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One of the tantalizing aspects of twentieth century mathematical logic is 
the juxtaposition of the highly theoretical with the very practical. Logical 
investigations, aimed at giving precise mathematical definitions of "theorem", 
"proof", and "mathematical truth", led naturally to a study of computable 
processes. As a result, it is now generally recognized that recursive function 
theory provides the theoretical foundation for computer science. 
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The book under review is a contribution to classical recursive function 
theory. Thus it might be helpful to describe briefly some of the basic concepts 
of the subject. 

Let us begin by recalling Turing's pioneering work on computability. In 
1936, Turing gave a definition of a digital computer of a most general type, the 
Turing machine [17]. This led naturally to a precise definition of "computable 
function from nonnegative integers into nonnegative integers". As is well 
known, Turing went further and demonstrated the existence of a universal 
Turing machine, a computer which could simulate all other such computers. 
Essentially, a computer of today differs from a Turing machine by the fact 
that it has limited storage capacity, whereas the Turing machine does not. 

Turing's work was not the only approach to computability. At about 
the same time, several other mathematicians—e.g. Church, Herbrand/Gödel, 
Kleene, Post—also gave definitions of the concept [2, 4, 11]. Post's approach 
turned out to have practical significance both in computer science and in lin
guistics. The Post Production, a rule for manipulating strings of symbols, 
found its way into programming languages, the work of Noam Chomsky on 
the grammatical analysis of language, and other topics. 

It is worth noting that the set of functions obtained from each of these 
different approaches is the same. (The functions so defined are called recursive 
functions.) The equivalence of these definitions provides evidence that the 
recursive function does, in fact, capture the intuitive notion of "computable 
function from nonnegative integers into nonnegative integers". There is, of 
course, additional evidence, which we shall not be concerned with here. 

In the intervening years, the theory of recursive functions has been applied 
to other branches of mathematics. For example, in number theory and alge
bra, we have Matijasevië's solution of Hubert's tenth problem, and Novikov's 
theorem on the unsolvability of the word problem for finitely presented groups 
[8, 10]. There are many other problems which are not so well known. Some, 
for example, occur in analysis. By suitable coding one can define "recursive 
real", "recursive function of a real variable", and beyond. One can ask and 
answer such questions as: Is the unique solution of the wave equation with 
computable initial data computable? (Answer: No, not necessarily [13, 14].) 

The book under review is not concerned with applications. Rather it is 
concerned with a detailed classification of "recursively enumerable set", a 
concept closely associated with that of a "recursive function". Intuitively, 
a set of nonnegative integers is "recursively enumerable" if its members can 
be effectively listed. Imagine a Turing Machine programmed to compute the 
values of a recursive function a: a(0), a(l), a(2), — The set of these values is 
a recursively enumerable set. Thus a set A is recursively enumerable if either 
A = 0 or A is the range of a recursive function. 

The classification comes about in the following way. There are recursively 
enumerable sets A which have the property that the complement Ac is also 
recursively enumerable. (This fact provides an effective procedure for deter
mining whether or not nE A. Merely enumerate the elements of the set A and 
the elements of Ac until n turns up.) Such sets are called recursive. However, 
many recursively enumerable sets do not have this property. In fact, it turns 
out that, by suitable identification, the recursively enumerable sets form an 
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"upper semilattice" whose bottom element consists of the recursive sets. The 
elements of the semilattice are called degrees. The book is concerned with 
the structure of this semilattice. 

The impetus for such a classification comes from E. L. Post's famous paper 
of 1944 [12]. Let us consider any axiomatizable mathematical theory—e.g., 
group theory. By suitable coding, each statement of such a theory can be 
associated with a nonnegative integer. For a decidable theory, the set of the
orems is a recursive set. For an undecidable theory the set of theorems is 
recursively enumerable, but not recursive. Now the proof of Gödel's famous 
incompleteness theorem provides a method for showing that number theory is 
undecidable. In Post's time, there were only two known methods for showing 
that a given axiomatizable theory is undecidable. They were: (1) use the 
method of Godel directly or (2) "embed" a theory which was known to be 
undecidable into the given theory. This produced only one kind of recursively 
enumerable, nonrecursive set. Roughly, the question (often called Post's prob
lem) was: Are there others? For a long time Post's problem was open. It was 
finally solved independently by R. M. Friedberg and A. A. Muchnik in 1956 
and 1957 [3, 9]. The method which Friedberg and Muchnik employed became 
known as the "priority argument". 

Over the years, the priority argument has become an important tool in the 
study of recursively enumerable sets. It seems pointless, in this expository 
account written for nonlogicians, to describe it in any detail. Let us merely 
say that the priority argument is an intricate combinatorial technique, usually 
containing an infinite number of requirements Ro, Ri, R2,... which must be 
satisfied. In general, later elements of the sequence have lower "priority" than 
earlier ones. 

We turn now to a discussion of Soare's book. The work is divided into 
four parts. Parts A and B are introductory, and contain the basic material 
included in standard texts on recursive function theory (cf. Kleene [5] and 
Rogers [15]). Part A discusses the elementary facts of recursion theory— 
e.g. recursive and partial recursive functions, recursively enumerable sets, the 
Normal Form Theorem, the S™-theorem, and the Recursion Theorem. Part 
B is motivated by the work of Post which was discussed earlier. It contains 
the formulation and solution of Post's problem, thus giving an introduction 
to the "priority argument". 

The main thrust of the book, however, does not lie in its account of intro
ductory material. Rather it lies in the careful, systematic presentation of the 
priority argument as it applies to recursively enumerable sets. Beginning with 
the last chapter of Part B, and continuing through Parts C and D, we progress 
from "finite injury priority arguments", through "infinite injury priority ar
guments", up to the latest intricacies in the method. Part C opens with a 
discussion of the infinite injury priority argument and presents many well-
known results based on it (e.g., the Density Theorem). Part D is concerned 
with advanced topics and areas of current research. Among the topics consid
ered are: promptly simple sets and degrees, the tree method and (^''-priority 
arguments, and automorphisms of the lattice of recursively enumerable sets. 

The technical complications of the priority argument lead naturally to an 
open problem. First, a bit of background. For about thirty years, the only 
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known solution to Post's problem was via a priority argument. Not long ago, 
A. Kuëera obtained a proof which does not use this method at all [6]. The 
question, of course, is: to what extent can the priority argument be dispensed 
with in the classification of recursively enumerable sets? 

We turn now to a different topic. Since recursion theory provides the theo
retical foundation for computer science, it seems natural to discuss briefly the 
relation between these two disciplines and the contents of this book. In gen
eral, the recursion-theoretic concepts used in computer science are not new: 
they have been known since the late 1950s. This is obviously true of the work 
of Post and Turing referred to earlier. It is equally true of very recent work. 

Consider, for example, the P = NP problem, probably the most famous open 
problem in theoretical computer science today. The formulation of this prob
lem borrows heavily from pre-1960 recursion theory. More specifically, the 
concepts of "reducibility" and of a "complete problem" are polynomial time 
analogs of the notions of "reducibility" and a "complete set"—two notions 
which are discussed in Part A of this book. Going further, the polynomial 
time hierarchy [16] is an analog of the arithmetic hierarchy, also discussed in 
Part A. For this reason the introductory part of the book may be useful to 
those interested in theoretical computer science. The account given here is 
well written and can serve as a reference. However, since some of the proofs 
are merely sketched, the reader may find it helpful to consult either experts 
or other texts. 

There is another aspect to the matter of the interconnection between the
oretical computer science and recursion theory which ought to be mentioned. 
Although the formulation of problems in theoretical computer science owes 
much to recursion-theoretic concepts, it is not at all clear that recursion-
theoretic techniques (in particular, the priority argument)—in their present 
form—will be useful in the solution of such problems. This can be seen by 
considering the work of Baker, Gill, and Solovay [1]. Indeed one of the well-
known facts of recursive function theory is that the relativized theorem—i.e. 
the theorem relativized to an oracle—follows immediately once the theorem 
itself is proved. This certainly does not hold for the P = NP problem. For 
although the P = NP problem is open, Baker, Gill, and Solovay have proved 
that there are oracles A and B such that PA = NPA, but PB ^ NPB. Per
haps computer scientists and recursion theorists, working together, can find 
more appropriate techniques. 

In the opinion of the reviewer, Soare's book is essentially a specialized 
monograph on the priority argument. The bibliography, however, has broader 
scope, and lists references on topics not discussed in the text. The book itself 
differs from the work of Manuel Lerman in that Lerman is concerned mainly 
with the priority argument as applied to arbitrary sets of nonnegative inte
gers [7]. By contrast, Soare's book deals mainly with recursively enumerable 
sets. 

Soare's monograph is well written, and should appeal to those persons 
with a knowledge of basic recursion theory who wish to study the priority 
argument, as it applies to recursively enumerable sets. For such persons it is 
an excellent source of information. 
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This is the second volume of an excellent series of books on modern aspects 
of geometry. A review of the English translation of Part I of the series, also 
published by Springer-Verlag, appeared in this Bulletin, vol. 13 (1985), 62-
65. In this volume the modern conceptions and ramifications of manifolds 
are treated. Perhaps no other concept in modern mathematics has been so 
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