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Summary

1. In a rapidly changing world, ecology has the potential to move from empirical and con-

ceptual stages to application and management issues. It is now possible to make large-scale

predictions up to continental or global scales, ranging from the future distribution of biologi-

cal diversity to changes in ecosystem functioning and services. With these recent develop-

ments, ecology has a historical opportunity to become a major actor in the development of a

sustainable human society. With this opportunity, however, also comes an important respon-

sibility in developing appropriate predictive models, correctly interpreting their outcomes and

communicating their limitations. There is also a danger that predictions grow faster than our

understanding of ecological systems, resulting in a gap between the scientists generating the

predictions and stakeholders using them (conservation biologists, environmental managers,

journalists, policymakers).

2. Here, we use the context provided by the current surge of ecological predictions on the

future of biodiversity to clarify what prediction means, and to pinpoint the challenges that

should be addressed in order to improve predictive ecological models and the way they are

understood and used.
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3. Synthesis and applications. Ecologists face several challenges to ensure the healthy develop-

ment of an operational predictive ecological science: (i) clarity on the distinction between

explanatory and anticipatory predictions; (ii) developing new theories at the interface between

explanatory and anticipatory predictions; (iii) open data to test and validate predictions;

(iv) making predictions operational; and (v) developing a genuine ethics of prediction.

Key-words: anticipation, big data, biodiversity, ecological prediction, ecosystems, ethics,

forecast, global change, modelling, theory

Introduction

Prediction is not new in ecology (Fig. 1). Growing from a

purely observational discipline (the so-called natural his-

tory) to a modern scientific field, ecology has often relied

upon predictions to test its fundamental theories (Hilborn

& Mangel 1997). However, accumulating predictions to

test theories is no longer sufficient. As in other fields such

as climate or health sciences, the increasing social and

political awareness of the importance of global environ-

mental changes has prompted a shift from explanatory to

anticipatory predictions (see section Explanatory Versus

Anticipatory Predictions for definitions) of the trajectories

of complex ecological systems. Projections of biodiversity

loss or changes and ecosystem functioning at the global

scale (e.g. Thuiller et al. 2011; Barnosky et al. 2012) are

increasingly common (Fig. 2). While a consensus has yet

to be reached among ecologists regarding the drivers of

species richness and ecosystem functioning (Loreau 2010),

this sudden rise of ecological predictions (Fig. 1) has

become a strong incentive for an entire research commu-

nity in ecology (Coreau et al. 2009; Bellard et al. 2012;

Gerrish & Sniegowski 2012; Evans et al. 2013a; Thuiller

et al. 2013; Harfoot et al. 2014b).

The shift in the type of ecological predictions and their

scales of applicability is also motivated by the unprece-

dented quantity of ecological data and the complexity of

the statistical and modelling tools now available (Purves

et al. 2013). Because ecology shares principles and meth-

ods with many other disciplines, from mathematics and

computer science to environmental and social sciences, the

origin and scale of data are more mixed than before, with

elements from (among others) biogeography, ecophysiol-

ogy, ecosystem functioning, environmental sciences, genet-

ics, metagenomics, networks ecology and socio-economics.

This heterogeneity in the nature and origin of data

requires the building of new tools to integrate those vari-

ous scales. While the accessibility and quality of the data

are still an issue (Costello et al. 2013), this ‘datavalance’

has inevitably modified our way to conduct research in

ecology. It is very likely that this trend will be amplified

by the rise of biodiversity surveys, citizen science pro-

grammes and metagenomic sampling programmes. Inter-

action between various disciplines and the unprecedented

amount of data has opened the way to what has recently

been referred to as ‘predictive systems ecology’ (Evans

et al. 2013a). However, this trend also raises the critical

issue that the predictions provided by the ecological scien-

tific community might go far beyond our actual under-

standing of ecological systems. Clarifying the concept of

prediction in ecology is also important if ecologists want

to build predictive models upon appropriate theory and

data, and for society to interpret these predictions with

their underlying limits and uncertainties.

Ecological predictions concern a variety of objects and

biological scales, from genetic variability to species rich-

ness, community composition, ecosystem functioning and

biogeochemical cycles. However, the processes at stake at
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Fig. 1. Prediction is not new in ecology. In January 1862, Charles

Darwin receives orchids from Madagascar. A particular species,

the Madagascan Comet Orchid Angraecum sesquipedale with a

surprisingly long nectar spur (20–35 cm), catches his attention.

No insect with a proboscis of this length has been described but

Darwin affirms his existence, as the plant cannot reproduce with-

out a suitable pollinator. The pollinator, a hawk moth, was

indeed discovered in 1903, 41 years after Darwin’s prediction.

The discoverers added the name praedicta (‘predicted’) to the spe-

cies name, Xanthopan morganii praedicta, in honour of this pre-

diction. In the foreground, we illustrate the growing importance

of predictive ecology in recent years (especially through predic-

tion of species distribution), we show the number of annual cita-

tions for articles that have ‘prediction’ and ‘ecology’ in their

keywords (source: Web of Science, the search criteria used:

Topic = prediction and ecology; Timespan = All Years). Illustra-

tion Laurence Meslin.
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each of these levels are not necessarily commensurable.

For instance, predicting the invasion speed of a particular

invasive species (Richter et al. 2013) is different from pre-

dicting how many species may be lost on Earth in the

upcoming century (Pereira et al. 2010), the potential

impact of global changes on ecosystem functioning (Har-

foot et al. 2014b) and services (Worm et al. 2006), or

whether and when planetary regime shifts might occur

(Barnosky et al. 2012). While there has been some pro-

gress in developing ‘unified’ theories and models across

temporal and spatial scales (McGill 2010; Chave 2013;

Harfoot et al. 2014b), the data required to calibrate the

models and test each of these predictions are not always

available. For example, predicting the short-term fate of a

species requires models in both population genetics and

dynamics along with life-history and ecophysiological trait

data (Coulson et al. 2001), while predicting the pace of

adaptive evolution and the speciation and extinction

dynamics of whole clades requires micro- and macro-evo-

lutionary models along with phylogenetic and fossil data

(e.g. Condamine, Rolland & Morlon 2013). Additionally,

the accuracy of a prediction is also highly dependent on

its scale and scope. For example, while it is possible to

predict successful invader fish species in the Great Lakes

with more than 80% accuracy (Kolar & Lodge 2002), the

uncertainty around estimates of metrics as ‘simple’ as for-

est cover by year 2050 can be disconcerting (Pereira et al.

2010).

Our review aimed to clarify what prediction implies in

ecology and to pinpoint some of the challenges in empiri-

cal and theoretical ecology that need to be addressed to

improve predictive ecological models and the way they

are understood and used by human society. Reviewing the

nature and limits of predictions in ecology per se would

be too ambitious for a single review. We have rather

chosen to illustrate some of the limitations and future

(a)

(b)

Fig. 2. The upscaling of ecological predictions. Predictions on future biodiversity have become available at the continental scale. (a)

Global patterns of projected mammal loss, obtained from projected future changes in suitable habitat, in relation to global Biodiversity

Hotspots (hatched). This projection is obtained for a scenario where at least 30% of suitable habitat will globally be lost by 2050 (worst-

case Millennium Ecosystem Assessment scenario). Reprinted from Visconti et al. (2011) by permission of the Royal Society. (b) Map of

the projected future of phylogenetic diversities (scenario A1FI for 2080 from the GIEC) and their relative differences with 1961–1990 for

plants, birds and mammals. Maps represent average phylogenetic diversity (PD; colour scale) across the sample of 100 phylogenetic trees

used for each study group. Reprinted by permission from Macmillan Publishers Ltd: Nature (Thuiller et al. 2011), copyright (2011).
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directions concerning the question of predicting the conse-

quences of global change on biodiversity and ecosystem

functioning. We have organized our main points along

five axes that we believe are essential for improving pre-

dictive ecology: (i) the distinction between explanatory

and anticipatory predictions, (ii) the need for the develop-

ment of new theories at the interface between explanatory

and anticipatory predictions, (iii) the need for data to test

and validate predictions, (iv) the challenge of operational-

ity and (v) the importance of developing a genuine ethics

of prediction. While some of these axes have already been

discussed independently in the past (e.g. Peter 1991), we

feel it is important to develop them jointly as ecology is

now trying to move from empirical and conceptual stages

towards operationality.

Explanatory vs. anticipatory predictions

‘To predict’ means to make a statement on what should

be observed in a particular system before making the

actual observation. It is important to acknowledge that

there are at least two different kinds of predictions, which

we call explanatory and anticipatory predictions.

Theories in science are based on hypotheses, which are

general propositions about the systems under study; they

formulate what should be expected if the assumptions

stemming from general theoretical constructs are correct.

Such expectations about individual systems, outcomes or

properties are called here explanatory predictions. When

they are consistently and repeatedly corroborated by data,

we consider the hypothesis or the theory to be provision-

ally valid (Popper 1959). In contrast, when they differ or

diverge from the data, the hypotheses and theory need to

be modified. In this hypothetico-deductive reasoning, the

validation process determines the explanatory role of pre-

dictions to test or compare theories. These predictions are

therefore logical consequences of the models built on the

hypotheses; they are not in principle limited by what is

currently observed or observable. In physics, for instance,

the Higgs boson was a prediction long before it became

an observation.

However, in some cases, predictions are not elaborated

in the hypothetico-deductive reasoning loop but only in

the future tense: they are about what the world will be,

assuming that the theory or the putative link between

causes and effects that we are considering is ‘true’. Cli-

mate predictions by the Intergovernmental Panel on Cli-

mate Change (IPCC) are a good example of such

predictions: they do not only predict what already is in

our data sets regarding temperature averages, etc., but

they also provide projections on alternative future states

of the Earth under different greenhouse gas emission sce-

narios. Accordingly, we distinguish those predictions that

are essentially concerned with anticipation from those that

aim to establish explanations. Anticipatory predictions

come in various nuances, labelled forecasts, projections

and scenarios (IPCC guidance terminology, Carter & La

Rovere 2001). Taking the example of species distributions,

explanatory predictions aim to corroborate hypotheses on

the mechanisms underpinning species distributions derived

from a specific theoretical corpus. By contrast, anticipa-

tory predictions concern likely future changes in species

distributions and are decoupled from the explanatory pro-

cess: they are not necessarily based on a mechanistic

understanding of the forces driving the observed changes

(i.e. the so-called phenomenological models; Appendix S1,

Supporting information).

While explanatory predictions are necessarily testable,

anticipatory predictions need not be, essentially because a

temporal trend or pattern has to be predicted that goes

beyond the predictive power of phenomenological

approaches. A striking example of the difficulty in generat-

ing anticipatory predictions is the current surge of predic-

tions to estimate and anticipate the effects of environmental

change on species ranges and diversity (Thuiller et al.

2013). Many different approaches can be taken to build

such models, including (among others) species-energy the-

ory (e.g. Storch, Marquet & Brown 2007), correlative spe-

cies distribution models or ‘niche models’ (e.g. Guisan &

Thuiller 2005) or mechanistic models of demographic pro-

cesses with explicit temperature dependence (e.g. Sitch et al.

2008). These models rely on distinct underlying hypotheses

and may lead to different predictions at different temporal

and spatial scales or hierarchical levels (e.g. Morin & Thuil-

ler 2009). Interestingly, even models relying on a single the-

ory can lead to contrasted predictions. For instance,

different correlative species distribution models, all derived

from a simplified version of ecological niche theory (Guisan

& Thuiller 2005), are known to yield different predictions

when applied to future conditions (Thuiller 2004; Pearson

et al. 2006).

In summary, anticipatory predictions differ from

explanatory predictions in that they do not aim at testing

models and theory. They rely on the assumption that

underlying hypotheses are valid while explanatory predic-

tions are based on hypotheses to be tested. Anticipatory

predictions are also not necessarily supposed to be true.

Instead, they intend to deduce, from the models, future

states of reality (forecasts), to extrapolate these models to

domains where there is some uncertainty about the main

parameter values (projections), and to describe possible

trajectories or behaviours of the real system, depending

upon a choice of parameter values that are likely to be

impacted by human action (scenarios). These anticipatory

predictions are therefore not meant to describe the actual

future; the fact that they do not match reality does not

count against the validity of the underlying hypotheses;

rather, they should be regarded as a guide for present

action (Harfoot et al. 2014a).

The two types of predictions sketched here are the two

ends of a continuum along which predictive practices in

ecology are positioned. They define distinct uses and

requirements for the same logical entities, namely

conditional statements deduced from models based on

© 2015 The Authors. Journal of Applied Ecology © 2015 British Ecological Society, Journal of Applied Ecology
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specific hypotheses. Because of their differences, the two

types of predictions should not be assessed in the same

way; their scope, strengths and weaknesses are different.

There is today an ambiguity in the label ‘predictive ecol-

ogy’; it is often used to mean anticipatory predictions, but

the specificities of this type of predictions are often

overlooked.

From explanatory to anticipatory prediction

and back

Ecology is often blamed for its weakness at generating

predictions, despite the accumulation of specific tools to

account for complex dynamics (Levin 1992; Sol�e & Good-

win 2000; Anand et al. 2010). Surprises, that is the occur-

rence of unexpected responses in an experiment or

observation, are frequent and useful because they may

yield new ideas. As discussed in the previous section,

although some predictions can result from mere empirical

correlations, all predictions are based on an implicit or

explicit theoretical framework that determines their scope

and limitations. In the absence of theory, no prediction is

possible. Rudimentary theories may be qualitative, but

more advanced theories involve mathematical models and

quantitative explanatory predictions.

L INKING EXPLANATORY TO ANTIC IPATORY

PREDICTIONS

Although theories are often first developed to connect

and integrate concepts, hypotheses, models and data, they

virtually always lead to new explanatory predictions,

which in turn can be used to develop anticipatory predic-

tions. Thus, there is a continuum from explanatory to

anticipatory predictions in the process of theory develop-

ment. A good example of this process is provided by the

theory of trophic cascades. This theory originated from

empirical observations and a conceptual hypothesis about

the prevalence of top-down control in food chains (Hair-

ston, Smith & Slobodkin 1960). This hypothesis was then

turned into heuristic theoretical models (e.g. Oksanen

et al. 1981) that made new predictions about the expected

responses of ecosystems to perturbations at the bottom or

at the top of the food chain. After several successful

experimental tests of these explanatory predictions,

trophic cascade theory was applied in lake restoration

programmes in the form of biomanipulation. Although

only mixed results were obtained from biomanipulation

experiments, this example illustrates that reaching the

operational stage of anticipatory predictions does not pre-

clude the need for further theoretical developments. Quite

the contrary, the failure of some biomanipulation pro-

grammes led to the development of new theoretical mod-

els that took into account the functional complexity of

food webs (e.g. Hulot & Loreau 2006; Wollrab, Diehl &

De Roos 2012). Similar processes took place in many

other areas of ecology, such as in the theory of

host–parasite interactions, which started with simple

heuristic models and was later successfully applied to pre-

dict the propagation of human diseases and define vacci-

nation thresholds in public health programmes (May &

Anderson 1991). In these examples, we see the same initial

progression from concepts to heuristic models and from

explanatory to anticipatory predictions, followed by a

stage in which the theory is re-examined and developed in

new directions.

THE NEED FOR MORE COMPLEXITY . . .

Ecological systems are complex; they typically include

various components interacting with each other in differ-

ent ways at various spatial and temporal scales. More-

over, the biotic components of ecological systems can

evolve in a Darwinian way (Ings et al. 2009), and interac-

tions between the biotic and abiotic components may cre-

ate feedback loops at the origin of nonlinear, hence

unexpected, ecosystem responses (Scheffer et al. 2001).

Intuitive reasoning suggests that taking into account an

increasing number of details would improve the accuracy

of ecological predictions, but it is not necessarily the case:

complex computer codes are prone to various artefacts

that need to be taken care of (Gal�an et al. 2009; Augu-

siak, Van den Brink & Grimm 2014). This highlights an

important gap in our current understanding of the link

between model complexity (see Appendix S1) and predic-

tive accuracy, although statistical criteria exist to compare

the predictive accuracy of sets of models (e.g. Burnham &

Anderson 2002).

Filling this gap is critical to understand when additional

model complexity should be sought and of what kind.

Such research is timely as some researchers advocate more

complex modelling approaches (e.g. Evans et al. 2013b).

According to them, progress in ecology has been ham-

pered by an excessive focus on simple models, which fail

to adequately capture important processes driving ecosys-

tem dynamics. Better integration of adjacent organization

levels has been considered as a pathway to better theory

and models (Allen & Hoekstra 1992). This implies on the

one hand the incorporation of processes acting at several

organization levels (Grimm et al. 2005; Chevin, Lande &

Mace 2010; Thuiller et al. 2013) into integrative frame-

works and, on the other hand, a more explicit integration

of responses and feedbacks to external drivers, such as

the dynamics of ecosystems at larger spatial scales (Lor-

eau, Mouquet & Gonzalez 2003; Massol et al. 2011), or

the socio-economic drivers of ecosystem change (Liu et al.

2007; Kleijn et al. 2009).

The use of complex models, however, brings other chal-

lenges. Understanding the behaviour of these models

becomes difficult, since they commonly lead to emergent

effects that could not have been predicted from the

knowledge of their building blocks alone (Grimm et al.

2005). Calibrating the models, assessing their sensitivity to

some assumptions (Saltelli et al. 2008; Augusiak, Van den

© 2015 The Authors. Journal of Applied Ecology © 2015 British Ecological Society, Journal of Applied Ecology
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Brink & Grimm 2014) and measuring data uncertainty

are also challenging (Hartig et al. 2011). The analysis of

complex models is the focus of intense research, not only

in biology (Wilkinson 2009), but also in climatology (Ed-

wards & Marsh 2005), industry (Lorenzo et al. 2011) and

statistics (Kennedy & O’Hagan 2001), with an increasing

number of software facilities to disseminate state-of-the-

art techniques (e.g. Jabot, Faure & Dumoulin 2013). Eco-

logical research could benefit from current advances in

other complex system fields to deal with its current incli-

nation towards complexity (Borgatti et al. 2009).

. . . OR FOR LESS COMPLEXITY?

While there is a need for including some ecological com-

plexity in predictive ecology, this should not come at the

cost of understanding and tractability. The paradox is

that to address complexity, we need to simultaneously

simplify our ecological understanding. Genes and species

have been the most studied units of organization in ecol-

ogy and evolution, and as a result of the wealth of knowl-

edge about the mechanisms underpinning their dynamics,

they remain at the heart of predictive ecology. However,

the focus on these facets of biodiversity poses several

problems for prediction, as the knowledge of, say, species

responses to environmental change is not sufficient to pre-

dict the assembly of novel communities (Suding et al.

2008). Recently, complementary approaches have been

proposed to use other units of organization in predictive

models. Here, we provide two examples where new units

of biodiversity have been used to provide large-scale pre-

dictions of biodiversity and ecosystem functioning.

Functional traits and their quantification through func-

tional diversity (Lavorel & Garnier 2002; McGill et al.

2006) are potentially powerful tools for the prediction of

future patterns of biodiversity and ecosystem functioning

as they link the successive steps that go from the projec-

tion of species distributions to the assembly of novel com-

munities and ecosystem functioning. For instance,

functional traits have been used to model responses to

large-scale environmental changes in plant species distri-

butions (e.g. Reu et al. 2011). Once potential distributions

are known according to environmental factors, trait-based

models of community assembly can be applied to predict

community composition within a given trophic level (e.g.

de Bello et al. 2012), as well as with multitrophic interac-

tions (Lavorel et al. 2013). Dynamic models that incorpo-

rate trait-based species responses to the abiotic

environment, biotic interactions and dispersal limitation

(Boulangeat et al. 2012), are able to predict current vege-

tation regional distribution and could thus be applied to

project climate and land-use change scenarios (Boulan-

geat, Georges & Thuiller 2014). Dynamic models based

on the understanding of functional trade-offs in plants

have also allowed new insights into ecosystem functioning

(Falster et al. 2011). Such insights are now incorporated

into new models of vegetation and biogeochemistry,

which use explicit representations of plant functional

traits and their trade-offs rather than a few fixed func-

tional types (e.g. Pavlick et al. 2013).

Like functional diversity, phylogenetic diversity has

been recently proposed as an indirect way to approach

community assembly rules and ecosystem functioning

(Mouquet et al. 2012; Srivastava et al. 2012). The reason-

ing behind this approach is that (i) phylogenetic relation-

ships within a community of interacting species result

from the joint effects of environmental and interaction fil-

ters and thus inform about the processes of community

assembly and (ii) phylogenetic diversity is correlated with

functional diversity and thus is a good proxy for the

potential effects of species diversity on ecosystem func-

tioning. While this shortcut suffers from several limita-

tions (e.g. Gravel et al. 2012), it offers a unique

opportunity for ecologists to scale up ecological function-

ing to biogeographical scales at which collecting func-

tional trait data is almost impossible while extensive

phylogenies are available (e.g. Thuiller et al. 2011).

FEEDING BACK TO EXPLANATORY PREDICTIONS

An open question is whether the current theoretical cor-

pus of ecology and evolution is mature and sophisticated

enough to warrant any kind of anticipatory prediction

about biodiversity and ecosystems over the next few dec-

ades to centuries. Scaling up and down models across

organizational levels is currently one of the main chal-

lenges of theoretical ecology (Chave 2013). The driving

factors and processes of ecological systems can interact in

such a way as to produce non-predictable outcomes, even

in simple models (Scheffer et al. 2001).

There are entire areas where theory is currently lacking

or highly fragmentary, and where new theory should

greatly improve our understanding of the effects of global

environmental changes upon ecosystems and human soci-

eties. For instance, there is still limited understanding of

the structure, dynamics and functioning of ecological net-

works (Bascompte 2009). These have been mostly studied

so far as isolated pieces, focusing on specific types of

interactions among species (e.g. food, host–parasite or

mutualistic webs). In reality, all types of interactions

occur simultaneously in ecosystems, generating multiple

coupled ecological networks (Olff et al. 2009; K�efi et al.

2012). Building a more integrative theory of ecological

networks will be a key to predict the response of ecosys-

tems to environmental changes. Furthermore, some pro-

cesses (e.g. positive interactions among species such as

facilitation, Martorell & Freckleton 2014) remain under-

studied. Another example is ecosystem stability. Ecosys-

tem stability has been studied for a very long time in

ecology, yielding unremitting debates (Ives & Carpenter

2007), but research in this area has addressed a wide

range of different issues with little integration and predic-

tive power (Pimm 1984; Loreau et al. 2002). Recent

research has begun to build a mechanistic, predictive

© 2015 The Authors. Journal of Applied Ecology © 2015 British Ecological Society, Journal of Applied Ecology
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theory of ecosystem stability (Loreau & de Mazancourt

2013; Morin et al. 2014) but we are still far from a com-

prehensive theory that integrates the multiple components

of stability (e.g. variability, resilience, persistence, resis-

tance, reactivity) as well as multiple trophic levels.

Another example of an area where more theoretical

development is critically needed concerns the interaction

between humans and the biosphere (e.g. Liu et al. 2007;

Collins et al. 2011). This interaction is arguably one of

the most important ecological interactions on Earth since

it drives most of the current environmental changes and

will be a key to determining the future of the Earth sys-

tem (Chapin et al. 2011; Rounsevell et al. 2012), and yet

it is still largely understudied from an ecological perspec-

tive (Harfoot et al. 2014a). Admittedly, humans are a dif-

ficult species to study and model because of their complex

plastic behaviour, but this is not a reason not to devote

significant efforts to develop theory on their interactions

with ecological systems (e.g. Taylor 2009; Reuveny 2012).

Such a theory should allow us to make new explanatory,

and perhaps even anticipatory, predictions from a differ-

ent angle than that provided by economics and other

social sciences.

These examples call for a significant theoretical effort,

either through a theoretical paradigm shift or through

integration, strengthening and extension of current theo-

retical insights. While rough anticipations can be obtained

from mere empirical correlations, reliable anticipatory

predictions, especially predictions outside the range of

conditions experienced so far, require both a solid inter-

disciplinary theoretical and statistical background and a

robust mechanistic understanding of the phenomena to be

predicted. This mechanistic, theory-based approach has

the advantage of not only improving predictions them-

selves, but also identifying their sources of uncertainty

and improving both theory and predictions as knowledge

accumulates (Thuiller et al. 2013).

THE NEED FOR SURPRISES IN ECOLOGY

The need for fundamental research in ecology should thus

be considered a central objective in the development of

predictive ecology and promoted. Research agencies are

too often requesting immediate operationality while

understanding should be the first target, with enough flex-

ibility for surprises to happen along the way. Surprises,

unexpected and often counterintuitive results, play an

important role in the advancement of science in general,

where they may contribute to initiate what has been called

paradigm change/scientific revolution (Kuhn 1962). Yet,

they seem to be particularly common in ecology (Doak

et al. 2008). It is unclear whether this is because ecology

is a young science, or because of the very nature of its

object, complex, ever-evolving under Darwinian dynamics

and environmental change, and subject to many nonlinear

phenomena (e.g. Suding, Gross & Houseman 2004). Even

well-accepted concepts may be shaken. A spectacular

example is the role reversal in the lobster–whelk preda-

tor–prey couple (Fig. 3). Such surprises are very difficult

to publish, especially as long as a clear explanation has

not been found (Doak et al. 2008), which may bias the

development of the field. Indeed, the scientific community,

like any community, tends to aggregate around theories

and paradigms and tends to shunt currently inexplicable

results. In many cases, however, surprises occur because

of a missing link in our chain of understanding. Address-

ing the question of why they occur may help us identify

missing links of knowledge and sometimes even fill in

these gaps. This process seems therefore essential to the

progress of science and should be encouraged. While the

development of a coherent theoretical corpus should be

our ultimate goal, leeway must be left for ‘out-of-the-

track’ studies, which are particularly likely to produce

novelties, later to become part of normal science. This

means access to high-profile scientific journals but also

some support from funding agencies that should integrate

the need for risk and for the unexpected at the basis of

their evaluation criteria.

Essential to the concept of prediction is the

need for data

As predicting the fate of biodiversity and ecosystem func-

tioning in a changing environment will require integrating

data from very different origins (Fig. 4), the need for

building a common framework and common methods for

data acquisition, storage and sharing in ecology is

acknowledged by a growing number of scientists and

managers.

ENTERING THE ERA OF DATA INTENSIVE SCIENCE

Ecology is currently undergoing a major transformation

to become a ‘big data’ science (Kelling et al. 2009; Mich-

ener & Jones 2012; Hampton et al. 2013). Recent large

public data bases are covering different temporal and

Fig. 3. The need for surprise in ecology. The tentative reintroduc-

tion of rock lobsters in the South African Marcus Island failed

because the released lobsters were immediately attacked and con-

sumed by the overabundant whelks, which used to be their prey

(Barkai & McQuaid 1988). Illustration Laurence Meslin.
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spatial scales for thousands of organisms and from genes

to ecosystems (Appendix S2).

Although these data sets are undoubtedly of great value

for predictive ecology, their interoperability (Jones et al.

2006) and accessibility remain relatively limited. Besides

the large-scale studies for which clear data management

plans are implemented (leading to so-called big data), the

vast majority of data in ecology comes from independent

studies. Although highly valuable per se, this leads to

small, uncoordinated data sets (so-called dark data, Hei-

dorn 2008) whose form and content can be highly specific

to a particular research question or researcher (Heidorn

2008; Hampton et al. 2013). The issue is that, to integrate

this information into big data sets, we have to account

for the distribution of observation effort. To some extent,

for coarse-grain species distributions, the simple accumu-

lation of data might counterbalance the lack of informa-

tion on sampling effort. However, for other purposes (e.g.

quantitative assessment of biodiversity variation in space

and time), it is unlikely that observation biases will ever

become negligible.

An important limitation of large-scale data collection is

that the link between the motivation for data collection

and the very process of collecting data is often not expli-

cit. Different sampling designs can lead to radically differ-

ent answers to the same question (e.g. Courbois et al.

2008). Explicitly integrating a priori knowledge in

sampling design can reduce these discrepancies. An inter-

esting step forward in ecology comes from large-scale the-

ory-driven data collection, usually the kind of data used

in anticipatory predictions (Albert et al. 2010; Dengler &

Oldeland 2010). Here, target populations, sampling space

and sampling units are simulated based on the theory

underlying the expected analysis (e.g. population mod-

elling, community dynamics or range dynamics) along

with expert knowledge. This approach should help to (i)

construct acceptable hypotheses on the expected patterns;

(ii) simulate different sampling designs including, for

instance, sampling costs or the difficulty to reach sam-

pling sites; and (iii) test for the effect of sampling effort

and design (distribution of samples in space) on estimates

(e.g. number of populations or individuals). Obviously,

theory-driven data collection should not create circularity

(whereby data only reflect what we already know) but

rather delineate the relevant scale and sampling effort

necessary to address a specific question.

THE NEED FOR A COMMON ONTOLOGY?

The recent development of eco-informatics (Jones et al.

2006) results from the acknowledgement that integration

of very different data sets must become a priority in ecol-

ogy (Costello et al. 2013). The challenge is to develop a

common ontology to move ecology forwards into the

information era (Madin et al. 2008). Ontology is defined

as a formal representation or classification of concepts

and their relationships within a domain of interest (e.g. a

population is part of a metapopulation). By definition, it

is derived from a previous understanding of the system

described and thus is contingent on the relevant research

fields (i.e. standards, terminologies and thesauri are

domain specific).

As integrating data sets based on different ontologies

might be very challenging, two major types of ontologies

are used to formalize knowledge within a domain: ‘gen-

eric’ and ‘domain-specific’ ontologies. The first describes

very general concepts, and both facilitate and guide the

integration of information coming from more specific

vocabularies and from domain-specific ontologies (Madin

et al. 2008). For example, OBOE (Extensible Observation

Ontology) appears to be well adapted to represent biodi-

versity and ecosystem data (Madin et al. 2007). The sec-

ond type of ontologies (‘domain specific’) is based on

formal definitions of concepts and how these are related

within a narrower field of research. In the case of biodi-

versity science, domain ontologies might be developed for

each organization level recognized in the essential biodi-

versity variables proposed by Pereira et al. (2013): genetic

composition, species and populations, species traits, com-

munity composition, ecosystem structure and ecosystem

function. At the lowest organization level, molecular

ontologies are nowadays widely adopted by geneticists

(Ashburner et al. 2000), and efforts are underway to

develop ontologies at higher levels, for example for
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Fig. 4. The scaling of data collection in ecology. Data in ecology

are organized along two constraints of ‘control’ and ‘scale’ of

observation. These two axes trade off and allow addressing either

ecological processes or patterns. This compromise limits our abil-

ity to address ecological complexity at particular spatial and tem-

poral scales: the zone (a) is not informative and the zone (b) is

technically unreachable. Explanatory predictions are by definition

concerned by the process axis, while the anticipatory prediction

concerns both axes. The scales of projections needed to forecast

the future of biodiversity and ecosystem functioning (mostly in

zone b) concern scales that are not often reachable. LTER (the

Long Term Ecological Research) programme was launched by

the USA National Science Foundation in 1980 to conduct

research on ecological issues that can last decades and span large

areas (http://www.lternet.edu).
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organismic traits (Laporte, Mougenot & Garnier 2012)

and for the structure and function of ecosystems (Porter

et al. 2011). These initiatives, however, remain isolated,

and the resulting tools are very far from being used by

the whole scientific community of ecologists.

A side effect of the development of ontologies might

be to ‘freeze’ or ‘canalize’ the conceptual understanding

of ecological systems. A classification system and the

search for interoperability between data sets inevitably

lead to strong simplifications of the spatial and temporal

contexts in which the data were collected, which could

be done at the expense of regional specificities (Turnhout

& Boonman-Berson 2011) and even modify the under-

standing of the phenomena considered (Lindenmayer &

Likens 2013). By definition, ontology is based on an

understanding of the system considered and thus the

question might also be: Do we have a sufficient under-

standing of ecological diversity and ecosystem function-

ing to be able to propose a common ontology in

ecology?

THE NEED FOR DATA AVAILABIL ITY

Predictive ecology most often depends on data collected

by other scientists, and sharing material is therefore an

important issue (Costello et al. 2013). This will be particu-

larly true for aggregated data that are valid at larger

temporal and spatial scales than the observation point.

Data-sharing goes beyond releasing data in a publicly

accessible data base. It also includes the constraint that

data should be reliable and, therefore, peer-reviewed, in a

format that is meaningful for putative users, and finally,

easy to find and access (Costello et al. 2013). Metadata in

particular are central to this process (Michener et al.

1997). Since its inception, the Convention on Biological

Diversity (http://www.cbd.int) has stressed the need to

‘maintain and organize by any mechanism, data derived

from identification and monitoring activities’ (article 7d).

Many projects have been conducted with this aim at the

local, regional, national or international level by either

private or public institutions, within some cases, incentive

measures from non-governmental organizations and/or

private foundations to share their data.

Despite these initiatives, sharing is the exception rather

than the rule, and a number of authors have recently

condemned the lack of a data-sharing culture among ecol-

ogists and advocated that all ecological data should be

released in open-access data bases and eventually shared

and reused (Michener & Jones 2012; Costello et al. 2013;

Hampton et al. 2013). Some measures from editors have

been undertaken, and several journals now have data-

sharing policies, publication being contingent upon data

release (e.g. this journal). Other measures also come from

funding agencies: for instance, the US NSF now requires

that data management plans are embedded in research

proposals and that data are made publicly available

after a certain period of time. Finally, some initiatives

encourage data-sharing via meta-analyses (e.g. http://

www.nceas.ucsb.edu/meta/index.html).

Once ecologists have agreed to share their data, they

still need to decide where to submit them in the arcana of

Web-based data bases. They have the choice between

international and publicly managed data bases, which are

fairly constraining in terms of data format, and less

searchable and less reusable Web portals mainly managed

by publishers (with looser format policy). Globally, open

data enhance manuscript citation (Piwowar & Vision

2013), but the next step is to provide peer review to guar-

antee data quality and interoperability (Costello et al.

2013). Data acquisition could thus become an objective in

itself and should be promoted by the creation of data-fo-

cused journals. This would reward the individuals who

collected data and agreed to release them freely through

the citation system of standard science. The next step may

also be to share the knowledge linked to each data set,

such as existing analyses with related computer pro-

grammes, ongoing projects and even aborted analyses so

that one can build on previous experience (Poisot,

Mounce & Gravel 2013). The key to progress in sharing

data is a win–win situation in which everyone will benefit

from sharing data, and where the quality of the data

information will increase over time (Fig. 5).

Improving operationality

Ecology has always been connected to applied science

through ambitious programmes of management, conservation
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Fig. 5. Data life span in ecology. Data information content as a

function of time. After being published by researchers, informa-

tion content in ‘dark data’ is ‘naturally’ declining with time

(lower curve). Inversely, information content in ‘open data’ is

continuously increasing with time (upper curve). Figure modified

from Michener et al. (1997). The various steps described here

relate to the ‘data life cycle’ formalized in the DataONE project

(Michener & Jones 2012), in which steps from data acquisition to

analysis are described and subjected to specific treatments for

which tools have been especially developed.
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biology or restoration ecology (e.g. Isaac et al. 2007), but

current anticipatory predictions are made at very large

spatial and temporal scales, with potentially strong conse-

quences for human society (Fig. 6). This scaling up of

ecological prediction has been made possible for scientific

reasons (data availability, conceptual and modelling pro-

gress), but it also results from societal pressure (funding

agency policies, societal paradigm of operationality).

Although this need for operationality can catalyse

scientific development, scientists should still objectively

evaluate their ability to make predictions and communi-

cate their limitations.

DEFINING OPERATIONAL SCALES

It is now common to see continental-scale predictions on

the future of biodiversity (Fig. 2) or even ecosystem ser-

vices (Fig. 6). This tendency, while responding to impor-

tant needs, might also overestimate the spatial and

temporal scales at which reliable predictions can be made

(a)

(b)

Fig. 6. Consequences of predictive ecology for human society. As illustrated in these two examples, predictive ecology has a strong inter-

face with human economy and society development (respectively on fish diversity and vegetation productivity). (a) Projected rate of

range shifts in marine pelagic species caused by climate change from 2005 to 2050. The colour scale represents the poleward shift (in km

per year). The projections are based on bioclimatic envelope models for 1066 species of fish and invertebrates, under Intergovernmental

Panel on Climate Change (IPCC) scenario SRES A1B. Reprinted from Pereira et al. (2010) with permission from AAAS. (b) Simulated

net vegetation primary production changes by 2071–2100 compared with a control period (1961–1990). The LPJ-GUESS ecosystem

model has been parameterized under three regional climate model-generated climate scenarios (from the European Union project PRU-

DENCE). Contrasted scenarios have been chosen for illustration: from left to right RCAO/ECHAM-OPYC/A2, HIRHAM/ECHAM-

OPYC/B2, HIRAM/Had/AM3H/A2. Reprinted from Morales et al. (2007) with permission from John Wiley and Sons.
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(Fig. 4). The question of scale in ecological prediction is

not new (Chave 2013). But despite advances to go beyond

organismal scales (e.g. Lavorel & Grigulis 2012; Mouquet

et al. 2012; Srivastava et al. 2012), issues associated with

spatial and temporal scales remain a frustrating problem

in ecological prediction.

By definition, models based on coarsely resolved envi-

ronmental data cannot fully account for fine-grained com-

plexity. For example, species distribution models do not

incorporate enough data at distribution limits (and either

over- or underestimate extinction risks); they are also

unable to account for local heterogeneities (thus, they

would tend to overestimate extinction risks, Scherrer &

Korner 2010) and they do not take intraspecific variability

into account. Temporal scales also pose serious challenges

to ecological prediction. Indeed, long-term predictions

amplify small deviations among models and among cli-

matic or land-use scenarios. Moreover, short-term predic-

tions with immediate socio-economic implications, such as

those required by regional managers and/or decision-mak-

ers, carry a great uncertainty about specific changes due

to idiosyncratic effects of local circumstances and sur-

prises, including extreme climatic or socio-economic

events (Walker & Salt 2012). Such issues support the need

to couple different types of models, from mechanistic fine-

scale models to large-scale species distribution models

(McMahon et al. 2011; Bellard et al. 2012). Practice in

ecological prediction also reveals that the selection of

appropriate spatial and temporal scales is a particularly

sensitive issue for communication with stakeholders and

transfer to decision-makers. In particular, large-scale, spa-

tially explicit predictions and their underlying limitations

can be particularly difficult to understand by regional

managers and local policymakers.

IMPROVING THE STATIST ICAL TOOLBOX OF

ECOLOGICAL PREDICT ION

The development of predictions in ecology has long been

hindered by the methodological division between phe-

nomenological and mechanistic models (Appendix S1).

Mechanistic models are used for understanding, but no

general formal framework is available for parameterizing

complex mechanistic models from data, quantifying the

uncertainty of predictions and comparing alternative mod-

els (Clark & Gelfand 2006). While statistics provides such

a framework (e.g. Burnham & Anderson 2002), its appli-

cation in ecology has been largely restricted to simple phe-

nomenological models. The latter have been in turn

criticized for not representing ecological processes, being

poorly linked to theory and potentially yielding biased

forecasts.

In recent years, however, the long-standing division

between mechanistic and statistical models has begun to

wane (Clark & Gelfand 2006). This is due to develop-

ments in computational statistics that increasingly enable

ecologists to apply statistical principles of parameter

estimation, model selection and uncertainty analysis to

mechanistic models. Prominent examples are methods

developed in Bayesian statistics such as Markov chain

Monte Carlo (e.g. Clark 2005) and approximate Bayesian

computation (e.g. Csillery et al. 2010). These methods

have been widely employed in phylogenetic inference for

15 years (Yang & Rannala 1997). In ecology, they have

been used to analyse time series of population abundance

with theoretical models of population dynamics (Clark &

Bjornstad 2004) or to estimate models of invasion dynam-

ics from abundance variation in space and time (Hooten

et al. 2007). Emerging applications use multiple data

types to estimate complex mechanistic models of range

dynamics (Pagel & Schurr 2012) or vegetation dynamics

(Hartig et al. 2012). Bayesian methods such as Kalman

filters also lend themselves to data assimilation where

posterior distributions of parameters and the resulting

predictions are regularly updated as new data become

available. Data assimilation has a long tradition in

weather forecasting and is now increasingly applied in

epidemiology, fish stock assessment and ecosystem science

(Niu et al. 2014).

Statistical inference with mechanistic models has the

potential to profoundly transform ecology (Clark & Gel-

fand 2006) for several reasons. First, the process-explicit

and hierarchical nature of mechanistic models means that

their parameters and state variables can be measured

independently (although this may not always be easy).

Hence, mechanistic models can be linked to a greater

diversity of data types than simple correlative models.

The statistical estimation of the parameters of these hier-

archical models fosters understanding by synthesizing

knowledge from disparate sources (Schaub et al. 2007;

Cressie et al. 2009). Secondly, hierarchical statistical meth-

ods enable integration of mechanistic models and ecologi-

cal data with complex structures (e.g. Cressie et al. 2009).

This should increase the value of ‘noisy’ ecological data

that are now available in big data bases for mechanistic

understanding and prediction. Thirdly, the statistical esti-

mation of parameters in mechanistic models should

increase integration of ecological theory and applications

(Marie & Simioni 2014). Models that were developed in a

purely theoretical context now start to be parameterized

from large-scale data and might soon be used to forecast

dynamics of a wide range of phenomena (Schurr et al.

2012; Thuiller et al. 2013). Similarly, parameters of small-

scale mechanistic models can now be estimated from

large-scale data. For example, parameters from a physio-

logical model describing how the uptake and allocation of

carbon and nitrogen determine plant growth (Thornley

1998) were estimated from data on the geographical distri-

bution of tree species in Europe (Higgins et al. 2012).

Clearly, the statistical estimation of mechanistic model

parameters is no panacea for ecological prediction but it

will entice theoretical ecology to build general models cap-

able of predicting a broad range of real-world phenomena

(Evans et al. 2013a).
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VALIDATION AT THE HEART OF PREDICTIVE ECOLOGY

Validation is at the basis of model reliability but is also

essential to the credibility of the scientific community

towards stakeholders and thus should be considered as a

top priority. Validation is the process of testing the beha-

viour of a model using a data set different from the one

used for calibration (Rykiel 1996). There are inherent lim-

itations in the validation process: (i) the perception of the

predictive performance of the model depends on the tech-

niques used (Araujo et al. 2005; Bahn & McGill 2013)

and (ii) by definition, validation also strongly depends on

the availability and quality of data sets (Duputi�e, Zim-

mermann & Chuine 2014).

In this context, explanatory and anticipatory predic-

tions face different challenges. Explanatory predictions

are generally derived from simple conceptual models with

few parameters that are often difficult to derive from

observation. For instance, following Hubbell’s neutral

theory (Hubbell 2001), a particular distribution of relative

species abundances (RSA) is expected in local communi-

ties and its analytical formula is governed by simple

parameters (the so-called biodiversity parameter and dis-

persal, Volkov et al. 2003). The RSA of an empirical sys-

tem can then be compared to the expected RSA derived

from neutral theory (e.g. with rain forests and coral reefs

data, Hubbell 2006). However, it is difficult to imagine,

for instance, that the biodiversity parameter (mostly a

combination between the size of the metacommunity and

speciation rate) will be common to all species. Moreover,

the simplicity of the associated conceptual models often

leads to improper generalization in the nature of the pre-

diction and to potential contradictions.

Anticipatory predictions are even more concerned by

these limitations as they are marked by a strong difference

between the scales of predictions and the scales of mea-

surement (Fig. 4). To overcome this limitation, cross-scale

validation has been proposed (using data generated at a

lower scale to validate models built for a larger scale), but

even here the question of the interchangeability of pro-

cesses between scales has not been truly addressed (Moro-

zov & Poggiale 2012; Chave 2013). Another approach is

to calibrate models on a data set and validate them on a

spatially or temporally independent data set. In practice,

however, two independent data sets might not be avail-

able, and the calibration and validation data sets are often

defined as random subsets of the original data set (Araujo

et al. 2005). As a result, the calibration and validation

data sets are often not independent because abiotic vari-

ables show strong spatial or temporal autocorrelation.

Non-independence of these data sets thus yields overly

optimistic estimates of the accuracy of model projections

(Heikkinen, Marmion & Luoto 2012; Bahn & McGill

2013). Moreover, even though spatially distinct samples

are frequent, examples of temporally distinct samples are

scarce because of the lack of long-term data sets at the

temporal resolution needed for anticipatory predictions

(but see Dobrowski et al. 2011). Although fruitful initia-

tives were launched in the past decades (e.g. see ILTER

network: http://www.ilternet.edu), long-term data sets are

still rare. Resolving these issues will require special efforts

in long-term data collection, coordination and sharing.

ACKNOWLEDGING UNCERTAINTY AND LIMITAT IONS

With the blossoming of probabilistic phenomenological

and mechanistic predictive models, apprehending uncer-

tainty has become a central challenge. There are two main

sources of uncertainty in predictive modelling: model

uncertainty and parameter uncertainty, the latter being

the most active field of research, the former being often

ignored.

Model uncertainty refers to the inherent quality and

justification of the model itself. Complex mechanistic

models require a certain number of approximations,

hypotheses and critical choices that are often hard to jus-

tify. Simulation experiments should be more widely used

to test the importance and relevance of a given process or

mechanism in a mechanistic model (Pagel & Schurr 2012).

Alternatively, scenario analyses could be further devel-

oped where different mechanisms or hypotheses are used

to give the range of predictions for a given model. Exten-

sive benchmarking and comparative analyses between

models will also provide insights into the influence of

incorporating certain mechanisms or not (e.g. Cheaib

et al. 2012).

Predictive models typically require inputs, the values of

which being not known with certainty. Uncertainty analy-

sis aims to quantify the overall uncertainty of a model, in

order to estimate the range of possible output values,

including error propagation in the case of complex mod-

els. Uncertainty and dependence modelling, model infer-

ences, efficient sampling, screening and sensitivity

analysis, and probabilistic inversion are among the most

active research areas (Kurowicka & Cooke 2006). To

date, despite few examples (e.g. Hartley, Harris & Lester

2006) and the awareness that different algorithms are

likely to give different scenarios (Thuiller 2004; Buisson

et al. 2010), uncertainty in parameter estimation or input

data is still rarely reported (but see, Lobo 2008; Duputi�e,

Zimmermann & Chuine 2014).

Better integration of statistical analyses into mechanistic

fitting framework should foster appropriate reporting of

uncertainty (e.g. Jabot & Chave 2011; Marion et al.

2012). So far, however, a full treatment of uncertainty has

been too time-consuming and complex to be achieved. To

meet this challenge, there is a need for mathematical, sta-

tistical and computational skills that extend beyond the

range of standard ecological expertise towards unusual

techniques likely to mix concepts of determinism and ran-

domness that are usually considered independent (Anand

et al. 2010). Despite these caveats, pragmatism should be

encouraged, for instance by subsampling alternative cli-

mate projections for the same scenario to still give a basic
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representation of uncertainty and by considering that

parameters in mechanistic models should not be fixed to

one value but rather obey a probability density function

based on prior knowledge. Progress will also come from

integrating methods from other fields that already con-

sider uncertainty, for instance through the use of robust

simulations of probabilistic models (Gillespie 2007) or

automatic verification of dynamical properties using

dedicated probabilistic model checkers (Fisher, Harel &

Henzinger 2011).

Following this blossom of probabilistic extensions of

both phenomenological and mechanistic models, we also

advocate a better definition of the various sources of

uncertainty. It remains important to disentangle epistemic

uncertainty and human decision uncertainty as a conse-

quence of model predictions (Kujala, Burgman & Moila-

nen 2013), and to promote a better communication of the

resulting limitations to stakeholders.

INTERFACING ECOLOGICAL PREDICTION WITH SOCIAL

SCIENCES

Global changes have profound consequences for human

societies through the damage, threats and risks they

induce on biodiversity, ecosystem functioning and ser-

vices, and economic goods (MEA 2005). This interface

between biodiversity and human society requires connect-

ing ecological predictions with human and social sciences

(e.g. Chapin et al. 2011). Economics, sociology, anthro-

pology, law and management should typically be mobi-

lized. The challenge is to examine the coupled dynamics

and management of the social–ecological systems at play.

For instance, in marine ecosystems, accounting for fleet

dynamics, fishing strategies, behaviours and goals can be

decisive for improving the scenarios or management of

both biodiversity and ecosystem services (e.g. Doyen et al.

2012). The current shortcomings of public policies and

regulations for the management of biodiversity and

renewable resources can be explained partly by an insuffi-

cient consideration of the complexity at play. In fisheries,

for instance, there is a need for ecosystem-based predic-

tive approaches for fishery management (FAO 2003).

However, designing an operational ecosystem approach to

fisheries remains controversial (Plag�anyi 2007; Doyen

et al. 2012).

The development of scenario planning is a promising

tool to fill the gap between ecological and social

approaches. It lies at the crossroad between ecological

prediction, social science and policymaking and might

thus provide an appropriate ground for improving com-

munication between the scientific community, stakehold-

ers and decision-makers (Bennett et al. 2003; Walz et al.

2007; Coreau et al. 2009). Scenarios can also be combined

with mechanistic models. This mixed approach called

story and simulation (Alcamo 2001) combines narratives

about possible changes as input parameters and mechanis-

tic models that can quantify the consequences of these

changes (Biggs et al. 2007). Along this line, the develop-

ment of integrated assessment models (IAM) that com-

bine both natural (i.e. terrestrial vegetation model or

physical models of the ocean–atmosphere) and human

subsystems (i.e. energy supply and demand) will be key to

providing futures of human development (Harfoot et al.

2014a).

The need to integrate social sciences into ecological pre-

dictions also brings questions about governance. The

heterogeneity of agents involved in ecological processes is

high and contributes to complexity in the design of public

decision and management. Agents such as fishermen,

farmers, hunters, conservation agencies, regulation agen-

cies, politicians and tourists often differ largely in their

preferences, strategies, level of information and inputs in

the dynamics of socio-ecosystems. Social scientists will be

key actors here to build consensus and coordination

using, for instance, participatory methods or scenario

models.

Towards an ethics of ecological prediction

Last but not least, the rise of predictive ecology stresses

the need for an appropriate ethical framework. Ethics will

concern several aspects of ecological predictions, such as

the acquisition of data and knowledge (from local people

to communities and state organizations) and their free

access, the transparency of the models and scenarios

(through the use and development of open-source soft-

ware in statistics, modelling and geographic information

systems), and the dissemination of the scientific results,

outcomes and limitations.

Large-scale anticipatory predictions of ecosystem ser-

vices are becoming available (e.g. Fig. 6), and they typi-

cally have important consequences for human societies,

with impacts far beyond landscape management and the

design of natural reserves. These predictions are often

used by stakeholders and communicated to the public well

before any consensus has been reached within the scien-

tific community. Moreover, even though the ‘culture’ of

uncertainty is deeply rooted in the scientific community, it

is still lacking in the general public and policy circles for

whom anticipatory predictions are generally made. The

general public often gets a mixed, sometimes confusing,

message from ecologists and journalists on a number of

highly debated topics such as biodiversity loss and climate

change, the impacts of invasive species (e.g. Lodge &

Shrader-Frechette 2003) and emerging diseases (Lafferty

& Wood 2013), among many others. Misunderstandings

often exist regarding science, expertise, values and public

policy, between ecologists and a more general audience as

well as among ecologists themselves.

Two distinct aspects are involved in an ethics of ecolog-

ical prediction: (i) the ethics of the scientific process gener-

ating predictions, up to its communication to the broader

public, and (ii) the ethics of the use of these predictions in

the public debate. Regarding the first point, it is critical
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to include the dissemination of scientific results in scien-

tific ethics. Scientists can no longer ignore to whom they

disseminate their predictions and why a particular result

becomes publicized. Critically, they have the responsibility

to communicate about the limitations and uncertainties

associated with their predictions to avoid unwarranted

generalizations and uses as far as possible. Although we

do recognize the difficulty of this task (again, if variance

and uncertainty are relatively clear statistical concepts for

scientists, what about their perception by a given land

planner or citizen?), ignorance of the consequences of

one’s findings should no longer be viewed as ethically

acceptable scientific practice.

Assuming that scientists integrate their public roles and

the consequences of their findings in their standard scien-

tific practice, a second, more difficult issue then arises:

Can they predict the social representations accompanying

the scientific debate they initiate (Pielke 2007)? These rep-

resentations have a causal impact on reality through the

behaviour of those who adopt them, and this in turn will

impinge on the state of the environment and therefore on

the validity of the ecological predictions themselves. Scien-

tists produce theories that are tested through falsification

of hypotheses and confrontation with empirical results.

Although the production of scenarios for the long term

will hardly be refuted during the short period of a scien-

tific grant, many hypotheses are not confronted to the

social perception, construction and representation of the

environment. Social scientists have an opportunity here to

move at the forefront of predictive ecology both in the

design of the ecological study generating predictions, by

investigating the social perception and representation of

the questions and hypotheses, and in the dissemination of

its results. In principle, this should allow us to integrate,

within ecological predictions, the very effects of these pre-

dictions on social behaviour and, therefore, to increase

predictive accuracy. Ethical issues arise in this process.

For instance, what ethical status should be given to the

‘beliefs’ of local people regarding the ‘ecosystem services’

that scientists seek to predict and in the operational policy

tools that may result from these predictions, such as

schemes of payment for ecosystems services (Beatley 1994;

Callicott 2003)? These difficult questions should be

addressed if predictive ecology is to be socially opera-

tional.

Conclusion

The growing societal need for predictions of current and

future anthropogenic environmental changes and the

growing interaction between different disciplines and the

unprecedented accumulation of ecological data are push-

ing ecology to become increasingly ‘predictive’. It is

important to distinguish between at least two different

kinds of predictions with different functions, which we

call explanatory and anticipatory predictions. Far from

reducing the need for new theory, the current trend

towards a more predictive ecology makes this need all the

more compelling. Reliable anticipatory predictions require

a solid theoretical background based on a robust mecha-

nistic understanding of the phenomena to be predicted

and an iterative theoretical process in which explanatory

predictions are generated and tested. Essential to the con-

cept of prediction is also the need for data to test or vali-

date predictions. Ecology is undergoing a major

transformation to become a ‘big data’ science, which

implies an urgent need for building a common ontology

and standards for data acquisition, storage and sharing.

The need for anticipatory predictions has triggered a

blossoming of models to predict the future of biodiversity.

This diversity of models can be seen as an opportunity

because making anticipatory predictions at different scales

and organizational levels necessarily calls for an inte-

grated approach and the development of new theories.

Anticipatory predictions are also pushing ecology to

become more operational. Operationality comes with

Fig. 7. The need for deontology to gain in credibility. In 1986,

James Lighthill (illustration), president of the International

Union of Theoretical and Applied Mechanics (http://www.iu-

tam.net), made this statement: ‘Here I have to pause, and to

speak once again on behalf of the broad global fraternity of prac-

titioners of mechanics. We are all deeply conscious today that the

enthusiasm of our forebears for the marvellous achievements of

Newtonian mechanics led them to make generalizations in this

area of predictability which, indeed, we may have generally

tended to believe before 1960, but which we now recognize were

false. We collectively wish to apologize for having misled the gen-

eral educated public by spreading ideas about the determinism of

systems satisfying Newton’s laws of motion that, after 1960, were

to be proved incorrect’ (Lighthill 1986). This example of scientific

integrity should motivate ecologists to build predictive ecology

upon a strong deontological background to avoid having to make

a similar statement in 20 years. Illustration Laurence Meslin.
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important challenges for ecology, in particular (i) identify-

ing the appropriate spatial and temporal scales and devel-

oping specific models, (ii) developing statistical inference

methods based on mechanistic models, (iii) developing

appropriate model validation procedures and (iv) integrat-

ing inputs from social sciences and decision-making. The

current trend towards anticipatory predictions is an

opportunity for ecologists to become key societal actors,

but with this opportunity also comes an important

responsibility in the way the results and their limitations

are communicated to society. An important challenge for

ecology is to develop a genuine ethics of prediction to

gain full credibility (Fig. 7).
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