extremely prevalent in our day-to-day energy needs and
proceeding toward a green era. Solar energy (SE) has shown tremendous potential in
replacing conventional energy resources. The Sun-radiated sunlight is non-stop every
single day. Thus, this will ensure that Earth receives a significant amount of sunlight to
generate a sufficient amount of power to support a high population for both on-grid and
off-grid connectivity [4,5]. Wind is the second-largest renewable energy source. Currently,
there is an ongoing project for installing more plants/farms [6], followed by hydro (large or
mini-plant), tidal, geothermal, and biomass [7]. Solar energy is considered to be among the
most promising alternative sources of energy for generating electricity, with the advantages
of continuous resources, no pollution, and it being by far the most significant and dominant
renewable energy source [8,9].

Photovoltaic systems have emerged as a key component of sustainable development
and as the fastest-growing renewable technology over the previous decade. The rapid
advancement of photovoltaic power generation has generated significant interest, but it
has also posed a conundrum [10–12]. Parameters such as the solar irradiance intensity, the
temperature of the module and ambient, the velocity of wind, and other factors dependent on
meteorological factors are the primary components of photovoltaic power generation [13–20].
Any subtle changes that occur, such as the instability or inconstancy of the following
dependence, will cause photovoltaic power generation to be intermittent and fluctuating.
The consequences of sudden disruptive events would be difficult to control and measure,
leading to severe issues for the grid-connected and stand-alone photovoltaic generation
system [21].

The ability to precisely forecast the power produced by a PV system is important.
It has been identified as one of the key challenges toward massive PV integration [22].
Essentially, solar forecasting provides a way for the party of interest, such as grid operators.
They would be required to make sure to balance the energy production and consumption
to minimize cost and achieve economic viability and competitiveness. Assuming the grid
operator has a mix of generating assets at their disposal, reliable solar forecasting lets the
operator best optimize the way in which they dispatch their controllable units.

Several studies have discovered that a variety of machine learning algorithms have
been employed to estimate the output of renewable energy resources, especially in PV
production. With the help of modern technology, such as machine learning models, it is
possible to make more accurate predictions about the amount of power generated by the
system in the very short term to the long term. About 70–80% of the total data are used for
training, and the remaining 20–30% are used for testing the generalized model. The current
research found that a model with hybrid machine learning algorithms and projections for
forecasting has also been enhanced and generated better forecasting accuracy compared to
a single model [23].

Unfortunately, to effectively predict the availability, it was required to use a large
number of time intervals, depending on whether the model proposed can synchronize
with two or more models in the system. Thus, these criteria have been widely used to
evaluate the accuracy and efficiency of machine learning algorithms [24]. The details and
classification of single and hybrid methods of machine learning are further discussed in
Section 3.

1.1. Forecasting Horizon

The forecast horizon is the duration of the time ahead in which the forecast looks,
whereas the forecast resolution is the size of the frame at the forecast horizon. Experts
divide photovoltaic power generation forecasts into four categories based on the scale of
time. The ultra-short-term prediction, also known as forecasts of solar power generation,
uses one or several minutes of data. It is commonly used in real-time grid dispatching
and to alleviate system congestion [25,26]. In compliance with [27], the forecast cycle of
short-term photovoltaic generation forecasting generally ranges from a second to one hour
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ahead. The primary function is to increase the power dispatch and unit composition. The
forecast cycles of medium- and long-term forecasts are classified as days and weeks ahead.
These kinds of approaches are primarily employed for photovoltaic power plant operation
in maintenance and management control [28–30]. Table 1 shows the type of horizon widely
used for forecasting.

Table 1. Type of forecast horizon with the duration of forecasting.

Type of Forecast Horizon Range of Duration

Very short 1 s to <24 h
Short 24 h to 7 days

Medium 7 days to 30 days
Long More than 30 days

A successful outcome of photovoltaic generation for very short-term forecasting hori-
zons of 5 min to 60 min may be possible using only historical photovoltaic power data,
without meteorological data. The findings indicate that univariate models significantly
outperformed multivariate models, with a mean relative error range from 4.15 to 9.34%.
Meanwhile, Eseye et al. [31] presented a model of hybrid forecasting (WT-PSO-SVM) with
a combination of multiple models. The models are wavelet transform, particle swarm opti-
mization, and support vector machine. The power generation forecasting was conducted
24 h ahead (one day), based on a real micro-grid PV system. The model is built by combin-
ing the interactions of the PV system’s Supervisory Control and Data Acquisition (SCADA)
actual recorded power with meteorological data using Numerical Weather Prediction
(NWP). The meteorological data used for training are over a more-than-one-year timeframe,
with a time step of one hour. The results from the proposed method were able to obtain
averaged values for the mean absolute percentage error (MAPE) and the normalized mean
absolute error (NMAE) of 4.22% and 0.4%, respectively.

A new prediction model was proposed by Jun Li et al. [32]. The proposed method
consists of integrating the interval type-2 Takagi–Sugeno–Kang (TSK) fuzzy neural network
(type-2 TSKFNN) model. The models later become optimized by an extended Kalman filter
(EKF) and self-organizing map (SOM). The main purpose of the proposed method is to
define a feasible interval clustering. SOM is used to determine the level of meteorological
clustering data. In the end, the application for determining the optimal size of categories
of the Davies–Bouldin index (DBI) is applied. The validation of the actual prediction
study was obtained from Australia’s Yulara Solar System. According to the results, the
proposed SOM-EKTSK model provided a significantly higher prediction accuracy. Overall,
the proposed forecasts’ root means square error (RMSE) is the lowest in spring (16.47%)
and the highest in winter (44.36%).

1.2. Type of Forecasting Method

Various forecasting types have been introduced, researched for further improvement,
and implemented depending on the model and forecasting method. The prime examples
of forecasting methods are statistical and physical models.

1.2.1. Statistics Models

A statistical method is a data-driven approach that is able to extract relations between
historical time-series data and real-time data to predict future behaviors. Thus, the quality
of historical data is essential for an accurate forecast. They have been proven superior to
PV performance models in the modeling of a PV plant [33]. This method benefits from the
ability to correct systematic errors associated with the measurement of inputs. Contrary
to the parametric approach, this approach typically requires a larger historical dataset for
which the plant must have been working already for some time.

Typically, statistic models are classified as time-series-based forecasting techniques,
machine learning, and artificial intelligence. Machine leaning and artificial intelligence
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techniques focus on estimating the relationship between a dependent variable and inde-
pendent variable. Both techniques also include neural network models. The technique
has the capability to generate a better accuracy in forecasting and the ability to capture
any sudden changes in the output with the guidance of the intelligence training process of
the network. Other than neural networks, there are also different kinds of models that are
widely used, such as k-Nearest Neighbors. The k-Nearest Neighbors model is based on an
algorithm which compares the current states with training samples in a future space [34–37].
Other methods such as support vector machine (SVM) and support vector regression ma-
chines (SVR) are commonly known for their ability to be employed when dealing with
non-linear problems.

In general, they have less input data than physical methods. Statistical methods
are easier to model and are cheaper. This method proves to be reliable in short-term
forecasts [38]. By applying statistical methods, this approach is capable of extracting
correlations and determining the changes in the pattern from historical data. Unfortunately,
the photovoltaic power generation time-series remains a complex time-series with dynamic
and non-periodic models, which can weaken the precondition of a large amount of definite
historical data for this model’s application. Therefore, the collection and computation of
accurate data during the process of an actual implementation remain challenging [39].

1.2.2. Physical Models

Physical forecasting does not require historical data but instead relies on exclusive
geographic information and precise meteorological data. In the photovoltaic forecasting
scenario, there are two types of approaches to generating power: the physical approach and
the data-driven approach. The photovoltaic power is calculated from the meteorological
parameters of the prediction time. The following parameters are sky images, satellite
images of clouds, and the numerical weather prediction (NWP) method. By contrast,
physical methods rely primarily on numerical weather prediction, which takes a relatively
long time to compute and only yields meteorological data after 6 h, which restricts their
use for ultra-short-term targets [40–43].

Parameters such as the velocity of the wind, the solar irradiance intensity, the tem-
perature of the module and ambient, the humidity of the environment, the pressure of
the air, and the friction are values obtained from geographic and climatic data. However,
the physical approach shows the significant advantage of not requiring previous solar
data. Instead, it relies on accurate climatic data, the specific location of the monitoring
station, and extensive photovoltaic generator information [44,45]. Furthermore, due to
the limitation of ground–sky coverage and the low resolution of geographic data, their
performance in forecasting accuracy requires further improvements. Additionally, the
characteristics offered by solar module manufacturers deviate from the actual operation,
with varying degrees based on geographical location. As a result, discrepancies in the
physical models will occur, resulting in a low precision [46–49]. By selecting a proper model,
accurate forecasts will be made possible, enabling a significant increase in the stability and
integration of solar power generation.

In this respect, it is evident from the literature that comprehensive analyses for different
types of forecast horizons in different neural networks have not yet been explored much.
This paper has the aim of further enriching the existing literature and providing useful
information about forecasting between three types of neural networks: the artificial neural
network (ANN), recurrent neural network (RNN), and convolutional neural network
(CNN). This paper discusses an intensive review of machine learning, followed by the
types of neural network models under supervised machine learning implemented in
photovoltaic power forecasting. The literature of past researchers is collected, mainly
focusing on the duration of the forecasts horizon for very short- to long-term forecasts in a
photovoltaic system. The performance metric of forecasting is also evaluated according to
different types and numbers of input parameters, the time-step resolution, and the duration
of data training and testing.
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This paper reviews the crucial aspects of a conventional and hybrid model of machine
learning and neural networks. Section 2 illustrates the architecture and classification of
machine models. The performance of forecasting will also be evaluated according to a
different type of the parameter of the input, the time-step resolution, and the duration
of the forecast horizon. Section 3 comprises a discussion and literature assessment of
existing methodologies for forecasting for very-short to long-term durations utilizing
artificial neural networks (ANN), recurrent neural networks (RNN), and convolutional
neural networks (CNN). Section 4 summarizes the paper’s conclusion.

2. Machine Learning Method

As presented in the introduction, machine learning (ML) is an artificial intelligence (AI)
discipline that allows machines to automatically identify the pattern of both historical and
current data to produce predictions with a low loss function [50]. Machine learning fore-
casting algorithms often provide more sophisticated patterns and forecasting approaches.
However, their primary goal is to enhance the forecast accuracy while minimizing the
loss function. The loss function is generally described as the sum of squares owing to the
prediction or forecasting errors. While most conventional methods employ explainable
linear processes, most machine learning methods use nonlinear approaches to minimizing
loss functions.

Recent forecasting competitions have satisfactorily used two types of ML forecasting
approaches: regression-based machine learning and neural forecasting methods. The
time series regression of ML converts the time series prediction problem into a regression
problem, while neural forecasting approaches employ a methodology that allows for the
direct processing of the time series and the generation [51]. Figure 1 illustrates the different
types of machine learning approaches.
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Figure 1. Classification of Machine Learning.

Given that each of the proposed methods has numerous weaknesses, researchers
started to investigate the implications of machine learning regarding predictions. Machine
learning does have the advantage of efficiently extracting the interlaced nonlinear properties
and feeding them symmetrically to outputs. Figure 2 illustrates the general operation of
machine learning. This concept has already become one of the most widely used approaches
for forecasting time sequences.

The initial step of the machine learning’s architecture is known as data acquisition.
This step is solely responsible for collecting, preparing, filtering, and segregating the data
according to the user’s desire [36,37,52]. This step also involves the decision maker cycle.
Once it is complete, the data will progress to the next layer for categorization. The following
layer is known as the processing stage.
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The data processing is dependent on the type of learning being used and responsible
for choosing a range from the action to the continuous data [53]. The process of choos-
ing a range will involve using specific function-based architecture. The prime example
of function-based architecture is lambda architecture. The data in the data acquisition
are to be subjected to advanced integration, normalization, cleansing, transformation,
and encoding.

Approaching the next step, dataset construction and modeling is a section of the
architecture that involves the selection of different algorithms that are feasible in the system
for addressing the problem for which learning should be devised. These algorithms evolve
from or are inherited from a set of libraries in the system [49]. The algorithm is used to
model the data accordingly. Thus, the system is ready to proceed to the model training step
for validation.

In the final layer in machine learning, the validation of the model will be conducted.
The general goal behind the optimization of the algorithm is to extract the required machine
outcome and maximize the system performance. The output of the step is a refined solution
capable of providing the required data for the machine to make decisions. The machine
learning architectures define the various steps involved in the machine learning cycle. The
major steps are carried out in the transformation of raw data into training datasets capable
of enabling the decision making of a system.

The author [36] investigated a photovoltaic power plant’s forecast accuracy by propos-
ing the k-Nearest Neighbors method by applying data filtration on the initial data. The
investigation was conducted to overcome the inconsistent power generation under bad
weather conditions in different seasons. The filtration was applied to improve the accuracy
in calculating the transparency index, which is used to calculate the efficiency of regression
models. The author compared the proposed method with different models such as the
persistence model, the autoregressive model, the autoregressive moving average model,
and the autoregressive model with exogenous inputs. The result proved that the method
proposed by the author is more effective and obtains the lowest error of forecasting accuracy.
The mean absolute percentage error obtained is 18.66%.

The author in [54] presented the experiment by investigating the relationship between
Gaussian process regression (GPR) and support vector machine (SVM). Both methods were
taken into account, and comparisons between the models were made using the obtained
root mean squared error (RMSE) and mean absolute error (MAE). The findings indicate that
the approach adopted by the author delivered the highest performances of 7.967 (RMSE)
and 5.302 (MAE).

The author’s proposed machine learning algorithm, Matern 5/2 GPR, significantly
outperformed the others, whereas cubic SVM performed the worst. The TPV module
temperature, ambient temperature, solar flux, solar hour, and relative humidity are the
parameters that were reconsidered. [55] demonstrated a hybrid system that employs the
Pearson correlation coefficient (PCC), ensemble sample entropy (SE), empirical modal
decomposition (EEMC), long short-term memory (LSTM), and sparrow search algorithm
(SSA). The hybrid model forecasted for a short time, and the results suggested that the
proposed forecasting performance of the multiple-mixed model is superior and that the
percentage of the error is minor.
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3. Machine Learning-Based Neural Networks for Forecasting
3.1. Artificial Neural Network

The artificial neural network is a computing algorithm that consists of small processing
units identified as neurons that are interconnected in parallel [56]. The ANN’s architecture
was initially motivated by biological neural networks. The motivation is illustrated in
Figure 3. The ANN is composed of three layers: input, hidden, and output. Each layer is ac-
countable for forecasting since it operates based on user settings [57–59]. The ANN has the
capability to process information at incredibly fast speeds, with little error tolerance, and it
can easily adapt and generalize. The characteristics of the ANN have resulted in a computer
system with a powerful smart tool for optimization, modeling, and prediction [60].
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The ANN was implemented by authors such as Bouzerdoum et al. [61] to forecast
solar irradiation intensity and PV output power. The forecasting horizon is 24 h ahead,
with a time-step of 1 h. Meanwhile, Chen et al. [62] utilized the ANN to forecast the PV
output power based on past meteorological data such as the solar irradiance, module
temperature, wind velocity, and environment humidity. The model also includes a day
prediction horizon and a 24 h time interval. Both authors proposed a hybrid method based
on ANN model forecasting for a 24 h forecast horizon. The research indicated that a hybrid
model’s forecasting showed a better performance than a conventional or single model.

Behera et al. [63] suggested a three-stage approach for short-term forecasting which
combines the extreme learning machine (ELM) technique, the sine-cosine algorithm (SCA),
and the empirical mode decomposition (EMD). The data intervals used are 15 min, 30 min,
and one hour ahead. The simulation results indicate that the proposed hybrid method
surpasses the conventional ones, with an MAPE of 1.885%. Moreira et al. [59] employed a
new approach by using an artificial neural network (ANN) as the main ensemble model to
reconstruct a methodology for photovoltaic generation forecasting for a week horizon.

Louzazni et al. [64] proposed a forecasting prediction model that is a month ahead
using an exogenous non-linear auto-regressive exogenous (NARX) technique. The NARX
method’s forecast of the output power is compared to the neural network and the empiri-
cally measured data. The neural network times series has a Levenberg–Marquardt set of the
training algorithm. The results indicated that the proposed method was proven to perform
forecasting more accurately compared to the conventional method, with a percentage of
1.135% for the mean square error (MSE) average value.
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The flexibility of the proposed method allowed for modifications and improvements
of each parameter employed in the experimental design, the forecasting model, and the
desired value of the forecast horizon. Therefore, it gives an opportunity for researchers to
improve the outcome and result performance of forecasting accuracy. Table 2 summarizes
all other research works related to forecasting PV systems using the ANN for very-short-
to long-term forecast horizons.

Table 2. Summary of past research on the ANN for forecasting.

Ref Method
Proposed

Forecast
Horizon

Input
Parameters

Duration of
Training
&Testing

Performance
Metric Observation

[60]

Hybrid
SARIMA-SVM,

SARIMA, &
SVM

24 h

Solar irradiance
and module and

ambient
temperature

4 months

2.734%
(MPE)
9.40%

(NRMSE)

The proposed hybrid
SARIMA-SVM performs
forecasting better than
conventional models
(SARIMA and SVM).

[61]
RBFN

&
SOM

24 h

Solar irradiance,
air pressure,

humidity, cloud,
air temperature,
wind speed, and
wind direction

7 days

53.21–99.39%
(R)

6.36–54.44%
(MAPE)

The proposed method can
predict the output of a PV

power system precisely with
multiple input parameters and

plays a crucial role in
determining the efficiency of
PV power system operation.

[62] EMD-SCA-ELM

15 min,
30 min,

and
60 min

Solar irradiance
and

module
temperature

Not given

2.39%
(RMSE)
1.885%
(MAPE)
1.89%
(MAE)

The proposed method
indicates that 15 min

forecasting proves that a
shorter forecasting horizon

performed better than 15 min
and 60 min durations in

hybrid models.

[63]
ANN

&
Time-Series factors

1 week

Cloudiness,
temperature,

precipitation, and
humidity

24 months 4.7%
(MAPE)

The proposed method allows
for changing the numbers of

factors to be used in the
experiment arrangement, the

forecast model, and the
desired forecast horizon.

[64]
NARX
neural

network
1 month Days 31 days

99.47%
(R2)

20.58%
(MSE)
21.71%
(RMSE)

The proposed method shows
that networks of six hidden
layers and three delays were

proven to have a better
performance than a static

neural network.

[65]

Global NWP,
Mesoscale NWP,

and
Energy

production forecast
model

1 to
39 h

Solar radiation,
atmospheric heat

transfer, and
temperature

362 days 11.79%
(RMSE)

The proposed forecasting
method can be useful for a

manager in determining the
future hourly energy

production, preparing a bid in
the electricity market, and
carrying out maintenance

tasks in a facility.

[66]
Univariate

and
multivariate

5 to
60 min

Solar irradiance,
temperature,

humidity, and
wind speed

1 year 4.15–9.34% (MSE)

The proposed models
indicated that the univariate

model performed more
sophisticatedly than the

multivariate model for very
short-term forecasting.
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Table 2. Cont.

Ref Method
Proposed

Forecast
Horizon

Input
Parameters

Duration of
Training
&Testing

Performance
Metric Observation

[67] WMIM
optimization

5 min to
3 h Solar irradiance 1 year 0.873–0.910

(R2)

The proposed method
maximized the mutual

information measure (MIM)
with respect to the target to be

forecasted simultaneously.

[2] SVM, BPNN, ELM,
and NWP

not
given Solar irradiance Not given

4.5%
(RMSE)

2.6%
(MAE)

The proposed methods
extensively made use of NWP
data and real-time operation

data in reducing the
short-term error and

improving the accuracy
of forecasting.

[68]
FFNN

and
FFNNST

10 min Solar irradiance 1 year 11.28%
(error metric)

The proposed models are able
to reduce the uncertainty of

power generation, making the
system more reliable and
much easier to integrate

compared to
conventional networks.

[69] FCW-WOA-
LSSVM-NPKDE 24 h

Wind speed, solar
irradiance
intensity,
ambient

temperature, and
humidity

1 year 2.55–6.03%
(RMSE)

The proposed models showed
a better performance

compared to conventional
models by classifying training

samples in 1 year with
different season times,

better calculation speeds, and
accurate forecasting.

[70]
Elman,

FA-Elman, and
MFA-Elman

24 h

Light intensity,
temperature,

humidity, wind
speed, and

atmospheric
pressure

7 months 1.30%
(RMSE)

The proposed models showed
that the MFA Elman model

performed the best compared
to Elman and FA-Elman in
terms of the accuracy and

lowest error.

3.2. Recurrent Neural Network

A recurrent neural network (RNN) is another type of neural network with a unique
looped architecture, enabling previous knowledge to be used as an input for the next layer.
They are used in various domains where data containing sequences are involved, such as
predicting the next word of a sentence or the time. These looped networks are referred to
as recurrent because they execute the same operations and computations on every element
of an input data sequence. RNNs possess memory, which aids in retrieving information
from previous sequences [71]. An RNN is distinguished from standard feedforward neural
networks in that it has a feedback connection. Figure 4a shows the conventional architec-
ture of an RNN in an unfolded state, while Figure 4b shows an RNN’s architecture in a
folded state.

Another type of neural network under an RNN is called long short-term memory
(LSTM). LSTM has the ability to handle complex areas of deep learning, where the algo-
rithms will try to mimic the human brain by analyzing the relationship of sequential data
patterns, memorizing the data pattern, learning long-term sequences for prediction prob-
lems, and processing the sequential data apart from an image and single data [35,72–75].
LSTM is controlled by a memory cell known as a “Cell State” that works by maintaining
its state over time. The Cell State is a horizontal line that runs through the top of Figure 5
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and appears as a conveyor belt carrying an information flow. The “Hidden State” is the
opposite side of the Cell State. LSTM comprises three gates: the forget gate, input gate, and
output gate. Table 3 describes, in detail, the function of each gate operated in LSTM.
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Table 3. Description of each gate of LSTM’s circuit.

Type of Gate Decription

Forget Gate Responding to discarded information that does not require learning for predictions and filter
information for passing through to the different layers of the network.

Input Gate

• Responding to the important decision by updating the Cell State to develop information to be
used for predictions when information is passed through the sigmoid(σ) and tanh functions.

• The tanh function determines the weight of the information.

Cell State Responding only to true/correct information that is passed through; the output from the input gate
will be multiplied with the forget gate.

Output Gate

• The last gate of the LSTM circuit was responding to deciding the next hidden state of the network.
• The updated cell from the Cell State will pass to the tanh function and be multiplied by the

sigmoid function of the output state
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Li et al. [72] were inspired to design a combination of two types of training models
known as wavelet packet decomposition (WPD) and long short-term memory (LSTM)
networks, known as a hybrid deep learning model. Based on the actual data collected in
Alice Springs, Australia, the forecast horizon is 60 min ahead, with a 5 min time-step. The
performance of the newly proposed hybrid model was compared with conventional LSTM,
recurrent neural networks (RNN), gated recurrent (GRU), and multi-layer perception
(MLP) to determine whether the model operation was better in hybrid form or individual
form. The research findings showed that the proposed method had the ability to enhance
the performance of distributed energy systems, which could boost the environmental and
economical advantages of the PV system. [35] proposed combining long short-term memory
(LSTM) and convolutional neural networks (CNN) to a hybrid deep learning model for 24
h global horizontal irradiance forecasting. The LSTM-CNN model was specifically trained
based on meteorological data collected from twenty-three locations throughout California,
USA. The proposed models were discovered to be genuine, with alternative solutions for
short-term GHI forecasting, having forecast estimates ranging from 37% to 45%.

As noted in Section 3.1, regardless of having a substantial amount of historical/old
weather data and updated meteorological data, which can be obtained from a photovoltaic
system, the amount of the prediction error for ANNs is relatively higher than that for
RNNs. One of many possible reasons is the inconsistent distribution of the solar irradiation
and module and ambient temperature. Photovoltaic generation includes abrupt changes,
leading to a non-linear trend. RNN, on the other hand, is a stochastic model with multiple
parameters. Table 4 summarizes other PV system forecasting research using RNN.

Table 4. Summary of past research on RNN for forecasting.

Ref. Method
Proposed

Forecast
Horizon

Input
Parameters

Duration of
Training &

Testing

Performance
Metric Observation

[72] WPD-LSTM 60 min

Global horizontal
radiation, diffuse

horizontal radiation,
ambient temperature,

wind speed, and
relative humidity

2 years 2.40%
(MAPE)

The proposed hybrid model was
proven to have more potential in

improving the operational
distributed energy system

performance compared to the
single model; LSTM, GRU,

RNN, and MLP.

[35] LSTM-CNN 60 min

Relative humidity,
temperature, pressure,

global horizontal
irradiance, wind speed,

and cloud type

4 years
27.38 Wm−2

–37.02 Wm−2

(MAE)

The proposed model shows a
better forecasting accuracy

compared to the conventional
model in different seasons in

1 year and three different
sky conditions.

[76]
Insolation

prediction by
RNN

1–3 h

Global solar
irradiance,

atmospheric
pressure, and
temperature

16 days 10.85–15.40%
(MAPE)

The proposed method is
confirmed to be a good tool for
forecasting the output power

system, does not require
complicated calculations, and

can forecast quickly.

[77] DRWNN
hourly

and
daily

Global irradiance 24 months

9.23%; hour
(MRE)

8.31%; daily
(MRE)

A proposed model capable of
mapping non-linear solar

irradiance and a low forecasting
error during simulation.
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Table 4. Cont.

Ref. Method
Proposed

Forecast
Horizon

Input
Parameters

Duration of
Training &

Testing

Performance
Metric Observation

[78]
LSTM

&
LSTM-DGM

24 h

Solar irradiance, air
temperature, relative

humidity, wind speed,
cloud, air pressure, and

weather type

12 months 4.62%
(RMSE)

The proposed model is more
accurate and effective in

forecasting the dynamic process
of PV power generation

compared to a single
neural network.

[73]
LSTM

&
ANN

4
months

Temperature, humidity,
cloudiness, radiation,

and
two seasonal months

(month of year and day
of month)

38 months

LSTM;
1.23–1.82%

(RMSE)
ANN;

1.67–8.02%
(RMSE)

The proposed method was
compared, and LSTM

performed better than ANN
(single and multi-layer).

[79] RNN and ANN
10 min,
30 min,
and 1 h

Global solar
radiation, air-dry bulb

and dew-point
temperature, humidity,
wind speed, and wind

direction

7 days

26%
(RMSE)

0.2%
(NMBE)

The proposed network between
the RNN and ANN; the RNN
was found to be more reliable
compared to the ANN when
both networks were applied

with a moving window
algorithm to increase the

prediction accuracy, prediction
performance, and sampling

frequency from 1 h to 10 min.

[79] RNN and ANNN
10 min,
30 min,
and 1 h

Global solar
radiation, air-dry bulb

temperature,
dew-point

temperature, humidity,
wind speed, and wind

direction

7 days

26%
(RMSE)

0.2%
(NMBE)

The proposed network found
that the RNN is more reliable
compared to the ANN when
both networks were applied

with a moving window
algorithm to increase the

prediction accuracy,
performance, and sampling

frequency from 1 h to 10 min.

[80] MODWT-LSTM

1 day,
10 days,

and 1
month

Active power, wind
speed, temperature,

humidity, global
horizontal radiation,

diffuse horizontal
radiation, wind

direction, and daily
rainfall

54 months
14.17%, 3.01%,

& 16.49%
(MAPE)

The proposed method is shown
to be more reliable and to have

the best generated efficient
accuracy at a long-term forecast
horizon of 1 month compared to

1 day and 10 days.

[81] GRUP and NWP 24 h Type of weather (sunny,
rainy, and cloudy) 35 months

6.8%
(MSE)
4.12%

(MAE)

The proposed model can train
up to 16 h instead of 24 h,
yielding a better accuracy

performance compared to NWP
based on day-ahead
forecasting results.

[74] LSTM-PVPF not
given

Wind speed, ambient
temperature, global
horizontal radiation,
wind direction, air
pressure, and daily

rainfall

3 years 6~9
(MAPE)

The proposed models were
computationally less expensive

and
demonstrated consistency, good

accuracy, viability, and
suitability for applications

involving big sets of datasets.
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Table 4. Cont.

Ref. Method
Proposed

Forecast
Horizon

Input
Parameters

Duration of
Training &

Testing

Performance
Metric Observation

[75]

SSA-RNN-LSTM,
GA-RNN-LSTM,

and
PSO-RNN-LSTM

1 h

Module temperature,
ambient temperature,
solar irradiance, and

wind speed

4 years

15.4–19.14%
(RMSE)

10.81–22.9%
(MAE)

The proposed model
outperformed PSO-RNN-LSTM
and GA-RNN-LSTM from three
different panels (polycrystalline,
monocrystalline, and thin film).

[39] AD-LSTM 24 h

Solar irradiance on the
land

surface, solar
irradiance at the top of

the atmosphere,
temperature, and

humidity,

27 months 73.11%

A proposed model capable of
continuously learning new data

and possessing a superior
performance in PV power
generation compared to

persistence, ARIMA, KNN,
OL-LSTM, Bi-LSTM, GRU, and

CNN-LSTM

[82] LS-SVM 24 h

Plane array solar
irradiance and ambient

and module
temperature

24 months 4%
(NMAE)

The proposed model was
investigated to forecast

different time horizons and to
prove the capability of the

forecast in
computational complexity.

3.3. Convolutional Neural Network

Convolutional Neural Networks (CNNs) are among the mathematical construction
models that specialize in processing data with a distinct, grid-like structure. The way
CNNs are applied in PV forecasting is the same as for ANNs and RNNs, but what differs
from both types of neural networks is the data processing; the input data are moved by the
filters (neurons) from one layer to another layer, which is known as a sliding window-like
manner [83,84]. The layer is made up of many filters (neurons). These filters carry out a
convolutional function, which is, by definition, a function that is applied to the input data
to obtain specific information from them [85]. Figure 6 shows the architecture of the CNN
for a further understanding of how the process of transferring the input to the output is
carried out.
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Typically, a CNN is also composed of three types of layers, which are also reconsidered
as building blocks: the convolution, pooling, and fully connected layers. For reference, the
time-series data are 1D (one-dimensional) for the grid topology. Meanwhile, the imaging
data have a 2D (two-dimensional) grid of pixels. As one layer feeds its output into the
next layer, extracted features can hierarchically and progressively become more complex.
The second step involves rescaling the value distribution, which focuses on ensuring that
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the observation data’s mean is zero and that the standard deviation is one. CNN models
typically handle a variety of input data formats, notably in one-dimensional data or more
than one-dimensional data, which typically comprise 1 to n channels [86].

Usually, pre-processing techniques, such as normalization and standardization, are
techniques that are often employed during convolution. The first is tasked with converting
the original values to a range of 0 and 1 [87]. The output layer of filters is called feature maps,
where it holds the relationship and pattern from the input data. These features are mapped
from each filter and put together to complete the convolutional layers. This is followed
by a pooling layer which operates to prevent the feature maps of the convolutional layer
from overfitting. Table 5 summarizes the CNN and hybrid-CNN models for photovoltaic
system forecasting.

Table 5. Summary of past research on CNN for forecasting.

Ref Method
Proposed

Forecast
Horizon

Input
Parameters

Duration of
Training
&Testing

Performance
Metric Observation

[88]
ALSM

&
MRTPP

60 min

Wind speed, wind
direction, diffuse

radiation, daily rainfall,
global radiation, active

power, temperature,
and humidity

24 months

97.50%
(R2)
4.2%

(NMAE)
6.34%

(NRMSE)

The proposed ALSM model
Under the MRTPP pattern

outperformed LSM, ASM, and
ALM, with a higher

accuracy prediction pattern.

[89] CNN-LSTM 60 min

Daily sunny hours,
wind speed,

temperature, humidity,
and cloud cover

coverage

17 months 5.47%
(MAPE)

The proposed model
outperformed CNN, LSTM, and

MLP at different time
window predictions, where, at

1-D, it had a lower MAPE
compared to that at 3-D and 7-D.

[90]

CNN-LSTM with
a Semi-

Asynchronous
Personalized

Federated
Learning

Framework

1–3 h Not given 990 days 6.89%
(RMSE)

The proposed framework
significantly provided a better

performance without
raw data sharing and

further improved the PV power
generation

performance forecast.

[91] CLSTM
hourly

and
daily

Solar irradiance 12 years

≈1.515%
(RMSE)
≈4.672%
(MAE)
≈1.233%

(APB)

The proposed model performed
positively in terms of the

percentage error among other
competing models; it had a

better forecast performance and
outperformed standalone

models such as CNN, LSTM,
and DNN.

[92] DLNN
10 min,
30 min,
and 1 h

Time sampling 1 month 96.9–98%
(R)

The proposed forecasting
method outperformed LSTM,

GRU, Bi-LSTM, and Bi-GRU in
short-term forecasting and was

proven to best apply in
short-term forecasting.

[93]
DeepESN

and
CNN-DeeESN

1 day,
10 days,

and
1 month

Wind speed, humidity,
output power, global
horizontal radiation,

diffuse radiation,
average phase current,

and temperature

11 months

0.0381
(MAE)
3.3313

(MAPE)
0.3101

(RMSE)

The proposed hybrid model
outperformed other single

models and achieved the lowest
performance metric in solar

power generation forecasting.
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Two types of hybrid models were proposed by Qu et al. [88]. The research focuses on
merging the new deep-learning network and time series forecasting patterns to address the
difficulty encountered by conventional forecasting models that cannot accommodate the
composition relationship of the time-step and multi-variables. An attention-based CNN-
LSTM neural network embedded with a multiple relevant and target variables prediction
pattern (MRTPP) methodology can capture short-term and long-term temporal changes
in a time series and achieve day-ahead hourly solar power forecasting. Agga et al. [89]
proposed a hybrid model consisting of two types of deep learning architectures: the
convolutional neural network and long short-term memory. The topology is based on real
meteorological data from Rabat, Morocco. Based on the error metrics from the experiment,
it was found that the proposed architecture for CNN-LSTM performance exceeded the
prediction, precision, and stability compared to conventional machine learning and single
deep-learning (DL) models. Furthermore, during the comparison of the forecasting of time
windows one-dimensionally, three-dimensionally, and seven-dimensionally, the MAPE
value of the hybrid model subsequently increased by 5.55% (1D), 6.86% (3D), and 6.49%
(7D), respectively.

3.4. Summary of Supervised Neural Network Models

The forecasting of photovoltaic systems has evolved and is currently still ongoing to
obtain a lower percentage of errors and increase the accuracy of the system performance.
A variety of methods proposed by researchers are still unable to break the limitations of
machine learning and neural networks. Both approaches effectively learn sophisticated
non-linear connections from sets of training samples, making them perfectly adapted
for pattern recognition tasks that involve detecting complex trends in high-dimensional
datasets. Although the models are robust, the reliability of the system is still affected by
random initial data and over-fitting [94].

In summary, the ANN was known for its ability to work with incomplete knowledge
and for having a high fault tolerance, but the network is hardware-dependent, which
means it requires a processor with parallel power in accordance with the ANN’s structure.
Another complexity for the ANN is the difficulty showing to the network. Even though
the ANN can work with numerical information, the value must first be converted into
numerical form before being introduced to the ANN. As for the RNN and CNN, both
networks were proven to perform better than the ANN. However, both the RNN and CNN
encounter the same complexity as the ANN; both lack the ability to be spatially invariant to
the input data, both have difficulty in solving gradient vanishing and exploding problems
for RNN, both are unable to perform very long sequences if they are using tanh as an
activation function, and both have difficulty in training the data in small quantities.

The collection of machine learning algorithms for different forecasting horizons in
Sections 3.1–3.3 suggests that the forecasting accuracy drops as the forecasting horizon
increases. Instead of long-term forecasting horizons, these methodologies provide a better
forecasting accuracy for short-term and medium-term forecasting horizons. In Tables 2, 4 and 5,
a summary of all the past studies linked to photovoltaic forecasting is presented according
to the type of neural network.

4. Conclusions

The application of machine learning has grown and will likely progress to become one
of the most reliable techniques for forecasting. In this paper, a comprehensive review of
supervised machine learning was carried out. The previous research papers are compiled
and grouped according to the type of neural network. The main objective of this paper is to
study the accuracy performance of the output power generated by the PV system when
applying different types of neural networks. The majority of the forecasted methods are
hybrid compared to conventional methods. This proved that hybrid models perform better
in forecasting. They are able to achieve lower and better performance metrics. Thus, they
are capable of achieving a much better accuracy.
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An accurate solar forecast is considered vital to accomplishing the enhanced degree
of operational photovoltaic coverage while maintaining a minimal cost and achieving
sustainable growth and competitiveness at the same time. The forecasting horizon sub-
stantially impacts the precision of a model’s prediction outcomes. The performance of
a forecasting model typically degrades as the forecasting horizon rises. The quality of
forecasting decreases with an increase in the forecasting duration and depends on the
location of the PV installation. It is pivotal to properly choose the forecasting models that
are in accordance with the horizon and location of the PV installed.

Furthermore, the performance of a forecasting model fluctuates as the climate changes.
Each country has different seasons, and the climatic weather and input parameter are also
crucial to be reconsidered. As a result, one of the most influential variables in improving
the predictive accuracy of forecasting models is weather classification. This necessitates
the addition of weather classifications during forecasting. For instance, certain forecasting
models exhibit lower error rates in partially cloudy or cloudy weather and during an
increase in the module and ambient temperature, while others may perform better.

In conclusion, the outcomes of this study imply that the number and type of input
parameters, the duration of the forecast horizon, and the hybrid models/methods have
proven their credibility in enhancing the system performance. The accuracy ought to
be preferred over simple and conventional machine learning models. The most recent
information and the comparative analysis of machine learning models offered in this study
can improve the future of photovoltaics researchers, planners, and specialists by assisting
them in boosting the performance of forecasting models. By using the proper tools and
methods for PV power forecasting, it could be possible to overcome the dependency on
conventional energy resources as the main source in power generation and improve the
PV’s system performance. Because of their tremendous capacities for huge data analysis
and nonlinear representation, supervised neural networks have been applied to the field of
forecasting and contributed to the exponential rise of new machine learning theory.
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Abbreviation

AD Adaptive deep
AI Artificial Intelligent
ANN Artificial Neural Network
APB Absolute Percentage Bias
CNN Convolutional Neural network
D Dimension
DLNN Deep learning neural network
DRWNN Diagonal recurrent wavelet neural network
DWT Discrete wavelet transform
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EEMC Empirical model decomposition
EKF Extended Kalman filter
ELM Extreme learning machine
EMD Empirical mode decomposition
FCW Forward collision warning
FFNN Feed-forward neural network
FFNNST Feed-forward neural network-spatiotemporal
GHI Global hour irradiance
GRU Gated recurrent unit
GRUP Gated recurrent unit pool
LSSVM Least square support vector machine
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MBE Mean Bias Error
MPE Main Percentage Error
MRE Mean Relative Error
MSE Mean Squared Error
NMAE Normalized Mean Absolute Error
NRMSE Normalized Root Mean Square Error
MFA Modified firefly algorithm
MLP Multi-layer perception
MODWT-LSTM Maximal overlap discrete wavelet transform
MRTPP Multiple relevant and target variables prediction pattern
MW MegaWatt
NARX Nonlinear autoregressive exogenous model
NMAE Normalized mean absolute error
NPKDE Non-parametric kernel density estimation
NWP Numerical weather prediction
PSO Particle swarm optimization
PVPF Photovoltaic Power Forecasting tool
R2 Coefficient of regression
R Regression
RES Renewable energy sources
RET Renewable energy technologies
RMSE Root Mean Square Error
SARIMA Seasonal Auto-Regressive Integrated Moving Average
SCA Sine-cosine algorithm
SE Sample entropy
SOM Self-organizing map
SSA Sparrow search algorithm
SVM Support vector machine
TSK Takagi–Sugeno–Kang
TSKFNN Takagi–Sugeno–Kang Neural Network
WMIM Wrapper mutual information methodology
WOA Whale optimization algorithm
WRP Wavelet packet decomposition
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