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curriculum of many colleges and universities, the next generation of texts may 
have a substantially different emphasis. Devaney's book is an excellent choice 
for professional mathematicians to read as an introduction to the subject. 
There are ample exercises. 
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Markov processes: Characterization and convergence, by Stewart N. Ethier and 
Thomas G. Kurtz, John Wiley & Sons, New York, Chichester, Brisbane, 
Toronto, and Singapore, 1986, x + 534 pp., $47.50. ISBN 0-471-08186-8 

The theoretical side of mathematical probability has long been preoccupied 
with limit theorems; not surprisingly, since one of the natural interpretations 
of probability is as long-run frequency. Traditionally, limit theorems have been 
divided into two categories: strong limits, where some asymptotic event is 
asserted to occur with probability one, and weak limits, where the distributions 
of a sequence of random quantities are asserted to converge to a limit 
distribution. The prototype weak limit result is the central limit theorem (CLT), 
which says that under mild conditions the sums Sn = Xl 4- • • • + Xn of inde
pendent random variables can asymptotically be approximated by Gaussian 
distributions. This is the key result in elementary mathematical statistics. The 
average height of a random sample of people is a random quantity whose exact 
distribution is very complicated, depending on the entire Hst of heights of the 
population; but the CLT says that the distribution of the average height of a 
large sample is approximately a Gaussian distribution with two parameters 
which depend only on the mean and standard deviation of the population 
heights. This illustrates the practical purpose of weak convergence theorems, to 
approximate complicated exact finite distributions by simpler limiting distribu
tions. A more sophisticated example concerns neutral genetic models. Much 
observed genetic variation within a species (e.g., eye color in humans) confers 
no apparent selective advantage (i.e., is apparently "neutral"). Is it plausible 
that such variation is really neutral? To study this question one needs to set up 
a mathematical model and compare its predictions with observations. In detail, 
any model will be rather arbitrary and unrealistic, but one can hope that the 
long-term behavior of a model is insensitive to its details and instead ap
proximates some mathematically natural process with only a few parameters. 

Returning to the CLT, a pure mathematician would regard its proof as an 
easy exercise in Fourier analysis. Modern probabilists look at it differently. 
For each n, consider not only the single random variable Sn but instead the 
whole process (Sm; 0 < m < n\ which can be regarded as a random element of 
function space. Under the same conditions as the CLT these processes, suitably 
normalized, converge to the Brownian motion process (Bt; 0 < / < 1). Not 
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only is this "functional CLT" mathematically stronger than the basic CLT, but 
also it leads to quite different methods of proof. Brownian motion can be 
characterized as essentially the only process with continuous paths and sta
tionary independent increments. It is easy to show that, if the normalized 
processes (Sm;0 < m < m) converge to a limit process, then the limit process 
has the properties above, and hence must be Brownian motion. Thus the proof 
of the functional CLT can be reduced to the technical issue of showing that the 
normalized processes (Sm) are "tight", that is, relatively compact as probabil
ity measures on function space. Thus there is a general strategy for proving 
weak convergence of processes Zn to a limit process Z: 

(a) find a characterization of the limit process Z; 
(b) show the approximating process Zn to have the characteristic property 

"asymptotically"; 
(c) show (Zn) is tight. 
At first sight this is a circuitous procedure, but its advantage is that it avoids 

explicit consideration of distributions of the approximating processes Zn\ 
whereas Fourier analysis enables these to be studied directly for processes 
arising as sums of independent variables, such direct analysis is not possible in 
more complex settings. 

Characterization problems occur in many parts of pure mathematics, and so 
studying characterizations of random processes is theoretically interesting in its 
own right. The strategy described above links weak convergence theory, which 
has direct "applied" motivation, with theoretical characterization problems. 
The book under review studies the interplay between convergence and char
acterization in the context of Markov processes. Here there are three ways to 
characterize limit processes: via generators, via martingales, or as solutions to 
stochastic differential equations. Assuming a background of a standard first-
year graduate course in probabiUty theory, the book starts with three concise 
but clear 50-page accounts of operator semigroups, martingales and related 
parts of the general theory of processes, and abstract properties of weak 
convergence in function space. The heart of the book is in Chapter 4, a 
thorough account of the martingale method for characterizing the Markov 
process associated with a given generator. From such characterizations it is 
straightforward to obtain conditions for weak convergence in terms of 
martingales derived from the approximating processes. This is the first easily 
accessible but general account of this important topic. After further concise 
accounts of stochastic differential equations (confusingly, termed integral 
equations) and examples of generators, the final third of the book treats 
examples of weak convergence. The examples concentrate on what might 
loosely be called population models: that is, branching processes, genetics 
models, and their relatives. Within this field both classic topics (e.g., diffusion 
approximation of the Wright-Fisher model) and recent topics (branching 
Markov processes, random environments, measure-valued diffusion limits of 
infinite-alleles models) are treated. A final brief chapter treats random processes 
driven by converging underlying processes. 

There are several ways to view this book. As a reference book, for theoretical 
probabilists in other fields wanting results about characterizations and their 
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use in establishing weak convergence results of the types mentioned, it is a 
clear success and deserves to be widely used. 

The thought of using it as a textbook raises some interesting speculations. 
While the content of a first-year graduate course in probability is fairly 
standard and several good books are available, there is no such consensus on 
what is the core material in more advanced theoretical stochastic processes; 
while there are many books on particular topics, there is no satisfactory overall 
treatment. The book under review, while also focusing on specialized topics, 
does have fine accounts summarizing different fields; it also has an excellent 
set of exercises. Its main defect as a textbook is lack of motivation, and lack of 
explanation of how the background topics relate to other problems in probabil
ity theory. Williams [6], whose volume 2 is expected soon, gives the most 
wide-ranging account of modern stochastic process theory, a brilliant exposi
tion of "the big picture" and the intuitive ideas, but without the rigorous 
theorem-proof development. In content these books overlap; in style they are 
complementary; between them, they cover a vast range of modern material; 
and so they are the reviewer's nomination for the "core material" of modern 
process theory. 

Billingsley [1] popularized weak convergence in probability theory, and that 
comparatively slim book, containing much of the material known at that time 
(1968), is still a standard reference. The subject has grown so much that no one 
would attempt a comprehensive account of the current knowledge of weak 
convergence. There are several books on subareas: Pollard [5] emphasizes 
empirical distributions, Kallenberg [3] random measures, Borovkov [2] queue-
ing theory, and Kushner [4] engineering applications, for example. There has 
been a noticeable gap at Markov processes, which this book does a good job of 
filling, at least for theoreticians. 

Books, like automobiles, cannot be designed to please all customers, and I 
feel this book will not be so satisfactory for applied workers. Many appli
cations are rather routine; one has a sequence of processes, one sees how to 
rescale so that conditional means and covariances converge, making it heuristi-
cally obvious that the processes converge to the appropriate diffusion. From 
the applied viewpoint, most of weak convergence is "formalizing the obvious", 
and the duty of theoreticians is to provide plug-in theorems to justify the limit 
in the case at hand! This book has all the theoretical tools, but only assembles 
them for ready use in a few settings (mostly population models, as mentioned 
before); using the results in different settings would require theoretical facility 
which an applied worker may well be unwilling to acquire. Thus the reviewer, 
working on applied problems involving "obvious" but nonstandard limit 
processes (function-valued diffusions and sequence-valued Ornstein-Uhlenbeck 
processes) was disappointed to find nothing in the book to improve on 
bare-hands implementation of the fundamental ideas. A couple of extra 
chapters of qualitatively different examples would have been welcome. 
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For well over a hundred years, scattering theory has played a central role in 
mathematical physics. From Rayleigh's explanation of why the sky is blue, to 
Rutherford's discovery of the atomic nucleus, through the modern medical 
applications of computerized tomography, scattering phenomena have at
tracted, perplexed and challenged some of the outstanding scientists and 
mathematicians of the twentieth century. Broadly speaking, scattering theory is 
concerned with the effect an inhomogeneous medium has on an incident 
particle or wave. In particular, if the total field is viewed as the sum of an 
incident field w' and a scattered field us then the direct scattering problem is 
to determine us from a knowledge of w1 and the differential equation govern
ing the wave motion. Of equal (or even more) interest is the inverse scattering 
problem of determining the nature of the inhomogeneity from a knowledge of 
the asymptotic behavior of u\ i.e., to reconstruct the differential equation 
and/or its domain of definition from the behavior of (many) of its solutions. 
The above oversimplified description obviously covers a huge range of physical 
concepts and mathematical ideas, and for a sample of the many different 
approaches that have been taken in this area the reader can consult the 
monographs of Bleistein [1]> Colton and Kress [3], Jones [5], Lax and Phillips 
[8], Newton [9], Reed and Simon [10], and Wilcox [12]. 

The simplest problems in scattering theory to treat mathematically are those 
of time harmonic acoustic waves which are scattered by either a penetrable 
inhomogeneous medium of compact support or by a bounded impenetrable 
obstacle. In addition to their appearance in realistic physical situations (e.g., 
acoustic tomography and nondestructive testing) such problems also serve as 
models for more complicated wave propagation problems involving electro
magnetic waves, elastic waves, or particle scattering. To mathematically model 
these two problems, assume the incident field is given by the time harmonic 
plane wave 

w'(x, /) = exp[/A:x • a - iwt] 
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