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Abstract: Artificial intelligence has significantly enhanced the research paradigm and spectrum with
a substantiated promise of continuous applicability in the real world domain. Artificial intelligence,
the driving force of the current technological revolution, has been used in many frontiers, includ-
ing education, security, gaming, finance, robotics, autonomous systems, entertainment, and most
importantly the healthcare sector. With the rise of the COVID-19 pandemic, several prediction and
detection methods using artificial intelligence have been employed to understand, forecast, handle,
and curtail the ensuing threats. In this study, the most recent related publications, methodologies
and medical reports were investigated with the purpose of studying artificial intelligence’s role in
the pandemic. This study presents a comprehensive review of artificial intelligence with specific
attention to machine learning, deep learning, image processing, object detection, image segmentation,
and few-shot learning studies that were utilized in several tasks related to COVID-19. In particular,
genetic analysis, medical image analysis, clinical data analysis, sound analysis, biomedical data classi-
fication, socio-demographic data analysis, anomaly detection, health monitoring, personal protective
equipment (PPE) observation, social control, and COVID-19 patients’ mortality risk approaches
were used in this study to forecast the threatening factors of COVID-19. This study demonstrates
that artificial-intelligence-based algorithms integrated into Internet of Things wearable devices were
quite effective and efficient in COVID-19 detection and forecasting insights which were actionable
through wide usage. The results produced by the study prove that artificial intelligence is a promising
arena of research that can be applied for disease prognosis, disease forecasting, drug discovery, and
to the development of the healthcare sector on a global scale. We prove that artificial intelligence
indeed played a significantly important role in helping to fight against COVID-19, and the insightful
knowledge provided here could be extremely beneficial for practitioners and research experts in
the healthcare domain to implement the artificial-intelligence-based systems in curbing the next
pandemic or healthcare disaster.

Keywords: COVID-19; artificial intelligence; machine learning; deep learning; few-shot learning

1. Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an extremely
contagious disease that was detected for the very first time on 31 December 2019, Wuhan,
China [1]. It subsequently spread internationally, causing more than 547 million confirmed
infections and 6.33 million deaths, making it one of the worst diseases in human history.

Pre-COVID-19, there were three major epidemics in the twenty-first century, starting
with severe acute respiratory syndrome coronavirus (SARS-CoV) in 2002–2003. The second
one was swine flu in 2009–2010, and the third one was Middle East respiratory syndrome
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coronavirus (MERS-CoV), which started in 2015 [2]. With various warning shots for the
research community [3,4] relevant to coronavirus and its potential to cause human harm, it
was quite inconceivable that another pandemic was imminent. COVID-19 has proven to
be a challenging sickness that could present in a variety of forms and degrees of severity,
ranging from mild to severe (organ failure and death). Multi-organ failure and death
are unusual from a mild, self-limiting respiratory disease, but it can present as a severe,
progressive pneumonia. With the progression of the pandemic and the increasing number
of verified cases and people suffering from severe respiratory failure and cardiovascular
issues, there are strong grounds to be very worried about the effects of this viral infection [5].
A considerable amount of attention has been placed on identifying acceptable strategies
for addressing COVID-19-related challenges. Artificial intelligence has recently attracted
much research effort towards solving the complex issues in a number of fields, including
engineering [6–8], medicine [9,10], economics [4], and psychology [11].

From the molecular level to the most up-to-date data-driven decision-making models,
research literature and digital technologies have had significant impacts [12,13]. They are
based on the technological advancement of artificial intelligence, which is inspired by the
human brain. Artificial intelligence is the use of algorithms, models, and computer tech-
niques to realize human intelligence [14]. Significant advancements in processing power,
virtual (algorithm) dimensions, numerical optimization, and memory have enabled the
creation and implementation of cutting-edge AI solutions to combat COVID-19 throughout
the past decade. Due to their ability to swiftly adapt to ever-changing inputs, artificial
intelligence systems are useful in situations of rapid change.

Machine learning is the subset of artificial intelligence that has the ability to learn
from and make predictions based on data. Deep learning is a subset of machine learning
that uses data, weights, hyperparameters, and complex structures of algorithms modeled
on the human brain. Machine learning and deep learning have reached important mile-
stones in processing, complicated decision making, information analysis, and extremely
organized self-learning.

Several research themes are in spotlight due to COVID-19. Alballa et al. [15] exclusively
examined machine learning strategies for diagnosis, mortality, and severity risk prediction.
Napolitano et al. [12] provided an overview of COVID-19 applications, including molecular
virology, molecular pharmacology and biomarkers, epidemiology, clinical medicine, clinical
imaging, and AI-based healthcare. The authors have not clarified the limitations they
discovered in the previously mentioned areas. El-Rashidy et al. [16] explored applications of
artificial intelligence for COVID-19. This research centered on COVID-19 diagnosis, spread,
features, treatment, and vaccine development; it included a few supporting applications.
Alyasseri et al. [17] reviewed deep learning (DL) and machine learning (ML) techniques for
only COVID-19 diagnosis. Kwekha-Rashid et al. [18] reported their study of coronavirus
illness cases using just ML (supervised and unsupervised) techniques. Current restrictions
and prospective scopes have not been defined by the authors. Bhattacharya et al. [19] and
Roberts et al. [20] highlighted medical image processing applications for COVID-19 that
use deep learning and machine learning methods. We investigated supervised learning
techniques for COVID-19 forecasting, clinical-feature-based COVID-19 prediction, medical-
image-based COVID-19 detection, the immunological landscape of COVID-19 analysis, and
COVID-19 patients’ mortality-risk prediction, among others. For unsupervised learning, we
show exploratory medical image grouping, risk analysis, anomaly detection, differentiation,
patient severity detection, patient screening, and discovery of disease-related genes. Object
detection approaches we found are for COVID-19 detection and screening, infection risk
assessment, abnormality detection, body temperature measurement, personal protective
equipment detection, and social distance monitoring.

The transfer learning-based COVID-19 study we investigated included automatic
analysis of medical pictures, COVID-19 classification, identification of lung-disease severity,
and an automated COVID-19 screening model. Medical images based on COVID-19
infected area segmentation, lung and infection region segmentation, and infected tissue
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segmentation are key applications in the image segmentation sector. Detection of COVID-19
and medical image analysis are the primary applications in shot learning arena.

Our research carefully examines AI applications’ current status, identifies technical
issues and limitations, and provides instructions to overcome existing challenges. Moreover,
this comprehensive investigation will assist the research community in the upcoming
development of artificial intelligence technology for any pandemic.

The rest of this paper consists of the following sections. Section 2 presents the method-
ology of the research. Section 3 presents the supervised and unsupervised learning ap-
plications for COVID-19. Section 4 presents object detection, transfer learning, image
segmentation, and shot learning applications for COVID-19. Section 5 encompasses dis-
cussion and future work. Section 6 concludes the paper. Figure 1 shows overview of AI
approaches for COVID-19. Figures 2–8 are infographics overviews. Tables 1–4 are tabulated
summaries. Table 5 includes a meta-analysis for specific objectives. Table 6 includes current
challenges and future research directions.

Figure 1. The infographic overview of AI approaches for COVID-19. The percentage indicates the
use of AI models in diverse areas of COVID-19.

2. Methodology

A multi-step scanning strategy [21] was applied for this systematic review. We
searched relevant published literature from 2020 to 2022. Search strings consisting of
twelve keywords—namely, ‘standards’, ‘report criteria’, ‘COVID-19’, ‘artificial intelligence’,
‘machine learning’, ‘deep learning’, ‘supervised learning’, ‘unsupervised learning’, ‘transfer
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learning’, ‘object detection’, ‘image segmentation’, and ‘few-shot learning’—in several com-
binations were used. We only searched literature written in English. Initially, we selected
302 papers that matched our research criteria and after removing duplicates retained 239.
Retained papers were filtered based on titles, abstracts, contexts, and the scope of our
domain. Only 150 papers were deemed relevant to our review. We scanned the full-text
and removed ineligible papers. In addition, we included 128 papers for review. Figure 2
shows the overview of databases that were used in this review.

Figure 2. Overview of papers selected from different databases. (a) The bar plot illustrates the
numbers of papers selected from Nature, IEEE, Springer, Elsevier, MDPI, PLOS, Wily, Frontiers, and
others. (b) The pie chart shows the distribution of selected articles and conferences.

Eligibility Criteria

The selection and filtering process is summarized as follows:

• The research must have discussed AI-based devices or architectures, or systems for forecast-
ing or detecting or monitoring or managing health care conditions for COVID patients.

• A clear methodology must have been coined in terms of devices used or architectures
discussed in the studies.

• Unique, relevant, important, significant, and informative works were included.
• Relevant papers with historical insights were included in the discussion to find the

current state of research, past historical evidence, and future policy implications for
future endemics.

• Duplicate research works were excluded.
• Research work without IRB approval where a human subject was directly involved in

the study were discarded.
• Media reports, university reports, and reports with ambiguity were excluded due to

lack of clear methodology.
• Journal ranking (Q1 ≥ Q2 ≥ Q3 ≥ Q4 ≥ no − Q), impact factor, JCR, and conference

ranking by ERA and Quails (A ≥ B ≥ C ≥ Unranked) were prioritized. Papers
belonging to predatory journals were usually discarded to the best of our knowledge.

3. Machine Learning
3.1. Supervised Learning

The supervised learning technique examines the training data and develops the hy-
pothesized function to map new instances. The supervised learning-based COVID-19
studies concentrate on several fields, such as COVID-19 forecasting, clinical-feature-based
COVID-19 prediction, medical-image-based COVID-19 detection, the immunological
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landscape of COVID-19 analysis, and mortality-risk prediction of COVID-19 patients,
among others.

Cabitza et al. [22] developed blood tests that are inexpensive and deliver results
quickly for identifying COVID-19. The authors applied hematochemical results from
1624 patients hospitalized at San Raphael Hospital (52% were COVID-19 positive). For
classification purposes, they employed a variety of machine learning methods, including
logistic regression, naive bayes, k-nearest neighbor (KNN), random forest, and support
vector machine (SVM). KNN had the highest accuracy. Satu et al. [23] created a COVID-19
short-term forecasting system. The authors researched instances of COVID-19 infection in
Bangladesh. The dataset was taken from the Johns Hopkins University Center for Systems
Science and Engineering’s GitHub repository. Several machine learning methods, such
as support vector regression (SVR), polynomial regression, linear regression, polynomial
multilayer perceptron (PMLP), multilayer perceptron (MLP), and prophet, were employed
to anticipate the numbers of infected and fatal cases. Prophet had the lowest error rate for
predicting the following seven days of infection and mortality cases.

Arpaci et al. [24] developed a clinical-characteristics-based method for predicting
COVID-19 infection. The dataset included 114 cases gathered from the hospital in Taizhou,
Zhejiang Province, China. Positive and negative classes are present in the dataset. On the
basis of fourteen clinical characteristics, they utilized six classic classifiers, including a Bayes
classifier, meta-classifier, rule learner, decision tree, lazy classifier, and logistic regression.
The meta-classifier was accurate 84.21% percent of the time. The mortality prediction
approach for COVID-19 patients was examined by Chowdhury et al. [25]. The authors
utilized a dataset of 375 COVID-19-positive patients admitted to Tongji Hospital (China)
between 10 January and 18 February 2020. In addition, they studied the demographics,
clinical features, and patient outcomes of COVID-19-positive patients. They utilized the
XGBoost algorithm with several trees to forecast patient risk. Patterson et al. [26] developed
cytokines of the immunological landscape of COVID-19 utilizing algorithms for machine
learning. The synthetic oversampling approach waws applied to address the imbalance
issue. The model consists of three components: the severe disease binary classifier, the
multi-class predictor, and the post-acute sequelae of COVID-19 (PASC) binary classifier.
The authors classified data using the random forest algorithm. The accuracy of the binary
classifier for severe illness was 95%, the accuracy of the multi-class predictor was 80%, and
the accuracy of the PASC binary classifier was 96%.

To enhance patient care, Karthikeyan et al. [27] presented a COVID-19 mortality-risk
prediction approach. The dataset contained 2779 computerized records of COVID-19-
infected or suspected-to-be-infected patients from Tongji Hospital in Wuhan, China. The
prediction models utilized a combination of lactate dehydrogenase (LDH), neutrophils,
lymphocytes, high-sensitivity C-reactive protein (hs-CRP), and age extracted from blood
test data. For risk prediction purposes, the researcher used neural networks, XGBoost,
SVM, logistic regression, decision trees, and random forests. Compared to XGBoost, SVM,
logistic regression, decision trees, and random forests, the neural network obtained higher
accuracy. Marcos et al. [28], discovered early identifiers for patients who would die or
require mechanical breathing during hospitalization. The dataset consisted of 1260 verified
COVID-19 patients from Spain’s University Hospital of Salamanca and Hospital Clinic of
Barcelona. Their decision-making approach is based on clinical and laboratory characteris-
tics. The authors utilized three different classifiers: logistic regression, random forest, and
XGBoost. The three models attained area under the curve (AUC) ratings of 83 percent, 81
percent, and 82 percent, respectively. The COVID-19 patient mortality prediction system
was developed by Mahdavi et al. [29]. Between 20 February 2020 and 4 May 2020, the
authors analyzed the electronic medical data of 628 patients at Masih Daneshvari Hospital.
The dataset is divided into three sections: clinical, demographic, and laboratory. Three
SVM models were utilized by the authors. The steps were: First, providing clinical and
demographic information. The second step is to enter clinical, demographic, and laboratory
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information. Third, just enter laboratory data. Three linked models attained the highest
degree of precision.

Li et al. [30] established a COVID-19 patient mortality prediction system. In Wuhan,
China, the authors collected clinical data from COVID-19 patients. They constructed
three classification-based models. Model one was a decision tree and gradient boosting
classifier combination. Model two was a logistic regression classifier. Model three was a
logistic regression classifier with three or five features. The best accuracy was attained by
the decision tree with gradient boosting. The serum-glucose-based COVID-19 prediction
method was introduced by Podder et al. [31]. There are 5644 rows and 111 columns in the
dataset obtained from Hospital Israelita Albert Einstein in Sao Paulo, Brazil. The dataset
contains significant shortcomings, such as an imbalance between classes and missing
values. To balance the dataset, the undersampling approach was utilized. For classification
objectives, XGBoost, random forest, decision tree, and logistic regression were utilized. The
XGBoost algorithm outperformed the competition.

Chandra et al. [32] explored a categorization approach based on chest X-ray images.
COVID-Chestxray set, Montgomery set, and NIH ChestX-ray14 set are three public reposi-
tories with which datasets were compiled. The authors distinguished between nCOVID
and pneumonia, and normal and aberrant. They utilized the artificial neural network,
support vector machine (kernel: RBF, poly, linear), decision tree, k-nearest neighbor, and
naive bayes for classification purposes. Additionally, they utilized the majority voting
algorithm. Among the previously described models, the majority vote algorithm performed
the best. The short-term cumulative COVID-19 case forecasting model was introduced by
Balli et al. [33]. The dataset comprises the weekly confirmed case and cumulative confirmed
case data compiled by the World Health Organization. They utilized linear regression, MLP,
random forest, and SVM to forecast the pandemic trend. SVM has the best trend among
the listed algorithms. Li et al. [34] found unique risk variables for COVID-19 patients.
In order to train the model, the LASSO (least absolute shrinkage and selection operator)
technique was used. The authors have added blood types such as B and AB as protective
variables, and A as a risk factor. In addition to age, gender, temperature, humidity, health
expenditure, social distance, smoking, urbanization level, and race, they found a number
of other characteristics.

Kang et al. [35] established a prediction model based on clinical data for COVID-19
patients with severe symptoms. China’s Tongji Medical College-affiliated Union Hospital’s
Tumor Center created the dataset. This dataset includes 151 instances between 26 January
and 20 March 2020. They created a four-layer ANN model with six nodes in the input layer,
thirteen and thirteen nodes in the two hidden levels, and one node in the output layer. The
ANN model attained an average of 96.9 percent accuracy.

The clinical prognostic evaluation of COVID-19 patients was proposed by Kocadagli et al. [36].
The COVID-19 patient dataset was retrieved from Koc University Hospital in Istanbul, Turkey.
The data collection included symptoms, demographic features, blood test results, and illness
histories from individuals of all ages and genders. For purposes of classification, ANNs, SVMs,
and AdaBoost (weak learner: decision trees) were implemented. The best accuracy was reached by
ANNs. Udhaya Sankar et al. [37] investigated mobile voice analytic applications for COVID-19
detection. The authors did not specify the methods used or the performances of those algorithms.
Gokcen et al. [38] created artificial neural networks for detecting COVID-19 using cough data.
Experiments have utilized available speech data from the Massachusetts Institute of Technology
(MIT). Using a filter, cough sounds were cleaned, and the mel-frequency cepstral coefficient was
applied to extract characteristics. The model is comprised of four layers, with 256, 128, 64, and
1 neurons in each. The accuracy of the model was 79 percent.

Nalini et al. [39] have explored sentiment analysis of COVID-19 from Twitter. The
dataset consists of 3090 tweets in four classes: fear, sad, anger, and joy. They created
four models: bidirectional encoder representations from transformers (BERT), logistic
regression (LR), support vector machines (SVM), and long-short-term memory (LSTM).
Models produced accuracies of 89%, 75%, 74.75%, and 65% respectively.
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Table 1. The systematic overview of problems and solutions addressed through the supervised
learning methods for COVID-19.

Ref. Problem Definition ML Models Sample Performance

[40] Prediction of COVID-19
infection

Logistic regresseaturion,
Decision tree, SVM, naive

Bayes, ANN

RT-PCR test 263,007 records,
41 features

Accuracy: 94.41%, 94.99%,
92.4%, 94.36%, 89.2%

[41] The number of the positive
cases prediction method

Nonlinear regression,
decision tree, random forest

Six features (deaths,
recovered, confirmed,

amount of testing,
lockdown, lockdown

features)

MAPE: 0.24%, 0.18%, 0.02%.

[42]
Prediction model for

mortality in COVID-19
infection

SVM 398 patients (43 expired and
355 non-expired)

Sensitivity: 91%,
specificity: 91%

[43]
COVID-19 computed

tomography scan dataset
for ML

–
169 patients positive,

76 normal patients, and
60 patients with CAP

–

[44]

Risk factors analysis of
COVID-19 patients and

ARDS or no-ARDS
prediction method

Decision tree, logistic
regression, random forest,

SVM, DNN

659 COVID-19 patients and
clinical features

Accuracy: 97%, 93%, 92%,
83%, 90%

[45]
Patient intensive care and

mechanical ventilation
prediction method

Random Forest
Socio-demographic, clinical
data 212 patients (123 males,

89 females)
AUC: 80%, AUC: 82%

[46]
Prediction of COVID-19

diagnosis based on
symptoms

Gradient-boosting

Test records of
5183 individual (cough,

fever, sore throat, shortness
of breath, etc)

Sensitivity: 87.30%,
specificity: 71.98%

[20] Early risk identification of
(SARS-CoV-2) patients

Logistic regression, decision
tree, random forest, KNN,

SVM, AdaBoost, MLP

Total 198 patients
(135 non-severe, 63 severe

COVID-19)

SVM: median 96%. Other
model performance result

unclear in the paper

[47]
Chest X-ray images based

COVID-19 infection
detection

KNN, decision tree, random
forest, L-SVC, SVC

371 positive, 1341 normal
chest X-ray images

Precision : 98.96%, 94.89%,
97.58%, 99.3%, 99.66%

[48] SARS-CoV-2 pre-miRNAs
detection

KNN, RUNN-COV, logistic
regression, random forest,

SVM

positive 569 and negative
999,888 pre-miRNA samples

F1 score : 89.86%, 98.26%,
89.47%, 91.55%, 89.83%

An LSTM network-based COVID-19 cases and deaths forecast system was designed
by Yogesh [49]. The dataset was collected from the source (https://ourworldindata.org/,
accessed on 20 December 2022). The dataset contains information about cases and deaths
in Italy, France, Brazil, India, Germany, United States, and Nepal. According to the day,
there were two steps: singlestep and multistep. Multistep models had higher error values
than singlestep models. Social media-based COVID-19 sentiment analysis was done by
Mohamed et al. [50]. A bidirectional long short-term memory (Bi-LSTM) model was
employed for classification purposes. The authors used three datasets obtained from
Twitter and Reddit platforms. The dataset collection duration was 2017 to 2020. The
two Twitter datasets contain 505,243 tweets and several labels (negative, neutral, positive,
fun, surprise, etc). On the other hand, the Reddit one contains 563,079 COVID-19-related
comments. It has five labels (very positive, positive, neutral, negative, and very negative).
The proposed Bi-LSTM model has several layers, such as embedding, bidirectional, dropout,
and dense layers. The model produces highly fluctuating F1 scores.

https://ourworldindata.org/
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Pahar et al. [51] categorized the COVID-19 cough using machine learning. The au-
thors acquired the dataset via an online site. The normalization method was employed
for data preparation. Features were extracted using mel-frequency cepstral coefficients,
log frame energies, zero-crossing rate, and kurtosis. The support vector machine, logis-
tic regression, k-nearest neighbor, multilayer perceptron, convolutional neural network,
long short-term memory, and residual-based neural network architecture (Resnet50) were
utilized for classification applications. The conventional machine learning techniques
(support vector machine, logistic regression, k-nearest neighbor, and multilayer perceptron)
are extremely inefficient.

Figure 3. The percentages of various supervised learning models being used for COVID-19 tasks.

In supervised learning, Figure 3 shows the SVM contributed highest segment. In
addition, random forest, logistic regression, ANN/MLP, and decision tree contributed
15.1%, 11.8%, 11.8%, and 10.8% respectively. Table 1 presents problems and solutions
through the supervised learning methods for COVID-19.

3.2. Unsupervised Learning

Models of unsupervised learning find hidden objects, patterns, and groupings without
data labels or human interaction. Unsupervised models provide a solution for exploratory
medical picture grouping, risk analysis, anomaly detection, differentiation, patient severity
detection, patient screening, and discovery of disease-related genes.

Boussen et al. [52] created a clustering-based COVID-19 patient severity and intubation
monitoring system. Green, orange, and red are the classifications for the patient monitoring
and decision-making sections, respectively. Each group has distinct characteristics, such
as a lesser risk of intubation, a high degree of hypoxia, and the prompt consideration of
intubation for a patient in the red category. Gaussian mixture represents the clustering
model. The model achieved 87.8 percent accuracy. Zhao et al. [53] built an unsupervised
model to identify anomalous changes in PM2.5 in Chinese cities between 2017 and 2020. The
dataset is comprised of 9,721,023 samples. Encoder, decoder, and anomaly assessment make
up the method’s three blocks. This technology can help monitor air quality in response
to abrupt changes. Lai et al. [54] evaluated publicly accessible and pertinent COVID-19
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data sources, addressed the difficulty of data heterogeneity by clustering, and categorized
counties based on underlying variations. For clustering purposes, the k-means clustering
method was implemented.

Chen et al. [55] investigated the segmentation network for the COVID-19 computed
tomography (CT) infection. Data were compiled from the Italian Society of Medicine,
International Radiology, and prior research. Their dataset consists of 10,200 2D CT scans
synthesized in a laboratory. The authors utilized the unsupervised domain adaptation
learning architecture. The proposed network is divided into multiple modules, including a
feature extractor, pixel-wise classifier, and domain adaption module. Convolutional and
max-pooling layers were employed to extract features. The network’s dice performance
was 86.54 percent, its sensitivity was 85.54 percent, and its specificity was 99.80 percent.
Kurniawan et al. [56] introduced a clustering and correlation matrix-based COVID-19
risk analysis technique for pandemic nations. The authors retrieved information from
Worldometers. For clustering applications, the k-means method has been used. Five
experiments were conducted based on varying numbers of clusters. Five was the optimal
number of clusters.

Zheng et al. [57] investigated unsupervised meta-learning for distinguishing COVID-
19 and pneumonia patients. They presented a dataset consisting of 2696 images of COVID-
19 pneumonia; and 10,155 images of SARS, MERS, influenza, and bacterial pneumonia.
The data augmentation approach was employed to produce images. This framework
was comprised of two modules: one based on network-based learning and the other
on relational models. Utilizing the DenseNet-121 architecture, network-based learning
characteristics were extracted. The relation model is represented by an 8-pooling layer
network architecture. This model performs better than supervised models such DenseNet-
121, DenseNet-161, ResNet-34, and VGG-19. Oniani et al. [58] investigated relationships
between several biological entities and COVID-19. Experiments were conducted using the
CORD-19-on-FHIR dataset. T-distributed stochastic neighbor (t-SNE) and the density-based
clustering method (DBSCAN) were used for clustering purposes.

Ewen et al. [59] suggested online unsupervised learning approach for COVID-19-
CT-scan image classification. The components of online unsupervised learning include
online machine learning and unsupervised learning. In the experiment, the COVID-19-
CT-scan-images dataset from the signal processing grand challenge (SPGC) was utilized.
The dataset includes three categories: healthy, COVID-19, and CAP. The technique of
horizontally flipped data augmentation was used to increase the number of image copies.
The baseline adopted the DenseNet169 architecture. The accuracy of the proposed model
was 86.7%.

Miao et al. [60] created an unsupervised meta-learning model for the screening of
COVID-19 patients. The author gathered three datasets from publicly accessible sources,
including BIMCV-COVID19+, Kaggle-pneumonia, and CC-CXRI. The unsupervised meta-
learning model was composed of both the DL model and gradient-based optimization.
Convolution, max-pooling, and batch normalization are a few of the DL model’s layers.
This model is superior to the LeNet, Alexnet, visual geometry group (VGG), CovXNet
CNN-RNN, and EMCNet models.

Fujisawa et al. [61] examined the COVID-19 disease-related gene identification approach
using unsupervised main-component-analysis-based feature extraction (PCAUFE). PCAUFE
was applied to the RNA expression patterns of 18 healthy individuals and 16 patients with
COVID-19. The expression of RNA yielded the identification of 123 genes. The authors
classified COVID-19 patients and non-patients based on 123 genes identified by PCAUFE
using logistic regression (LR), support vector machine (SVM), and random forest (RF) models.
Three models attained areas under the curve (AUC) in excess of 90%.

King et al. [62] investigated the grouping of COVID-19 chest X-ray images using self-
organizing feature maps (SOFM). The authors obtained the dataset from a freely accessible
source. This dataset consists of two classes: infected and non-infected. They compared
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and measured the distributions of pixels in the non-infected cluster and the infected cluster
using the overlapping coefficient.

Xu et al. [63] developed an unsupervised technique for lung segmentation and pul-
monary opacity identification using CT scan images. The datasets were obtained from
Osaka University, Zhejiang University, Hangzhou Second People’s Hospital, Jingmen First
People’s Hospital, Taizhou Hospital, and Sir Run Shaw Affiliated Hospital of Zhejiang
University School of Medicine, among others. The image augmentations approach was
utilized to produce training images. The lung segmentation model had U-shaped convo-
lutional neural network (U-Net) architecture and many pre-trained encoders, including
VGG19, MobileNetV2, and ResNet50. For opacity detection, an auto-encoder based on
generative adversarial networks (GAN) was utilized. Classification techniques utilizing
support vector machine, random forest, adaptive boosting, and XGBoost were compared.
Overall, the accuracy of this method was 95.5%.

Figure 4. The percentages of various unsupervised learning models used for COVID-19.

In unsupervised learning, Figure 4 indicates k-means and meta-learning reached
18.2%. However, gaussian mixture, unsupervised domain adaptation, t-SNE, DBSCAN,
PCA, SOFM, and other models contributed 9.1%.

4. Deep Learning
4.1. Object Detection

Every object has distinguishing qualities and unique characteristics. The object de-
tection methods are comprised of mathematical models and millions of parameters that
are used to learn characteristics from objects and discover new instances. The object de-
tection models have demonstrated possible applications in the COVID-19 domain, such
as COVID-19 detection and screening, infection risk assessment, abnormality detection,
body temperature measurement, personal protective equipment detection, and social
distance monitoring.

Huang et al. [64] created a YOLO v4-based object detection method for multiplexed
circular-flow immunoassay test strips that can rapidly measure and distinguish antibodies
that bind the membrane glycoprotein of severe acute respiratory syndrome coronavirus 2.
The lateral flow immunoassays are comprised of many pads, including sample, conjugate,
absorbent pads, and nitrocellulose membrane. To evaluate the model, the authors did not
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provide any assessment measures. Xu et al. [65] investigated a location-attention technique-
based screening method to differentiate COVID-19 from influenza-A viral pneumonia
(IAVP) and healthy patients using lung CT scans. The collection comprises 618 CT images:
219 with COVID-19, 224 with IAVP, and 175 from healthy individuals. Utilizing random
clipping, up–down flipping, left—right flipping, and mirroring, photos were enhanced.
The location-attention technique was introduced to the ResNet-18 backbone by the authors.
The noisy OR Bayesian function has been utilized to assess infection kind and overall
confidence score. The total accuracy of the method was 86.7 percent.

Bhuiyan et al. [66] presented detection methods for face masks. Web-sourced data
collection included 300 mask and 300 no-mask entries. To recognize face masks, the you
only look once version 3 (YOLOv3) method was implemented. The LabelIMG software tool
was used for image annotation purposes. The model achieved a classification and detection
accuracy of 96%. Face recognition, mask detection, and social distancing monitoring
were adopted by Vergin et al. [67] to decrease the propagation of the virus and human
participation. The dataset comprises 200 face picture samples, 700 individuals wearing
masks, and 700 individuals without masks. The authors further utilized the Microsoft
Common Objects in Context (MS-COCO) and Visual Object Classes Challenge 2007 and
2012 (VOC0712) datasets. Utilizing a binary patterns histograms technique to recognize
the face, MobileNetV2 transfers knowledge architecture to detect masks and a single
shot detector to monitor social distance. The article lacks performance reports. Sandeep
et al. [68] established a mask-detection approach through AlexNet and CNN. However,
the authors used two datasets, the Real-World Masked Face Dataset (RMFD) and CelebA.
The CNN consists of fifteen layers, including convolutional, max-pooling, flatten, dropout,
and dense. This paper did not have a confusion matrix; even though their accuracy and
precision were extraordinary, recall was dramatically worse. Hybrid deep transfer learning
and machine learning-based face mask detection model were developed by Mohamed
et al. [69]. The datasets were collected from three different sources: RMFD, the Simulated
Masked Face Dataset (SMFD), and Labeled Faces in the Wild (LFW). The model has two
blocks: a feature extraction block and a decision-making block. Resnet50 was employed
for extracting features and the rest of them for decision-making (decision trees, SVM). The
model produced remarkable accuracy. Similar studies were done by Jonathan et al. [70],
who created facial recognition systems individuals with and without face masks. The
dataset consists of 13,359 images: 7067 with a face mask and 6292 without a face mask.
MobileNetV2 was used for classification and FaceNet for face recognition purposes. The
model achieved an overall accuracy of 99.52%.

Hou et al. [71] described a method for detecting social separation using the video
frame. The YOLOv3 model was utilized to identify bounding box coordinates, object
confidence, and class label probabilities. There are no assessment metrics presented. Al-
Antari et al. [72] investigated the object detection technique for chest X-radiation (X-ray)
images. COVID-19, masses, effusion, pneumonia, atelectasis, infiltration, pneumothorax,
cardiomegaly, and nodules are the nine distinct items included in the dataset. Utilization of
you only look once (YOLO) architecture for training purposes. The model obtained 90.67
percent detection accuracy and 97.40 percent classification accuracy. Al-Antari et al. [73]
performed work that was similar. The collection is comprised of 326 chest X-ray images
from two distinct sources: Qatar University and the public dataset. They have utilized the
YOLO object detector as well. This computer-aided design (CAD) framework achieved
detection and classification accuracy of 96.31 percent and 97.40 percent, respectively.

Rezaei et al. [74] recommended using closed-circuit television (CCTV) security cameras
for social distancing monitoring and infection risk assessment (COVID-19). The suggested
model has many components, including CSPDarknet53, neck, and head. The CSPDarknet53
consists of two components: CNN (you only look once, version 4) and the pre-trained
Darknet53 model. The YOLOv3 model is present in the spatial pyramid pooling (SPP), path
aggregation network (PAN), spatial attention module (SAM), and head block components.
For training purposes, Microsoft Common Objects in Context (MS COCO) and Google
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Open Picture datasets were utilized. For assessment reasons, the Oxford Town Centre
dataset was utilized. The model achieved 99.8 percent accuracy. Li et al. [75] created the
COVID-19 categorization and detection method using chest X-ray images. The dataset
was obtained via Kaggle. There are other classifications within the dataset, including
negative for pneumonia, indeterminate, typical, and unusual appearance. You only look
once, version 5 (Yolov5), was utilized for target location detection. The authors evaluated
the precision using Faster RCNN and EfficientDet as comparisons. The suggested Yolov5
model exceeded expectations.

Yoshitsugu et al. [76] identified the symptoms and localized the afflicted region
of COVID-19. The dataset comprises 6334 chest X-ray scans divided into four classes:
pneumonia-free, usual appearance, uncertain appearance, and atypical appearance. Utiliz-
ing an EfficientNetB7 backbone for image classification applications, YOLOv5 was used to
detect and localize symptoms.

Table 2. The overview of applied object detection methods for COVID-19.

Ref. Problem Definition Architecture Sample Performance

[77]
COVID-19 detection

through the chest X-ray
images

DarkNet-53 + YOLO-v3

4 classes (194 COVID,
1772 bacterial pneumonia,

583 normal, 493 viral
pneumonia cases) 2 classes

(2848 non-COVID,
194 positives, samples)
Dataset augmentation

applied

Accuracy (97.11 ± 2.71%)
multi-class, 99.81% binary

class

[78]
Social distancing monitoring

system using mass video
surveillance

Faster R-CNN, YOLO, SSD
PASCAL-VOC, MS-COCO,
vision-based social media

event analysis
mAP 86.8%, 84.7%, 44.5%

[79] Personal protective
equipment detection YOLOv4

5327 images (face mask and
shield, no face mask, hand

gloves)
Precision 78%

[80] Detecting COVID-19 related
CT abnormalities RetinaNet

DeepLesion, 32,120 axial CT
slices (liver, lung, bone,
abdomen, mediastinum,
kidney, pelvis, and soft

tissue)

mAP 91.28% (internal
testing), 87.83%

(External-Set-1), 71.48%
(External-Set-2), 83.04%

(External-Set-3)

[81]
Social distancing detector

through thermal images or
video streams

YOLOv2, Fast R-CNN,
R-CNN

1575 (Various scenarios
while walking, different
body positions, running,

sneaking, and and different
motion speeds)

Accuracy 95.6%, 91.2%,
88.5%, (Dataset II 94.5%,

90.5%, 86.5%)

[82]

Detection of masks and
human eye areas.

Measurement of body
temperature through

thermal cameras

YOLOv5, Resnet-50

Dataset Celeba, Coco, Helen,
IMM, Wider, Group Images,

IIITD and beyond visible
spectrum disguise,

UL-FMTV, Terravic Facial
Infrared, IRIS

Precision 96.65%, 78.7%

[83]

The indoor distance
measurement method

through the closed-circuit
television

DeepSORT, YOLOv3,
YOLOv4 MS COCO dataset

Accuracy (4FPS10 62.5%,
4FPS24 93.7 4FPS35 78.9%

4FPS50 83.3%) mAP
30.4%, 42.1%

[84] Data labeling and
annotation framework mask R-CNN

750 CT images (COVID-19
positive, COVID-19

negative)

Accuracy (train, validation,
and test 99%, 93.1%,

and 0.8%)
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The performance of the classification model exceeds that of the object detection model.
COVID-19 lesion detection was created by Nurmaini et al. [85] utilizing CT scans. The
dataset contains 419 CT scan images of SARS-CoV-2 infected individuals and 200 CT scan
images of healthy individuals. The architecture is comprised of CNNs and Faster RCNNs.
The CNN model consists of thirteen convolution layers and four maximum polling layers.
The suggested model attained a mean average accuracy of 90.41 percent (mAP). COVID-
19 classification and localization methodology was developed by Rajaraman et al. [86].
The authors used six different datasets, including Pediatric CXR, RSNA CXR, CheXpert
CXR, NIH CXR-14, Twitter-COVID-19 CXR, and Montreal-COVID-19 CXR. The model
has various steps: segmentation block, repeated specific transfer learning models, and
class-selective relevance mapping (CRM)-based region of interest (ROI) localization. The
custom U-net architecture was designed for segmentation purposes. VGG-16, VGG-19,
Inception-V3, Xception, DenseNet-121, NasNet-Mobile, MobileNet-V2, and ResNet-18 were
applied for knowledge transfer purposes. The CRM-based ROI localization have been
applied to interpret predictions of individual convolutional neural networks and compare
against the ground truth.

Using chest X-ray images, Saiz et al. [87] created the COVID-19 position detection algorithm.
They collected data from Kaggle and GitHub. This set possesses two classes: one standard and
the other COVID-19. They used a single-shot detector architecture to detect the position of an item.
VGG-16 is the foundation of the single-shot multi-box detector network (SSD300). The model
achieved a sensitivity of 94.92 percent and a specificity of 92 percent.

Figure 5. The rate of percentages are used in various object detection models for COVID-19. The
most used models are shown in a sub-chart for proper visualization.

Loey et al. [88] suggested a method for detecting medical face masks. The data
collection included 1535 images. To enrich the dataset, the data augmentation approach



Sensors 2023, 23, 527 14 of 35

was utilized. ResNet-50 architecture is used to extract features, and the YOLO v2 method is
used to recognize medical face masks. The model’s average degree of accuracy was 81%.

Li et al. [89] revealed severe instances and minor symptoms based on the identification
of COVID-19 using CT scans of the lungs. The dataset was acquired from Zhongnan
Hospital Wuhan University and the Italian Society of Medical and Interventional Radiology.
The model is composed of the network-in-network technique with instance normalization.
ResNet was used in COVID-19 CT images to extract features. The performed a performance
comparison of domain-adaptive Faster R-CNN, Faster R-CNN, and few-shot adaptive
faster R-CNN architectures. Their proposed model was superior.

In object detection, YOLO, SSD, and R-CNN were the major applied models. Figure 5
shows YOLO base models contributed 50%, then R-CNN 28.9%, SSD and others models
contributed 10.5%. Table 2 presents a systematic overview of object detection methods for
COVID-19.

4.2. Transfer Learning

Transfer learning applies a previously-trained model to a new problem, which is more
accurate, quicker, and requires less training data. The transfer learning-based COVID-19
study includes automatic analysis of medical pictures, COVID-19 classification, identifica-
tion of lung disease severity, and the automated COVID-19 screening model.

De Moura et al. [90] established automated classification methods for chest X-ray
images. There are three groups in the dataset: COVID-19, pneumonia, and healthy patients.
To enhance the visual data, the scaling with horizontal flipping augmentation approach
was used. The authors employed six deep learning architectures for classification, includ-
ing DenseNet-121, DenseNet-161, ResNet-18, ResNet-34, VGG-16, and VGG-19. When
detecting COVID-19 pneumonia lessons, their method earned a 97.44 percent accuracy rate.

Abbas et al. [91] introduced a transfer learning-based CNN-based self-supervised
sample decomposition method. Three datasets from various sources were utilized. The
steps of this approach include sample decomposition, pretext training, and downstream
task. Knowledge-transfer-pre-trained backbones such as ResNet18, GoogleNet, and VGG19
were utilized by the authors. The suggested model with the ResNet18 backbone exceeded
expectations. Rehman et al. [92] investigated an CT and X-ray image-based categorization
technique. The dataset includes 200 COVID-19, 200 viral pneumonia, 200 bacterial pneumonia,
and 200 X-ray and CT images of healthy individuals. This research applied nine deep trans-
fer learning architectures, such as Aexnet, SqueezeNet, GoogLeNet, VGG16, MobileNetv2,
ResNet18, ResNet50, ResNet101, and DenseNet201. The total accuracy of the model was
98.75 percent. Ahuja et al. [93] reported a technique for detecting COVID-19 utilizing CT
scan images and transfer learning. Two classes comprised the dataset: positive and normal.
Data enhancement was utilized to boost the quantity of photographs. To transmit knowl-
edge, ResNet18, ResNet50, ResNet101, and SqueezeNet designs were utilized. ResNet18 was
utilized to determine the localization of abnormalities. ResNet18 performed better overall.

Shamsi et al. [94] created an uncertainty-aware transfer learning framework for de-
tecting COVID-19 utilizing X-ray and CT images. The dataset was compiled from several
sources. Four deep learning architectures, including InceptionResNetV2, VGG16, ResNet50,
and DenseNet121, were utilized to extract features. To identify COVID-19 instances, ex-
tracted features were analyzed by many machine learning algorithms, including k-nearest
neighbors (KNN), SVM, gaussian process, neural network (NN), random forest, adaboost,
and naive bayes. The ResNet50 architecture with SVM and NN beat the competition.

To categorize chest X-ray images, Bassi et al. [95] built dense convolutional networks
with transfer learning. There are three classifications in the dataset: COVID-19, pneumo-
nia, and normal. The model contains two deep learning backbones, DenseNet 201 and
DenseNet 121. They utilized twice transfer learning with output neuron technique to boost
performance. Jaiswal et al. [96] examined the COVID-19 identification approach based on
transfer learning. The authors acquired 2492 CT scan images from Kaggle for the dataset:
1262 are positive; 1230 are negative. To transfer information, four deep learning models,
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including VGG-16, ResNet152V4, InceptionResnetV2, and DenseNet201, were utilized.
DenseNet201 outperformed VGG-16, ResNet152V2, and InceptionResnetV2 structures.

Table 3. The overview of existing transfer learning applications for COVID-19.

Ref. Problem Definition Architecture Sample Performance

[97] COVID-19 classification DensetNet201, ResNet101,
CCSHNet

Category (COVID-19, CAP,
SPT, HC) total 1164 CCT

images

F1 score 95.53%, 96.74%,
97.04%

[98]

The deep transfer learning
technique has used to

classify COVID-19 infected
patients

(CNN+ ResNet-50) 413 COVID-19 (+),
439 normal or pneumonia

Accuracy 93.01%, sensitivity
91.45%

[99] An automated COVID-19
screening model CNN, VGG-16 ResNet-50

219 COVID-19 positive,
1345 pneumonia infection

and 1341 no infection

Accuracy 89.16%, 96.01%,
93.29%

[100]

Hybrid deep transfer
learning-based COVID-19

positive cases detection
using chest CT X-ray images

AlexNet, BiLSTM
COVID-19 219, Viral

Pneumonia 1345, Normal
1341

Accuracy 98.14%, 98.70%

[101]

Transfer knowledge-based
chest X-ray images

classification. Random
oversampling was applied

to overcome the class
imbalance problem

ResNet, Inception v2,
(Inception + ResNet-v2),

DenseNet169,
NASNetLarge

COVID-19 108, other
pneumonia 515, normal 533,

tuberculosis 58

F1 sore 56%, 74%, 96%, 95%,
98%

[102]

GAN with deep transfer
learning technique for

coronavirus detection in
chest X-ray images

Alexnet, Googlenet,
Restnet18

Total 307 X-ray images
(COVID-19, normal,

pneumonia bacterial, and
pneumonia virus)

Binary classes accuracy
(99.6%, 99.9%, 99.8%)

[103] Two-step transfer learning
for COVID-19 detection ResNet34 COVID-19 189, pneumonia

252, Normal 235 images Accuracy 91.08%

[104]

Deep transfer
learning-based COVID-19

detection using X-ray
images

DenseNet201, Resnet50V2
and Inceptionv3

COVID (+) 538,
COVID (−) 468

Accuracy 91.11%, 91.11%,
90.43%

[105] COVID-19 screening in
chest X-rays images

EfficientNet B0, EfficientNet
B1, EfficientNet B2,

EfficientNet B3, EfficientNet
B4, EfficientNet B5,

MobileNet, MobileNet V2,
RESNET 50, VGG-16,

VGG-19

13,800 X-ray images,
Healthy, non-COVID-19
pneumonia, COVID-19

patients

Accuracy 90.0%, 91.8%,
90.0%, 93.9%, 93.0%, 92.2%,
90.4%, 90.0%, 83.5%, 77.0%,

75.3%

[106]

Multiple Kernels-Extreme
Learning Machine-based

DNN system to detect
COVID-19 disease from CT

scan images

AlexNet, GoogleNet,
VGG16, MobileNetv2,
ResNet18, Inceptionv3

(DenseNet201+ MK-ELM)

349 images of COVID-19
and 397 images of
no-findings (data

augmentation was applied
to expand the dataset)

Accuracy 90.34%, 92.86%,
92.65%, 93.19%, 92.22%,

92.54%, 98.36%

Horry et al. [107] developed transfer learning for COVID-19 identification through
X-ray, ultrasound, and CT scan images. To eliminate sampling bias, a normalization func-
tion and the contrast-limited adaptive histogram equalization (N-CLAHE) approach were
utilized. To enrich the data, techniques such as horizontal flip, horizontal and vertical shift,
and rotation were utilized. For training models, the VGG16, VGG19, ResNet50 V2, Incep-
tion V3, Xception, InceptionResNet V2, NasNetLarge, and DenseNet 121 deep learning
backbones were deployed. The VGG19 model attained the highest precision of 86% for
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X-rays, 84% for CT scans, and 100% for ultrasound. Zhu et al. [108] investigated convo-
lutional neural network (CNN) and knowledge-based transfer (VGG16) to predict lung
disease severity scores. One-hundred and thirty-one chest X-ray images from 84 COVID-19-
positive individuals make up the dataset. Conv2D, BatchNormalize, MaxPool2D, Flatten,
Dropout, and Dense are the 15 CNN layers. The authors compared CNN and VGG16
models’ performances. The VGG16 architecture was superior.

Figure 6. The percentages of various transfer learning models used for COVID-19.
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Using chest radiographic images, Gianchandani et al. [109] developed a deep trans-
fer learning-based COVID-19, viral pneumonia, and bacterial pneumonia classification
technique. For experimental purposes, two datasets were utilized, one from Kaggle and
the other from the University of Dhaka and Qatar University. For classification objectives,
VGG16, ResNet152V2, InceptionresNetV2, DenseNet201, and the suggested ensemble
(VGG16+DenseNet) were employed as deep learning backbones. Multiple dense, rectified
linear unit (ReLU) activation, and dropout layers were added to the aforementioned DL
models. The accuracy of VGG16+DenseNet was 96.15 percent.

Hira et al. [110] reported a technique based on deep learning to distinguish COVID-
19 illness patients from bacterial pneumonia, viral pneumonia, and healthy cases. To
enhance the image in the pre-processing phase, random horizontal flipping and random
cropping were implemented. For binary and multiclass classification, the pre-trained
models Inception ResNetV2, ResNeXt-50, GoogleNet, ResNet-50, Se-ResNet-50, AlexNet,
Inception V4, DenseNet121, and Se-ResNet-50 were utilized. Among all the pre-trained
models, the Se-ResNeXt-50 architecture had the highest accuracy for binary class and
multi-class classification.

Ibrahim et al. [111] investigated the classification approach for chest X-ray images
using the AlexNet architecture. The dataset includes 11568 images divided into four cate-
gories, including COVID-19, bacterial pneumonia, non-COVID-19 viral pneumonia, and
normal CXR. Binary to multiclass classification was applied for classification purposes.
The classification method with the highest accuracy was binary. Using chest X-ray images,
Kamal et al. [112] constructed eight transfer knowledge architectures for COVID-19 clas-
sification. The dataset consists of 760 images classified into four categories: COVID-19,
pneumonia, healthy, bacterial pneumonia, and viral pneumonia. For detecting purposes,
eight pre-trained models were employed, including ResNet50, ResNet50V2, VGG19, In-
ceptionV3, MobileNet, MobileNetV2, DenseNet121, and NasNetMobile. DenseNet121
outperformed the others.

Deep transfer learning classification techniques using meta-heuristic algorithms were
created by Canayaz et al. [113]. The dataset includes three image classes: COVID-19,
normal, and pneumonia. X-ray image characteristics were extracted utilizing AlexNet,
VGG19, GoogleNet, and ResNet. Effective features were chosen using binary particle swarm
optimization (BPSO) and binary grey wolf optimization (BGWO) metaheuristic methods.
Selected characteristics were classified using the SVM method. The performance of the
suggested model using the VGG19 architecture was superior. Das et al. [114] devised an
algorithm for the automated analysis of chest X-ray images. CNN and deep transfer learning
blocks are included in the suggested approach. CNN has initially extracted characteristics
from chest X-ray scans. They utilized the Xception architecture to communicate knowledge.
The suggested model was compared against SVM, random forest, backpropagation network,
adaptive neuro-fuzzy inference system, CNN, VGGNet, ResNet50, Alexnet, Googlenet, and
Inceptionnet V3. The proposed model gained improved precision.

The COVID-19 detection method was created by Rodriguez et al. [115] using spec-
trograms of coughing, sneezing, and other respiratory sounds. The dataset contains two
labels, sick and not sick, gathered by the pharmaceutical manufacturer Pfizer in the United
States. To train the model, an Xception pre-trained architecture was utilized. As a result of
the overfitting problem, the model achieved poor performance.

Loey et al. [116] created a categorization algorithm of COVID-19 cough sound symp-
toms using scalogram images. This methodology ran its tests using the COUGHVID
dataset. There are 755 COVID-19 and 702 healthy wave cough sounds in the collection.
Data categorization was performed with GoogleNet, ResNet18, ResNet50, ResNet101, Mo-
bileNetv2, and NasNetmobile architectures. The ResNet18 design achieved high precision.
Imran et al. [117] investigated the COVID-19 screening application by analyzing cough
sounds. The authors utilized the ESC-50 sound dataset, which included 96 bronchitis
coughs, 130 pertussis coughs, 70 COVID-19 coughs, and 247 normal coughs. Mel frequency
cepstral coefficients (MFCC) and principal component analysis were used to extract features
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(PCA). The sound data was transformed into a mel-spectrogram, which represents the
frequency spectrum. The presented model was divided into three parts: a deep trans-
fer learning-based multi-class classifier, a classical machine learning-based multi-class
classifier, and a deep transfer learning-based binary class classifier. This article does not
specify which transfer learning model was used. The random undersampling approach
was utilized to rectify the imbalance; however, information loss is a worry. Support vector
machine classification model for structural data.

For transfer learning, Figure 6 illustrates ResNet based models achieved highest
proportion in COVID-19 context. Nevertheless, VGG, DenseNet, and inception based
models contributed 15.3%, 13.7%, and 9.9% respectively. Table 3 presents summary of
transfer learning applications for COVID-19.

4.3. Image Segmentation

The segmentation approach provides the grouping of similar regions or segment maps
as outputs corresponding to the input. Medical images based on COVID-19 infected area
segmentation, lung and infection region segmentation, and infected tissue segmentation
are key applications in this sector.

Saeedizadeh et al. [118] investigated the segmentation framework for COVID-19 chest
area detection using CT images. The dataset was compiled from several sources. The
authors created a TV U-Net architecture that resembles a U-Net design. Nine hundred
images were utilized for the aim of evaluating models. The TV U-Net model earned a mIoU
rate of 99 percent and a dice score of around 86 percent. Ma et al. [119] in the Corona Cases
Initiative and Radiopaedia compiled a dataset with 300+ illnesses and 1800+ slices. Task
one, three-class segmentation, including lung, infection, or both, was based on restricted
annotations. Task two, two-class segmentation consisting of lung and infection, was based
on non-COVID-19-CT-scan images. The third task, two-class segmentation—healthy lung
and infected lung—was based on COVID-19 and non-COVID-19-CT-scans. Average dice
similarity coefficient (DSC) scores for their model were 97.3%, 97.7%, and 67.33%.

Yazdekhasty et al. [120] demonstrated COVID-19-infected lung segment areas. The
dataset was compiled from two sources open to the general public. The author has created
a U-Net-based, two-dimensional model for two distinct segmentation kinds. One decoder
was for the healthy lung area and another for the diseased lung region. The design
comprised four building blocks: a decoder, two parallel encoders with a split structure,
and a merging encoder. The model’s sensitivity was 74.9 percent, and its specificity was
99.7 percent. Ranjbarzadeh et al. [121] investigated CNN-based COVID-19 CT images that
autonomously partition diseased lung tissues. The dataset was compiled from two sources
open to the general public. They implemented fuzzy c-means clustering and local directed
pattern encoder algorithms for performance enhancement. The model scored 96 percent
accuracy, 97 percent recall, and 97 percent F-score.

Zheng et al. [122] designed the three-dimensional (3D) CU-Net architecture to detect
COVID-19-infected regions in 3D chest-CT-scan images. The model of 3D CU-Net was
built on a 3D U-Net architecture. Rich features were extracted with the aim of performance
enhancement. Three variations of the model exist: 3D U-Net, 3D CU-Net (α = 0.5, β = 0.5),
and 3D CU-Net (α = 0.3, β = 0.7). Chen et al. [123] investigated 3D U-Net architecture for
COVID-19 segmentation using CT images. This work was evaluated using both public and
private datasets. The private dataset contained 89 COVID-19 infection records. The public
dataset had 1700 data points. Combination loss and data augmentation strategies were
introduced to enhance the training impact. In comparison to other methods, the model
yielded amazing results. Yan et al. [124] reported a 3D-based CNN segmentation approach
for COVID-19-infected chest CT images. The collection included 165,667 annotated chest
CT images from 861 COVID-19-positive individuals. The authors created the FV block
that modifies the global parameters of the features for adaptively segmenting COVID-19
infection. The COVID-19 segmentation model received a dice score of 72.6%, whereas lung
segmentation had a die score of 98.7%.
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Frid-Adar et al. [125] examined the identification, segmentation, and grading of
COVID-19 pneumonia in chest X-ray images. The authors employed a two-stage training
approach for detection and segmentation. The ResNet50 model was employed for detec-
tion purposes. For segmentation purposes, a modified U-Net with pre-trained VGG-16
architectures was employed. Degerli et al. [126] suggested X-ray images based on the
production and detection of the COVID-19 infection map. They are architectures that
integrate segmentation and detection. For segmentation purposes, the U-Net, UNet++,
and deep layer aggregation (DLA) algorithms were utilized. For detection purposes, the
CheXNet, DenseNet-121, Inception-v3, and ResNet-50 algorithms were used. The model
attained a sensitivity of 94.96 percent and a specificity of 99.88 percent.

Table 4. Review of image segmentation applied applications for COVID-19.

Ref. Problem Definition Architecture Sample Performance

[127] CT image segmentation and
classification

Dual path Network
(DPN)-92, Inception-v3,

ResNet-50, and Attention
ResNet-50 FCN-8s, V-Net,

U-Net, 3D U-Net++

Segmentation (positive 877,
negative 541) Classification
(positive 718, negative 70,

and other diseases 343)

Sensitivity 97.4%,
Specificity 92.2%

[128]
Automatic segmentation of
lung opacification from CT

images

SCOAT-Net, PSPNet,
ESPNetv2, DenseASPP,
UNet+, DeepLabV3+,

U-Net, COPLE-Net, CE-Net,
Attention U-Net

Two patients scanned at
different times, and Kaggle

dataset

Proposed model (DSC
88.99%, Sensitivity 87.85%,

PPV 90.28%)

[129] COVID-19 lesion
segmentation in CT slices

Dilated dual attention
U-Net architecture with a

ResNeXt-50

Three open-source datasets
total 1645 slices Dice 72.98%, recall 70.71%

[130] Segment the radiological
images

Superpixel based fuzzy
modified flower pollination 115 CT scan images —

[131] ML and DL-based classifier
with CT image opacity map

3D neural network,
DenseUnet 2446 chest CTs images AUC 93%, sensitivity 90%,

specificity 83%

[132]

Multi-point supervision
network for segmentation of

COVID-19 lung infection
using CT image

U-Net based (MPS-Net) 300 CT images
Dice 83.25%, sensitivity

84.06%, specificity 99.88%,
IOU 74.2%

[133]

Binary and multi-class
detection and labeling of

infected tissues on CT lung
images

SegNet and U-NET 100 CT images

Binary segmentation
(SegNet) 95%, multi-class

(U-NET) 91% mean
accuracy

[134]
Lung and lobar

segmentation of CT images
in patients with COVID-19

Seg3DNet

A combination of human
and animal 3D CT images.
1453 for training, 7998 for

evaluation

Dice coefcient of
0.985 ± 0.011

[135]

The segmentation and
classification of COVID-19

using chest X-ray (CXR)
images

U-Net 1645 CXR images F1-Score (binary 88%,
multiclass 83%)

[136]
COVID-19 classification

using plain and segmented
lung CXRs

U-Net, Modified U-Net COVID-19 3616, Normal
8851, Non-COVID 6012 Dice 96.3%, 96.94%

Fung et al. [137] described a two-stage deep learning algorithm for segmenting COVID-
19 chest CT images. They implemented three models for segmentation: U-net, single
SInfNet, and SSInfNet. The SSInfNet model consists of one U-net and one SInfNet. The
single SInfNet model fared better. Wu et al. [138] presented a combined classification and
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segmentation method for the COVID-19 chest CT diagnosis. They produced a big dataset
consisting of 144,167 chest CT scans of 400 COVID-19 patients and 350 uninfected cases.
There were 3855 CT scans from 200 COVID-19 patients. The Res2Net classification model
was utilized for classification purposes. In the encoder block, the VGG-16 model was uti-
lized. Encoder and decoder blocks utilized a U-shaped design. The model achieved 95.0%
classification sensitivity and 93.0% classification specificity. The score on the segmentation
dice was 78.5 percent.

Laradji et al. [139] presented a consistency-based loss function for the segmentation of
COVID-19 in CT images. The model consists of two branches, the first of which encodes,
and the second decodes the altered input. The authors employed three open-source medical
segmentation datasets for assessment purposes. CB (Flip, Rot) + PL identified the suggested
model with superior performance.

Wang et al. [140] suggested a method for learning using a hybrid encoder. The authors
gathered data from four distinct sources, including the Corona Cases Initiative and Radio
Media, Medical Segmentation Decathlon (MSD) Lung Tumor, Structseg Lung Cancer, and
Non-Small Cell Lung Cancer (NSCLC) databases. For encoder–decoder blocks, the 3D
U-Net architecture was utilized. The authors utilized transfer learning techniques, such as
continuous learning, body fine-tuning, and pre-trained lesion representations. The model
attained DSC values of 0.704, normalized surface distance (NSD) values of 0.735, sensitivity
values of 0.682, F1-score values of 0.707, accuracy values of 0.994, and MCC values of 0.716.

Figure 7. The percentages of segmentation models applied for COVID-19.
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Using a chest CT image, Oulefki et al. [141] created an algorithm for the segmentation
and quantification of COVID-19 lung infection. This approach combines linear and loga-
rithmic stitching with multilayer, parametric thresholding. The author proposed a superior
method to U-Net, Attention-UNet, Gated-UNet, Dense-UNet, U-Net++, Inf-Net GraphCut,
Watershed, and medical image segmentation (MIS) designs.

For COVID-19 diagnosis, Gao et al. [142] developed dual-branch combination net-
work (DCN) classification and lesion segmentation algorithms. For validation purposes,
internal and external datasets were utilized. The external dataset includes CT images
from 1795 people. The concept is comprised of numerous components, including U-net,
ResNet-50, and fully linked three-layer networks. ResNet-34, ResNet50, ResNet101, VGG-
16, and DenseNet-121 were the conventional deep learning models used in the performance
comparison. Their U-net and ResNet-50 hybrid model surpassed the competition.

U-Net-based models were the major driven method for image segmentation. Figure 7 reveals
U-Net based model contributed 55.4% in this domain. However, DeepLabv3/DeepLabv3+, CNN,
FCN-8, SegNet, supervised InfNet and other models contributed rest of the proportion.
Table 4 presents overview of image segmentation applied methods for COVID-19.

4.4. Few/One-Shot Learning

Unlike humans, machine learning and deep learning models require a huge number
of instances in order to tackle novel problems. The shot learning technique can learn items
from one or a small number of samples. Detection of COVID-19 and medical image analysis
are the primary applications in this arena.

Aradhya et al. [143] developed a cluster-based one-shot learning technique for recog-
nizing COVID-19 in chest X-ray images. A generalized regression neural network (GRNN)
and probabilistic neural network (PNN) were used to form the model (PNN). For their
investigation, the authors utilized 306 images divided into four classes. For model assess-
ment, they offered five clusters based on class and image sample variation. The model’s
detection accuracy ranged from 61.84 percent to one hundred percent.

Using Siamese networks, Jadon et al. [144] investigated a few-shot learning approach
for detecting COVID-19. They utilized two datasets, one from various Asian universities
and the other from the University of Montreal. The Siamese networks have identical char-
acteristics and weight distributions. The Siamese networks attained a detection accuracy of
94.6 percent.

Jiang et al. [145] reported a COVID-19 CT diagnosis approach based on supervised
domain adaptation. The authors’ network architecture was Siamese. The suggested method
consists of three branches: the source branch, the target branch, and the prediction branch.
They used five cases with shot numbers 1, 3, 5, 7, and 9 for assessment reasons. The model’s
accuracy was 80.40 percent, and its F1 score was 79.98 percent.

The few-shot-learning-based double-view matching network that identifies COVID-19 in
X-ray images was built by Szűcs et al. [146]. The network for matching is comprised of metric
learning and the lazy learner. The authors utilized 680 data from 15 classes for experimentation
purposes. Their custom model outperformed both the matching network and the KNN.

Aradhya et al. [147] suggested one-shot learning for chest X-ray image categorization.
One-shot learning is comprised of probabilistic neural networks and entropy used to
describe the input image’s texture. Note that 300 and 24,314 images were examined for
training and testing, respectively. The model scored 96.4 percent precision, 96.6 percent
recall, 96.0 percent F-measure, and 96.4 percent accuracy.

Chen et al. [148] investigated the categorization of COVID-19 utilizing chest CT scans
based on a few training sample shots. For random cropping and random cropping with color
distortions, the authors utilized a stochastic data augmentation approach. The model includes
the encoder, projection head, and contrastive loss function, among other components. They
compared its performance to those of conventional deep learning models, such as ResNet-50
and DenseNet-121. The suggested model was 86.8 percent accurate.
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Shorfuzzaman et al. [149] introduced automated COVID-19 case detection. The model is
composed of metric-based methods, such as the Siamese network. Nearest neighbor approaches
and kernel density estimates make up the components of metric-based methods. Utilizing
a convolutional neural network, the characteristics of two images were extracted, and their
similarity determined. Thirty and six-hundred and forty-eight CXR images were considered
for training and testing, respectively. The performance of the suggested Siamese network
model is superior to that of existing CNN models, including InceptionV3, Xception, Inception,
ResNetV2, and VGG-16.
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Table 5. Meta-analysis.

Objective Reference Number of Studies Main Reason for Implementation Technical Issue Faced

Medical Image Analysis
[32,43,47,55,57,59,60,62,63,65,72,73,75–

77,80,84–87,89,90,92–96,98–114,118–
141,143–150]

76

1. COVID-19 classification and detection.
2. Point-of-care COVID-19 diagnostic.
3. Infected tissues identification.
4. Infection measurement.
5. Abnormalities detection.
6. MERS, influenza, pneumonia classi-

fication.
7. Lung disease identification.
8. Infected or not infected classification.
9. Infection map generation.
10. Intelligent healthcare systems.
11. Localization of the affected area.
12. Control spread of COVID-19 infection.

1. Overfitting underfitting.
2. Hyper-parameter tuning issues.
3. Physical resource limitation.
4. Imbalanced dataset.
5. Synthetically generated images.

Clinical and socio
demographic data analysis [20,22–25,27–31,35,36,40,42,44,46,54] 17

1. COVID-19 detection.
2. COVID-19 case forecasting.
3. COVID-19 infection prediction.
4. Patients mortality risk prediction.
5. Mechanical ventilation management.
6. Risk factor analysis.
7. Patient intensive care prediction.
8. Early risk identification.
9. Clinical prognosis evaluation.
10. Patient severity and intubation

prediction,

1. Data inconsistencies and noise.
2. Insufficient medical information.
3. Lack of external data.
4. Imbalanced dataset.
5. Bias in distribution.
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Table 5. Cont.

Objective Reference Number of Studies Main Reason for Implementation Technical Issue Faced

Sound analysis [37,38,51,115–117] 6

1. COVID-19 detection.
2. Cough classification.
3. Symptoms classification.
4. Bronchitis, pertussis identification.

1. Overfitting.
2. Low performance.
3. Lack of evaluation.
4. Synthetically generated.
5. Limited physical resources.
6. Imbalanced dataset.

Genetic analysis [26,48,58,61] 4

1. COVID-19 disease-related genes detection.
2. Identification of the critical cytokines.
3. Extract associations for coronavirus infec-

tious diseases.

1. Synthetically generated data.
2. Imbalanced dataset.

Protective equipment observation [66–70,79,82,88] 8

1. Face mask, face shield, glasses, gloves de-
tection.

2. Facial recognition.
3. Measurement of body temperature.

1. Lack of proper evaluation and perfor-
mance.

2. Synthetically generated images.
3. Overfitting and underfitting.

Social control [71,74,78,81,83] 5

1. Detection of social distancing violations.
2. Infected person detection.
3. Maintaining a safe distance.
4. Public place monitoring.
5. Live object count.
6. Infection risk assessment.
7. Reduction of the spread of the coronavirus.

1. Synthetically generated images.
2. Low speed for data processing.
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Table 6. Current challenges and future research directions.

No. Challenges Current Limitation Future Research Directions

1 Physical resource and computing time Most deep learning models require
more data and training time.

Developing metric learning,
meta-learning, plug-and-play modules,

optimization, and probability-based
methods to overcome training time and

physical resources challenges.

2 Bias
Many models are trained or tested by
the unrepresentative reality or biased

data.

Applying bias mitigation methods
including optimized preprocessing, fair

data adaptation, meta-algorithm for
fair classification, adversarial

debiasing, rich subgroup fairness,
exponentiated gradient reduction, grid

search reduction, etc.

3 Embedded machine learning The embedded machine learning
approach has still absent.

Design sophisticated machine learning
approach combination of low latency,

reduced power consumption,
improved environmental performance,

network bandwidth efficiency, and
strong privacy.

4 Drugs and vaccine development
Requires to identify the most relevant

biotargets and large-scale training
datasets.

Focusing on protein-coding, mRNA
sequence design, molecule generation,
developing general vaccine prototypes,

and predicting the response of the
immune system.

5 Limited uses of ultrasound data A few studies used ultrasound images.
Implementing segmentation and shot
learn methods through the ultrasound

image for the specific task.

Figure 8. The percentage of shot learning models used for COVID-19.

Karnes et al. [150] created a point-of-care COVID-19 ultrasound imaging diagnostic
system. Few-shot learning was applied to create encoded disease state models. A deep neu-
ral network (DNN) was utilized for feature extraction. Calculated Mahalanobis distances
were used for image categorization.

In shot learning, Figure 8 shows siamese network contributed 37.5%, matching net-
work 12.5%, probability based model and others contributed 25%. Table 5 presents the
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meta-analysis for specific domains and Table 6 provides current challenges, limitations as
well as future research directions.

5. Discussion

The aforementioned sections where we systematically reviewed papers and their
contribution in the field of AI with respect to COVID unequivocally provide us with
futuristic insights related to upcoming endemic and pandemics. It is evident that AI
has been widely used to tackle the COVID pandemic, and the insights generated from
this incident possesses wider implications for forthcoming disasters in health domain.
Before we discuss the policy implications for future pandemics or endemics in general, it is
important to understand the past and the present.

According to research conducted by [2], a number of pandemics and epidemics have
emerged around the globe since 541, when the Justinian disease became the first pandemic
on Earth. With a mortality toll of 100 million in the then-powerful Roman Empire, the
epidemic contributed significantly to the final weakening and consequent collapse of the
Roman and Byzantine empires, as shown by [151]. Until the late 19th century, the second
pandemic, often known as the black death, killed 200 million people and is still regarded
as one of the deadliest plagues in recorded history [152]. According to [2] the Black Death
(1347–1351) wiped out at least 30 percent of Europe’s population and was followed by
waves such as the plague of Milan (1630), the great epidemic of London (1665–1665), and
the plague of Marseille (1720–1722). Faruque et al. [153] also highlight that the pre-digital
and post-industrial revolution eras have seen a number of influenza pandemics, among
which the cholera pandemic in the 19th century and the Spanish flu (1918–1919) were
notable for their nature, scope, and variability, and contributed significantly to the number
of deaths in the industrial revolution period. Over the course of nine months, three different
waves of the 1918–1919 influenza pandemic were seen to spread. In spring and summer
in 1918, the first wave produced significant morbidity and low fatality. Nevertheless, the
second and third waves had high death rates. The Spanish flu infected around 500 million
individuals globally and was linked to 50 million deaths [154].

The reason the history is important is that we can understand how some deaths could be
curbed if history lessons and insights from the past are efficiently implemented in the future.

One of the future implications of research is general-flu type disease detection. The flu
season usually occurs in the fall and winter. It can be modeled for flu forecasting and flu
detection methodologies by utilizing machine learning, deep learning, and AI in general.
AI can also be utilized for modeling cholera, diarrhea, and several water-borne diseases as
well. Our implication shows that, since AI works on the basis of data which may be audio,
video, text, tabular, or image-based (etc.), all of these data which are specific to a disease can
be modeled for forecasting, prediction, and generating policy implications and guidelines
in the public health domain. The source of water may be modeled to understand a good
or bad source of water to limit the water-borne endemics. Similarly, in Asian countries,
particularly Bangladesh and Afghanistan, people are severely prone to mosquito-related
diseases and deaths due to unsanitary conditions that they are exposed to. The images of
mosquitoes can be processed to understand the genera of the mosquitoes, and there can
be models for specific regions to realize their origins and breeding processes. The insights
generated from this AI -ased model can be used by policymakers and stakeholders to limit
the growth of such insects which eventually would curb the dengue, culex, chikungunya,
or AIDS endemic that are prevailing in South Asian countries.

Monkeypox disease can also be considered endemic in general due to its severity.
It came after COVID-19. AI can also play a substantial role in curbing this disease by
modeling the symptoms, causes, and effects of the disease, which was previously done
for COVID-19. Several time series forecasting methods, image processing, and video
processing-based detection methods may be employed to limit the growth of monkeypox.

As we have seen in COVID-19-related research, AI was utilized in developing intelligent
applications that provide information related to treatment, facilities, and procedural guidance
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for things such as quarantine, vaccine information, and so forth. There are AI applications that
also detect whether a person is wearing a mask or not. Accumulating all these developments
from the COVID-19 era where AI contributed directly can be mapped to future endemics
of the COVID-19 genre, such as Middle Eastern Respiratory Syndrome (MERS) and Severe
Acute Respiratory Syndrome (SARS), to direct policy guidelines and provide insights for future
generations of stakeholders to lessen upcoming pandemics and endemics.

6. Conclusions

The COVID-19 pandemic’s vulnerability might trigger a serious worldwide calamity in
the future. It has received great attention among certain scholars, corporate industries, and
government organizations across the globe, since the epidemic has impacted a significant
section of the world’s population. In this study, a comprehensive review of artificial
intelligence models and various analysis has been demonstrated. Problem definition,
reason for implementation, data source, models, and performance were examined for
supervised, unsupervised, and few-shot learning. A detailed comparison of COVID-19
prediction models and various object detection methods, including SSD, YOLO, R-CNN,
and other models, along with their accuracy and sensitivity performances, was shown.
The existing transfer learning techniques for different architectures, including ResNet,
DenseNet, VGG, Inception, AlexNet, and CNN, were the main applications for COVID-19
that have been studied and discussed in this work. Moreover, this work also showed various
image segmentation techniques and models, and their sensitivity performances. However,
this work also discussed the limitations of physical resources; the lack of proper evaluation;
and the limitation of some technical issues, including data inconsistencies and noise,
bias in distribution, synthetically generated data, and insufficient medical information.
In the future, it is advised to carefully investigate artificial intelligence for COVID-19
prediction methodologies that have yet to be fully realized, and consider of their benefits
and limitations. Several unique strategies against COVID-19 have attracted a significant
deal of interest, even though they are still plagued by difficulties of complexity. To mitigate
the complexity of the classical approaches against COVID-19, we should concentrate
on the fairness of frameworks and large-scale datasets for training; and identifying the
most relevant biotargets and sophisticated machine learning approaches that combine low
latency, reduced power consumption, and strong privacy.
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SVR Support vector regression
MLP Multi-layer perceptron
PMLP Polynomial multi-layer perceptron
PASC Post-acute sequelae of COVID-19
ANN Artificial neural networks
RT-PCR Reverse transcription polymerase chain reaction
MAPE Mean absolute percentage error
ARDS Acute respiratory distress syndrome
DNN Deep neural network
LSVC Left superior vena cava
CT Computerized tomography
SARS Severe acute respiratory syndrome
MERS Middle east respiratory syndrome
t-SNE T-distributed stochastic neighbor embedding
PM Particulate matter
DBSCAN Density-based spatial clustering of applications with noise
SPGC Signal processing grand challenge
VGG Visual geometry group
RNN Recurrent neural network
PCAUFE Principal-component-analysis-based unsupervised feature extraction
RNA Ribonucleic acid
SOFM Self-organizing feature maps
U-Net U-shaped convolutional neural network
GAN Generative adversarial network
YOLO You only look once
IAVP Influenza-A viral pneumonia
X-ray X-radiation
CAD Computer-aided design
CCTV Closed-circuit television
SAM Spatial attention module
SPP Spatial pyramid pooling
PAN Path aggregation network
MS COCO Microsoft Common Objects in Context
R-CNNs Region-based convolutional neural networks
ROI Region of interest
CRM Class-selective relevance mapping
SSD Single shot multibox detector
VOC Visual object classes
mAP Mean average precision
CelebA CelebFaces attributes dataset
Wider Web image dataset for event recognition
NN Neural networks
N-CLAHE Normalization function and the contrast limited adaptive histogram equalization
BPSO Binary particle swarm optimization
BGWO Binary gray wolf optimization
ESC Environmental sound classification
DLA Deep layer aggregation
3D Three dimensions
NSD Normalised surface distance
DSC Dice similarity coefficient
PPV Positive predictive value
IoU Intersection over union
CXR Chest X-ray
GRNN Generalized regression neural network
PNN Probabilistic neural network
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