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ABSTRACT Gastrointestinal (GI) disease is one of the most common diseases and primarily examined

by GI endoscopy. Recently, deep learning (DL), in particular convolutional neural networks (CNNs) have

made achievements in GI endoscopy image analysis. This review focuses on the applications of DL methods

in the analysis of GI images. We summarized and compared the latest published literature related to the

common clinical GI diseases and covers the key applications of DL in GI image detection, classification,

segmentation, recognition, location, and other tasks. At the end, we give a discussion on the challenges and

the research directions of GI image analysis based on DL in the future.

INDEX TERMS Gastrointestinal disease, gastrointestinal endoscopy image, deep learning, analysis,

comparison.

I. INTRODUCTION

GI disease is one of the most common diseases and com-

monly occurs in humans, resulting in one of the most impor-

tant healthcare problems. According to the extent of the

lesion, it can be roughly divided into benign GI diseases,

precancerous lesion, early GI cancer and advanced GI cancer.

Benign GI diseases such as ulcers, gastritis and bleedings

will not deteriorate into cancers in short term. Precancerous

GI lesions may deteriorate into early GI cancer or even

advanced GI cancer, if not diagnosed and treated in time.

The 2018 world cancer statistics [1] indicate that colorectal

cancer, gastric (stomach) cancer (GC) and esophageal cancer

are three main GI cancers. The highest incidence rates of

colon cancer are found in western regions/countries such

as Europe, Australia/New Zealand, and Northern America.

Incidence rates of GC are markedly elevated in Eastern Asia,

while the rates in the western countries are generally low.

The associate editor coordinating the review of this manuscript and

approving it for publication was Jihwan P. Choi .

Esophageal cancer is common in several countries in Eastern

Asia, Eastern and Southern Africa, with the highest rates in

Eastern Asia. Clinical data suggest that the 5-year survival

rate of GC remains low (between 23% and 27%) [2], while

the 5-year survival rate of advanced gastric cancer (AGC),

especially TNM stage IV cancer, is only 4% [3]. However,

the 5-year survival rate of early gastric cancer (EGC) can

be as high as 95% [4]. Therefore, the earlier the detection

and active intervention of GC, the higher the survival rate

of patients, with even the potential of fully recovery. The

accurate detection and diagnosis of precancerous lesions and

early cancer of GI are crucial to prevent GI diseases from

developing into advanced cancer.

Currently, the examination and diagnosis of GI diseases

mainly rely on endoscopy [4], [5]. This technique is ameth-od

to noninvasively deliver a pathological diagnosis of living

tissue. GI endoscopy includes gastroscopy, colonoscopy and

wireless capsule endoscopy (WCE), where images captured

by these three endoscopies are shown in Fig. 1. Usually,

gastroscopy is used to examine abnormalities of the upper
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FIGURE 1. Examples of GI endoscopic images. (a) Gastroscopic image of
normal esophagus, (b) colonscopic image of normal colorectal, (c) WCE
image of normal small intestinal, (d) gastroscopic image of stomach with
ulcer, (e) colonscopic image of colorectal with polyp, (f) WCE image of
small intestinal with hemorrhage.

GI, colonoscopy is used to check the lower GI and WCE is

main-ly used to detect lesions in the small intestine between

the upper and lower GI. WCE, a new type of micro-digestive

endoscopy, involves a small device that is swallowed by

patients, passes through the overall GI and is then discharged

from the anus, examining the entire GI along the way within

the battery life time of about 8 hours. The number of GI

images produced by each endoscopic examination is very

large, especially in WCE, which can produce 50,000 to

120,000 images during one examination. The reading of a

large amount of endoscopic image data has exceeded the lim-

itation of human concentration, thus easily resulting in mis-

diagnosis and a decrease of diagnostic accuracy. In addition,

the diagnostic results may be controversial, due to different

experiences of doctors. In fact, only a small number of GI

images would contain GI lesions. Selecting a small number

of crucial lesion images from a large number of endoscopic

images is a time-consuming and laboriously inefficient task

for doctors. To improve the efficiency and diagnosis accuracy,

some computer aided diagnosis (CAD) systems have been

developed, which automatically select, identify and classify

lesion images, and provide an objective reference to doctors.

These CAD systems could not only reduce the burden of

doctors, but also improve the diagnostic efficiency and brings

a great help to doctor.

The traditional framework of a CAD system consists of a

feature extraction and a classifier based on machine learn-

ing (ML) methods. First, an artificially designed algorithm

is used to extract image features such as color and texture;

then, these extracted features are sent to a classifier such

as a Support Vector Machine (SVM) [6]–[9]. For instance,

Liu et al. [7] designed a joint diagonalisation principal com-

ponent analysis algorithm to extract features of endoscopic

images; then, these features were sent into a SVM to be

classified into two categories: abnormal and normal images.

A comparison between hand-craft feature based SVM and

CNNs-based DL for colon polyp detection was performed

by Shin and Balasingham [10]; the results indicated that the

CNNs-based DL method performed better. The Endoscopic

Vision Challenge results of 2015 Medical Image Comput-

ing and Computer Assisted Intervention (MICCAI) demon-

strated that a method based on DL is the state-of-the-art [11].

Besides, in two papers which studied the detection of intesti-

nal hookworms, the accuracy of the DL method [12] was

found to be approximately 10.3% higher than that of the

artificial feature extraction method from [13] using the same

database.

Recently, DL has achieved a great success in the field

of computer vision. In certain cases, its object recognition

accuracy can even surpass that of human beings. In particular,

CNNs have achieved very good results in different image

processing tasks [14]. CNNs first appeared in1980 [15], and

Lo et al. [16] first applied CNNs to lung nodule detec-

tion in 1995. The first successful application of CNNs was

LeNet which was used for digital handwriting recognition

in 1998 [17]. Although these studies highlighted the initially

great successes of the application of CNNs, the usefulness of

this kind of network seemed to be halted because of the lim-

ited computational power at that time. Alternatively, scholars

preferred to choose other methods, such as artificial feature

extraction methods and so on. CNN was gradually forgotten

over the next decade. It is not until 2012 that AlexNet [14]

was proposed and won the ImageNet Large-Scale Visual

Recognition Challenge (ILSVR-C), with the top-5 error rate

around 10% higher than the second place. Since then, CNNs

have become increasingly popular. Subsequently, DL tech-

nique was quickly applied in various fields, and an increasing

number of scholars have begun to explore the applications of

DL methods in medical image analysis [18]–[20] and have

obtained quite well results. For instance, in [18], the clas-

sification accuracy of skin cancer was found to be close to

that obtained by dermatologist. In recent years, DL technique

has gradually been applied to the image processing of GI,

and several papers have been published as pioneering works

in this field [21]–[25]. In the latest published literature [21],

Shin et al. presented the first successful case of applying the

DL technique GI polyp detection, while the authors of [22]

realized a real-time detection of colorectal polyps. Mean-

while, a 3D-FCN (fully convolutional network) was first used

to identify polyps in a colonoscopic video by Yu et al. [25],

and Jia and Meng [23] were the first to explore the automatic

detection of intestinal bleeding, and the authors of [24] tried

to classify EGC using some DL methods.

To the best of our knowledge, this is the first review on

the applications of DL methods in the analysis of GI images,

and we believe that it can provide an important reference for

researchers in this field. Other reviews about the applic-ations

of DL methods in medical image analysis such as [26]–[29]

only involve few works related to GI image analysis. The rest

of the paper is organized as follows: Part II will provide an

overview of DL methods. Part III will intro-duce the applica-

tion of DL in GI endoscopic image analysis. Part IV provides

a comprehensive overview of the literature cited in this review
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and discuss several issues encountered in the application of

DL methods in GI image analysis. Part V, briefly summarizes

some significant research directions for the future works.

II. OVERVIEW OF DEEP LEARNING METHODS

This section provides an introduction of DL methods [30],

which are a branch of ML. Both of DL and ML belong to

artificial intelligence (AI). DL architectures refer to neural

networks with large amounts of hidden layers. Recently,

DL methods have been regarded as the most advanced AI

techniques by virtue of their state-of-the-art performances,

especially deep convolutional neural networks (DCNNs)

have brought breakthroughs in image processing.

The training of DL methods is usually divided into two

categories: supervised learning and unsupervised learning.

The commonly used DL architectures in GI image analysis

are trained in a supervised manner with labeled data. As pre-

sented in Table 1 that almost all the literature related to deep

networks used in GI image analysis are based on CNN (super-

vised learning), while only 2 papers apply other networks

such as artificial neural network (ANN) and deep neural

network (DNN). Next, we will give a detailed introduction

of CNN, and a brief introduction of other DL architectures

used in GI image analysis.

TABLE 1. Sumarry of deep architectures used in gastrointestinal image
analysis.

A. CONVOLUTIONAL NEURAL NETWORK

Theworking principle of CNN can be illustrated by two steps.

Firstly, the network is trained over a given labeled dataset and

the multiscale features are extracted. Secondly, based on the

features extracted by the first step, classification is performed.

CNN consists of several important components, including

convolutional layers, activation functions, pooling layers and

fully connected layers. A simple CNN usually consists of

several of these layers, while some very deep CNN models

could include hundreds of layers. For instance, one version

of the current popular ResNet consists of 152 layers.

The convolutional layer is a crucial component of CNN,

and the neurons in the convolutional layer are sensitive to

every small piece of the input images. In the terminology of

CNN, the first parameter of the convolution is usually called

input, the second parameter is called the kernel function, and

the output sometimes is called feature map, as shown in equa-

tion (1), where x is the input,ω is kernel function, s(t) denotes

the output feature map. The definition of two dimension (2D)

convolution operation is shown as equation (2), where I is the

input, K denotes a 2D kernel function.

s(t) = (x ∗ ω)(t) =

∞∑

a=−∞

x(a)ω(t − a) (1)

S(i, j) = (I ∗ K )(i, j) =

∑

m

∑

n

I (m, n)K (i− m, j− n) (2)

The selection of the activation function for a CNN is very

important. Currently, a rectified linear unit (ReLU) is the

preferred activation function, which is defined as follows:

f (x) = max(0, x) (3)

The pooling layer could reduce computational costs by

computing the overall statistical characteristic of the adjacent

rectangular region of a location to replace the output of

the convolutional layer at that region. For example, a max-

pooling layer, the most commonly used kind of pooling layer,

computes the maximum value of the adjacent rectangular

area. Except for max-pooling, there are many other pooling

layers, such as average-pooling and L2-norm pooling.

The last layers of CNN are the fully connected layers,

in which each neuron in the layer is connected to each neuron

in the next layer. The output of the previous layers could

be sent to fully connected layer as an input, and a probabil-

ity score for each class to which the input image could be

assigned is computed. The class with the highest score is the

final classification result of the input image. In short, the fully

connected layer combines the most prominent features of the

image to infer the category of an image.

An example of classifying GI image by CNN is shown

in Fig. 2. First, the features of the input image are extracted

by convolutional layers, activate functions and pooling layers.

Then, the output feature map is sent to the fully connected

layers, and the prediction probability scores (between 0-1)

for Lesion 1, Lesion 2, Lesion 3 and Normal category are

computed out. In this example, the prediction probability

scores of Lesion 1, Lesion 2 and Lesion 3 are very small,

while the probability score of Normal class is 0.96. Thus,

the input image is classified as normal category.

B. SUPERVISED DEEP LEARNING ARCHITIECTURES

In this section we give an overview of the commonly used

DL architectures based on the supervised manner in GI

image analysis.

1) CLASSIFICAITON ARCHITECYURES

The most popular deep models used in GI image classifi-

cation are LeNet, AlexNet, VGGNet, GoogleNet, ResNet

and so on.

LeNet [17] and AlexNet [14] are relatively shallow, they

explore kernels with large receptive fields in layers close to

the input and smaller kernels close to the output. One differ-

ence between these two architectures is that AlexNet us es

ReLU unit instead of the hyperbolic tangent as the activation

function, which is the mostly used nowadays. VGGNet (also
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FIGURE 2. A simple example of GI image classification using CNNs. The features were extracted by convolution layers, and then sent to fully
connected layers. The predicted classification results were given out by fully connected layers.

called OxfordNet) [31] was proposed by Simonyan et al.,

which is also relatively shallow and consists 16-19 layers.

Nowadays, there is a preference for deeper models

and smaller kernels instead of a single layer and ker-

nels with large receptive field, because a smaller function

means fewer parameters, such as GoogleNet and ResNet.

Szegedy et al. [32] proposed GoogLeNet (also called Incep-

tion), which introduced inception block that has been shown

to be able to achieve very good performance at low compu-

tational cost [33]. ResNet [34] consists of the ResNet-blocks

which only learns the residual function with reference to the

layer inputs, rather than learning function without reference.

The experiment evidences showed that these residual net-

works are easier to be optimized and can gain accuracy from

increased depth. In other words, even deeper architectures can

also be trained effectively.

Since 2012, the performance of ILSVRC became a bench-

mark. Squeeze-and-Excitation Networks [35] won the last

ILSVRC of 2017, which has not yet been used in GI image

analysis. The performances of these popular classification

architectures on ImageNet database are shown in Fig. 3,

where, the Top-5 error rate is that the fraction of test images

for which the correct label is not among the five labels

considered most probable by the model. We can see from

Fig. 3 that the Top-5 error rate of deep models on ILSVRC

keeps to be smaller year by year, but the accuracy seems to get

saturated. It is not sure that the small increases in performance

could be attributed to more sophisticated architectures of

a deep network. Additionally, GI image is different from

nature images. Therefore, the respective shallow and simple

networks such asAlexNet, VGG are still popular for GI image

analysis.

2) DETECTION ARCHITECYURES

Currently, detection by DL methods is a common task in

GI image analysis. There are three object dection methods

based on CNNs: single shot multibox detection (SSD) [36],

fast region-based convolutional neural network (Fast

R-CNN) [37], and Faster R-CNN [38], which are popularly

used in the GI image analysis. The SSD method transforms

object detection into an end-to-end target detection for regres-

sion problems. Fast R-CNN and Faster R-CNN combined

region proposal algorithm and CNN classification together.

FIGURE 3. The top-5 error rates of classification of the current popular
deep networks on ImageNet. It can be seen that the performances of
these latest deep architectures has been improved little.

3) SEGMENTATION ARCHITECTURES

The segmentation of a GI image generally refer to semantic

segmentation. FCN [39], DeepLab [40] and SegNet [41] are

semantic image segmentation (also called pixel-wise classifi-

cation) architectures, and are trained in an end-to-endmanner.

Since all layers in FCN are convolutional layers, it is

named as fully convolutional networks. Compared with

the traditional segmentation method based on CNNs, there

are two distinct advantages in FCN: (1) it is more flex-

ible since the input images of FCN can be of any size,

(2) it is more effective since it uses pixel blocks and

avoids the problems of repeated storage and convolution

calculation.

The major contributions of DeepLab are as follows: (1)

Speed: it accepts atrous convolution algorithm. (2) Accu-

racy: they obtain the state-of-the-art result. (3) Simplicity:

their system is composed of DCNNs and conditional random

fields (CRFs). (4) Atrous spatial pyramid pooling (ASPP) is

introduced in DeepLab_V2 and the later versions.

SegNet shares the same property with U-Net [42], which

has a pair of encoder and corresponding decoder networks.

The highlight of SegNet is that the max-pooling indices are

transferred to the decoder, which improves the segmentation

resolution. Both of them are effective semantic image seg-

mentation architectures.
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C. UNSUPERVISED DEEP LEARNING ARCHITIECTURE

Generative adversarial network (GAN) [43] is an unsuper-

vised architectures, which holds promise for the GI image

analysis task. GAN is composed of two simultaneously

trained and competing models: a generative model G that

captures the data distribution, and a discriminative model D

that estimates the probability that a sample come from the

training data rather than G. During the training procedure,

G tries tomaximize the probability of Dmakingmistake. This

model is also described as aminimax two-player game. At the

end, there is a unique solution, where G recovers the training

data distribution and D equals to 1/2 everywhere. Both G and

D can be trained with back propagation, and without unrolled

approximate inference and Markov chains.

D. OTHER NETWORKS

In addition to the DL networks used in GI image analysis,

there are many other efficient networks such as recurrent neu-

ral networks (RNNs), graph neural networks (GNNs) [44],

principle component analysis network (PCANet) [45] and

canonical correlation analysis network (CCANet) [46] that

have not yet been used in GI image analysis at present.

RNNswere developed for discrete sequence analysis. They

have been used in other medical images analysis tasks such as

Tissue segmentation [47]. GNNs were first proposed in 2009,

which apply the existing neural network methods for process-

ing data represented in a graph domain. GNNs have been

widely applied to natural or other images processing tasks,

but there are no related papers applying this method to GI

images and other medical images.

RNNs couldmap input sequences to output sequences [48],

and are more capable in serialized data processing. For exam-

ple, the work in [49] combines RNNs and CNNs together,

which allows the processing of all contextual information

regardless of image size. As GNNs endows the DL model

with some causal reasoning ability, makes them could deal

with rich relation information among elements which could

be useful in diseases classification [50].

PCANet andCCANet are effective networks and have been

used in nature image classification. One difference between

them is that PCANet can only handle data represented as

one-view features and CCANet could classify images repre-

sented by two-view features.

In a world, RNNs, GNNs, PCANet and CCANet are all

promising in the GI image analysis task in the future.

E. TRANSFER LEARNING METHODS

Training a deep network from scratch needs a large number

of labeled data, and the training and optimizing process of

the network is usually very time consuming. Collecting a

large number of GI image and annotating the corresponding

labels by experts are also tough and error prone tasks. Hence,

most of GI image analysis tasks based on DL methods adopt

transfer learning approach, which can reduce the need of

a deep network for training data. In the transfer learning

FIGURE 4. The illustrations of three main GI image analysis tasks:
(a) Detection, (b) classification, (c) segmentation.

terminology, the deep model trained on large image dataset

(such as ImageNet) is called pre-trained model.

One transfer learning method is the feature extractor. The

CNN layers of pre-trainedmodel are used as feature extractor,

and the fully connected layers of the pre-trained model are

replaced by traditional classifier, such as linear classifier

SVM. The GI image analysis tasks with a small number of

samples usually choose this transfer learning method.

Another transfer learning method is the so-called fine-

tuning. The input layer of pre-trained model is replaced and

trained by new data. One can choose to fine-tune several

layers or all layers of the pre-trained deep model. Typically,

the previous layers of a deep network extract the generic

features of the images (such as edge, color), which are useful

for many tasks. The latter layers extract features related to a

particular task, so fine-tuning method often only fine-tune the

latter layers.

In addition, the other transfer learning method is parameter

sharing. The parameters of a pre-trained deep network are

loaded as the initialization parameters and trained with new

data again, which can speed up the training process. The new

trained model shares the same network and parameters with

the pre-trained model. This transfer learning method usually

requires a large training dataset.

III. APPLICATION OF DEEP LEARNING IN THE ANALYSIS

OF COMMON GASTROINTESTINAL DISEASES

The applications of the DL methods in GI image analysis

tasks include image detection, classification, segmentation,

recognition, location, and a few other application tasks.

The first three tasks are illustrated in Fig. 4. At present,

the involved GI diseases mainly included polyps, hemor-

rhages, cancers, with some forays into the detection of gas-

tritis and hookworms.

A. POLYPS

Polyps, one of the most common symptoms of GI, can be

divided into hyperplastic polyps and adenomatous polyps

according to their probability of progression into cancer. The

former can be considered as benign polyps [51], the can-

cerous rate of which is relatively low, whereas the latter

VOLUME 7, 2019 142057



W. Du et al.: Review on the Applications of DL in the Analysis of GI Endoscopy Images

has a higher cancerous rate, according to the clinical expe-

riences [52]. Accurate identification and classification of

hyper-plastic and adenomatous polyps can provide an objec-

tive reference to doctors, significantly improve the doctor’s

diagnosis efficiency, and effectively prevent the occurrence

of early cancer.

1) DETECTION AND CLASSIFICATION

The detection and classification of colorectal polyps by DL

methods have been explored in several works. The authors

of [21] were the first to use a Faster R-CNN combined

with a CNN model (Inception ResNet) to detect colonic

polyps in images and videos. The novelty of this research

is the proposed post learning that could effectively reduce the

number of false positives (FPs) samples. After trying several

data augmentation methods, their detection precision reaches

91.4%, but the mean detection time is about 0.39 second per

frame and need to be further improved. Similarly, the clas-

sification of colonic polyps by several different CNNs was

explored by the authors of [53]. Each of the polyp images was

divided into a number of sub-images, which could increase

the number of training datasets and reduce the computa-

tional complexity of the network. To improve the stability of

DCNN model identifying polyps in complex environments,

Karnes et al. [54] used a database of both white light and

narrow-band imaging (NBI) colonoscopic images to train

a CNN for classifying the image samples into polyps and

normal tissues. It is very difficult to evaluate the performance

of the model in different environments. Bernal et al. [11]

conducted a unified evaluation experiment on the eight polyp

detection methods of the MICCAI 2015 Endoscopic Vision

Challenge (one method based on artificial feature extraction,

four based on CNNs, and three hybrid methods. The results

showed that the DL methods present the state-of-the-art, and

hybrid methods can improve overall performance.

The research works aforementioned can only detect

whether the images contain polyps or not. If the detected

polyps could further be classified according to the rate

at which they could develop into tumors, the procedure

would be even more beneficial to both doctors and patients.

The automatic detection and detailed classification of col-

orectal polyps based on the DL methods was explored by

Zhang et al. [52]. They studied the transfer learning of dif-

ferent DCNNs and automatically classified colonoscopic

images into hyperplasic polyps, adenomatous polyps, and

normal images. The precision of their method was 87.3%,

which is similar to the 86.4% precision from a physician.

In the mean time, the recall rate and accuracy from the DL

method were 87.6% and 85.9%, respectively, which were

much higher than 77.0% and 74.3% achieved by physician.

A similar study can be found in [55], which explored 6 differ-

ent pre-trained deep networks by transfer leaning and training

from scratchmethods to classify colorectal polyps into hyper-

plastic polyps, adenomatous polyps and malignant polyps.

A CAD system based on the transfer learning of the DNN

was designed by Chen et al. [56], which classified diminutive

colorectal polyps into three sub-types: hyperplastic polys,

adenomatous polyps, and normal tissues.

Byrne [22] designed a system for the real-time assess-

ment of polyp subtypes in colonoscopic videos based on DL

methods. The data used in this research only included the

colonoscopic videos of NBI with a period of only 50 ms

between the two frames, which is a difficult task as a high

request for the speed of the image recognition.

Except for the real-time video polyp detection system

based on 2D-CNNs, some scholars have also explored a

real-time video polyp detection system based on 3D-CNNs.

The 3D-CNNs can better encode the video spatial informa-

tion and learnmore spatial features. Yu et al. [25] are pioneers

in exploring a novel online and offline DL frameworks based

on 3D-FCNs to automatically detect polyps in colonoscopic

videos which can reduce the number of FPs. In a video subtest

where each frame contains polyps, the method reached 0 FPs

and 100% precision. However, the test video data where each

frame contains polyps is unlikely to occur in actual clinical

practice. Therefore, there is still some room for improve-

ment of this method. Similarly, Tajbakhsh et al. [57] used

a 3-way image representation and CNNs to detect polyps

automatically in a colonoscopic video. In this study, the three

characteristics: color and texture clues, shape in context, and

temporal features of the polyp image, were extracted and

then sent into the three CNNs for training, respectively. This

method could provide more precise locations of the polyps,

with only 0.002 FPs per frame at a sensitivity of 50%. There

are differences between the two studies above. One uses a

3D DL frameworks and can learn more spatial features with

encoded 3D information [25], while the other applies a 3-way

images [57] to simultaneously train three CNNs, and learn

three characteristics from lesion, respectively.

2) SEGMENTATION

Most of the researchers focus on polyp detection and classifi-

cation, few of them have tried segmentation. Xiao et al. [58]

attempted to use a DNN called DeepLab_v3 to detect

polyps in colonscopic images. As the large structure of

DeepLab_v3, the location of polyps may not be saved and

transmitted effectively. To avoid this problem, the authors

combined long short-term memory (LSTM) network with

DeepLab_v3 in parallel to augment the location signal of

polyps. They found a quite satisfactory results: mean intersec-

tion over union (mIOU) of 93.21% and the average comput-

ing time of 0.023 second per image. In summary, CNNs have

been applied in the detection, classification, segmentation

of colorectal polyps and have achieved quite well results.

An overview of papers related to application of DL tech-

niques on polyps is listed in Table 2. As depicted in Table 2,

most papers focus on the polyps classification and detection

tasks. In other words, more papers on other tasks should be

encouraged. Fig. 5 shows the comparisons of detection and

classification accuracies of several papers related to polyp

detection. We can get an overview of the performances of

these approaches in different references from Fig. 5 directly.
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TABLE 2. Overview of papers using DL techniques for polyp image analysis.

FIGURE 5. Comparison of the accuracies in part of polyp detection and
classification references.

The results suggest that the DL architectures perform well on

their data, as data scale and model vary from one paper to

another.

It is worth mentioning that some scholars have tried to

perform real-time detection, identification and classification

of polyps in videos based on 2D-CNNs and 3D-CNNs. Com-

pared to the image-based detection, video-based real- time

detection is more helpful for doctors’ aided diagnoses and

endoscopic surgeries.

B. HEMORRHAGES

1) DETECTION AND CLASSIFICATION

Intestinal chronic hemorrhage is associated with GI diseases

caused by unknown reasons [61]. Detection of GI hemor-

rhage (Fig. 4 (b)) is important for preventing their further

deterioration and potential conversion into cancers.

A CNN containing 8 layers was designed by Jia and

Meng [23] and trained on a dataset containing 10,000 WCE

images, to detect GI bleeding (also called hemorrhage).

Compared with traditional methods based on manual fea-

ture extraction, their methods performed better on all eval-

uation indicators. Another method for the detection of

intestinal hemorrhage was explored by Li et al. [59]. This

method is based on the transfer learning of several DL

models, which involve the traditional LeNet and several

TABLE 3. Summary of the performacne of hemorrhage detection.

state-of-the-art networks such as AlexNet, GoogleNet, and

VGGNet. The authors also explored the effect of data aug-

mentation on detecting accuracy. Jia and Meng [60] pro-

posed a method that integrates manually extracted features

and CNN layers extracted features, and sent them into

the fully connected layer of CNN for classification. The

results showed that although the training dataset was limited,

the method achieved a precision of 94.79%, which was higher

than that of other methods.

These research works all focused on WCE bleeding detec-

tion (classification) and the performances were summarized

in Table 3. The performances of [23] and [59] are almost

the same. It is difficult to distinguish which one is better.

But the positive sample in [23] contains both active and

inactive bleeding regions, maybe it is more challenging.

In contrast, the results of [60] are slightly inferior because of

the small scale of dataset. Considering the unbalance dataset

(Table 3 last column) problem, these results are all quite

satisfactory.

2) SEGMENTATION

Segmentation of hemorrhage lesions in WCE images was

recently studied by three researchers. Jia and Meng [62] pre-

sented a method for automatic segmentation of hemorrhage

region in WCE images. First, an SVM classifier was used

to roughly divide the images into active bleeding group and

inactive bleeding group according to the color features. Then,

FCNs was applied to mark the two kinds of hemorrhage

regions and achieved segmentation.

GI angiectasia is with inherent risk for bleeding.

Leenhardt et al. [63] tried to perform a CNN-based semantic

segmentation for deep feature extraction and classification of
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TABLE 4. Comparisons of papers using dl method for hemorrhage segmentation.

small intestine static frames to detect angiectasia. The authors

of [64] explored a segmentation method based on GANs,

which is able to mark the angiectasia in a given WCE video

frame with pixel-wise accuracy. Ghosh et al. [65] developed

a semantic segmentation approach based on SegNet for bleed-

ing region detection in WCE images. The authors further

tested the approach on different color planes and the best per-

formance is achieved by using the hue saturation value (HSV)

of color space. In [66], the authors investigated the problem

of simplification of neural networks for automatic bleeding

region segmentation inWCE images. The results showed that

the simplification method on neural network and CNN struc-

ture could significantly reduce the burden of computational

operation, which will reduce the detection time, especially

for large number of WCE images. It has a great advantage

for images retrieval in large dataset and endoscopic video

abstract.

In general, the main problem of DL method in the hem-

orrhage analysis is the unbalanced data of abnormal and

normal samples (as shown in Table 3, last column), which

is also the case in other GI image analysis tasks. The problem

of unbalanced sample is easy to cause poor generalization

ability and over-fitting of the model. This is a stumbling

block for the application of DL methods in the GI analysis.

The comparisons of hemorrhage segmentation tasks between

different references are listed in Table 4. Besides, the classi-

fication of hemorrhage’s subtypes has still not been investi-

gated in the existing researches. In short, further studies on GI

hemorrhage detection, classification and segmentation based

on DL methods are still needed.

C. GASTROINTESTINAL CANCER

The 5-year survival rate of EGC is up to 95%, which is

much higher than that of AGC, especially the TNM stage‘IV.

However, early cancer may deteriorate into advanced cancer

if it could not be timely treated. Hence, the detection and

localization of early cancer can help doctors to improve the

diagnosis accuracy and reduce misdiagnosis rate, which sig-

nificantly improves the survival and cure rate of patients.

For some EGC and gastric ulcers, doctors with many

years of experience still may not be able to distinguish these

lesions [67]. As it is difficult to further improve the accuracy

of conventional detection methods [10]–[13], [24], the appli-

cation of DL methods in GI early cancer detection has been

recently explored by some scholars. The authors of [24]

pioneered the application of three efficient DCNN models,

VGG16, InceptionV3 and InceptionResNetV2. They classi-

fied magnification endoscopy with narrow-band imaging (M-

NBI) images into EGC and normal gastric images. Among

their experimental results, the InceptionV3 network with

fine-tuning transfer learningmanner produced the best results

with the values of evaluation parameters: accuracy, sensitivity

and specificity were 0.985, 0.981 and 0.989, respectively.

In addition, the authors also explored the effects of four

different factors (training dataset, basic CNN architectures,

fine-turned layers number and input image size) on transfer

learning and compared the results of their method with those

using traditional manual features, which provides a valuable

reference for us.

Hirasawa et al. [68] performed more researches on the

application of DL approach to detect EGC. They utilized a

CNN framework called SSD to detect and locate EGC lesions

in endoscopic images. The lesions in the output image were

marked by rectangular windows with an annotation of the

disease name and the probability that the lesion belongs to

this disease (Fig. 4 (a)). Although the overall sensitivity of the

method reached 92.2%, the missed lesions were all superfi-

cially depressed or belonged to intra-mucosal cancers (these

kinds of lesions are more likely to be misdiagnosed even by

experienced clinicians), which suggests that the method did

not solve the clinical problem of diagnosing of these lesions

completely. Additionally, nearly half of the FPs were gatritis

lesions with irregular mucosal surfaces or color tone changes.

Hence, the performance of thismethod is still with some room

for improvement. The authors of [69] also designed a system

based on SSD for the diagnosis of superficial (early cancer)

and advanced esophageal cancer. The diagnostic accuracy

and sensitivity of their method were both 98%, and this

method even detected 2 more lesion regions missed by a

previous examination. Riel et al. [70] designed a transfer

learning method to automatically detect early esophageal

cancer. They applied four pre-trained CNN models as feature

extractors and then used traditional classifier, such as linear
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SVM or softmax, to replace the fully connected layers. At the

end of this study, the authors designed a method based on a

sliding window to obtain a coarse-grained annotation of any

possible cancerous lesions. The area under receiver operating

characteristic (ROC) curve (AUC) of this approach was 0.92.

Also, it allows for both near real-time prediction and annota-

tion at 2 fps (4 frames /second).

For many kinds of cancers, a pathological diagnosis

remains the gold standard. At present, the pathological diag-

nosis of tissue biopsies mainly relies on the experience of

clinicians and is susceptible to subjective facts. Sometimes,

it is difficult for human eyes to distinguish the subtle dif-

ferences between benign and malignant tumors. However,

DL networks are competent in solving this problem. There-

fore, some scholars have started utilizing the DL methods to

analyze these tissue biopsy images of EGCs. A new ResNet

containing 50 layers was proposed by Liu et al. [71] to

identify gastric pathology images (slices), and the F-score of

this method was 96%. Similar to Liu’s work, the authors of

[72] proposed a network called GastricNet to detect gastric

slices, and the classification accuracy of this method reached

100%. For the same goal, Qu et al. [73] utilized low cost

medium-level datasets and a transfer learning method based

on a stepwise fine-tuning scheme was used to train a deep

network, which allows the network to understand a pathologic

image from a pathologist’s perspective.

The invasion depth of EGC is vital important as it deter-

mines whether an endoscopic resection could be performed or

not for patients. The authors of [74] constructed a CNN based

CAD system to determine the invasion depth of GC based on

GI image and screened patients for endoscopic resection. The

CNN based CAD system was trained in a transfer learning

manner and the ResNet50 was chosen as a pre-trained archi-

tectures. The CNN based CAD system could distinguished

EGC from deeper sub-mucosal invasion and minimized over-

estimation of invasion depth, which could reduce unnecessary

gastrectomy and relieve the pain of patients. This system

could provide an objective reference to doctors when they

make decision on the treatment strategy of the GC patients.

Precancerous lesions may deteriorate into early GI cancer

or even advanced cancer, if not diagnosed and treated in time.

Liu et al. [75] investigated the classification of gastricM-NBI

images by fine-turning pre-trained CNNs, which classified

them into three classes: chronic gastritis, low grade neopla-

sia, and EGC. They investigated the performance of four

networks: VGG16, InceptionV3, Inception-ResNetV2 and

ResNet50, in which ResNet50 got the best result with an

accuracy of 0.96.

Esophageal squamous cell carcinoma (ESCC) is one of

esophageal cancers. Generally, the basis for the diagnosis of

ESCC is histological biopsy. which is a labor intensive task

that relies on manual examination and is susceptible to sub-

jective human factors. However, the CAD system based on

CNN could provide an objective reference to doctors. Kuma-

gai et al. [76] proposed a DL system based on GoogLeNet

to identify ESCC from endocytoscopic system (ECS) images

of the esophagus to aid confirming histological diagnosis in

vivo; the classification accuracy, sensitivity and specificity

of this method were 90.9%, 92.6% and 89.3%, respectively.

The advantage of this approach is that it can provide objec-

tive suggestions for preserving or resecting lesions during

examination procedures. There are two limitations of this

method. One is that test dataset is too small which may cause

low median percentage of the pictures showing malignancy

(40.9%) in per-patient analysis. Other limitation is that the

images were collected by ESCs with two different optical

magnification powers, which may affect the performance.

Although these disadvantages, thismethod still deserves great

attention. The invasion depth of ESCC is vital important to

the treatment strategy of patients. Nakagawa et al. [77] pro-

posed a SSD based system to assess superficial ESCC. This

system could classify pathologic mucosal and sub-mucosal

micro-invasive (SM1) cancers from submucosal deep inva-

sive (SM2/3) cancers, which is significant for the doctor’s

choice of patients’ treatment strategy.

In all, the applications of DL on the analysis of GI

cancer include classification, detection, and recognition

tasks, as shown in Table 5, and other tasks such as seg-

mentation are not involved. In other words, more applica-

tions of DL on other tasks are encouraged. What’s more,

the classification of EGC is challenging because some

kinds of lesions are difficult to distinguish even for expe-

rienced doctors. Even if doctors could identify these can-

cer lesions, it is still difficult for them to recognize the

subtypes. The classification accuracy of EGC is still not

satisfactory at present [24], further improvements are still

required.

D. MULTIGASTROINTESTINAL DISEASE ANALYSIS

Lesions in GI are diverse, so it is not enough to analysis only a

single kind of GI. Recently, some scholars have tried to detect

and locate multiple kinds of lesions from GI images.

Since WCE passes through the whole GI, the images col-

lected byWCE are often very large and may contain a variety

of lesions. Several scholars have carried out detection of

multilesions in WCE images. In [78], Lan et al. proposed

CNNs based on region proposal algorithm and transfer learn-

ing method for the detection of abnormal regions (such as

active and inactive bleeding, undigested residue, bubbles,

tumor et al) in WCE images. The authors also tried sev-

eral methods and different CNNs. It was indicated that this

method was effective for WCE abnormal detection and local-

ization. The advantage of this method is that it could detect

and locate multipatterns and multilesions (that is multiobject

detection) on a single GI image, which is very different from

general single lesion detection or classification focusing on

only one disease.

Sekuboyina et al. [79] applied CNN models to detect

eight different lesions in WCE images, such as bleeding,

polyps, ulcers and so on. The authors used a patch-based

method. Firstly, the image was divided into several patches;

secondly, a CNN was applied to extract features pertaining to
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TABLE 5. Overview of papers using dl techniques for gastrointestinal cancer analysis.

each patch. This pixel-patch-based framework increased the

generality of their method and also overcame the drawbacks

caused by artificial features. Similarly, Zhang et al. [80] pro-

posed a CNN-based model GPDNet for the classification of

three GI diseases: polyps, ulcers, and erosions. The authors

introduced an algorithm called iterative reinforced learn-

ing (IRL). In this algorithm, the GPDNet was first trained

from scratch. Then, a ‘‘fine-tune’’ operation through IRL was

performed on the model, and the fine-tuned model was used

as pre-trained model for further training. The final classifi-

cation accuracy of this method was 88.9%, which was 8.9%

higher than that of the training from scratch. The work of

lesion detection and location in aWCE videowas also studied

by Iakovidis et al. [20]. First, using a weakly supervised

CNN (WCNN), the authors classified GI endoscopic images

into normal and abnormal; second, a deep saliency detec-

tion (DSD) algorithm was applied to detect the salient points

relevant to these anomalies in endoscopic video frames; third,

an iterative cluster unification (ICU) algorithmwas applied to

locate these anomalies; last, the coordinates of these points

were transformed (linearly scaled up) to match the spatial

resolution of the input endoscopic image, on which they

are superimposed to indicate the possible locations of the

anomalies. The detection AUC of this method was 96% and

the location AUC was 88%.

Generally, the number of images generated by the WCE

is often very large after a WCE examined, and the massive

image data analysis may easily result in a misdiagnosis.

The GI environment is complex and may be affected by

various digestive juices, chyme, bubbles and reflections; as

a result, there are a large number of redundant images that

could negatively affect diagnosis. It is crucial to filter out

these redundant images accurately before classification of the

diversity kinds of lesions. However, the deletion of redundant

images was not mentioned in the aforementioned literature

of this part. In short, the deletion of redundant images need

further study attention.

E. OTHER GASTROINTESTINAL DISEASES

Besides these commonly studied GI diseases above, there

are some GI diseases with few investigated works, such as

gastric ulcer, hookworm infection, Helicobacter pylori (HP)

infection, Barrett’s esophagus and so on.

Gastric ulcer is one of the common gastric diseases, gener-

ally classified as benign and malignant ulcer. Sun et al. [67]

selected five different CNN models based on VGGNet and

IRNV2 (Inception-ResNet) to classify benign and malignant

gastric ulcers. The training dataset used in this work contains

854 images with biopsy labels; and the outputted images

were marked by a rectangular box with an annotation of

the type and a probability score that the lesion belonged to

this type (as shown in Fig. 4 (a)). The authors performed

several experiments with five models and three data forms,

and finally obtained a best classification accuracy rate of

0.866. However, the limited dataset used in this work may

have restricted the performance of the method.

Hookworm infection could cause intestinal inflammation

and progressive ferritin deficiency anemia, and it can also

bring malnutrition and may seriously endanger the health of

pregnant women and children. Hookworm detection based on

DL was studied by He et al. [12]; they designed a method

combining two CNNs, one was used in edge extraction, and

the other was used in classification. Compared with wu’s pre-

vious method based on artificial features [13], the accuracy of

this method reached 88.5%, which is 10.3% higher than their

previous method.

One kind of typical gastritis is caused by HP infection of

the gastric mucosa which increases the risk of GC. There

are two papers which studied the application of DL in the

analysis of HP infection. In [81], the authors carried out

transfer learning on a 22-layer pre-trained CNN model to

detect HP infected gastritis. Itoh et al. [82] also developed

a CNN network based on GoogLeNet DCNN pretuned for

generic object recognition to analyze HP infection in upper

GI. The performances of the two works are shown in Fig. 6.
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TABLE 6. Overview of papers using DL techniques for other gastrointestinal diseases analysis.

FIGURE 6. Comparison of HP infection detection performances between
reference [81] and [82].

We can see that both of them preformed well. However, there

is still improvement room for sensitivity and specificity in

both of the works.

Barrett’s esophagus is a disease that manifests abnormal

changes in the cells of esophagus. This disease contains

two subtypes, intestinal metaplasia (IM) and gastric metapla-

sia (GM), in which the IM type could cause neoplasia (NPL)

and deteriorate into esophageal cancer. Therefore, it is mean-

ingful to develop DL methods to improve the classification

accuracy for IM and GM in the clinic. To solve this problem,

the authors of [83] proposed amethod based onDL to classify

IM, GM and NPL; the classification accuracy of this method

reached 80.77% after a data augmentation. However, there is

still much improvement room for the accracy.

Detection of erosion and ulcerations in large amount

of WCE images is a challenging work. Aoki et al. [84]

developed a CNN system based on SSD. It was trained by

5560 WCE images of erosion and ulcerations, and validated

on a dataset including 10440 WCE images (where only

440 images are abnormal). The processing time of this system

only required 233 seconds. The proposed detection system

could detect erosion and ulcerations from a large number of

WCE images quickly, which could significantly reduce the

burden of doctor.

Celiac disease is one of the most common diseases in

the world, while few related works are published until now.

Zhou et al. [85] developed a CAD system based on GoogLe-

Net model to quantitatively analyze the existence and degree

of pathology of the small intestine. This work may improve

CAD techniques to access mucosal atrophy and other etiolo-

gies in real-time in WCE video.

In summary, there are a few of researches related to these

above mentioned diseases, however these diseases pose a

great threat to human health. For instance, the HP infection of

the gastric mucosa will cause mucosal atrophy and intestinal

metaplasia, both of which increase the risk of gastric can-

cer [82]. Therefore, more researches on these GI diseases are

encouraged in the future. Overview of these works is listed

in Table 6.

F. OTHER RELATED APPLICATIONS

1) CLASSIFICATION

The classification of WCE images from organ-wise were

studied in two papers [86] and [87], which could save the

review time of doctors. The authors of [86] proposed a general

video understanding approach based on a cascaded spatial-

temporal deep framework. The framework mainly consist

two CNNs: N-CNN and O-CNN. In the first step, WCE

images were classified into informative images and noisy

content by the N-CNN model. Then the redundant noisy

images were removed. In the second step, the O-CNN was

applied to roughly classify the remaining clear images into

four digestive organs: entrance, stomach, small intestine and

colon. Finally, a hidden Markov model (HMM) coupled with

temporal coding observation is applied to further improve

the detection accuracy. The system in [87]was designed by

combining CNN with extreme learning machine (ELM). The

CNN part was used as a data-driven feature extractor and

the cascaded ELM as a strong classifier instead of full con-

nected layer. The authors classified the WCE images into

three categories: stomach, small intestine and colon. Those

approaches could provide organ-wise location information of

WCE images to doctors and improve diagnosis efficiency.

Most CAD systems with deep network architectures can

only detected very few GI diseases on WCE images. It sug-

gests that the original DL network has to be re-trained when

analyzing other GI. For this reason, the authors of [88]

introduced a analysis system based on DL methods which

learned the generic features of small intestine motion. The

advantage of this approach is that it could detect and clas-

sify 6 intestinal motility events by one CNN network, and

overcoming the problem of re-training network for every new

clinical problem.
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2) SEGMENTATION

In [89], used an adapted version of SegNet [41] network

for reflection region segmentation and color correction. This

method may be useful for the preprocessing of GI image

before other GI image analysis tasks, such as classification,

detection and so on. However, some improvements are still

needed to make the reflection correction region smoother.

In all, these applications related to organ-wise classifi-

cation and reflective elimination which are not analysis GI

diseases directly. However, those applications can be used

as preprocessing steps for other GI image analysis tasks. For

example, the organ-wise classification could provide a organ-

wise location for other GI analysis task.

IV. DISCUSSION

In recent years, many efficient deep DLmodels have emerged

with the development of DL theory; they have achieved great

success in the field of computer vision and have also been

applied to various other fields. Among these DL models,

CNNs have performed verywell in the field of image process-

ing and has also been applied to analyze various of medical

images. Since 2015, DL technique has been gradually utilized

to GI image analysis. However, most of the existing research

works are still limited to the detection, classification and

segmentation of polyps, hemorrhages, GI cancer, and a few

works have involved the detection of other diseases, such as

esophageal cancer, gastritis and hookworm detection. How-

ever, GI diseases are diverse. Some other kind of GI diseases,

such as intraepithelial neoplasia and invasive mucosal lesions

which are considered to be important stages of early cancer,

are also worth to be studied by DL technique, but they have

not been mentioned in the existing related literature yet.

The application of the DL technique in computer-aided GI

diagnosis is a new research field. In this review, several key

words, such as gastrointestinal, deep learning, CNN, diges-

tive tract and lesion detection, were used to retrieve the latest

relevant literature. In all, 45 papers were found, most of which

were published during 2017-2019; these papers consisted

of 11 papers related to polyp, 8 papers related to intestinal

hemorrhage, 11 papers related to GI cancer, 4 papers about

multi-GI diseases, 7 papers related other GI diseases that

are not commonly studied such as HP infection, hookworm

detection, and 4 papers are related to other applications. The

statistic of these papers are shown in Fig. 7. We can see from

Fig. 7 (a) that more than half of these published researches

focus on the detection and classification tasks. Other analysis

tasks such as segmentation and recognition are only studied

by few papers, so in the future these tasks deserved further

study. Fig. 7 (b) presents the proportion of each GI disease

that was included in the related literature. The polyp is the

most popular studied GI disease, and papers proportion about

GI cancer are the second most popular studied. The rest GI

diseases are not commonly studied such as HP infection and

hookworm detection, which keep promising researches in the

future. Fig. 7 (c) shows the proportion of papers counted

according to three endoscopies. We can see that WCE is the

most popular. Fig. 7 (d), provides a statistical data of the num-

ber of related published papers vs year. The earliest research

on the application of DL methods in GI image appeared

around 2015 and the literature number keeps increasing with

year. Up to now, there have been published 11 papers related

to GI diseases this year, and according to this trend more

papers will be published in 2019. Studies [21], [23], [25],

[52], and [67] are ground-breaking works on the application

of DL techniques in GI diseases.

DLmethod requires a large number of labeled training data

sets. For example, the training dataset of AlexNet contains

1.2 million samples. Due to the high cost of manual labeling

by medical experts and the consideration of patient privacy

issues, it is difficult to obtain a large amount of labeled med-

ical image data. Unlike to skin images, eye images, MR and

CT images which are collected from the body surface, the col-

lection of GI image requires performing an endoscopy, which

involves entering a camera probe into the patient’s body.

Therefore, the data acquisition of GI image is more difficult,

and the application of DL in computer-aided GI diagnosis

is severely limited, challenging and nonproductive. Great

success has been achieved in the application of DL in other

diseases, such as eye [19] and skin diseases [18], owing to the

sufficient training data sets that contain more than 100,000

labeled images.

Moreover, detected objects in natural images are often

colorful with clear boundaries, while lesions found in med-

ical images lack a standardized, consistent shape, and do

not always have clear edges. Considering these differences

between the natural and medical images, models trained on

natural images may not be useful to assess medical images

well. Moreover, if the training data set is insufficient during

the transfer learning process, the resulting analysis may be

unremarkable. The differences among several common types

of medical images are smaller than those of natural images; if

transfer learning is performed on a foundation of the models

that are pre-trained with medical images, the results may be

better than those of directly using natural image pre-trained

models.

Insufficient image data and unbalanced samples are com-

mon problems faced by the application of DL in all kinds

of medical image analysis. Data augmentation [90] could

overcome this problem effectively and help reducing over-

fitting, and could also improve the stability and classification

accuracy at the same time [21]. Conventional data augmen-

tation methods generally include rotation, flipping, shading,

scaling, and affine transformation. Until now, there has been

no DL model that is completely trained on huge medical

image data (the data scale as ImageNet) from scratch. In all,

the application of DL in the field of medical image processing

remains immature but still has great potential. Whether a net-

work model is good or not is affected by many factors, such

as image quality, sharpness, and label accuracy that can affect

training results. The lack of a common validation frame-

work is a major problem in medical and endoscopic image

analysis [91], which limits the effectiveness of comparisons
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FIGURE 7. The statistic data of papers related to GI diseases cited in this review. (a) The paper number of different analysis tasks; (b) the
percentage of published papers relevant to different GI diseases; (c) the proportion of papers on three different endoscopic image; (d) The
number of paper published each year.

between existing methods and makes it difficult to conclude

which one contributes more to the practical and clinical appli-

cation. We hope that a large public image database (similar

to ImageNet) containing all kinds of medical images with

considerable amount of data can be built in the future, which

could provide enough data to researchers and further promote

the application of DL techniques in medical image analysis.

Thus, a new revolution in AI-based medical diagnosis could

be achieved.

DL methods can be divided into supervised learning and

unsupervised learning methods. Currently, almost all of the

deep models used in GI image processing are CNN-based

supervised learning networks, only one was based on GANs

segmentation [64]. Supervised learning requires labeled

training data, but the production of labels is subjective and

costly. There may be great visual differences among some

images of the same disease, and there may also be slight

differences among images of different diseases. As a result,

different endoscopic experts may give different labels to the

same image [92]. These controversial and incorrectly labeled

data may mislead the network and slow down the training

process. However, in unsupervised learning, which only uses

unlabeled data for training, the above problem does not exist.

An unsupervised deep network can detect subtle features that

can barely be detected by human eyes, so this kind of DL

methods is competent enough to classify these controversial

images into the correct categories. Deep networks that are

trained in an unsupervised manner may be more adaptive to a

dataset with poor labeling accuracy. In short, unsupervised

DL deserves further exploration in the field of GI image

processing.

V. CONCLUSION

GI image analysis is a new application field of DL methods.

It has not been widely applied in GI images analysis until the

last few years that a small group of scholars have tried to study

in this field.

Although some results have been achieved, the researches

related to the application of DL in this field is still rare,

and the potential of this technique is far from being fully

explored. Several aspects of DL-based GI image analysis

deserve further study: (1) Development of a 3D-CNN based

DL diagnostic system. 3D-CNN can learn more spatial fea-

tures and better encode the spatial information; (2) Devel-

opment of a real-time detection system. Many GI surgeries

are endoscopic surgeries. If real-time endoscopic diagnosis
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TABLE 7. Summary of acronyms or abbreviations and the corresponding
full names.

system can be used with high-precision and efficiency, surg-

eries could be directly performed during the examination, and

the histopathological biopsy step would no longer be indis-

pensable. Thus, the suffering of patients could be reduced;

(3) Improvement of the detection accuracy of early cancer.

As the five-year survival rate of EGC is as high as 95%,

increasing the detection accuracy and reducing the false neg-

atives rate of cancer in the early stage are critical for making

early treatment available to every early cancer patient; (4)

Development of a diagnostic system based on an unsuper-

vised learning method. Unsupervised DL diagnostic systems

can alleviate the problem brought by ‘‘no label’’ or ‘‘contro-

versial labels’’. (5) Assessment of the invasion depth of can-

cers, which is utmost important for the treat strategy of cancer

patients. (6) Development of other DLmethods such as RNNs

and GNNs, which hold promising in GI image analysis.

In short, DL is with great potential and may play an important

role in the clinical aided-diagnosis of GI in the future.

APPENDIX

Because there are so many acronyms or abbreviations in this

paper, here we summarize them with the corresponding full

name in Table 7.
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