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1. Introduction

From the modern engineering point of view impact,

shock, and vibration isolators are control systems that

react to the dynamic excitation (disturbance) of the ob-

ject to be protected so as to mitigate undesirable effects

of shock and vibration. Therefore, the theory of shock

and vibration isolation can be considered as a special

case of the general theory of control. Modern control

theory can be considered to be composed of two ar-

eas: the theory of automatic regulation and the theory

of optimal control. The theory of automatic regulation

traditionally deals with the synthesis of the feedback

control laws providing prescribed qualitative proper-

ties for the controlled systems. These properties are as-

sociated mostly with the stability of certain motions of

the system, which the controller is attempting to main-

tain. The subject matter of the theory of optimal control

is the construction of the control laws (either open-loop

or feedback) which provide the best operating mode

for the controlled system. To single out the best operat-
ing mode, a performance index (optimization criterion)
is introduced that quantitatively evaluates the quality
of the control process.

Pontryagin and Bellman laid the foundation for the
modern theory of optimal control. Pontryagin with
his colleagues have formulated and proved the max-

imum principle. This principle provides the neces-
sary optimality conditions for a wide class of opti-
mal control problems and gives an efficient mathemat-
ical tool for the practical calculation of open-loop con-
trols. Bellman has formulated the principle of opti-

mality and suggested the method of dynamic program-

ming which allows the construction of a field of open-
loop optimal trajectories and calculation of an optimal
control in feedback form. For details, see the classic
books by Pontryagin, Boltyanskii, Gamkrelidze, and
Mishchenko [157] and Bellman [20,21]. The funda-
mentals of the optimal control theory are expounded
in numerous textbooks, for instance, in Bryson and Ho
[48], Lee and Markus [112], and Leitmann [113].

Several treatises have been published on the the-
ory of shock and vibration isolation viewed as control
systems. In the book by Kolovskii [100] the behav-
ior of isolation systems is investigated by the methods
of nonlinear mechanics. The book provides a classifi-
cation of shock and vibration absorbers, according to
their intended use and mechanical structure, as well as
a classification of common types of disturbances. A de-
tailed presentation of various mathematical methods
to analyze the dynamics of single- and multi-degree-
of-freedom systems for different types of excitations
is given. Frolov and Furman [62] investigate the dy-
namics of objects isolated from vibration and calcu-
late the isolator characteristics (control laws) using
the techniques of vibration theory. Mechanical proper-
ties of the isolation systems which are in most com-
mon use are analyzed. Considerable attention is paid
to the analysis of isolators with hydraulic devices. In
the book by Kolovskii, the isolation systems are treated
from the viewpoint of the automatic regulation theory.
A comprehensive presentation of modern approaches
to the protection of objects from shock and vibration
loads can be found in the handbook Engineering Vi-

brations [61].
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In a sense this review article could serve as an intro-

duction to the Gordon and Breach book (1999) by the

authors: “Optimal Protection from Impact, Shock, and

Vibration”.

2. Optimization of characteristics of shock and

vibration isolators

Rather topical in modern engineering are problems

of protection of occupants and payloads of various

transport vehicles from intensive shock and vibration

loads. Such loads can occur, for example, in the motion

of an automobile along an uneven road at high speed

or during the landing of an aircraft.

Shock loads are particularly high in crash situations.

In this case, survivability of the occupants depends on

the efficiency of shock isolators with which the vehicle

is equipped. The need to have isolation systems that

protect occupants and equipment from extremely high

shock and vibration loading, on the one hand, and ad-

vances in the development of the mathematical theory

of optimization, on the other hand, have stimulated the

appearance of numerous publications on the optimiza-

tion of shock and vibration isolation systems.

2.1. Systems with small number of degrees of freedom

Much of the literature deals with a single-degree-

of-freedom system. In this case, the object to be pro-

tected (the body being isolated) and the movable base,

on which the object is placed, are considered as rigid

bodies. The object is attached to the base by an isolator.

It is assumed that the base translates along a straight

line and the object being isolated can move relative to

the base along the same line. The consideration of such

simplified systems is advisable for two reasons. First,

such system models satisfactorily describe the behav-

ior of many real systems. Second, the relative simplic-

ity of this system model makes it possible to carry out

a complete analysis and to obtain readily interpretable

results. Often the simple system can be the basis of an

investigation of the behavior of more complicated sys-

tems.

Consider the system shown in Fig. 1. Let M and

m be the masses of the base and the body being iso-

lated, respectively. A force σ(t) specified as a function

of time is applied to the base. The isolator, introduced

between the body to be protected and the base, gener-

ates the force g(x, ẋ, t), which is applied to the body

and depends on the displacement x of the body relative

Fig. 1. The base and the body to be isolated.

to the base, its relative velocity ẋ, and time t. Accord-

ing to Newton’s third law, the force −g is applied by
the isolator to the base. The motion of the system is

governed by the set of equations

Mz̈ + m(ẍ+ z̈) = σ(t),

m(ẍ + z̈) = g(x, ẋ, t), (1)

where z is the displacement of the body with respect to

a fixed (inertial) reference frame.
To obtain the equation of motion of the body be-

ing isolated, eliminate the variable z̈ from Eq. (1). This
yields

ẍ−
g(x, ẋ, t)

µ
= −

σ(t)

M
, µ =

Mm

M + m
. (2)

The quantity µ is called the reduced mass of the system
of two bodies. If the motion z(t) of the base, rather than

the force applied to it, is prescribed, the relative motion
of the object being isolated is governed by the equation

ẍ−
g(x, ẋ, t)

m
= −z̈(t). (3)

In the theory of isolation systems, the distinction is
made between the kinematic and dynamic disturbances

(excitations) of the system. The excitation is dynamic
if the force applied to the base is prescribed and kine-

matic if the acceleration of the base is prescribed. Thus,
Eq. (2) governs the motion of the body being isolated

in the case of the dynamic excitation, and Eq. (3) cor-
responds to the kinematic excitation. Eqs (2) and (3)

can be represented in the unified form

ẍ+ u(x, ẋ, t) = F (t), (4)

where u = −g/µ and F = σ/µ for the case of dy-

namic excitation; for the case of kinematic excita-
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tion, u = −g/m and F = −z̈. The control variable

u(x, ẋ, t), just as the force g(x, ẋ, t), will be referred to

as the characteristic of the isolator.

Introduce the two performance criteria

J1 = max
t

∣

∣x(t)
∣

∣, (5)

J2 = max
t

∣

∣u(x(t), ẋ(t), t)
∣

∣. (6)

The performance criterion J1 defines the peak relative

displacement of the body being isolated, and the per-

formance index J2 defines the peak absolute acceler-

ation of the body, which is proportional to the force

transmitted to the body by the isolator.

Consider two optimization problems.

Problem 1. For the system governed by Eq. (4) sub-

ject to the initial conditions x(0) = 0, ẋ(0) = 0, find

the control function u, from a specified class Y of ad-

missible controls, that minimizes the peak displace-

ment of Eq. (5), provided the constraint

|u| 6 U ,

where U is a prescribed constant, is satisfied.

Note that this constraint is equivalent to J2 6 U .

Problem 2. For the system governed by Eq. (4) with

the initial conditions x(0) = 0, ẋ(0) = 0, find the

control function u, from a specified class Y of admis-

sible controls, that minimizes the peak acceleration of

Eq. (6), provided the constraint on the peak displace-

ment

J1 6 D,

where D is a prescribed constant, is satisfied.

Problems 1 and 2 are simple but, at the same time,

very important problems of the theory of shock and vi-

bration isolation. Of particular interest is the problem

of limiting isolation capabilities (limiting performance

problem). In a limiting performance analysis, the iso-

lator function u is sought as a function of time alone.

That is, no state-space configuration is prescribed for

the isolator and the solution of Problems 1 or 2 gives

the lower bound for the criterion to be minimized. The

result is the absolute optimal performance, or, as men-

tioned, the “limiting isolation capabilities” or the “lim-

iting performance”. In control terminology, the prob-

lems are approached from the standpoint of open-loop
control rather than as feedback control problems. It
would appear that the limiting performance problems
were first defined by Sevin in the late 1950s. Limit-
ing performance solutions are considered in numerous
publications, e.g., in that by Guretskii [66] who con-
siders the case where the criterion to be minimized is
the peak displacement J1.

It is established that the optimal isolator charac-
teristic is piecewise constant and can always be con-
structed so that it assumes the values +U , −U , orF (t).
With allowance for this property, a graphical-analytical
method for the construction of the optimal control was
suggested by Sevin and by Guretskii [72]. In Guretskii
[71], estimated values were given for the maximum
number of switching points, depending on the number
of the time intervals where the absolute value |F (t)| of
the disturbance exceeds U .

In Guretskii [67], estimates of the minimal and max-
imal displacements of the body being isolated are
made. For the cases, where the disturbance has the
form of a rectangular pulse, sine wave, or a cosine
quarter-wave, analytical expressions are obtained that
permit one to ascertain the limiting capabilities of pro-
tection.

Guretskii, Kolovskii, and Mazin [74] provide limit-
ing isolation capabilities as well as a solution of the
problem of synthesis of an isolator that consists of an
elastic element and a damper. The synthesis is based
on the time-history of the optimal control.

Saranchuk and Troitskii [179] solved the problem
of minimization of the peak displacement of a single-
degree-of-freedom system subjected to a periodic dis-
turbance. Only the steady-state motion with a period
equal to that of the excitation is considered.

Manoilenko and Rutman [122] investigated the lim-
iting isolation capabilities for Problem 2, in which the
peak acceleration is minimized. They used an ”elastic
analogy”. The plot of the time history of the double in-
tegral with respect to time of the absolute acceleration
of the object to be protected is compared to the equilib-
rium configuration of an elastic band. The integral ap-
proximation of the peak value of the acceleration mag-
nitude is associated with the strain energy of the band.

Sevin and Pilkey [189] prepared a brief treatise con-
taining limiting performance problem definitions and
several solution techniques.

2.2. Optimal feedback control of isolators

The literature is abundant with descriptions of at-
tempts to select optimal parameters of isolators with
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given configurations, i.e., feedback systems. The num-

ber of papers is so great that there is little incentive

to discuss them here. However, some cases of special

interest will be mentioned.

Troitskii [197] solved the problem of synthesis

of the optimal isolator feedback characteristic for a

single-degree-of-freedom system. The performance in-

dex to be minimized was the peak displacement J1.

The isolator characteristic is sought as a function of the

system phase coordinates (displacement and velocity)

and time. The necessary optimality conditions are es-

tablished. The optimal isolator feedback characteristic

is constructed for the impulse excitation F (t) = βδ(t).
Saranchuk and Troitskii [180] investigated the problem

of synthesis of the optimal isolator feedback character-

istic for the case of periodic excitation.

Bolychevtsev [39,40] constructed the optimal isola-

tor feedback characteristics for the case where the ex-

ternal disturbance is an infinite sequence of periodi-

cally occurring instantaneous shocks. The shocks have

identical intensities, either all in the same direction

or in alternating directions. The optimization criterion

(the performance criterion to be minimized) is the peak

displacement of the body being isolated.

A problem of the optimal isolation of a multi-

degree-of-freedom system is considered by Guretskii

[66]. Optimality is defined as the minimization of the

maximum (over all coordinates) of the peak displace-

ments in each of the coordinates.

Often in design it is required that the isolator char-

acteristic depend only on the state variables x and ẋ
and be independent of time. If the class of admis-

sible characteristics is rather wide (for example, all

piecewise continuous functions u(x, ẋ) whose abso-

lute values do not exceed a prescribed level), then the

choice of the optimal characteristic is a very compli-

cated problem. A reasonable approach in this case is

to seek the optimal characteristic among a parametric

family u(x, ẋ, a1, . . . , an), thereby reducing the orig-

inal problem of optimal control to the minimization

of a function of many variables. From the engineering

point of view, this means that the structural schematic

or configuration of the isolator has been determined

and it remains to choose the isolator design variables

a1, . . . , an in an optimal way. Such an approach has

been described by Guretskii [69] and Schmidt and

Fox [182] and turned out to be rather fruitful in solv-

ing practical problems. Using this approach, Guretskii

[70] determined optimal isolator characteristics for a

single-degree-of-freedom system excited by a rectan-

gular pulse. The design variables (stiffness and damp-

ing coefficients) were found for the linear undamped

isolator, linear damped isolator, and the isolator with a

Coulomb characteristic.

Bolychevtsev, Zhiyanov and Lavrovskii [43] found

the optimal design variables of the linear isolator char-

acteristic u(x, ẋ, a1, a2) = a1x + a2ẋ providing the

minimum amplitude of the steady-state solution of Eq.

(4). The problem is solved for an infinite sequence of

periodically occurring impulsive shocks which act with

the same intensity in a single direction.

The experience of solving optimal shock and vi-

bration isolation problems shows that in many cases,

commonly used isolators can provide the isolation per-

formance close to the limiting one if the isolator de-

sign variables are chosen optimally. Bolychevtsev and

Borisov [41] solved the problem similar to that con-

sidered in [39], the only difference being that the op-

timal isolator characteristic is sought among the two-

parameter family of linear functions a1x + a2ẋ. It is

shown that if the force allowed to be transmitted to

the object being isolated is sufficiently large, the linear

isolator with optimal parameters can provide the pro-

tection quality close to the limiting performance. The

technical implementation of the linear isolator is much

simpler than that of the optimal isolator constructed by

Bolychevtsev [39].

The parametric optimization technique has been

used to find near-optimal isolator characteristics by

many other authors, among them are Afimiwala and

Mayne [1], Bartel and Krauter [19], Karnopp and

Trikha [94], Kwak, Arora and Haug [108], Wilmert

and Fox [211].

2.3. Multicriteria optimization

The design of isolation systems with several perfor-

mance criteria to be optimized, requires a multicriteria

procedure. There are several approaches to the choice

of the design variables of such systems. The most com-

mon approach involves the optimization with respect

to one of the performance criteria, while the other cri-

teria are constrained. The constraints are imposed so as

to keep the responses corresponding to the constrained

criteria within admissible limits. This approach was

discussed above for the case of two performance crite-

ria (the peak relative displacement and the peak abso-

lute acceleration of the body being isolated).

Another approach involves the optimization with re-

spect to a combined functional assembled from the

original performance criteria, with weighting coeffi-

cients. As a rule, the combined functional is a linear
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combination of the original criteria. This approach, for

example, was used by Karnopp and Trikha [196] to

choose the design variables of shock and vibration iso-

lators.

Bolychevtsev and Lavrovskii [42] suggested that a

Pareto-optimal set be constructed in the space of the

design variables of an isolation system to be designed.

The Pareto-optimal set possesses the property that for

any point of the set, there is no other point at which

all performance criteria would be simultaneously im-

proved. In other words, the Pareto-optimal set is a set

of trade-off values of the design variables. Bolychevt-

sev and Lavrovskii apply the approach associated with

the construction of the Pareto-optimal set to analyze

the isolation system of the model of a walking ma-

chine with two degrees of freedom and three perfor-

mance criteria. An effective method for constructing

the Pareto-optimal set is described for the case of two

design variables. The method involves the analysis of

the level curves of the performance criteria, consid-

ered as functions of the design variables, and succes-

sive “cutting off” of nonoptimal portions of the design

variable admissible domain. The approach for the cal-

culation of isolator characteristics involving the con-

struction of the Pareto-optimal set was also used by

Rao and Hati [161], Balandin and Markov [18], Stat-

nikov and Matusov [193].

2.4. Efficiency of shock and vibration isolation

Ishlinskii [85,86] showed that the isolation of ex-

ternal disturbances applied to a base is efficient only

if the acceleration (deceleration) path of the base, i.e.,

displacement of the base during the accelerated (decel-

erated) motion, does not exceed the peak relative dis-

placement of the body being isolated. Practically, this

means that the isolation provides effective protection

only from impact (shock) disturbances or from high-

frequency vibrations. Impact disturbances are charac-

terized by high intensity and short duration. If the im-

pact duration is so short that during the impact time the

base moves through a distance which is much less than

the rattlespace (characteristic dimension within which

the body being isolated is allowed to move with re-

spect to the base), then the isolator can be designed so

that the peak displacement of the body being isolated

is considerably larger than the acceleration path of the

base. Vibration is characterized by long-term distur-

bances (the forces applied to the base for dynamic dis-

turbances or the accelerations of the base for the kine-

matic disturbances) that are periodic or near-periodic,

changing in magnitude and direction. If the vibration

frequency is high, then the time interval during which

the acceleration of the base does not change direction

is small, and the distance covered by the base during

this time (the acceleration path) is also small. If the ac-

celeration path is much less than the rattlespace, then,

just as in the case of impact, the peak relative displace-

ment of the body being isolated is considerably larger

than the acceleration path.

The operating quality of shock isolators is usually

described in terms of certain characteristics of the

transient motion of the body being isolated, whereas

the quality of vibration isolators is determined by

the characteristics of steady-state forced oscillations.

This distinction means that shock isolation problems

are treated differently from vibration isolation prob-

lems. There are numerous publications on these prob-

lems, some of which will be cited here. Problems of

optimal shock isolation were investigated by Afimi-

wala and Mayne [1], Babitskii and Izrailovich [5], Ba-

landin [7–10], Balandin and Malov [17], Balandin and

Markov [18], Bartel and Krauter [19], Bolotnik [32,

33,35–37], Bolotnik and Kaplunov [38], Bolychevtsev

[39,40], Bolychevtsev and Borisov [41], Bolychevt-

sev, Zhiyanov, and Lavrovskii [43], Eliseev and Ma-

linin [57], Guretskii [67,70], Guretskii, Kolovskii, and

Mazin [74], Karnopp and Trikha [94], Kononenko and

Podchasov [101], Ruzicka [166,167], Ryaboy [176],

Schmidt and Fox [182], Sevin [186], Sevin and Pilkey

[189], Troitskii [197], and Wilmert and Fox [211].

Various problems of optimal vibration isolation were

considered by Akulenko and Bolotnik [2], Akulenko,

Bolotnik, and Kaplunov [3], Bolotin [30,31], Furun-

zhiev [64], Guretskii [73], Guretskii and Mazin [75],

Haug and Arora [78], Kolovskii [100], Maksimovich

[120,121], Ryaboy [168,169,172–175], Saranchuk and

Troitskii [179,180], Sevin and Pilkey [189], and Wang

and Pilkey [207].

3. Optimal design of isolators for a class of

external disturbances

In the publications cited above, the external distur-

bance function F (t) in Eq. (4), was assumed to be

prescribed. However, frequently in practice, informa-

tion about the external disturbance is incomplete, and

it is reasonable to design a shock or vibration isola-

tion system for a class of disturbances. As indicated by

Sevin and Pilkey [189], this problem has been of con-

cern for considerable time. Saranchuk [178] treated the
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problem in a minmax (game theory) setting. With this

approach the optimal isolator characteristic is sought

that provides the minimum value of the optimization

criterion (performance index, objective function), e.g.,

the peak relative displacement, for the worst distur-

bance F (t) belonging to a specified class of functions

and maximizing the optimization criterion. As a rule,

the optimal isolator characteristic is sought under con-

straints imposed on the motion of the system. In the

case of Saranchuk, the objective function was the peak

relative displacement, with the absolute acceleration

constrained. The problem was solved for a class of

periodic disturbances and for a class of disturbances

which are identically zero outside a prescribed time in-

terval.

Bolotnik [34] applied the game theory approach to

solve optimal isolation problems for the class of exter-

nal disturbances F (t) satisfying the integral constraint
∫

∞

0
|F (t)| dt 6 β0, where β0 is a specified constant.

This integral constraint defines a reasonably general

class of shock disturbances, including impulsive im-

pacts F (t) = βδ(t), if |β| 6 β0, where δ(t) is the Dirac

delta function. Bolotnik [34] also investigated the op-

timal isolation problem for the case where the external

disturbance is a series of instantaneous impacts. Unlike

Bolychevtsev [39,40] and Bolychevtsev, Zhiyanov and

Lavrovskii [43], neither the intensities of the impacts,

nor their directions are prescribed in advance. Con-

straints are imposed that restrict the maximum allow-

able intensity of each individual impact and the mini-

mum time interval between successive impacts.

Balandin [9] investigated the problem of optimiza-

tion of the design variables of an isolator consisting of

a damper with a linear characteristic, a damper with

the Coulomb characteristic, a nonlinear spring with a

continuous characteristic, and a bang-bang spring for

the class of external disturbances with the integral con-

straint of Bolotnik [34]. He established that for the iso-

lator under consideration, the worst disturbance is the

instantaneous impact with the maximum allowable in-

tensity, irrespective of the values of the design vari-

ables, i.e., stiffness and damping coefficients. On the

other hand, this was shown not to be the case for iso-

lators with arbitrary characteristics. For example, for a

system with an isolator consisting of a linear spring and

a quadratic-law damper, an instantaneous impact is not

the worst disturbance. The game approach to the opti-

mal design of shock and vibration isolators is also dis-

cussed in the book by Sevin and Pilkey [189]. Therein,

it is shown that computational techniques permit the

study of optimal isolation systems with broad defini-

tions of the external disturbance, for example, if the

disturbance lies in a corridor prescribed as a function

of time.

4. Generalizations to motions containing

rotational components

In the majority of the works cited above, it is as-

sumed that the base and the body to be isolated move

translationally along a single direction. However, in

many practical cases, the motion of the system is more

complex and contains not only a translational compo-

nent but also a rotational one. In this case, the number

of degrees of freedom of the system increases and the

form of the performance criteria becomes more com-

plicated. If the motion of the system has a rotational

component, terms describing the centripetal accelera-

tion appear in the expression for the absolute acceler-

ation and, moreover, the acceleration becomes depen-

dent on the location on the body being isolated.

A problem of the optimum shock isolation of a body

rotating about a fixed axis was solved by Bolotnik [35]

and Bolotnik and Kaplunov [38]. The performance cri-

terion to be minimized was the total acceleration at a

given location on the body to be isolated, while a con-

straint was imposed on the peak absolute value of the

angle of rotation of the body. The Bolotnik [35] paper

deals with the optimization of the design variables of

the isolator consisting of a spring with a linear char-

acteristic and a damper with a linear or quadratic law

characteristic. In the other paper, the limiting perfor-

mance analysis is carried out. The results of the opti-

mal shock isolation of a rotating body are compared

with the corresponding results for a translating body.

Kulagin and Prourzin [106] and Prourzin [159] gen-

eralize the results to cases where the base and a sin-

gle body being isolated perform more complex mo-

tion containing both translational and rotational com-

ponents.

5. Computational methods

Even in solving relatively simple problems of opti-

mal shock or vibration isolation for single-degree-of-

freedom systems it is often necessary to utilize numer-

ical methods which need computer implementation.

The difficulties in obtaining closed-form solutions are

associated primarily with nonlinearities of the equa-

tions of motion and also with the form of performance
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indices characteristic of the optimization of shock or

vibration isolators. Often, the performance criteria are

represented as a maximum of a quantity representing

the isolation efficiency. For example, typical criteria

are the peak displacement relative to the base or the

peak absolute acceleration of the body to be isolated.

These difficulties become even more significant for

systems with many degrees of freedom. In this case,

the development of numerical methods is rather essen-

tial and topical.

Problems of optimization of shock or vibration iso-

lator characteristics belong to a particular class of the

general optimal control problem. Numerous numeri-

cal methods for solving various optimal control prob-

lems have been developed and tested. Basic numerical

methods of optimal control are presented, for example,

in such books as those by Chernousko and Banichuk

[51], Fedorenko [60], and Moiseev [126]. Many of the

methods, with modifications allowing for specific fea-

tures of optimum shock and vibration isolation prob-

lems, can be applied to calculate optimal controls for
isolation systems.

A complicating feature of many problems of optimal

shock and vibration isolation is that the performance

indices of isolation in these problems are represented

as a nonadditive functional of the form

J(u) = max
t∈[t0,T ]

Φ
(

x(t), u(x(t), t), t
)

, (7)

where x is the phase vector of the system, u is the con-

trol vector function, Φ(x, u, t) is a prescribed function,

and t0 and T are the initial and the terminal instants of

the motion, respectively. Sometimes, functionals of the
form of Eq. (7) are referred to as maximum-type func-

tionals. The functionalsJ1 and J2 of Eqs (5) and (6) are

particular cases of the functional J(u) of Eq. (7). Op-

timal control problems with functionals of such a type

cannot be tackled with the traditional optimal control

techniques. Hence, specific approaches to these prob-

lems were developed.

There are a number of methods for the numerical

solution of optimal control problems with maximum-

type functionals. One of the simplest approaches in-

volves partitioning the time interval [t0,T ] into subin-

tervals and setting the control function to be constant

or linearly varying on each of the subintervals. In such

a way, the original optimal control problem can be re-

duced to the minmax problem for a function of a finite

number of variables, the maximum being taken over all

discretization points and the minimum over the values

of the control variables on the subintervals. The cal-

culation of a trial value of the function, for which the

minmax is to be found, may require numerically inte-

grating the equations of motion for a specified set of

the control variable values on the discretization subin-

tervals. The theory of the minmax of functions of a fi-

nite number of variables and the numerical algorithms

based on this theory are presented in the book by De-

myanov and Malozemov [55]. One of the approaches

in question was applied to the limiting performance

analysis of shock and vibration isolation systems by

Vinogradova [204]. The attractive feature of the meth-

ods based on the discretization of the control function

is their simplicity. However, these methods are com-

plicated because in many practical cases, the discrete

mesh must be very fine to provide a high precision

for the solution, which can lead to computational chal-

lenges.

Another approach involves an appropriate approx-

imation of the maximum-type functional by an addi-

tive functional (for example, integral or terminal func-

tional) which can be minimized by the traditional op-

timal control methods. For the typical case, where

Φ(x, u, t) > 0, the maximum-type functional J(u) of

Eq. (7) is often replaced by the integral

Jν(u) =

∫ T

t0

Φν
(

x(t), u(x(t), t), t
)

dt, (8)

where ν is a sufficiently large positive number. This

replacement is based on the well-known relation

lim
ν→∞

[Jν(u)]1/ν

= J(u) = max
t∈[t0,T ]

Φ
(

x(t), u(x(t), t), t
)

, (9)

which is valid under rather general conditions.

Sometimes, if the function Φ is independent of u,

the maximum-type functional is replaced by a terminal

functional with an unknown time for the termination of

the process. This approach was used, for example, by

Kuznetsov and Chernousko [107] and Troitskii [197]

to solve some problems of optimal control in mechan-

ical systems whose performances were evaluated by

maximum-type functionals. The condition of the van-

ishing of the total derivative of the function Φ(x(t), t)
with respect to time is adopted as the condition of the

process termination. At this instant, the necessary con-

dition for the extremum of the functionΦ(x(t), t) is sat-

isfied. This approach can be effective only for the rare

cases where the first local extremum of the function

Φ(x(t), t) is the global maximum of this function on the
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interval [t0,T ] for any control u. In the other cases, the

use of this method is problematic.

Because of the practical importance of optimal con-

trol problems with maximum-type functionals (in par-

ticular, in connection with optimal shock and vibra-

tion isolation), computational methods have been de-

veloped that take into account the special mathematical

features of these problems. Viktorov and Larin [201]

suggested a computational algorithm which is a modi-

fication of the method of gradient descent in the space

of control functions [192] for maximum-type function-

als. This method was applied to solve the optimal iso-

lation problem posed by Guretskii [66] for a single-

degree-of-freedom system for two special kinds of ex-

ternal disturbances.

A number of methods for numerical solution of op-

timal control problems with the functional of the form

maxt Φ(x(t), t) were developed by Silina [191] and

Timoshina and Shablinskaya [195]. These methods are

based on the necessary optimality conditions. It is as-

sumed that the functionΦ(x(t), t) has a finite number of

points of local extrema for any admissible control. This

property permits the reduction of the original problem

of optimal control to the search for the extremum in

a finite-dimensional space, which is simpler computa-

tionally. The methods developed were applied to the

limiting performance analysis of shock isolation sys-

tems.

Sevin and Pilkey [187,189] used the dynamic pro-

gramming technique to solve control problems with

maximum-type functionals for single-degree-of-free-

dom systems. In [187], the worst disturbance problem

is solved for a body attached to a base by a linear isola-

tor. The class of admissible disturbances is defined as

the class of functions of time with a prescribed integral.

In [189], dynamic programming is applied to solve the

problem of limiting isolation capabilities for a system

subject to completely or incompletely prescribed dis-

turbances. In both cases, the peak relative displacement

of the body being isolated was chosen to be the perfor-

mance index.

Wang and Pilkey [207] suggested a method for ap-

proximate solution of the limiting performance prob-

lem for linear multi-body systems subjected to peri-

odic disturbances. For steady-state motions the control

is sought in the form of a truncated Fourier series in

terms of harmonics whose frequencies are multiples of

those of the external disturbance. The Fourier coeffi-

cients are determined by numerically solving a nonlin-

ear programming problem so as to provide the mini-

mum for the performance criterion. Even more signifi-

cant is the use of the Fourier series approach for prob-

lems of optimal isolation of linear systems subject to

transient excitations.. This leads to a linear program-

ming problem in which the coefficients of the Fourier

series are the unknowns. In recent years this has be-

come a very viable method since the number of un-

knowns is less than for the approach discussed earlier

in which the isolator force is discretized as a piecewise

constant function.

In Larin [110], a numerical algorithm for opti-

mization of the design variables of single-degree-of-

freedom isolation systems is presented. The perfor-

mance criterion to be minimized is the peak displace-

ment of the body being isolated. The method is based

on the reduction of the original problem to a nonlinear

programming problem which is solved by the gradient

descent in the design variable space. On each iteration,

to calculate the objective function it is necessary to in-

tegrate the equation of motion and to calculate the peak

displacement of the body.

Hsiao, Haug and Arora [82] developed a numerical

method for the optimization of dynamical systems with

many degrees of freedom for the case where the crite-

rion to be minimized has the form of a maximum of a

function of the system phase variables. The approach

involves an equivalent replacement of the maximum-

type functional by an integral functional and applica-

tion of the Lagrange multiplier technique. The method

was used to calculate the optimal design variables of

spring-and-damper isolators for systems with one and

two degrees of freedom.

Sevin and Pilkey [189] suggested a numerical me-

thod for determining the optimal design variables of

shock and vibration isolation systems which does not

require integrating the equations of motion on each

iteration but needs the limiting performance problem

to be solved beforehand. The heuristic basis of the

method is the contention that the characteristics of a

well-designed system must be close to those providing

the limiting performance. Hence, in this approach, the

feedback control parameters are chosen such that the

time history of the feedback control force is as close as

possible to the open loop optimal control correspond-

ing to the limiting performance. The practical applica-

tion of this method seems to be limited. However, it

can be used for preliminary testing calculations, for ex-

ample, with the aim of finding out whether a selected

design of the isolation system allows adjusting the de-

sign variables so as to provide the limiting performance

characteristics for the shock or vibration isolation sys-

tem.
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6. Monographs on the optimal shock and

vibration isolation

There are several monographs devoted to optimal

shock and vibration isolation. A fundamental book in

this field was written by Sevin and Pilkey [189]. This

book presents general mathematical statements of ba-

sic problems of optimal shock and vibration isola-

tion, describes typical performance criteria and con-

straints imposed on the performance characteristics,

control variables, and design variables of isolation sys-

tems, and discusses the adequacy of the mathemati-

cal description relative to the properties of real isola-

tion systems used in engineering. A classification of

external disturbances and types of isolators is given.

The problem of the optimal isolation of shock and vi-

bration is stated in a general form for a system with

an arbitrary number of degrees of freedom. The lim-

iting performance problem and the problem of para-

metric optimization are presented as practically im-

portant, distinct, special cases of the general optimiza-

tion problem. A linear programming solution is out-

lined for the limiting performance problem of multi-

degree-of-freedom linear systems. Particular attention

is paid to single-degree-of-freedom systems. For such

systems, it is proved that the optimal open-loop con-

trol providing the limiting performance for the isola-

tion system can be constructed in the form of a piece-

wise constant function of time that takes either upper or

lower boundary values. A graphical-analytical method

to construct the optimal isolator characteristic (optimal

control) for the limiting performance problem is sug-

gested. In major features, this method is similar to the

method of Guretskii [72]. Various numerical methods

for constructing the optimal isolator characteristics or

determining the optimal design variables for isolation

systems are discussed. In particular, linear program-

ming (for linear systems) and dynamic programming

(for linear and nonlinear systems) solutions for the lim-

iting performance problem are developed. The book

is richly illustrated with numerical examples, graphs,

and figures. An annotated bibliography of works deal-

ing with optimum shock and vibration isolation is pre-

sented at the end of the monograph.

The monograph by Furunzhiev [63] is devoted

mostly to stochastic problems of optimal vibration iso-

lation of systems subjected to random disturbances.

The author discusses mathematical models of systems

with stochastically characterized performance criteria.

Various problems of optimal control and parametric

optimization of vibration isolators are stated and meth-

ods for their solution are given. The book also contains

descriptions of computational techniques for the statis-

tical analysis of vibration isolation systems with the aid

of a computer. Numerical examples for the calculation

of vibration isolation systems for transport vehicles are

presented.

The book by Kolovskii [100] contains various state-

ments of optimal shock and vibration isolation prob-

lems and discusses different approaches to their so-

lution. In particular, the problem of the limiting iso-

lation capabilities (limiting performance problem) is

formulated. The graphical-analytical method of Guret-

skii [72] and various numerical methods to solve the

limiting performance problem for single-degree-of-

freedom isolation systems are presented. A compar-

ative analysis of these methods is given. Various ap-

proaches to the synthesis of optimal or near-optimal

feedback isolator characteristics are expounded. Par-

ticular attention is paid to the optimal isolation of

rigid bodies performing complex motion from shock

or vibration. Mathematical models of isolation systems

for rigid bodies are considered, statements of the cor-

responding optimization problems are presented, and

methods for solving these problems are discussed. The

majority of the issues discussed in the monograph

by Kolovskii are illustrated with numerical examples.

A bibliography of works on the optimization of shock

and vibration isolation systems is presented.

In the book by Bolotnik [36], a complete solution

of the problem of the optimal isolation of a single-

degree-of-freedom system from an impulsive impact is

given. The performance criteria are the peak displace-

ment of the body being isolated with respect to the base

and the peak acceleration of this body with respect to

a fixed reference frame. Cases where the body moves

along a straight line and where it rotates about an axis

are considered. The optimal performance characteris-

tics are obtained, and feedback isolators providing the

limiting performance or approximations to it are dis-

cussed. For the case of the rectilinearly moving body,

all spring-and-damper isolators with power-law char-

acteristics that provide the limiting performance for the

shock isolation system are identified. The problem of

optimization of the isolator characteristic for a class of

external disturbances is considered in the game theory

(minmax) setting. The optimal and near-optimal feed-

back controls are constructed for the case where the

body being isolated moves rectilinearly and the inte-

gral of the absolute value of the applied force to which

the system can be subjected is constrained by a pre-

scribed quantity. A number of problems for the opti-
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mal vibration isolation of a mechanism containing an

unbalanced rotor are solved.

Genkin and Ryaboy [65] investigate multi-mass ab-

sorbers (isolators) for harmonic vibrations. The isola-

tors consist of inertial and elastic members. The prob-

lem of minimization of the isolator mass, provided

the dynamic load transmitted to the object to be pro-

tected is reduced to a prescribed level, is solved. The

reduction of the dynamic load is characterized by the

transmissibility coefficient of the system. In the gen-

eral case, the prescribed reduction level may depend

on the vibration frequency. Estimates for the minimal

mass of the isolator, depending on the maximum allow-

able value of the transmissibility coefficient, are given.

The authors suggest a number of design schematics for

optimal vibration isolators.
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