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A B S T R A C T

Intrusion detection based upon computational intelligence is currently attracting considerable interest

from the research community. Characteristics of computational intelligence (CI) systems, such as

adaptation, fault tolerance, high computational speed and error resilience in the face of noisy

information, fit the requirements of building a good intrusion detectionmodel. Here we want to provide

an overview of the research progress in applying CI methods to the problem of intrusion detection. The

scope of this review will encompass core methods of CI, including artificial neural networks, fuzzy

systems, evolutionary computation, artificial immune systems, swarm intelligence, and soft computing.

The research contributions in each field are systematically summarized and compared, allowing us to

clearly define existing research challenges, and to highlight promising new research directions. The

findings of this review should provide useful insights into the current IDS literature and be a good source

for anyone who is interested in the application of CI approaches to IDSs or related fields.
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1. Introduction

Traditional intrusion prevention techniques, such as firewalls,

access control or encryption, have failed to fully protect networks

and systems from increasingly sophisticated attacks and mal-

wares. As a result, intrusion detection systems (IDS) have become

an indispensable component of security infrastructure to detect

these threats before they inflict widespread damage.

When building an IDS one needs to consider many issues, such

as data collection, data pre-processing, intrusion recognition,

reporting, and response. Among them, intrusion recognition is

most vital. Audit data is compared with detection models, which

describe the patterns of intrusive or benign behavior, so that both

successful and unsuccessful intrusion attempts can be identified.

Since Denning first proposed an intrusion detection model in

1987 [80], many research efforts have been focused on how to

effectively and accurately construct detectionmodels. Between the

late 1980s and the early 1990s, a combination of expert systems

and statistical approaches was very popular. Detection models

were derived from the domain knowledge of security experts.

From the mid-1990s to the late 1990s, acquiring knowledge of

normal or abnormal behavior had turned from manual to

automatic. Artificial intelligence and machine learning techniques

were used to discover the underlying models from a set of training

data. Commonly used methods were rule based induction,

classification and data clustering.

The process of automatically constructing models from data is

not trivial, especially for intrusion detection problems. This is

because intrusion detection faces problems such as huge network

traffic volumes, highly imbalanceddatadistribution, thedifficulty to

realize decision boundaries between normal and abnormal beha-

vior, and a requirement for continuous adaptation to a constantly

changing environment. Artificial intelligence and machine learning

have shown limitations in achieving high detection accuracy and

fast processing timeswhen confrontedwith these requirements. For

example, the detection model in the winning entry of the KDD99

competition was composed of 50� 10 C5 decision trees. The

second-placed entry consisted of a decision forest with 755 trees

[92]. Fortunately, computational intelligence techniques, known for

their ability to adapt and to exhibit fault tolerance, high computa-

tional speed and resilience against noisy information, compensate

for the limitations of these two approaches.

The aim of this review is twofold: the first is to present a

comprehensive survey on research contributions that investigate

utilization of computational intelligence (CI) methods in building

intrusion detection models; the second aim is to define existing

research challenges, and to highlight promising new research

directions. The scope of the survey is the core methods of CI, which

encompass artificial neural networks, fuzzy sets, evolutionary

computation methods, artificial immune systems, swarm intelli-

gence and soft computing. Soft computing, unlike the rest of the

methods, has the synergistic power to intertwine the pros of these

methods in such a way that their cons will be compensated.

Therefore, it is an indispensable component in CI.

The remainder of this review is organized as follows. Section 2

defines IDSs and computation intelligence. Section 3 introduces

commonly used datasets and performance evaluation measures,

with the purpose of removing the confusion found in some

research work. Section 4 categorizes, compares and summarizes

core methods in CI that have been proposed to solve intrusion

detection problems. Section 5 compares the strengths and

limitations of these approaches, and identifies future research

trends and challenges. Section 6 concludes.

2. Background

2.1. Intrusion detection

An intrusion detection system dynamicallymonitors the events

taking place in a system, and decides whether these events are

symptomatic of an attack or constitute a legitimate use of the

system [77]. Fig. 1 depicts the organization of an IDS where solid

lines indicate data/control flow, while dashed lines indicate

responses to intrusive activities.

Fig. 1. Organization of a generalized intrusion detection system.
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In general, IDSs fall into twocategories according to thedetection

methods they employ, namely (i)misuse detection and (ii) anomaly

detection. Misuse detection identifies intrusions by matching

observed data with pre-defined descriptions of intrusive behavior.

Therefore, well-known intrusions can be detected efficiently with a

very low false alarm rate. For this reason, the approach is widely

adopted in themajorityof commercial systems.However, intrusions

are usually polymorph, and evolve continuously. Misuse detection

will fail easilywhen facing unknown intrusions. Oneway to address

this problem is to regularly update the knowledge base, either

manually which is time consuming and laborious, or automatically

with the help of supervised learning algorithms. Unfortunately,

datasets for this purpose are usually expensive to prepare, as they

require labeling of each instance in the dataset as normal or a type of

intrusion. Another way to address this problem is to follow the

anomaly detection model proposed by Denning [80].

Anomaly detection is orthogonal to misuse detection. It

hypothesizes that abnormal behavior is rare and different from

normal behavior. Hence, it builds models for normal behavior and

detects anomaly in observed data by noticing deviations from

these models. There are two types of anomaly detection [54]. The

first is static anomaly detection, which assumes that the behavior

of monitored targets never changes, such as system call sequences

of an Apache service. The second type is dynamic anomaly

detection. It extracts patterns from behavioral habits of end users,

or usage history of networks/hosts. Sometimes these patterns are

called profiles.

Clearly, anomaly detection has the capability of detecting new

types of intrusions, and only requires normal data when building

profiles. However, its major difficulty lies in discovering bound-

aries between normal and abnormal behavior, due to the

deficiency of abnormal samples in the training phase. Another

difficulty is to adapt to constantly changing normal behavior,

especially for dynamic anomaly detection.

In addition to the detection method, there are other character-

istics one can use to classify IDSs, as shown in Fig. 2.

2.2. Computational intelligence

Computational intelligence (CI) is a fairly new research field

with competing definitions. For example, in Computational

Intelligence—A Logical Approach [241], the authors defined CI as:

Computational Intelligence is the study of the design of

intelligent agents. . .. An intelligent agent is a system that acts

intelligently: What it does is appropriate for its circumstances

and its goal, it is flexible to changing environments and

changing goals, it learns from experience, and it makes

appropriate choices given perceptual limitations and finite

computation.

In contrast, Bezdek [39] defined CI as:

A system is computational intelligent when it: deals with only

numerical (low-level) data, has pattern recognition compo-

nents, does not use knowledge in the artificial intelligence

sense; and additionally when it (begins to) exhibit (i)

computational adaptivity, (ii) computational fault tolerance,

(iii) speed approaching human-like turnaround, and (iv) error

rates that approximate human performance.

The discussion in [63,89] further confirm the characteristics of

computational intelligence systems summarized by Bezdek’s

definition. Therefore, in this review, we subscribe to Bezdek’s

definition.

CI is different from thewell-known field of artificial intelligence

(AI). AI handles symbolic knowledge representation, while CI

handles numeric representation of information; AI concerns itself

with high-level cognitive functions, while CI is concerned with

low-level cognitive functions. Furthermore, AI analyzes the

structure of a given problem and attempts to construct an

intelligent system based upon this structure, thus operating in a

top-downmanner, while the structure is expected to emerge from

an unordered beginning in CI, thus operating in a bottom-up

manner [63,89].

Although there is not yet full agreement onwhat computational

intelligence exactly is, there is a widely accepted view on which

areas belong to CI: artificial neural networks, fuzzy sets,

evolutionary computation, artificial immune systems, swarm

intelligence, and soft computing. These approaches, except for

fuzzy sets, are capable of autonomously acquiring and integrating

knowledge, and can be used in either supervised or unsupervised

learning mode.

In the intrusion detection field, supervised learning usually

produces classifiers for misuse detection from class-labeled

training datasets. Classifiers are basically viewed as a function

mapping data samples to corresponding class labels. Unsupervised

learning distinguishes itself from supervised learning by the fact

that no class-labeled data is available in the training phase. It

groups data points based upon their similarities. Unsupervised

learning satisfies the requirement of anomaly detection, hence it is

usually employed in anomaly detection.

3. Datasets and performance evaluation

In this section, we will summarize popular benchmark datasets

and performance evaluation measures in the intrusion detection

domain, with the purpose of clarifying some mistaken terms we

found during the review process.

3.1. Datasets

Data in the reviewed research work is normally collected from

three sources: data packets from networks, command sequences

from user input, or low-level system information, such as system

call sequences, log files, and CPU/memory usage. We list some

commonly used benchmarks in Table 1. All of these datasets have

been used in either misuse detection or anomaly detection.

Here, we focus on two benchmarks: The DARPA-Lincoln

datasets and the KDD99 datasets. The DARPA-Lincoln datasets

were collected by MIT’s Lincoln laboratory, under the DARPA ITO

and Air Force Research Laboratory sponsorship, with the purpose

of evaluating the performance of different intrusion detection

methodologies. The datasets, collected in 1998, contain seven

weeks of training data and two weeks of test data. The attack data

included more than 300 instances of 38 different attacks launched

against victim UNIX hosts, falling into one of the four categories:

Denial of Service (DoS), Probe, Users to Root (U2R), and Remote to

Local (R2L). For each week, inside and outside network traffic data,

audit data recorded by the Basic Security Module (BSM) on Solaris

hosts, and file system dumped from UNIX hosts were collected. InFig. 2. Characteristics of intrusion detection systems.
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1999, another series of datasets was collected, which included

three weeks of training and two weeks of test data. More than 200

instances of 58 attack types were launched against victim UNIX

andWindowsNT hosts and a Cisco router. In 2000, three additional

scenario-specific datasets were generated to address distributed

DoS and Windows NT attacks. Detailed descriptions of these

datasets can be found at [2].

The KDD99 dataset was derived in 1999 from the DARPA98

network traffic dataset by assembling individual TCP packets into

TCP connections. It was the benchmark dataset used in the

International Knowledge Discovery and Data Mining Tools

Competition, and also the most popular dataset that has ever

been used in the intrusion detection field. Each TCP connection has

41 features with a label which specifies the status of a connection

as either being normal, or a specific attack type [4]. There are 38

numeric features and 3 symbolic features, falling into the following

four categories:

(i) Basic features: 9 basic features were used to describe each

individual TCP connection.

(ii) Content features: 13 domain knowledge related features were

used to indicate suspicious behavior having no sequential

patterns in the network traffic.

(iii) Time-based traffic features: 9 features were used to summarize

the connections in the past 2 s that had the same destination

host or the same service as the current connection.

(iv) Host-based traffic features: 10 features were constructed using

a window of 100 connections to the same host instead of a

time window, because slow scan attacks may occupy a much

larger time interval than 2 s.

The training set contains 4,940,000 data instances, covering

normal network traffic and 24 attacks. The test set contains

311,029 data instances with a total of 38 attacks, 14 of which do

not appear in the training set. Since the training set is prohibitively

large, another training set which contains 10% of the data is

frequently used.

McHugh [219] published an in-depth critical assessment of the

DARPA datasets, arguing that some methodologies used in the

evaluation are questionable and may have biased the results. For

example, normal and attack data have unrealistic data rates;

training datasets for anomaly detection are not adequate for its

intended purpose; no efforts have been made to validate that false

alarm behavior of IDSs under test shows no significantly difference

on real and synthetic data. Malhony and Chan [215] confirmed

McHugh’s findings by experiments, which discovered that many

attributes had small and fixed ranges in simulation, but large and

growing ranges in real traffic.

By sharing the same root with the DARPA datasets, the KDD99

dataset inherits the above limitations. In addition, the empirical

study conducted by Sabhnani et al. [246] states that ‘‘the KDD

training and test data subsets represent dissimilar target

hypotheses for U2R and R2L attack categories’’. According to their

analysis, 4 new attacks constitute 80% of U2R data, and 7 new

attacks constitute more than 60% of R2L data in the test dataset.

This may well explain why the detection results for U2R and R2L

attacks are not satisfactory in most IDSs.

Despite all this criticism, however, both the DARPA-Lincoln and

the KDD99 datasets continue to be the largest publicly available and

the most sophisticated benchmarks for researchers in evaluating

intrusion detection algorithms or machine learning algorithms.

Instead of using benchmarks listed in Table 1, sometimes

researchers prefer to generate their own datasets. However, in a

real network environment, it is hard to guarantee that supposedly

normal data are indeed intrusion free. The robust approach

introduced by Rhodes et al. [244] is able to remove anomalies from

collected training data. A further reason for using self-produced

datasets is incomplete training datasets, which tend to decrease

the accuracy of IDSs. Therefore, artificial data is generated and

merged within training sets [21,95,116,128,144,264].

3.2. Performance evaluation

The effectiveness of an IDS is evaluated by its ability to make

correct predictions. According to the real nature of a given event

compared to the prediction from the IDS, four possible outcomes

are shown in Table 2, known as the confusion matrix. True

negatives as well as true positives correspond to a correct

operation of the IDS; that is, events are successfully labeled as

normal and attacks, respectively. False positives refer to normal

events being predicted as attacks; false negatives are attack events

incorrectly predicted as normal events.

Based on the above confusion matrix, a numerical evaluation

can apply the following measures to quantify the performance of

IDSs:

- True negative rate (TNR): TN
TNþFP, also known as specificity.

- True positive rate (TPR): TP
TPþFN, also known as detection rate (DR)

or sensitivity. In information retrieval, this is called recall.

- False positive rate (FPR): FP
TNþFP ¼ 1� specificity, also known as

false alarm rate (FAR).

- False negative rate (FNR): FN
TPþFN ¼ 1� sensitivity.

- Accuracy: TNþTP
TNþTPþFNþFP

- Precision: TP
TPþFP, which is another information retrieval term, and

often is paired with ‘‘Recall’’.

The most popular performance metrics are detection rate (DR)

together with false alarm rate (FAR). An IDS should have a high DR

and a low FAR. Other commonly used combinations include

precision and recall, or sensitivity and specificity.

Table 1

Summary of popular datasets in the intrusion detection domain.

Data source Dataset name Abbreviation

Network traffic DARPA 1998 TCPDump Files [2] DARPA98

DARPA 1999 TCPDump Files [2] DARPA99

KDD99 Dataset [4] KDD99

10% KDD99 Dataset [4] KDD99-10

Internet Exploration Shootout

Dataset [3]

IES

User behavior UNIX User Dataset [6] UNIXDS

System call

sequences

DARPA 1998 BSM Files [2] BSM98

DARPA 1999 BSM Files [2] BSM99

University of New Mexico

Dataset [5]

UNM

Table 2

Confusion matrix.

Predicted class

Negative class (Normal) Positive class (Attack)

Actual class Negative class (Normal) True negative (TN) False positive (FP)

Positive class (Attack) False negative (FN) True positive (TP)

S.X. Wu, W. Banzhaf / Applied Soft Computing 10 (2010) 1–354



4. Algorithms

In this section, we will review the core computational

intelligence approaches that have been proposed to solve intrusion

detection problems. We shall discuss artificial neural networks,

fuzzy sets, evolutionary computation, artificial immune systems,

swarm intelligence and soft computing.

4.1. Artificial neural networks

An artificial neural network (ANN) consists of a collection of

processing units called neurons that are highly interconnected in a

given topology. ANNs have the ability of learning-by-example and

generalizion from limited, noisy, and incomplete data; they have,

hence, been successfully employed in a broad spectrum of data-

intensive applications. In this section, we will review their

contributions to and performance in the intrusion detection

domain. This section is organized by the types of ANNs as

illustrated in Fig. 3.

4.1.1. Supervised learning

4.1.1.1. Feed forward neural networks. Feed forward neural net-

works are the first and arguably the simplest type of artificial

neural networks devised. Two types of feed forward neural

networks are commonly used in modeling either normal or

intrusive patterns.

Multi-layered feed forward (MLFF) neural networks: MLFF net-

works use various learning techniques, the most popular being

back-propagation (MLFF-BP). In early development of IDSs, MLFF-

BP networks were applied primarily to anomaly detection on user

behavior level, e.g. [264,245]. Tan [264] used information, such as

command sets, CPU usage, login host addresses, to distinguish

between normal and abnormal behavior, while Ryan et al. [245]

considered the patterns of commands and their frequency.

Later, research interests shifted from user behavior to software

behavior described by sequences of system calls. This is because

system call sequences are more stable than commands. Ghosh

et al. built a model by MLFF-BP for the lpr program [116] and the

DARPA BSM98 dataset [115], respectively. A leaky bucket

algorithm was used to remember anomalous events diagnosed

by the network, so that the temporal characteristics of program

patterns were accurately captured.

Network traffic is another indispensable data source. Cannady

et al. [46] applied MLFF-BP on 10,000 network packets collected

from a simulated network environment for misuse detection

purposes. Although the training/test iterations required 26.13 h to

complete, their experiments showed the potential of MLFF-BP as a

binary classifier to correctly identify each of the embedded attacks

in the test data. MLFF-BP can also be used as amulti-class classifier

(MCC). Such neural networks either have multiple output neurons

[226] or assemble multiple binary neural network classifiers

together [294]. Apparently, the latter is more flexible than the

former when facing a new class.

Except for the BP learning algorithm, there are many other

learning options for MLFF networks. Mukkamala and Sung [227]

compared 12 different learning algorithms on the KDD99 dataset,

and found that resilient back propagation achieved the best

performance in terms of accuracy (97.04%) and training time (67

epochs).

Radial basis function neural networks: Radial basis function (RBF)

neural networks are another popular type of feed forward neural

networks. Since they perform classification by measuring dis-

tances between inputs and the centers of the RBF hidden neurons,

RBF networks are much faster than time consuming back-

propagation, and more suitable for problems with large sample

size [52].

Research, such as [151,206,243,295], employed RBFs to learn

multiple local clusters for well-known attacks and for normal

events. Other than being a classifier, the RBF networkwas also used

to fuse results from multiple classifiers [52]. It outperformed five

different decision fusion functions, such as a Dempster–Shafer

combination and weighted majority vote.

Jiang et al. [168] reported a novel approach which integrates

bothmisuse and anomaly detections in a hierarchical RBF network.

In the first layer, an RBF anomaly detector identifies whether an

event is normal or not. Anomaly events then pass an RBF misuse

detector chain, with each detector being responsible for a specific

type of attack. Anomaly eventswhich could not be classified by any

misuse detectors were saved to a database.When enough anomaly

events were gathered, a C-Means clustering algorithm clustered

these events into different groups; a misuse RBF detector was

trained on each group, and added to the misuse detector chain. In

this way, all intrusion events were automatically and adaptively

detected and labeled.

Comparison between MLFF-BP and RBF networks: Since RBF and

MLFF-BP networks are widely used, a comparison between them is

natural. Jiang et al. [168] and Zhang et al. [295] compared the RBF

and MLFF-BP networks for misuse and anomaly detection on the

KDD99 dataset. Their experiments have shown that for misuse

detection, BP has a slightly better performance than RBF in terms of

detection rate and false positive rate, but requires longer training

time. For anomaly detection, the RBF network improves perfor-

mance with a high detection rate and a low false positive rate, and

requires less training time (cutting it down fromhours tominutes).

All in all, RBF networks achieve better performance. The same

conclusion was drawn by Hofmann et al. on the DARPA98 dataset

[150,151].

Another interesting comparison has been made between the

binary and decimal input encoding schemes for MLFF-BP and RBF

[206]. The results show that binary encodings have lower error

rates than decimal encodings, because decimal encodings only

compute the frequency without considering the order of system

calls. However, decimal encodings handle noise better and require

less data in training. Furthermore, there are fewer input nodes in

decimal encodings than in binary encodings, which decreases the

training and test time and simplifies the network structure.

4.1.1.2. Recurrent neural networks. Detecting attacks spread over a

period of time, such as slow port scanning attempts, is important

but difficult. In order to capture the temporal locality in either

normal patterns or anomaly patterns, some researchers used time

windows and similar mechanisms [115,151,206,296], or chaotic

neurons [288] to provide BP networks with external memory.

However, window size should be adjustable in predicting user

behavior. When users perform a particular job, their behavior is

stable and predictable. At such times a largewindow size is needed

to enhance deterministic behavior; when users are switching from

one job to another, behavior becomes unstable and stochastic, so a

small window size is needed in order to quickly forgetmeaninglessFig. 3. Types of ANNs reviewed in this section.
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past events [78]. The incorporation of memory in neural networks

has led to the invention of recurrent links, hence the name

recurrent neural networks (RNN) or Elman network, as shown in

Fig. 4.

Recurrent networks were initially used for forecasting, where a

network predicted the next event in an input sequence. When

there is sufficient deviation between a predicted output and an

actual event, an alarm is issued. Debar et al. [76,78] modified the

traditional Elman recurrent model by accepting input in both time

t � 1 and time t. The accuracy of predicting the next command,

given a sequence of previous commands, could reach up to 80%.

Ghosh et al. [114] compared the recurrent network with an MLFF-

BP network for forecasting system call sequences. The results

showed that recurrent networks achieved the best performance,

with a detection accuracy of 77.3% and zero false positives.

Recurrent networks were also trained as classifiers. Cheng et al.

[57] employed a recurrent network to detect network anomalies in

the KDD99 dataset, since network traffic data has the temporal

locality property. A truncated-back-propagation-through-time

learning algorithm was chosen to accelerate training speed. The

authors argued for the importance of payload information in

network packets. Retaining the information in the packet header

but discarding the payload leads to an unacceptable information

loss. Their experiment indicated that an Elman network with

payload information outperformed an Elman network without

such information. Al-Subaie et al. [21] built a classifier with an

Elman network for the UNM system calls dataset. Their paper is a

good source on the comparison of Elman and MLFF networks in

terms of network structure, computational complexity, and

classification performance. Both works confirm that recurrent

networks outperform MLFF networks in detection accuracy and

generalization capability. Al-Subaie et al., in addition, point out a

performance overhead being associated with the training and

operation of recurrent networks.

The cerebellar model articulation controller (CMAC) neural

network is another type of recurrent network, which has the

capability for incremental learning. It avoids retraining a neural

network every timewhen a new intrusion appears. This is themain

reason why Cannady [47,48] applied CMAC to autonomously

learning new attacks. The author modified a traditional CMAC

network by adding feedback from the environment. This feedback

would be any system status indicators, such as CPU load or

available memory. A modified least mean square learning

algorithm was adopted. A series of experiments demonstrated

that CMAC effectively learned new attacks, in real time, based on

the feedback from the protected system, and generalized well to

similar attack patterns.

4.1.2. Unsupervised learning

Self-organizing maps and adaptive resonance theory are two

typical unsupervised neural networks. Similar to statistical

clustering algorithms, they group objects by similarity. They are

suitable for intrusion detection tasks in that normal behavior is

densely populated around one or two centers, while abnormal

behavior and intrusions appear in sparse regions of the pattern

space outside of normal clusters.

4.1.2.1. Self-organizing maps. Self-organizing maps (SOM), also

known as Kohonen maps, are single-layer feed forward networks

where outputs are clustered in a low dimensional (usually 2D or

3D) grid [186]. It preserves topological relationships of input data

according to their similarity.

SOMs are the most popular neural networks to be trained for

anomaly detection tasks. For example, Fox et al. first employed

SOMs to detect viruses in amultiusermachine in 1990 [110]. Later,

other researchers [154,277] used SOMs to learn patterns of normal

system activities. Nevertheless, SOMs have been used in the

misuse detection as well, where a SOM functioned as a data pre-

processor to cluster input data. Other classification algorithms,

such as feed forward neural networks, were then trained on the

output from the SOM [40,49,169].

Sometimes, SOMs map data from different classes into one

neuron. Therefore, in order to solve the ambiguities in these

heterogeneous neurons, Sarasamma et al. [247] suggested to

calculate the probability of a record mapped to a heterogeneous

neuron being of a type of attack. A confidence factor was defined to

determine the type of record that dominated the neuron.

Rhodes et al. [244], after examining network packets carefully,

stated that every network protocol layer has a unique structure

and function, so malicious activities aiming at a specific protocol

should be unique too. It is unrealistic to build a single SOM to tackle

all these activities. Therefore, they organized a multilayer SOM,

each layer corresponding to one protocol layer. Sarasamma et al.

[247] drew similar conclusions that different subsets of features

were good at detecting different attacks. Hence, they grouped the

41 features of the KDD99 dataset into 3 subsets. A three-layer SOM

model was built, accepting one subset of features and hetero-

geneous neurons from the previous SOM layer. Results showed

that false positive rates were significantly reduced in hierarchical

SOMs compared to single layer SOMs on all test cases.

Lichodzijewski et al. employed a two-layer SOM to detect

anomalous user behavior [202] and anomalous network traffic

[201]. The first layer comprised 6 parallel SOMs, each map

clustering one feature. The SOM in the second layer combined the

results from the first layer SOMs to provide an integrated view.

Kayacik et al. [170,172,173] extended Lichodzijewski’s work by

introducing a third SOM layer, while keeping the first two layers

unchanged. The SOM in the third layer was intended to resolve the

confusion caused by heterogeneous neurons. In both Kayacik

et al.’s and Lichodzijewski et al.’s work, a potential function

clustering method was used between the first and second layer.

This clustering algorithm significantly reduced the dimensions

seen by neurons in the second layer. When comparing their results

with the best supervised learning solutions, because suitable

boosting algorithms are not available for unsupervised learning,

their methods showed a similar detection rate but a higher FP rate.

Zanero [290,292] was another proponent of the analysis of

payload of network packets. He proposed a multi-layer detection

framework, where the first layer used a SOM to cluster the payload,

effectively compressing it into a single feature. This compressed

payload feature was then passed on to the second layer as input,

together with other features in packet headers. Many classification

algorithms can be used in the second tier. Unfortunately, the high

dimensionality of (from 0 to 1460 bytes) payload data greatly

decreased the performance of the first layer. Zanero later conceived

the K-means+ [291] algorithm to avoid calculating the distance

between each neuron, thus greatly improving the runtime

efficiency of the algorithm.

Fig. 4. Compared with MLFF, parts of the output of RNN at time t are inputs in time

t þ 1, thus creating internal memories of the neural network.
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Unlike other unsupervised approaches, SOMs can be used to

visualize the analysis. Girardin introduced a visual approach for

analyzing network activities [118], which best took advantage of

topology-preserving and dimensionality-reducing properties of

SOMs. Network events are projected onto a two dimensional grid

of neurons, and then each neuron is portrayed as a square within

the grid. The foreground color of the square indicates the weights

of each neuron. Thus similar network events have similar

foreground color, and are grouped together closely. The back-

ground color indicates the quality of the mapping. The size of the

square identifies the number of events mapped to the unit. Users

can, therefore, easily identify rare and abnormal events in the

graph, which facilitates exploring and analyzing anomaly events.

If we are to use a SOM to visualize the structural features of the

data space, SOMs discussed in the previous work would be

inappropriate, because they contain only small numbers of

neurons, which prohibits the emergence of intrinsic structural

features on the map. Emergent SOMs (ESOM), based on simple

SOMs, contain thousands or tens of thousands of neurons, which

are necessary to achieve emergence, observe overall structures and

disregard elementary details. An ESOM with U-Matrix was

employed in [222–224], focusing on the detection of DoS attacks

in the KDD99 dataset. Although their work showed very high

accuracy (between 98.3% and 99.81%) and a low false alarm rate

(between 2.9% and 0.1%), the training procedure required a large

computational overhead, especially with training sets of size over

10,000.

4.1.2.2. Adaptive resonance theory (ART). The adaptive resonance

theory (ART) embraces a series of neural network models that

perform unsupervised or supervised learning, pattern recognition,

and prediction. Unsupervised learningmodels include ART-1, ART-

2, ART-3, and Fuzzy ART. Various supervised networks are named

with the suffix ‘‘MAP’’, such as ARTMAP, Fuzzy ARTMAP, and

Gaussian ARTMAP. Compared with SOMs who cluster data objects

based on the absolute distance, ARTs cluster objects based on the

relative similarity of input patterns to the weight vector.

Amini et al. compared the performance of ART-1 (accepting

binary inputs) and ART-2 (accepting continuous inputs) on KDD99

data in [23]. They concluded that ART-1 has a higher detection rate

than ART-2, while ART-2 is 7 to 8 times faster than ART-1. This

observation is consistent with results obtained in [206]. Later,

Amini et al. [24] further conducted research on self-generated

network traffic. This time they compared the performance of ARTs

and SOMs. The results showed that ART nets have better intrusion

detection performance than SOMs on either offline or online data.

Fuzzy ART nets combine fuzzy set theory and adaptive

resonance theory. This combination is faster and more stable

than ART nets alone in responding to arbitrary input sequences.

The works of Liao et al. [199] and Durgin et al. [90] are two

examples of using Fuzzy ART to detect anomalies. Liao et al.

deployed Fuzzy ART in an adaptive learning framework which is

suitable for dynamic changing environments. Normal behavior

changes are efficiently accommodated while anomalous activities

can still be identified. Durgin et al. observed that both SOMs and

Fuzzy ARTs showed promising results in detecting network

abnormal behavior, but the sensitivity of Fuzzy ARTs seems to

be much higher than that of SOMs.

4.1.3. Summary

In this section, we reviewed research contributions on artificial

neural networks in intrusion detection. Various supervised and

unsupervised ANNs were employed in misuse and anomaly

detection tasks. These research works took advantage of ANNs’

ability to generalize from limited, noisy, and incomplete data.

Some researchers also attempted to address disadvantages of

ANNs. For example, the authors in Refs. [57,226,290,295] tried to

reduce the long training time; the authors in Refs. [168,244,294]

used an ensemble approach to solve the retraining problem of

ANNs when facing a new class of data; to address the black box

nature of ANNs, Hofmann et al. [151] extracted attack patterns

from the trained ANNs in comprehensible format of if–then rules.

To improve detection accuracy, the following practices have

proven useful in ANNs:

- Temporal locality property: Studies [114,115] have confirmed that

the temporal locality property exists in normal as well as in

intrusive behavior in the intrusion detection field. Normally, time

in ANNs is represented either explicitly or implicitly, but Amini

et al. [24] and Lichodzijewski et al. [202] concluded that explicitly

representing time does not accurately identify intrusions. When

it comes to implicitly representing time, researchers either

adopted neural networks with short-term memory, such as

recurrent nets, or mapped temporal patterns to spatial patterns

for networks without memory. Most of the research work chose

sliding windows, which gather n successive events in one vector

and use it as input of ANNs (e.g. [40,46,151,154,173,190,201,

206]). Other mechanisms include the leaky bucket algorithm

[115], layer-window statistical preprocessors [296], chaotic

neurons [288], and using the time difference between two

events [24]. All these results confirm that designing a detection

technique that capitalizes on the temporal locality characteristic

of data can contribute to better results.

- Network structure: Intrusions are evolving constantly. Sometimes

attacks are aiming at a specific protocol, while at other times they

are aiming at a specific operating system or application.

Therefore it would be unreasonable to expect a single neural

network to successfully characterize all such disparate informa-

tion. Previous research reminds us that networks with ensemble

or hierarchical structure achieve better performance than single

layer networks, no matter whether learning is supervised or

unsupervised [46,168,173,194,247,294].

- Datasets and features: Neural networks only recognize whatever

is fed to them in the form of inputs. Although they have the

ability to generalize, they are still unable to recognize some

unseen patterns. One cause of this difficulty is incomplete

training sets. To address this problem, randomly generated

anomalous inputs [21,116,264] are inserted into the training set

with the purpose of exposing the network to more patterns,

hence making training sets more complete. Selecting good

feature sets is another way to improve performance. Sarasamma

et al. [247] identified that different subsets of features are good at

detecting certain types of attacks. Kayacik et al. [173] conducted

a series of experiments on a hierarchical SOM framework with

KDD99 data. They found that 6 basic features are sufficient for

recognizing a wide range of DoS attacks, while 41 features are

necessary to minimize the FP rate. Among the 6 basic features,

protocol and service type appear to be the most significant.

4.2. Fuzzy sets

The past decades have witnessed a rapid growth in the

number and variety of applications of fuzzy logic. Fuzzy logic,

dealing with the vague and imprecise, is appropriate for

intrusion detection for two major reasons. First, the intrusion

detection problem involves many numeric attributes in col-

lected audit data, and various derived statistical measures.

Building models directly on numeric data causes high detection

errors. For example, an intrusion that deviates only slightly from

a model may not be detected or a small change in normal

behavior may cause a false alarm. Second, the security itself

includes fuzziness, because the boundary between the normal
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and abnormal is not well defined. This section will spell out how

fuzzy logic can be utilized in intrusion detection models.

4.2.1. Fuzzy misuse detection

Fuzzy misuse detection uses fuzzy models, such as fuzzy rules

or fuzzy classifiers to detect various intrusive behavior. When

fuzzy logic was initially introduced to the intrusion detection

domain, it was integrated with expert systems. Fuzzy rules

substituted ordinary rules so as to map knowledge represented in

natural language more accurately to computer languages. Fuzzy

rules were created by security experts based on their domain

knowledge. For example, the fuzzy intrusion recognition engine

(FIRE) proposed by Dickerson et al. used fuzzy rules to detect

malicious network activities [86,87]. Although fuzzy sets and their

membership functions were decided by a fuzzy C-means

algorithm, hand-encoded rules were the main limitation of this

work.

Avoiding hand-encoded fuzzy rules is the a main research topic

in fuzzy misuse detection. To generate fuzzy rules, commonly

employed methods are based on a histogram of attribute values

[14,15], or based on a partition of overlapping areas [14,15,193], or

based on fuzzy implication tables [298], or by fuzzy decision trees

[203], association rules [91] or SVMs [286]. Due to the rapid

development of computational intelligence, approaches with

learning and adaptive capabilities have been widely used to

automatically construct fuzzy rules. These approaches are artificial

neural networks, evolutionary computation, and artificial immune

systems. We will investigate them in detail in Section 4.6 on ‘‘Soft

Computing’’.

Another application of fuzzy logic is decision fusion, which

means that fuzzy logic fuses outputs from different models to

prepare a final fuzzy decision. For instance, Cho et al. [62] trained

multiple HMMs to detect normal behavior sequences. The

evaluations from HMMs were sent to the fuzzy inference engine,

which gave a fuzzy normal or abnormal result. Similar fuzzy

inference systems were used to combine decisions of multiple

decision trees [266], multiple neuro-fuzzy classifiers [268], and

other models [248].

4.2.2. Fuzzy anomaly detection

Fuzzy logic plays an important role in anomaly detection, too.

Current research interests are to build fuzzy normal behavior

profiles with the help of data mining.

Bridges et al. suggested the use of fuzzy association rules and

fuzzy sequential rules to mine normal patterns from audit data

[42,43]. Their work was an extension of the fuzzy association rule

algorithm proposed by Kuok et al. [189] and the fuzzy sequential

rule algorithm by Mannila and Toivonen [216]. To detect

anomalous behavior, fuzzy association rules mined from new

audit data were compared with rules mined in the training phase.

Hence, a similarity evaluation function was developed to compare

two association rules [210,211]. Florez et al. [101] later described

an algorithm for computing the similarity between two fuzzy

association rules based on prefix trees to achieve better running

time and accuracy. El-Semary et al. [91] directly compared the test

data samples against fuzzy association rules by a fuzzy inference

engine.

Fuzzy logic also worked with another popular data mining

technique, outlier detection, for anomaly detection. According to

the hypothesis of IDSs, malicious behavior is naturally different

from normal behavior. Hence, abnormal behavior should be

considered as outliers. Fuzzy C-Medoids algorithms [253] and

fuzzy C-Means algorithms [58–60,148] are two common clustering

approaches to identify outliers. Like all clustering techniques, they

are affected by the ‘‘curse of dimensionality’’, thus suffering

performance degradation when confronted with datasets of high

dimensionality. Feature selection is therefore a necessary data pre-

processing step. For example, principal component analysis

[148,253] and rough sets [58–60] can be applied on datasets

before they are being clustered.

4.2.3. Summary

Fuzzy logic, as a means of modeling the uncertainty of natural

language, constructs more abstract and flexible patterns for

intrusion detection, and thus greatly increases the robustness

and adaptation ability of detection systems. Two research

directions are currently active in the fuzzy logic area: (i) algorithms

with learning and adaptive capabilities are investigated with the

purpose of automatically designing fuzzy rules. Popular methods

include, but are not limited to, association rules, decision trees,

evolutionary computation, and artificial neural networks; (ii) fuzzy

logic helps to enhance the understandability and readability of

some machine learning algorithms, such as SVMs or HMMs. The

use of fuzzy logic smooths the abrupt separation of normality and

abnormality. From the research work reviewed in this section, and

the work will be mentioned later in the Section 4.6, the popularity

of fuzzy logic clearly demonstrates the successfulness of fuzzy

logic in fulfill these two roles. We believe that fuzzy logic will

remain an active research topic in the near future.

4.3. Evolutionary computation

Evolutionary computation (EC), a creative process gleaned from

evolution in nature, is capable of addressing real-world problems

with great complexity. These problems normally might involve

randomness, complex nonlinear dynamics, and multimodal

functions, which are difficult to conquer for traditional algorithms

[102]. In this section, we will review the role of EC in the intrusion

detection field. Some important issues, such as evolutionary

operators, niching, and fitness functions will be discussed.

This survey focuses on genetic algorithms (GA) [156] and

genetic programming (GP) [37,188]. GA and GP differ with respect

to several implementation details, with GP working on a superset

of representations compared to GAs [37]. Generally speaking,

evolution in GAs and GP can be described as a two-step iterative

process, consisting of variation and selection, as shown in Fig. 5.

4.3.1. The roles of EC in IDS

EC can be applied on a number of tasks in IDSs.We discuss them

in detail below.

4.3.1.1. Optimization. Some researchers are trying to analyze the

problem of intrusion detection by using a multiple fault diagnosis

approach, somewhat analogous to the process of a human being

diagnosed by a physicianwhen suffering from a disease. For a start,

an events-attacksmatrix is defined, which is known as pre-learned

domain knowledge (analogous to knowledge possessed by a

physician). The occurrence of one or more attacks is required to be

inferred from newly observed events (analogous to symptoms).

Such a problem is reducible to a zero-one integer problem,which is

NP-Complete. Dass [70] and Mé [220] both employed GAs as an

Fig. 5. The flow chart of a typical evolutionary algorithm.
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optimization component. Mé used a standard GA, while Dass used

a micro-GA in order to reduce the time overhead normally

associated with a GA. Both works coded solutions in binary strings,

where the length of a string was the number of attacks, and 1’s or

0’s in a genome indicated if an attack was present. The fitness

function was biased toward individuals able to predict a large

number of intrusion types (number of 1’s in chromosomes), while

avoiding warnings of attacks that did not exist (unnecessary 1’s in

chromosomes). Diaz-Gomez et al. corrected the fitness definition

used in [220] after careful analysis [83,84] and mathematical

justification [82], and further refined it in [85].

4.3.1.2. Automatic model structure design. ANNs and clustering

algorithms are two popular techniques to build intrusion detection

models. The problematic side of them is that one has to decide on

an optimal network structure for the former, and the number of

clusters for the latter. To remedy these drawbacks, evolutionary

algorithms are introduced for automatic design purpose.

Hofmann et al. [151] evolved an RBF neural network to classify

network traffic for the DARPA98 dataset. A GA was responsible for

learning the structure of RBF nets, such as the type of basis

function, the number of hidden neurons, and the number of

training epochs. Evolving fuzzy neural network (EFuNN) is another

example of this kind. It implemented a Mamdani-type fuzzy

inference system where all nodes were created during learning

[53,199]. In contrast to evolving networks with fixed topologies

and connections, Han et al. [140] proposed an evolutionary neural

network (ENN) algorithm to evolve an ANN for detecting anomaly

system call sequences. A matrix-based genotype representation

was implemented, where the upper right triangle was the

connectivity information between nodes, and the lower left

triangle described the weights between nodes. Consequently, this

network has no structural restrictions, and is more flexible, as

shown in Fig. 6.

Xu et al. [285] presented a misuse detection model constructed

by the understandable neural network tree (NNTree). NNTree is a

modular neural networkwith the overall structure being a decision

tree, but each non-terminal node being an expert NN. GAs

recursively designed these networks from the root node. The

designing process was, in fact, solving a multiple objective

optimization problem, which kept the partition ability of the

networks high, and the size of trees small. Chen et al. [56]

investigated the possibility of evolving ANNs by an estimation of

distribution algorithm (EDA), a new branch of EC. The modeling

and sampling step in an EDA improves search efficiency, because

sampling is guided by global information extracted through

modeling to explore promising areas.

Experimental results of the above works all confirmed that

automatically designed networks outperform conventional

approaches in detection accuracy. Han et al. [140] further verified

that evolutionary approaches reduce training time.

As for clustering algorithms, evolutionary algorithms shorten

the tedious and time-consuming process of deciding appropriate

cluster centers and the number of clusters. Leno et al. [195] first

reported work for combining unsupervised niche clustering with

fuzzy set theory for anomaly detection, and applied it to network

intrusion detection. Here ‘‘unsupervised’’ means that the number

of clusters is automatically determined by a GA. An individual,

representing a candidate cluster, was determined by its center, an

n-dimensional vector with n being the dimension of the data

samples, and a robust measure of its scale (or dispersion) d
2
. The

scale was updated every generation based on the density of a

hypothetical cluster. Lu et al. [207,209] applied a GA to decide the

number of clusters based upon Gaussian mixture models (GMM).

This model assumes that the entire data collection can be seen as a

mixture of several Gaussian distributions, each potentially being a

cluster. An entropy-based fitness function was defined to measure

how well the GMMs approximated the real data distribution.

Thereafter, a K-means clustering algorithm was invoked to locate

the center of each cluster. [297], in contrast, reversed the order of

the K-means and evolutionary approaches. K-means was used to

decide potential cluster centers, followed by the GA refining cluster

centers.

4.3.1.3. Classifiers. Evolutionary algorithms can be used to gen-

erate two types of classifiers: classification rules and transforma-

tion functions. A classification rule is the rule with an if–then

clause, where a rule antecedent (IF part) contains a conjunction of

conditions on predicting attributes, and the rule consequent (THEN

part) contains the class label. As depicted in Fig. 7, the task of EC is

to search for classification rules (represented as circles) that cover

the data points (denoted as ‘‘+’’) of unknown concepts (represented

as shaded regions). In this sense, evolving classification rules can

be regarded as concept learning.

Research work that explores the evolution of classification rules

for intrusion detection is summarized in Table 3. The difference

betweenbinaryclassifiers andmulti-classifiers is the representation.

A GA uses fixed length vectors to represent classification rules.

Antecedents and class label in if-then rules are encodedas genes in a

chromosome (shown in Fig. 8). Either binary [167,221,230] or real-

number [124,197,198,240,255] encoding schemes are conceived. A

‘‘don’t care’’ symbol, �, is included [124,167,197,198,221,230,240,

Fig. 6. Comparing different structures of ANNs [140]. (a)MLFF, (b) RNN, and (c) ENN.

Fig. 7. Classification rules are represented as circles who cover the data points

(denoted as ‘‘+’’) of unknown concepts (represented as shaded regions) [157].
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255] as a wild card that allows any possible value in a gene, thus

improving the generality of rules. For binary classification, the

consequent part of rules are usually omitted from the representa-

tion, because of the same class label in all rules.

All researchwork listed for GAs employs theMichigan approach

[155] as the learning approach, but is based on various GAmodels.

The authors in Refs. [255,197,240,124,36] use classic GAs with

niching to help covering all data instances with a minimum set of

accurate rules. Mischiatti and Neri [221,230] use the REGAL to

model normal network traffic. REGAL [117] is a distributed genetic

algorithm-based system. It shows several novelties, such as a

hybrid Pittsburgh andMichigan learning approach, a new selection

operator allowing the population to asymptotically converge to

multiple local optima, a new model of distribution and migration,

etc. Dam and Shafi [65,250,251,249,252] report initial attempts to

extend XCS, an evolutionary learning classifier system (LCS), to

intrusion detection problems. Although XCSs have shown excel-

lent performance on some datamining tasks, many enhancements,

such as mutation and deletion operators, and a distance metric for

unseen data in the test phase, are still needed to tackle hard

intrusion detection problems [65].

GP, on the other hand, uses different variable length structures

for binary and multi-class classification. Originally, GP was

confined to tree structures which provided the basis for the first

IDS applications. For instance, the parse tree shown in Fig. 9(a) for

binary classification [64,208,287], and a decision tree shown in

Fig. 9(b) for multiple class classification [103,104]. Compared with

a GA which connects conditions in the antecedent only by the

‘‘AND’’ operator, tree-based GP has richer expressive power as it

allows more logic operators, such as ‘‘OR’’, ‘‘NOT’’, etc. Crosbie [64]

and Folino et al. [103,104] improved the performance of such a GP

system by introducing cooperation between individuals. The

former use autonomous agents, each being a GP-evolved program

to detect intrusions from only one data source. The latter deployed

their system in a distributed environment by using the island

model.

Namely, classification can also be achieved by a transformation

function, which transforms data into a low dimensional space, i.e.

1D or 2D, such that a simple line can best separate data in different

classes (shown in Fig. 10).

The simplest transformation function is a linear function with

the following format: CðxÞ ¼ Pn
j¼1ðw j � x jÞ, where n is the

number of attributes, w j is a weight [282] or coefficient [61] of

attribute x j. A GA usually searches for the best set of weights or

coefficient that map any data in normal class to a value larger than

d (CðxÞ> d) and any data from anomaly class to a value less than d

(CðxÞ< d). d is a user defined threshold. Individuals in this case

contain n genes, each for a weight or coefficient.

Compared with GAs, transformation functions evolved by GP

have more complex structures, normally nonlinear functions. Both

tree-based GP (shown in Fig. 9(a)) and linear GP (shown in Fig. 11)

are suitable for evolving the functions. Linear GP (LGP) is another

major approach to GP [37,41]. LGP works by evolving sequences of

instructions from an imperative programming language or from a

machine language. Fig. 11 contains two typical examples of

instructions in LGP. LGP boosts the evolutionary process because

individuals aremanipulated and executed directlywithout passing

an interpreter during fitness calculation. Only arithmetic opera-

tors, such as ‘‘þ’’, ‘‘�’’, ‘‘�’’, ‘‘� ’’, ‘‘log ’’, and numeric values are

allowed to appear in the representation of the functions.

Categorical attributes have to convert their value to numeric

beforehand.

Abraham et al. [12,13,138,228] and Song et al. [259–261] are

two major research groups working on LGP and its application in

intrusion detection. Abraham et al. focused on investigating basic

LGP and its variations, such as multi-expression programming

Table 3

Evolving classification rules by EC.

Type Research work

GA Binary classifiers [120,121,197,255,221,230,281]

Multi-classifiers [36,65,124,240,250,251,249,252]

Tree GP Binary classifiers [64,208,287]

Multi-classifiers [103,104]

Fig. 8. GA chromosome structures for classification.

Fig. 9. Chromosome structures for classification. (a) Tree GP chromosome for binary

classification. (b) Tree GP chromosome for multiple class classification [261].

Fig. 10. Transformation functions as classifiers. A transformation function is an

equation which transforms data in a high dimensional space into a specific value or

a range of values in a low dimensional space according to different class labels.

Fig. 11. Linear GP chromosome [261].
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(MEP) [232] and gene expression programming (GEP) [100], to

detect network intrusion. Experiments, in comparing LGP, MEP,

GEP and other machine learning algorithms, showed that LGP

outperformed SVMs and ANNs in terms of detection accuracy at

the expense of time [227,228]; MEP outperformed LGP for Normal,

U2R and R2L classes and LGP outperformedMEP for Probe and DoS

classes [12,13,138]. Song et al. implemented a page-based LGP

with a two-layer subset selection scheme to address the binary

classification problem. Page-based LGPmeans that an individual is

described in terms of a number of pages, where each page has the

same number of instructions. Page size was dynamically changed

when the fitness reached a ‘‘plateau’’ (i.e. fitness does not change

for several generations). Since intrusion detection benchmarks are

highly skewed, they pointed out that the definition of fitness

should reflect the distribution of class types in the training set. Two

dynamic fitness schemes, dynamic weighted penalty and lexico-

graphic fitness, were introduced. The application of their

algorithms to other intrusion detection related research can be

found in [191,192].

The above mentioned transformation functions evolved by GP

are only used for binary classification. Therefore, Faraoun et al. [96]

and Lichodzijewski et al. [200] investigated the possibilities of GP

in multi-category classification. Faraoun et al. implementedmulti-

classification in two steps. In the first step, a GPmaps input data to

a new one-dimensional space, and in the second step, another GP

maps the output from the first step to different class labels;

Lichodzijewski et al. proposed a bid-based approach for coevolving

LGP classifiers. This approach coevolved a population of learners

that decompose the instance space by the way of their aggregate

bidding behavior.

Research work that investigates evolving transformation

functions for intrusion detection is summarized in Table 4.

4.3.2. Niching and evolutionary operators

4.3.2.1. Niching. Most EC applications have focused on optimiza-

tion problems, which means that individuals in the population

compete with others to reach a global optimum. However, pattern

recognition or concept learning is actually a multimodal problem

in the sense that multiple rules (see Fig. 7) or clusters [195] are

required to cover the unknown knowledge space (also known as

‘‘set covering’’ problem). In order to locate and maintain multiple

local optima instead of a single global optimum, niching is

introduced. Niching strategies have been proven effective in

creating subpopulations which converge on local optima, thus

maintaining diversity of the population [109].

Within the context of intrusion detection, both sharing and

crowding are applied to encourage diversity. Kayacik and Li

[171,197,198] employed fitness sharing, while Sinclair et al. [255]

employed crowding and Leon et al. [195] employed deterministic

crowding (DC). DC is an improved crowding algorithm, which

nearly eliminates replacement errors in De Jong’s crowding.

Consequently, DC is effective in discovering multiple local optima,

compared to no more than 2 peaks in De Jong’s [214].

Unfortunately, there is no experimental result available in [255],

so we cannot justify the limitations of De Jong’s crowding in the

intrusion detection domain. Hamming distance [197,198,255] or

Euclidean distance [171] were used to measure the similarity

between two individuals in both niching schemes.

However, defining meaningful and accurate distance measures

and selecting an appropriate niching radius are difficult. In

addition, computational complexity is an issue for these algo-

rithms. For example, the shared fitness evaluation requires, in each

generation, a number of steps proportional toM2, withM being the

cardinality of the population [117]. So, Giordana et al. introduced a

new selection operator in REGAL, called Universal Suffrage, to

achieve niching [117]. The individuals to be mated are not chosen

directly from the current population, but instead indirectly

through the selection of an equal number of data points. It is

important to notice that only individuals covering the same data

points compete, and the data points (stochastically) ‘‘vote’’ for the

best of them. In XCS, the nichingmechanismwas demonstrated via

reward sharing. Simply, an individual shares received rewards

with those who are similar to them in some way [65].

Lu et al. [208] implemented niching neither via fitness sharing

nor via crowding, but via token competition [196]. The idea is as

follows: a token is allocated to each record in the training dataset. If

a rule matches a record, its token will be seized by the rule. The

priority of receiving the token is determined by the strength of the

rules. On the other hand, the number of tokens an individual

acquires also helps to increase its fitness. In this way, the odds of

two rules matching the same data are decreased, hence the

diversity of the population is maintained.

4.3.2.2. Evolutionary operators. In EC, during each successive

generation, some individuals are selected with certain probabil-

ities to go through crossover and mutation for the generation of

offspring. Table 5 summarizes commonly used selection, crossover

and mutation operators employed in intrusion detection tasks.

Some special evolutionary operators were introduced to satisfy

the requirements of representation. For example, page-based LGP

algorithms [192,191,259–261] restricted crossover to exchanging

pages rather than instructions between individuals. Mutation was

also conducted in twoways: in the first case themutation operator

selected two instructions with uniform probability and performed

an XOR on the first instruction with the second one; the second

mutation operator selected two instructions in the same individual

with uniform probability and then exchanged their positions.

Hansen et al. [145] proposed a homologous crossover in LGP,

attempting to mimic natural evolution more closely. With

homologous crossover, the two evolved programs were juxta-

posed, and the crossover was accomplished by exchanging sets of

continuous instruction blocks having the same length and the

same position between the two evolved programs.

Most researchers have confirmed the positive role mutation

played in the searching process. However, they held different

Table 4

Evolving transformation functions by EC.

Type Research work

Binary classifiers GA [61,282]

LGP [12,13,138,145,191,192,228,259–261]

Multi-classifiers Tree-based GP [96]

LGP [200]

Table 5

Evolutionary operators employed in intrusion detection tasks.

Operators Research work

Selection Roulette wheel [65,96,167]

Tournament [70,85,145,259]

Elitist [151,124]

Rank [140,281]

Crossover Two-point [65,70,96,124,167,208,221,230,287]

One-point [36,140,195,281,285]

Uniform [151,221,230]

Arithmetical [151]

Homologous [145,192,191,259–261]

Mutation Bit-flip [65,70,151,167,195,221,230,281,285]

Inorder mutation [240]

Gaussian [151]

One point [96,208,287]
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opinions about crossover in multimodal problems whose popula-

tion contains niches. Recombining arbitrary pairs of individuals

from different niches may cause the formation of unfit or lethal

offspring. For example, if a crossover is conducted on the class label

part, which means rules in different classes exchange their class

labels, it would cause a normal data point to be anomalous, or vice

versa. Hence, a mating restriction is considered when individuals

of different niches are crossed over. [240] only applied mutation,

not crossover, to produce offspring; [70] restricted mutation and

crossover to the condition-part of rules; [195] introduced an

additional restriction on the deterministic crowding selection for

controlling the mating between members of different niches.

Except for these three operators, many others were conceived

for improving detection rate, maintaining diversity or other

purposes. Among them, seeding and deletion are two emerging

operators that are adopted by many EC algorithms in intrusion

detection applications.

- Seeding [65,117]: As discussed earlier, evolving classification

rules can be regarded as a ‘‘set covering’’ problem. If some

instances are not yet covered, seeding operators will dynamically

generate new individuals to cover them. Normally, thismethod is

used to initialize the first population at the beginning of the

search.

- Deletion [65]: EC works with a limited population size. When a

newly generated individual is being inserted into the population,

but the maximum population size is reached, some old

individuals have to be removed from the population. In

traditional EC with a global optimum target, the less fit

individuals are preferably replaced. However, for multimodal

problems, other criteria in addition to fitness, such as niches or

data distribution, should be considered to avoid replacement

errors. Dam et al. [65] extended the deletion operator of XCS by

considering class distribution, especially for highly skewed

datasets. For example, normal instances constitute approxi-

mately 75% of total records in the KDD99 dataset. Therefore, rules

which cover normal data points will have a higher fitness than

others, which implies that rules for the normal class have amuch

lower chance to be deleted compared to rules for other classes.

So, integrating class distribution into the deletion operator

allows it to handle minority classes.

- Adding and dropping: These two operators are variations of

mutation. When evolving rules, dropping means to remove a

condition from the representation, thus resulting in a generalized

rule [208,287]. On the contrary, adding conditions results in a

specialized rule. Han et al. [140] employed adding and dropping

to add a new connection between neurons, and to delete the

connection between neurons, respectively in an evolutionary

neural network.

4.3.3. Fitness function

An appropriate fitness function is essential for EC as it correlates

closely with the algorithm’s goal, thus guiding the search process.

Intrusion detection systems are designed to identify intrusions as

accurately as possible. Therefore, accuracy should be amajor factor

when yielding a fitness function. In Table 6, we categorize the

fitness function from research work we surveyed. The categoriza-

tion is based on three terms: detection rate (DR), false positive rate

(FPR) and conciseness.

The research contributions in the first row are all devoted to

anomaly detection problems. Since no attack is presented in the

training phase, DR is not available. Fitness functions may vary in

format, but all look for models which cover most of the normal

data. In this example, HðCiÞ represents the entropy of data points

that belong to cluster Ci, and HmaxðCiÞ is the theoretical maximum

entropy for Ci.

Accuracy actually requires both, DR and FPR, since ignoring

either of them will cause misclassification errors. A good IDS

should have a high DR and a low FPR. The first example in the

second row directly interprets this principle. Here, a stands for the

number of correctly detected attacks, A the number of total attacks,

b the number of false positives, and B the total number of normal

connections. As we know, patterns are sometimes represented as

if–then clauses in IDSs, so in the second example, the support-

confidence framework is borrowed from association rules to

determine the fitness of a rule. By changing weightsw1 andw2, the

fitness measure can be used for either simply identifying network

intrusions, or precisely classifying the type of intrusion [124]. The

third example considers the absolute difference between the

prediction of EC (j p) and the actual outcome (j).

Conciseness is another interesting property that should be

considered. This is for two reasons: concise results are easy to

understand, and concise results avoid misclassification errors.

The second reason is less obvious. Conciseness can be restated as

the space a model, such as a rule, or a cluster, uses to cover a

dataset. If rule A and rule B have the same data coverage, but

rule A is more concise than B, so A uses less space than B does

when covering the same amount of data. The extra space of B is

more prone to cause misclassification errors. Apparently the first

example of this kind considers all three terms, where the length

correlates with conciseness. The second example of this type

considers the number of counterexamples (w) covered by a rule,

and the ratio between the number of bits equal to 1 in the

chromosome and the length of chromosome (z), which is the

conciseness of a rule. A is a user-tunable parameter. The fitness

function in [195] also prefers clusters with small radii if they

cover the same data points.

4.3.4. Summary

In this section, we reviewed the research in employing

evolutionary computation to solve intrusion detection problems.

As is evident from the previous discussion, EC plays various roles in

this task, such as searching for an optimal solution, automatic

model design, and learning for classifiers. In addition, experiments

reasserted the effectiveness and accuracy of EC. However, we also

observed some challenges for the method, as listed below. Solving

these challenges will further improve the performance of EC-based

intrusion detection.

Table 6

Fitness summary.

Factors Examples References

DR FPR Conciseness

� p � HðCiÞ
HmaxðCiÞ

[140,195,209,207]

p p � a

A
� b

B
[61,85,96,167,192,240,255,282,297]

w1 � supportþw2 � confidence [36,124,208,281,287]

1� jjp �jj [31,64,138,197,198,259]p p p
w1 � sensitivityþw2 � specificityþw3 � length [121]

ð1þ AzÞ � e�w [70,221,230]
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- No reasonable termination criterion: Most research work simply

sets the termination criterion as a pre-specified number of

iterations, or a threshold of fitness. However, the experiment of

Shafi et al. [251] showed that such simple criteria while helpful

when searching for the global optimum, are inappropriate for

multiple local optima. A reasonable termination criterion will

definitely improve detection accuracy and efficiency.

- Niching: Learning intrusion behavior is equivalent to concept

learning, which is always looking for multiple solutions.

Although niching is capable of discovering and maintaining

multiple local optima, it cannot guarantee that a complete set of

solutions is returned. More research work is required to

investigate how to maintain a diverse, and complete solution

by EC.

- Distributed EC models: Training sets in intrusion detection are

normally generated from a large volume of network traffic

dumps or event logs. This makes evaluating candidate solutions

in EC quite expensive and time consuming. In contrast to

monolithic architectures, distributed models [104,117,151] have

the advantage of assigning a portion of the data to each node,

hence they put less burden on fitness evaluation. In addition,

distributed nodes are trained simultaneously and independently,

so they can be added to and removed from the system

dynamically. There are, however, still many issues deserving

careful investigation, such as evolutionary models or commu-

nication mechanisms in a distributed environment.

- Unbalanced data distribution: One important feature of intrusion

detection benchmarks is their high skewness. Take the KDD99-

10 dataset as an example: there are 391,458 instances in the DoS

class while only 52 instances are in the U2R class. Both Dam et al.

[65] and Song et al. [259] point out individuals which had better

performance on frequently occurring connection types would be

more likely to survive, even if they performed worse than

competing individuals on the less frequent types. Therefore,

when designing an intrusion detection system based on EC

approaches, one should consider how to improve the accuracy on

relatively rare types of intrusion without compromising perfor-

mance on the more frequent types.

4.4. Artificial immune systems

The human immune system (HIS) has successfully protected our

bodies against attacks from various harmful pathogens, such as

bacteria, viruses, and parasites. It distinguishes pathogens from

self-tissue, and further eliminates these pathogens. This provides a

rich source of inspiration for computer security systems, especially

intrusion detection systems. According to Kim and Somayaji

[175,258], features gleaned from the HIS satisfy the requirements

of designing a competent IDS [153,175]. Hence, applying

theoretical immunology and observed immune functions, its

principles, and its models to IDS has gradually developed into a

new research field, called artificial immune system (AIS).

AIS based intrusion detection systems perform anomaly

detection. However, instead of building models for the normal,

they generate non-self (anomalous) patterns by giving normal data

only, as Fig. 12 illustrated. Any matching to non-self patterns will

be labeled as an anomaly.

In this section, we will review research progress on immune

system inspired intrusion detection. Although reviewwork for AISs

[26,67,73,105,161] and their application to the intrusion detection

domain [20,178] exists, our review is different in that it focuses on

two perspectives: tracking the framework development of AIS

based IDSs, and investigating the key elements shown in Fig. 13

when engineering an AIS-based intrusion detection system [73]. In

recent years, research on AIS has extended to the study of innate

immune systems, in particular to the danger theory proposed by

Matzinger [217,218]. Hence, the last part of this section will

present IDSs motivated by the danger theory.

4.4.1. A brief overview of human immune system

Before we start the discussion of AIS models, a brief overview of

the HIS will be necessary. A more detailed introduction of the HIS

can be found elsewhere [74]. Our human immune system has a

multi-layered protection architecture, including physical barriers,

physiological barriers, an innate immune system, and an adaptive

immune system. Compared to the first three layers, the adaptive

immune system is capable of adaptively recognizing specific types

of pathogens, and memorizing them for accelerated future

responses [153]. It is the main inspiration for AISs.

The adaptive immune system is a complex of a great variety of

molecules, cells, and organs spread all over the body, rather than a

central control organ. Among its cells, two lymphocyte types, T

cells and B cells, cooperate to distinguish self fromnon-self (known

as antigens). T cells recognize antigens with the help of major

histocompatibility complex (MHC) molecules. Antigen presenting

cells (APC) ingest and fragment antigens to peptides. MHC

molecules transport these peptides to the surface of APCs. T cells,

whose receptors bind with these peptide-MHC combinations, are

said to recognize antigens. In contrast, B cells recognize antigens by

binding their receptors directly to antigens. The bindings actually

are chemical bonds between receptors and epitopes/peptides. The

more complementary the structure and the charge between

receptors and epitopes/peptides are, the more likely binding will

occur. The strength of the bond is termed ‘‘affinity’’.

T cells and B cells develop and mature within the thymus and

bone marrow tissues, respectively. To avoid autoimmunity, T cells

and B cellsmust pass a negative selection stage,where lymphocytes

which match self cells are killed. Prior to negative selection, T cells

undergo positive selection. This is because in order to bind to the

peptide-MHC combinations, they must recognize self MHC first. So

the positive selection will eliminate T cells with weak bonds to self

MHC. T cells andB cellswhich survive thenegative selectionbecome

mature, and enter the blood stream to perform the detection task.

These mature lymphocytes have never encountered antigens, so

they are naive.

Naive T cells and B cells can still possibly autoreact with self

cells, because some peripheral self proteins are never presented

during the negative selection stage. To prevent self-attack, naive

cells need two signals in order to be activated: one occurs when

they bind to antigens, and the other is from other sources as a

‘‘confirmation’’. Naive T helper cells receive the second signal from

innate system cells. In the event that they are activated, T cells

begin to clone. Some of the cloneswill send out signals to stimulate

macrophages or cytotoxic T cells to kill antigens, or send out

Fig. 12. The goal of AIS-based IDSs is to generate all patterns, denoted as black

circles, whichmatch none of the normal data. The shaded region represents a space

containing only normal data [153].
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signals to activate B cells. Others will form memory T cells. The

activated B cells migrate to a lymph node. In the lymph node, a B

cell will clone itself. Meanwhile, somatic hypermutation is

triggered, whose rate is 10 times higher than that of the germ

line mutation, and is inversely proportional to the affinity.

Mutation changes the receptor structures of offspring, hence

offspring have to bind to pathogenic epitopes captured within the

lymph nodes. If they do not bind they will simply die after a short

time. If they succeed in binding, theywill leave the lymphnode and

differentiate into plasma or memory B cells. This process is called

affinity maturation. Note, clonal selection affects both T cells and B

cells, but somaticmutation has only been observed in B cells. Aswe

can see, by repeating selection and mutation, high affinity B cells

will be produced, and mutated B cells adapt to dynamically

changing antigens, like viruses.

The immune response caused by activated lymphocytes is

called primary response. This primary response may take several

weeks to eliminate pathogens. Memory cells, on the other hand,

result in quick reaction when encountering pathogens that they

have seen before, or that are similar to previously seen pathogens.

This process is known as secondary response, whichmay take only

several days to eliminate the pathogens.

In summary, the HIS is a distributed, self-organizing and

lightweight defense system for the body [175]. These remarkable

features fulfill and benefit the design goals of an intrusion

detection system, thus resulting in a scalable and robust system.

4.4.2. Artificial immune system models for intrusion detection

The HIS is sophisticated, hence researchers may have different

visions for emulating it computationally. In this section, we will

review the development of AIS models for solving intrusion

detection problems.

4.4.2.1. A self–non-self discrimination AIS model. The first AISmodel

suggested by Forrest et al. was employed in a change-detection

algorithm to detect alterations in files [108] and system call

sequences [107]. This model simulated the self–non-self discri-

mination principle of the HISs, as illustrated in Fig. 14. Negative

selection was the core of this model, by which invalid detectors

were eliminated when they matched self data. Although not many

immune features were employed, it reflected some initial steps

toward a greater intellectual vision on robust and distributed

protection systems for computers [106].

4.4.2.2. An AIS model with lifecycle. Hofmeyr and Forrest later

extended the above prototype with more components and ideas

from the HIS. The new AIS model (shown in Fig. 15) considered the

lifecycle of a lymphocyte: immature, mature but naive, activated,

memory, and death. The finite detectors’ lifetime, plus costimula-

tion, distributed tolerance and dynamic detectors contribute to

eliminating autoreactive detectors, adapt to changing self sets, and

improve detection rates through signature-based detection.

As an application of this model, a system called LISYS

(Lightweight Immune SYStem) was developed to detect intrusions

in a distributed environment. Williams et al. employed this model

to detect computer viruses [146] and network intrusions [280], but

extended it with an affinity maturation step to optimize the

coverage of the non-self space of antibodies [147,280].

4.4.2.3. An evolutionary AIS model. Kim and Bentley proposed an

AIS model [175] based on three evolutionary stages: gene library

evolution, negative selection and clonal selection, shown in Fig. 16.

The gene library stores potentially effective genes. Immature

detectors, rather than generated randomly, are created by selecting

Fig. 15. The lifecycle of a detector. A set of detectors are generated randomly as

immature detectors. An immature detector that matches none of normal data

during its tolerization period becomes mature; otherwise it dies. When a mature

detectormatches sufficient input data, this detector will be activated. Alternatively,

a mature detector that fails to become activated eventually dies. Within a fixed

period of time, if an activated detectors receive no co-stimulation, e.g. responses

from system security officers, it will die too; otherwise it becomes a memory

detector [119].

Fig. 13. The framework to engineer an AIS. Representation creates abstract models

of immune cells and molecules; affinity measures quantify the interactions among

these elements; algorithms govern the dynamics of the AIS [73].

Fig. 14. The self–non-self discrimination model. A valid detector set will be generated, and then monitor protected strings [108]. (a) Censoring. (b) Detecting.

S.X. Wu, W. Banzhaf / Applied Soft Computing 10 (2010) 1–3514



and rearranging useful genes. Genes in successful detectors are

added to the library, while those in failed detectors are deleted. In a

sense, the library evolves; the negative selection removes false

immature detectors by presenting self without any global

information about self; the clonal selection detects various

intrusions with a limited number of detectors, generates memory

detectors, and drives the gene library evolution. Hofmeyr’s

lifecycle model was adopted in their model.

4.4.2.4. A multi-level AIS model. T cells and B cells are two primary

but complex immunological elements in the HIS. Focusing on their

functions and interactions, Dasgupta et al. [69] proposed a model

that considers detecting intrusions and issuing alarms in a multi-

level manner (see Fig. 17).

T cells recognize the peptides extracted from foreign proteins,

while B cells recognize epitopes on the surface of antigens.

Therefore, in their computational model, T-detectors (analogous to

T cells) performed a low-level continuous bitwisematch, while the

B-detectors (analogous to B cells) performed a high-level match at

non-contiguous positions of strings. To prevent the system from

raising false alarms, T-suppression detectors (analogous as T-

suppression cells) are introduced, which decide the activation of T-

detectors. Activated T-detectors will further provide a signal to

help activate B-detectors. This model further simulated negative

selection, clonal selection and somatic hypermutation of mature T

cells and B cells.

4.4.2.5. Artificial immune network model. Artificial immune net-

works (AIN) are based on the immune network theory proposed by

Jerne [158]. This theory hypothesizes that the immune system

maintains an idiotypic network of interconnected B cells for

antigen recognition. These B cells stimulate or suppress each other

to keep the network stable. In AIN, antigens are randomly selected

from the training set and presented to B cells. The stimulation

effects between B cells and antigens (binding) are calculated.

Meanwhile, the stimulation and suppression effects between B

cells are also calculated. B cells will be selected to clone andmutate

based on the total interaction effects. Useless B cells are removed

from the network, while new B cells are created randomly and

incorporated into the network, and links among all B cells are

reorganized. A network is returned for detection when the

stopping criterion is met. Based on Jerne’s work, many AIN models

have been developed [112], as shown in Fig. 18. AINs have been

proposed for problem solving in areas such as data analysis,

pattern recognition, autonomous navigation and function optimi-

zation.

4.4.2.6. Other AIS models. Millions of lymphocytes circulate in the

blood stream and lymph nodes, and perform the role of immune

surveillance and response. Therefore, Dasgupta [66] and Hamer

[146] both proposed amodel for mapping themobility of cells into

an AIS by mobile agents. Lymphocytes, antibodies and other cells

are mapped into agents roaming around a protected system to

perform sensing, recognizing, deleting and cleaning jobs. Luther

et al. [213] presented a cooperative AIS framework in a P2P

environment. Different AIS agents collaborate by sharing their

detection results and status. Twycross et al. [273] incorporated

ideas from innate immunity into artificial immune systems (AISs)

and presented an libtissue framework.

4.4.3. Representation scheme and affinity measures

The core of the HIS is self and non-self discrimination

performed by lymphocytes. To engineer such a problem in

computational settings, the key steps are appropriately represent-

ing lymphocytes and deciding the matching rules.

Antibodies are generated by random combinations of a set of

gene segments. Therefore, a natural way to represent detectors is

to encode them as gene sequences, comparable to chromosomes in

genetic algorithms. Each gene represents an attribute in the input

data. Normally, a detector is interpreted as an if-then rule, such as

Fig. 16. Conceptual architecture of Kim and Bentley’s AISmodel. The central primary IDS generates valid detectors from gene library, and transfers unique detector subsets to

distributed secondary IDSs. Secondary IDSs execute detection task, as well as proliferate successful detectors [175].
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Fig. 19 has shown. The affinity, when mapped into the intrusion

detection domain, means the similarity between detectors and

data.

Binary strings are themost commonly adopted coding schemes.

There are two ways to represent detectors in binary strings. The

difference lies in how to determine the number of nucleotides.

Suppose the number of nucleotides in a gene is denoted as Nn, and

the number values of an attribute is denoted asNa.Nn can either be

equal to Na [180,175] or be the minimum integer which satisfies

2Nn > ¼ Na [26,108,119,146,153,280]. The first representation

allows a single attribute of each detector to have more than one

value, but requiresmore space. Affinitymeasures for binary strings

are r-contiguous bitsmatching (rcb) [108], r-chunksmatching [32],

landscape-affinity matching [146], Hamming distance and its

variations. Compared to perfect matching, these partial matchings

provide generalization for a learning algorithm. Homer compared

rcb, landscape-affinity matching, Hamming distance and its

variations on a randomly generated dataset [146]. The results

showed that the Rogers and Tanimoto (R&T), a variation of the

Hamming distance, produced the best performance.

González [127] further compared R&T with r-chunks, rcb and

Hamming distance on two real-valued datasets. Although r-chunks

outperformed others, it still showed a very high false positive rate.

This can be explained by the intrinsic meaning of difference or

similarity in numeric data. Affinity measures suitable for binary

strings do not correctly reflect the distance in numeric meanings.

Fig. 19. Detector genotype and phenotype [175].

Fig. 17. A multi-level AIS model proposed by Dasgupta et al. [69].

Fig. 18.Genealogical tree of AINmodels: eachmodel is amodification or is based on

its parent [112].
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Therefore, two real-valued representations were suggested by

Dasgupta’s research group to encode numeric information. In the

first coding scheme, a gene in a detector has two nucleotides: one

saves the lower bound value of an attribute, and the other one

saves the upper bound [68]. Hence, a chromosome actually defines

a hypercube. In the second coding scheme, a detector has nþ 1

genes, where the first n genes represent the center of an n-

dimensional hypersphere, and the last gene represents the radius

[128]. Major matching rules used in real-valued representation

include: Euclidean distance, generalized distances of different

norms in Euclidean space (including special cases; Manhattan

distance (1-norm), Euclidean distance (2-norm), l-norm distance

for any l, and infinity norm distance), interval-based matching,

and other distance metrics [166].

Representations combining the two approaches were adopted,

too [143]. Numeric attributes are encoded in real-valued format,

and category attributes are encoded in strings. Matching rules

were accordingly applied.

4.4.4. Negative selection algorithms

The negative selection (NS) algorithm simulates the process of

selecting nonautoreactive lymphocytes. Consequently, given a set

of normal data, it will generate a set of detectorswhichmatch none

of these normal data samples. These detectors are then applied to

classify new (unseen) data as self (normal) or non-self (abnormal).

In this section, various NS algorithms will be summarized; then

some key issues, such as detector generation, controlling the FP

rate and FN rate, and coverage estimation will be discussed.

4.4.4.1. Development of negative selection algorithms. The negative

selection algorithm was first suggested by Forrest et al., already

shown in Fig. 14. This algorithm started with a population of

randomly generated detectors. These potential detectors, analo-

gous to immature lymphocytes, were exposed to normal data.

Those which matched normal data were removed from the

population immediately and replaced by new detectors. Detectors

which survived this selection process were used in the detection

phase (shown in Fig. 14(b)). In this model, self data and detectors

were encoded as binary strings, and rcbmatching rules decided the

affinity.

Since the empirical study [127] supported the advantages of

real-valued representations on numeric data, Dasgupta and his

group extended the initial negative selection algorithm to a series

of real-valued NS algorithms. Fig. 20 lists NS algorithms proposed

by that group and by other researchers. Dasgupta et al. hypothe-

sized that each self sample and its vicinity is normal, so they

considered a variability range (called vr) as the radius for a normal

point. Obviously, representing normal data points by a hyper-

sphere achieved generalization for unseen data. An example

showing how a self-region might be covered by circles in 2-

dimension is given in Fig. 21(a).

Features of these NS algorithms can be summarized as follows:

- Multi-level: By changing the parameter vr of self hypersphere, a

set of detectors with hierarchical levels of deviation were

generated. Such a hierarchical detector collection characterized a

noncrisp description for the non-self space [68]. A variation of

this algorithm integrated fuzzy systems to produce fuzzy

detectors [130].

- Real-valued: Instead of inefficiently throwing away detectors

who match self samples, this algorithm gave these detectors a

chance to move away from the self set during a period of

adaptation. Detectors would eventually die if they still matched

self sets within a given time frame. Meanwhile, detectors moved

apart from each other in order to minimize the overlap in the

non-self space [126]. In the end, this algorithm generated a set of

constant-sized (because of constant radius) hypersphere detec-

tors covering non-self space, as demonstrated in Fig. 21(a) for a 2-

dimensional space. Shapiro et al. expressed detectors by hyper-

ellipsoids instead of hyperspheres [254].

- v-Vector: Clearly in real-valued NS algorithms, large numbers of

constant-sized detectors are needed to cover the large area of

non-self space, while no detectors may fit in the small area of

non-self space, especially near the boundary between self and

Fig. 20. Genealogical tree of real-valued NS algorithms: each model is a modification or is based on its parent. Dark rectangulars denote research work by Dasgupta groups,

and white ones by other researchers.

Fig. 21. Themain concept of v-Vector. The dark area represents self-region. The light

gray circles are the possible detectors covering the non-self region [163]. (a)

Constant-sized detectors. (b) Variable-sized detectors.
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non-self. Hence a variable radius was suggested in the v-Vector

algorithm [162,163]. The core idea of this algorithm is illustrated

in Fig. 21(b) in a 2-dimensional space.

- Boundary-aware: Previous algorithms took each self sample and

its vicinity as a self region, but deciding vicinity is difficult,

especially for self samples that are close to the boundary between

self and non-self. This algorithm aims to solve the ‘‘boundary

dilemma’’ by considering the distribution of self samples.

- Multi-shape: Different geometric shapes, such as hyper-rectan-

gles [68,130], hyper-spheres [126,162,163] and hyper-ellipses

[254], were used for covering the non-self space. This algorithm

thus incorporated thesemultiple hyper-shape detectors together

[28,29]. Detectors with suitable size and shape were generated

according to the space to be covered. As an application, this

algorithmwas used to detect intrusions in Ad-Hoc networks [30].

- Ostaszewski: Ostaszewski et al. argued that detectors generated

by the multi-level NS algorithm cannot completely cover the

non-self space, due to the shape conflict between the structures

used for self (hypersphere) and non-self (hypercubes). Hence, in

their algorithm, both self and non-self patterns were hypercubes.

Self-patterns, instead of self data, were used in the NS algorithm.

The conversion of large self data space into comparatively small

schemata space was effective, and the conversion compressed

the number of inputs of the NS algorithm. A similar conversion

was also suggested by Hang and Dai [142,144].

New NS algorithms are continuously being published. For

example, a NS algorithm, enhanced by state graphs [212], is able to

locate all occurrences of multi-patterns in an input string by just

one scan operation; a feedback NS algorithmwas proposed to solve

the anomaly detection problem [293].

Recently concerns were raised on the applicability of NS

algorithms. Garrett [113] concluded that NS algorithms are

distinct, and are suitable for certain applications only. Freitas

et al. [111] criticized NS algorithms used as a general classification

method because they are one-class based. Stibor et al. [262,263]

pointed out that a real-valued NS algorithm, defined over the

hamming shape-space, is not well suited for real-world anomaly

detection problems. To tackle these issues, Ji et al. [165] clarified

some confusion that may have mislead the applicability of

negative selection algorithms. Gonzalez and Hang [128,144] also

suggested another potential of NS algorithms as non-self data

generators. The artificial non-self data can be mixed with self data

to train classifiers, which helps to identify the boundary between

normal and abnormal data.

4.4.4.2. Detector generation. The typical way of generating detec-

tors in NS algorithms is random or exhaustive, as described in the

model (Fig. 14) originally proposed by Forrest et al., later being

frequently adopted in other research work [69,125,126,153,160,

163].

Instead of inefficiently throwing away detectors whomatch self

samples, Ayara et al. [27] and González et al. [126] both decided to

give these detectors a chance to move away from the self set in a

period of time before eliminating them. Ayara et al. further

compared their algorithm (NSMutation) with exhaustive, linear

[81], greedy [81], and binary template [279] detector generating

algorithms in terms of time and space complexities. The results can

be found in [27]. They concluded that though NSMutation was

more or less an exhaustive algorithm, it eliminated redundancy

and provided tunable parameters that were able to induce a

different performance.

Recent trends are applying evolutionary algorithms to evolve

detectors to cover the non-self space, since a similar evolution

process was observed in antibodies. The evolutionary negative

selection algorithm (ENSA) is shown in Fig. 22, where a negative

selection algorithm is embedded in a standard evolutionary

process as an operator. Detectors which match the self data will

either be penalized by decreasing their fitness or even removed

from the population. Removed ones are replaced by newly

generated detectors.

Kim et al. [176] introduced niching to the ENSA to maintain

diversity. Diversity is necessary for ENSA because a set of solutions

(detectors) collectively solves the problem (covering non-self

space). Kim implemented niching in a way similar to the token

competition. A self sample and several detectors were randomly

selected. Only the detector which showed least similarity with the

self sample had the chance of increasing its fitness.

Dasgupta’s group claimed the detector generation was not only

a multimodal optimization problem, but also a multiobjective

problem [68]. Hence, they used sequential niching to achieve

multimodal, and defined three reasonable criteria to evaluate a

detector: a good detector must not cover self space; it should be as

general as possible; and it has minimum overlap with the rest of

the detectors. Therefore, the fitness function was defined as:

f ðxÞ ¼ volumeðxÞ � ðC � num elementsðxÞ
þ overlapped volumeðxÞÞ (1)

where volumeðxÞ is the space occupied by detector x;

num elementsðxÞ is the number of self samples matched by x; C

is the coefficient. It specifies the penalty x suffers if it covers normal

samples; overlapped volumeðxÞ is the space x overlaps with other

detectors. Obviously, the first part is the reward, while the second

part is the penalty. This multi-objective multimodal ENSA was

applied in their multi-level NS [68], fuzzy NS [130] and multi-

shape NS algorithms [28,29]. Ostaszewski et al. also used this

fitness definition in their work. The multi-shape NS used a

structure-GA while the rest used standard GAs.

With the development of EC, ENSA is gradually strengthened by

new evolutionary features. González and Cannady [131] imple-

mented a self-adaptive ENSA, where the mutation step size was

adjustable in a Gaussian mutation operator. Their method avoided

trial and error when determining the values of tunable parameters

in NSMutation; Ostaszewski et al. [233–235] employed co-

evolution in their ENSA. A competitive co-evolutionary model

helped detectors to discover overlooked regions. The anomaly

Fig. 22. Generating detectors by evolutionary algorithms.
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dataset and the detector set took their turn as predators and prey.

Detectors were trying to beat down anomaly data points by

covering them. The fitness of data points not covered by any

detector were increased, thus resulting in a high possibility of

these points to be presented to detectors again. Haag et al. [139]

employed amulti-objective evolutionary algorithm tomeasure the

tradeoff among detectors with regard to two independent

objectives: best classification fitness and optimal hyper-volume

size.

4.4.4.3. Controlling false positive and false negative errors. Inaccu-

rate boundaries between self and non-self space (see Fig. 23(a)),

and incomplete non-self patterns (see Fig. 23(b)) are two main

causes of false positive and false negative errors in AISs.

Self samples in training sets are never complete. As a result,

some autoreactive detectors cannot be eliminated during negative

selection. These detectors fail to recognize unseen normal data,

thus causing false positives, as shown in Fig. 23(a). To avoid false

positive errors, Hofmeyr [153] introduced the activation threshold

(t), sensitivity level (d), and costimulation. Instead of signaling an

alarm every time a match happens, a detector has to wait until it is

matched at least t times within a limited time period. However, if

attacks are launched from different sources, a single detector

cannot be matched repeatedly. Therefore, d is intended to consider

the matches of all detectors in a host. An alarm will be triggered

when the contributions of multiple detectors exceeds d within a

limited time period. Costimulation requires a confirmation from a

human operator whenever an activated detector raises an alarm.

Giving generality to self samples is another way to address

incomplete self samples problem. As previously discussed,

Dasgupta’s group used a hyper-sphere area around self samples

in the NS algorithm. Although their methods successfully avoid

overfitting, it unfortunately produces an over-generalization

problem. Over-generalization will cause false negative errors as

shown in Fig. 23(a). Therefore, Ji et al. proposed a boundary-aware

algorithm [159]; Ostaszewski et al. presented the self samples by

variable-sized hyper-rectangles; Hang et al. [142,144] employed a

co-evolutionary algorithm to evolve self patterns.

Incomplete non-self patterns in AISs are mainly caused by

holes, which are the undetectable negative space (shown in

Fig. 23(b)). They are desirable to the extent that they prevent false

positives if unseen self samples are falling into them. They are

undesirable to the extent that they lead to false negatives if non-

self samples are falling into them. Balthrop et al. [32] and Esponda

et al. [93,94] pointed out that matching rules are one reason for

inducing holes. For example, the r-contiguous bit matching rule

induces either length-limited holes or crossover holes, while the r-

chunks matching rule only induces crossover holes. Their analysis

is consistent with the D’haeseleer’s suggestion: using different

matching rules for different detectors can reduce the overall

number of holes [81]. Alternatively, using different representations

helps to avoid holes, too. Hofmeyr [153] introduced the concept of

permutation masks to give a detector a second representation.

Permutation masks are analogous to the MHC molecules in HIS. In

fact, changing representation is equivalent to changing the ‘‘shape’’

of detectors. Dasgupta and other researchers [233] then suggested

variable-sized [162,163,234,235] and variable-shaped detectors

(e.g. hyper-rectangular [68,130], hypersphere [126,163], hyper-

ellipsoid [254], or a combination of them [28,29]). Niching

sometimes contributes to filling holes, because it attempts to

maximize the space coverage and minimize the overlaps among

them.

Holes bring another issue. Hofmeyr explained in [153] that the

longer the period of time over which holes remain unchanged, the

more likely an intruder will find gaps, and once found, those gaps

can be exploitedmore often. Therefore, he proposed a combination

of rolling coverage and memory cells to solve this problem. Each

detector is given a finite lifetime. At the end of its lifetime, it is

eliminated and replaced by a new active detector, thus resulting in

a rolling coverage. Memory detectors ensure that what has been

detected in the past will still be detected in the future.

4.4.4.4. The estimation of coverage. No matter whether detectors

are generated exhaustively or by using evolutionary algorithms, a

measure is required to decide when to stop the generation process.

Estimating the coverage ratio, which is also called detector

coverage, is one major research subject of NA algorithms.

Forrest [108] and D’haeseleer [81] estimated the number of

detectors for a given failure probability when the exhaustive

generation and the r-continuous matching rule were used; later

Esponda et al. [94] discussed the calculation of the expected

number of unique detectors under the r-chunks matching rule for

both the positive and negative selection algorithm.

Dasgupta et al. [68] and Ji [163] estimated the coverage by retry

times. Later Ji used hypothesis testing to estimate the detector

coverage in v-vector NS algorithm [164]. González [129] and

Balachandran [29] used the Monte Carlo estimation to calculate

the detector coverage.

4.4.5. Affinity maturation and gene library evolution

As described previously, the affinity maturation is the basic

feature of an immune response to an antigenic stimulus. Clonal

selection and somatic hypermutation are essentially a Darwinian

process of selection and variation, guaranteeing high affinity and

specificity in non-self recognition in a dynamically changing

environment. Computationally, this leads to the development of a

new evolutionary algorithm, clonal selection algorithm. This

algorithm relies on the input of non-self data (antigens), not the

self data required in the negative selection algorithms.

Forrest et al. [109] first used genetic algorithm with niching to

emulate clone selection. Kim and Bentley [180] embedded the NS

algorithm as an operator into Forrest’s work. This operator filtered
Fig. 23. Reasons for FPR and FNR in AISs [153]. (a) Inaccurate boundaries. (b)

Incomplete non-self patterns.
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out invalid detectors generated by mutation. Since this algorithm

only works on a static dataset, it was named static clonal selection

algorithm. Later, the same authors introduced Hofmeyr’s lifecycle

model to this algorithm to cope with a dynamic environment. This

new algorithm was called dynamic clonal selection [177].

Although this algorithm was able to incrementally learn normal

behavior by experiencing only a small subset of self samples at one

time, it showed high FP errors owing to the infinite lifespan of

memory cells. The next step was naturally to define a lifecycle for

memory cells. When an antigen detected by a memory cell turned

out to be a self-antigen, this memory cell would be deleted. Such a

confirmation was equivalent to the co-stimulation signal in

Hofmeyr’s model [181,183]. Dasgupta et al. also employed the

clone selection in their multi-level model [69]. Both mature B-

detectors and T-detectors proliferated and were mutated depend-

ing on their affinity with antigens.

The clonal selection algorithm implementing affinity matura-

tion is now gradually developed into a new computational

paradigm. CLONALG (CLONal selection ALGorithm) [75], ARIS

(Artificial Immune Recognition System) [278], and opt-aiNet [72]

are well known clonal selection algorithms. These algorithms are

used in performing machine-learning and pattern recognition

tasks, and solving optimization problems. Although they employ

the generation-based model and evolutionary operators when

generating offspring, they distinguish themselves from other

evolutionary algorithms by the following: firstly, cloning and

mutation rates are decided by an individual’s affinity. The cloning

rate is proportional to the affinity, while the mutation rate is

inversely proportional to the affinity. There is no crossover in

clonal selection algorithms; secondly, it is a multi-modal preser-

ving algorithm. The memory cell population (Pm) incrementally

saves the best solution in each generation. Pm will be returned as

the final solution when the algorithm is terminated; thirdly, the

population size is dynamically adjustable. Applications of these

algorithms to intrusion detection can be found in [123,204,205,

283]

In the biological immune system, antibodies are generated by

combining fragments fromgene libraries. Gene libraries, shaped by

evolution, are used to guide the creation process to create

antibodies with a good chance of success, while preserving the

ability to respond to novel threats [51].

Perelson et al. [239] and Cayzer et al. [50,51] showed that gene

libraries can enhance coverage. Cayzer et al., in addition,

investigated the role of gene libraries in AIS [50,51]. Their

empirical experiments suggest that gene libraries in AIS provide

combinatorial efficiency, reduce the cost of negative selection, and

allow targeting of fixed antigen populations.

Kim and Bentley [182,183] employed gene library evolution to

generate useful antibodies. A problem found in their extended

dynamic clonal selection algorithm was that a large number of

memory detectors require costimulations in order to maintain low

FP rates. Because new detectors were generated randomly, they

increase the possibilities of generating invalid detectors. The

authors suggested taking feedbacks from previously generated

detectors, such as using deleted memory detectors as the virtual

gene library. They argued that these deletedmemory detectors still

held valid information about antibodies, so new detectors were

generated by mutating the deleted detectors. Further finetuning of

these detectors would generate a useful detector with high

probabilities.

4.4.6. Danger theory

The fundamental principle that guides the development of AIS

is the self non-self discrimination. Immune responses are triggered

when the body encounters non-self antigens. Therefore, negative

selection acts as an important filter to eliminate autoreactive

lymphocytes. However, questions have been raised regarding this

classical theory, because it cannot explain transplants, tumors, and

autoimmunity, in which some non-self antigens are not elimi-

nated, while some self antigens are destroyed. Matzinger, there-

fore, proposed the Danger Model [217,218], and claimed that

immune responses are triggered by the unusual death of normal

tissues, not by non-self antigens. Unusual death would indicate

that there was a dangerous situation.

This theory is still debated within the immunology field.

Nevertheless, it provides some fresh ideas that may benefit the

design of an AIS. For example, it avoids the scaling problem of

generating non-self patterns. Aickelin and his research group

started towork on a ‘‘Danger Project’’ [1] in 2003, intended to apply

Danger Theory to intrusion detection systems. The authors

emphasize the crucial role of the innate immune system for

guiding the adaptive immune responses. Their research specifi-

cally focuses on building more biologically-realistic algorithms

which consider not only adaptive, but also innate immune

reactions [17,18]. Their work so far can be mainly summarized

as one innate immunity architecture, and two danger theory based

algorithms.

Before we discuss their work, the biological inspiration should

be explained in more detail. Danger Theory is based on the

difference between healthy and stressed/injured cells. It suggests

that cells do not release alarm signals when they die by normally

planned processes (known as apoptosis), whereas cells do release

alarm signals when they are stressed, injured, or die abnormally

(known as necrosis). A type of cells known as Dendritic Cells (DC)

act as an important medium, passing the alarm signal to the

adaptive immune system. DCs have three distinct states: immature

(iDC), semimature (smDC), and mature (mDC). iDCs exist in the

extralymphoid compartments, where they function as macro-

phages: clear the debris of tissue, degrade their proteins into small

fragments, and capture alarm signals released from necrose cells

using toll-like receptors (TLR). Once iDCs collect debris and are

activated by an alarm signal, they differentiate into mDCs, and

migrate from the tissue to a lymph node. However, if iDCs do not

receive any activation in their lifespan but collect debris, they

differentiate into smDCs, and also move to a lymph node. Once in a

lymph node, mDCs and smDCs present those fragments collected

in the immature stage as antigens at their cell surface using MHC

molecules. When a naive T cell in the lymph node binds to these

antigens, it will be activated only if the antigens it bonds to are

presented by an mDC; it will not response if the antigens are

presented by an smDC. This is because mDCs secrete a type of

cytokines called IL-12 which activates naive T cells, while smDCs

secrete a type of cytokines called IL-10 which suppresses naive T

cells. In summary, DCs act as a bridge between the innate and

adaptive immune system. They will trigger an adaptive immune

response when danger has been detected [134,135,274].

From the above discussion, we can see that tissues provide an

environment that can be affected by viruses and bacteria, so that

signals are sent out and an immune response is initiated. Both

Aickelin and Bentley proposed the idea of artificial tissues, because

real-world problems sometimes are very difficult to be connected,

compared, and mapped to artificial immune algorithms. Similar to

the function of tissues, artificial tissues form an intermediate layer

between a problem and an artificial immune algorithm, for

example, providing data pre-processing for artificial immune

algorithms. However, they held different perspectives about

artificial tissues.

Bentley et al. [38] introduced two tissue growing algorithms for

anomaly detection. Artificial tissue grows to form in a specific

shape, structure and size in response to specific data samples.

When data does not exist to support a tissue, the tissue dies. When

too much, or too diverse, data exists for a tissue, the tissue divides.
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Danger signals are released when a tissue dies. In a sense, artificial

tissues provide generic data representations, enabling them to

function as an interface between a real-world problem and an

artificial immune algorithm. Twycross and Aickelin, on the other

hand, proposed a libtissue architecture in [273], which allowed

researchers to implement, analyze and test new AIS algorithms, as

shown in Fig. 24. libtissue has a client/server architecture. The

libtissue clients represent the data collected from the monitored

systems as antigens and signals, and then transmit them to the

libtissue server. The client also responds to outputs from the

libtissue server, and changes the state of the monitored system. On

the libtissue server, one or more tissue compartments are defined.

Compartments provide an environment where immune cells,

antigens and signals interact. Immune cells, which are embodied

by the artificial immune algorithms, perform analysis and

detection. The final decision will be sent back to the client.

Another observation from the introduction of the Danger

Theory is the role of DCs and their interaction with T cells. Hence,

the dendritic cell algorithm (DCA) [132–137] and TLR algorithm

(TLRA) [274–276] were proposed by Greensmith et al. and

Twycross et al., respectively.

DCA attempts to simulate the power of DCs which are able to

activate or suppress immune responses by the correlation of

signals representing their environment, combinedwith the locality

markers in the form of antigens [135]. To emulate DCs, Greensmith

et al. defined four input signals in the DCA: pathogen associated

molecular patterns (PAMPs), safe signals, danger signals and

inflammatory cytokines [134]. These signals describe the context

or environment of an antigen, derived either from input data or the

indices of a monitored system, such as CPU usage or errors

recorded by log systems. The DCA starts with creating a population

of immature DCs. Each iDC collects antigens (i.e. the input data)

and signals, and transforms them by an equation to three output

concentrations: costimulatory molecules (csm), smDC cytokines

(semi) andmDC cytokines (mat). csm tracks thematuration of a DC.

When this quantity is larger than a pre-defined threshold, this DC

is said to be mature. The other two outputs, semi and mat, will

determine if this DC will develop to be an smDC or mDC. Matured

DCs are ready for intrusion detection. In summary, the maturation

phase in the DCA actually correlates signals and input data to

normal or danger contexts. The DCA is deployed in the libtissue

framework to detect port scan intrusions, specifically ping scans

[132,135] and SYN scans [133]. Kim et al. [179] applied this

algorithm to detect misbehavior in sensor networks.

TLRA focuses on the interaction between DCs and T cells, which

replaces the classical negative selection algorithm. TLRA are

completed in a training and test phase. In training, only normal

data is presented to DCs. Accordingly, all DCs will develop to

smDCs. smDCs in a lymph node will match with randomly

generated T cells. If a match happens, whichmeans smDCs activate

naive T cells, then these T cells will be killed. In the test phase,

anomaly is detected when naive T cells are activated by antigens.

Compared to the classical negative selection algorithms, TLRA

considers the environment of the input data, not only the antigen

itself, thus increasing the detection rate and decreasing the false

positive rate. The TLRA was deployed in the libtissue framework to

detect process anomaly [274–276]. Kim et al. [185] also emulated

interactions betweenDCs and T cells in the CARDINAL (Cooperative

Automated worm Response and Detection ImmuNe ALgorithm).

However, T cells in CARDINAL will differentiate into various

effector T cells, such as helper T cells and cytotoxic T cells. These

effector T cells are automated responders that react to worm-

related processes. They also exchange information with effector T

cells from other hosts when they respond.

In summary, both DCA and TLRA employ the model of DCs,

which is an important element in the innate immune system.

Experimental results of both algorithms showed good detection

rate, thus further confirming that incorporating innate immune

response benefits the development of an AIS. The implementation

of these two algorithms focuses on the different aspects of the DC

model. The DCA relies on the signal processing aspect by using

multiple input and output signals, while the TLRA emphasizes the

interaction between DCs and T cells, and only uses danger signals.

The DCA does not require a training phase; in addition, it depends

on few tunable parameters, and is robust to changes in the

majority of these parameters. However, choosing good signals

should not be trivial, and might affect the performance of both

algorithms.

4.4.7. Summary

In this section, we reviewed the progress in artificial immune

systems and their applications to the intrusion detection domain.

The successful protection principles in the human immune system

have inspired great interest for developing computational models

mimicking similar mechanisms. Reviewing these AIS-based intru-

sion detection systems or algorithms, we can conclude that the

characteristics of an immune system, like uniqueness, distribution,

pathogen recognition, imperfect detection, reinforcement learning

andmemory capacity, compensate forweaknesses of the traditional

intrusion detectionmethods, thus resulting in dynamic, distributed,

self-organized and autonomous intrusion detection.

The HIS has a hierarchical structure consisting of various

molecules, cells, and organs. Therefore, researchers may have their

own perspective when starting to model. Table 7 summarizes the

similarities between the approaches.

From this table, evidently NS algorithms are more thoroughly

investigated and widely used than other AIS approaches in

intrusion detection. This is because NS algorithms lead anomaly

detection to a new direction: modeling non-self instead of self

patterns. We also notice the quick emergence of Danger Theory,

which provides some fresh ideas that benefit the design of AISs.

The lifecycle of detectors has been proven as an effective way to

avoid holes and adapt to the changes in self data.

Although AIS is a relatively young field, it has received a great

deal of attention, and there has been some significant develop-

ments recently. Meanwhile, researchers have shown an interest in

not only developing systems, but in starting to thinkmore carefully

about why and how to develop and apply these immune inspired

ideas. As a result, a number of AIS research groups published state-

of-the-art reviews of AIS research in 2006 and 2007, attempting to

reorganize the research efforts, to clarify terminology confusion

and misunderstandings, and to reconsider the immunological

metaphors before introducingmore new ideas, specifically ones by

Dasgupta [67], by Forrest [105], by Ji and Dasgupta [166], by Kim

et al. [178], and by Timmis [267]. This also implies that anomaly

detection is getting more focus.

Despite many successes of AIS-based IDSs, there remain some

open questions:

Fig. 24. The architecture of libtissue [273].
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- Fitting to real-world environments: Currently most of the

algorithms were tested on benchmark datasets. However,

real-world environments are far more complicated. Hence,

improving the efficiency of the current AIS algorithms is

necessary. To take NS algorithms as an example, one needs to

consider how to avoid the scaling problem of generating non-

self patterns, how to detect and fill holes, how to estimate the

coverage of rule sets, and how to deal with a high volume and

dimensional data.

- Adapting to changes in self data: Normal behavior is constantly

changing, and so should normal patterns. Although the concept

of a detector’s lifecycle contributes to adaption, co-stimulation

signals from system administrators are required, which is

infeasible in reality. Hence, related mechanisms from the human

immune system should be further explored, and carefully

mapped to solve anomaly detection problems.

- Novel and accurate metaphors from immunology: Current AIS

algorithms oversimplify their counterparts in immunology. One

needs to carefully exploit all known useful features of immune

systems, as well as consider the latest discoveries in immunol-

ogy. A better understanding of immunology will provide insight

into designing completely new models of AIS.

- Integrating immune responses: The HIS not only recognizes non-

self antigens, but also removes these antigens after recognition.

Current AIS-based IDSs focus on self and non-self recognition.

Few research so far discussed the response mechanism after

detection. A response within an IDS context does not simply

mean the generation of an alert, but an implemented change in

the system as the result of a detection.

4.5. Swarm intelligence

Swarm intelligence (SI) is an artificial intelligence technique

involving the study of collective behavior in decentralized systems

[7]. It computationally emulates the emergent behavior of social

insects or swarms in order to simplify the design of distributed

solutions to complex problems. Emergent behavior or emergence

refers to the way complex systems and patterns arise out of a

multiplicity of relatively simple interactions [7]. In the past few

years, SI has been successfully applied to optimization, robotics,

and military applications. In this section, we will review its

contributions into the intrusion detection domain by discussing

two swarm motivated research methods.

4.5.1. Swarm intelligence overview

We can observe various interesting animal behavior in nature.

Ants can find the shortest path to the best food source, assign

workers to different tasks, or defend a territory from neighbors; A

flock of birds flies or a school of fish swims in unison, changing

directions in an instant without colliding with each other. These

swarming animals exhibit powerful problem-solving abilities with

sophisticated collective intelligence.

Swarm intelligence approaches intend to solve complicated

problems bymultiple simple agents without centralized control or

the provision of a global model. Local interactions between agents

and their environment often cause a global pattern of behavior to

emerge. Hence, emergent strategy and highly distributed control

are the two most important features of SI, producing a system

autonomous, adaptive, scalable, flexible, robust, parallel, self

organizing and cost efficient [231].

Generally speaking, SI models are population-based. Indivi-

duals in the population are potential solutions. These individuals

collaboratively search for the optimum through iterative steps.

Individuals change their positions in the search space, however, via

direct or indirect communications, rather than the crossover or

mutation operators in evolutionary computation. There are two

popular swarm inspired methods in computational intelligence

areas: Ant colony optimization (ACO) [88] and particle swarm

optimization (PSO) [174]. ACO simulates the behavior of ants, and

has been successfully applied to discrete optimization problems;

PSO simulates a simplified social system of a flock of birds or a

school of fish, and is suitable for solving nonlinear optimization

problems with constraints.

4.5.2. Ant colony optimization

Ants are interesting social insects. Individual ants are not very

intelligent, but ant colonies can accomplish complex tasks

unthinkable for individual ants in a self-organized way through

direct and indirect interactions. Two types of emergent behavior

observed in ant colonies are particularly fascinating: foraging for

food and sorting behavior.

A colony of ants can collectively find out where the nearest and

richest food source is located, without any individual ant knowing

it. This is because ants lay chemical substances called pheromones

to mark the selected routes while moving. The concentration of

pheromones on a certain path indicates its usage. Paths with a

stronger pheromone concentration encourage more ants to follow,

thus in turn these additional ants reinforce the concentration of

pheromones. Ants who reach the food first by a short path will

return to their nest earlier than others, so the pheromones on this

path will be stronger than on longer paths. As a result, more ants

choose the short path. However, pheromones slowly evaporate

over time. The longer path will hold less or even no traces of

pheromone after the same time, further increasing the likelihood

for ants to choose the short path [231].

Researchers have applied this ant metaphor to solve difficult,

discrete optimization problems, including the traveling salesman

problem, scheduling problems, the telecommunication network or

vehicle routing problem, etc. Its application to the intrusion

detection domain is limited but interesting and inspiring. He et al.

Table 7

Summary of artificial immune system.

HIS AIS

Layers Immune mechanism Algorithm Training data Research work

Adaptive Negative selection

(T cells and B cells)

Negative selection Self [28] b, [29], [69], [107], [108], [125] a, [126], [129], [159], [162],

[165] [160] a, [163], [176], [293], [254], [235], [233], [234], [143],

[142], [144]

Clonal selection (B cells) Clonal selection Non-self [180], [177], [182], [181], [175] a, [183], [283], [205], [123], [204]

Idiotypic network Immune network Non-self [203]

Cell lifecycle Detector lifecycle Self [153] a, [152], [33], [119], [280], [146] b, [147], [182], [183]

Innate Dendritic cells DC algorithm Self and non-self [19], [136], [134], [137], [132], [135], [133], [184], [265]

T cells and dendritic cells TLR algorithm Self [185], [274], [276], [165], [275] a

a Ph.D thesis.
b Master thesis.
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[149] proposed an Ant-classifier algorithm, which is an extension

of the Ant-Miner for discovering classification rules [237]. Artificial

ants forage paths from the rule antecedents to the class label, thus

incrementally discovering the classification rules, as shown in

Fig. 25. He et al. noticed that using only one ant colony to find paths

in all classes was inappropriate, because the pheromone level

updated by a certain ant would confuse successive ants interested

in another class. So more than one colony of ants (i.e. red ants and

blue ants in Fig. 25) were applied to find solutions for multi-class

classification problems simultaneously with each colony to focus

on one class. Each colony of ants deposited a different type of

pheromone, and ants were only attracted by pheromones

deposited by ants in the same colony. In addition, a repulsion

mechanism prevented ants of different colonies from choosing the

same optimal path.

Banerjee et al. [34,35] suggested to use ACO to keep track of

intruder trails. The basic idea is to identify affected paths of

intrusion in a sensor network by investigating the pheromone

concentration. This work also emphasizes the emotional aspect of

agents, in that they can communicate the characteristics of

particular paths among each other through pheromone updates.

Therefore, in a sensor network if the ants are placed, they could

keep track the changes in the network path, following certain

rules depicting the probabilities of attacks. Once a particular path

among nodes is detected by the spy emotional ant, it can

communicate the characteristics of that path through pheromone

balancing to other ants; thereafter network administrators could

be alerted.

In addition to finding the shortest path, ants also exhibit

amazing abilities to sort objects. Ants group brood items at similar

stages of development (e.g. larvae, eggs, and cocoons) together. In

order to do sorting, ants must sense both the type of element they

are carrying, and the local spatial density of that type of element.

Specifically, each ant must follow some local strategy rules: it

wanders a bit; if it meets an object which has a different type of

objects around it and if it does not carry one, it takes that object; if

it transports an object and sees a similar object in front of it, it

deposits the object. By executing these local strategy rules, ants

display the ability of performing global sorting and clustering of

objects.

Deneubourg et al. [79] in 1990 first related this biological

observation to an ant-based clustering and sorting algorithm. The

basic ant algorithm startedwith randomly scattering all data items

and some ants on a toroidal grid. Subsequently, the sorting phase

repeated the previously mentioned local strategy rules. Compu-

tationally, the strategy rules can be described as the following: an

ant deciding whether to pick up or drop an item i considers the

average similarity of i to all items j in its local neighborhood. The

local density of similarity ( f ðoiÞ) is calculated by Eq. (2a), where j

denotes the neighborhood of an object oi; function dðoi; o jÞ
measures the similarity of two objects; d

2
is the size of the local

neighborhood; a2 ½0;1� is a data-dependent scaling parameter.

The probability of picking up (P pickðoiÞ) and dropping an object

(Pdro pðoiÞ) is shown in Eq. (2b) and Eq. (2c), respectively, where k1

and k2 are scaling parameter.

f ðoiÞ ¼ max 0;
1

d
2

X

j

ð1� dðoi; o jÞ
a

Þ

8

<

:

9

=

;

(2a)

PpickðoiÞ ¼
k1

k1 þ f ðoiÞ

� �2

(2b)

PdropðoiÞ ¼
2 f ðoiÞ if f ðoiÞ< k2
1 if f ðoiÞ� k2

�

(2c)

Romos and Abraham [242] applied this ant-based clustering

algorithm to detect intrusion in a network infrastructure. The

performancewas comparable to theDecision Trees, Support Vector

Machines and Linear Genetic Programming. The online processing

ability, dealing with new classes, and the self-organizing nature

make the ant-based clustering algorithms an ideal candidate for

IDSs. Similar work done by Feng et al. can also be found at [97–99].

Tsang and Kwong [269,270] evaluated the basic ant-based

clustering algorithm and an improved version [141] on the KDD99

dataset. They found that these two algorithms suffer from two

major problems on clustering large and high dimensional network

data. First, many homogeneous clusters are created and are

difficult to be merged when they are large in size and spatially

separated in a large search space. Second, the density of similarity

measures only favors cluster formation in locally dense regions of

similar data objects, but cannot discriminate dissimilar objects

with any sensitivity. The authors made further improvements on

these algorithms, such as combining information entropy and

average similarity in order to identify spatial regions of coarse

clusters, and to compact clusters and incorrectly merged clusters;

cluster formation and object searchingwere guided by two types of

pheromones, respectively; local regional entropy was added to the

short-term memory; a tournament selection scheme counter-

balanced the population diversity and allowed to find optimal

values for control parameters, e.g. a-value, or perception radius.

Experiments on the KDD99 dataset showed strong performance in

that their algorithm obtained three best and two second best

results in five classes, when compared with the KDD99 winner, K-

means, [79,141].

4.5.3. Particle swarm optimization

Particle swarm optimization (PSO) is a population based

stochastic optimization technique, inspired by social behavior

such as bird flocking or fish schooling.

A high-level view of PSO is a collaborative population-based

search model. Individuals in the population are called particles,

representing potential solutions. The performance of the particles

is evaluated by a problem-dependent fitness. These particles move

around in a multidimensional searching space. They move toward

the best solution (global optimum) by adjusting their position and

velocity according to their own experience (local search) or the

experience of their neighbors (global search), as shown in Eq. (3). In

a sense, PSO combines local search and global search to balance

exploitation and exploration.

viðtÞ ¼ w� viðt � 1Þ þ c1 � r1ðpli � xiðt � 1ÞÞ þ c2 � r2ð pgi
� xiðt � 1ÞÞ (3a)

xiðtÞ ¼ xiðt � 1Þ þ viðtÞ (3b)

where i ¼ 1;2; . . . ;N, population size N; viðtÞ represents the

velocity of particle i, which implies a distance traveled by i in

generation t; xiðtÞ represents the position of i in generation t; pli
represents the previous best position of i; pg

i
represents the

previous best position of the whole swarm; w is the inertia weight

Fig. 25. A multi-class classification algorithm based on multiple ant colonies [149].
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which balances the local and global searching pressure; c1 and c2
are positive constant acceleration coefficients which control the

maximum step size of the particle; r1 and r2 are random number in

the interval [0, 1], and introduce randomness for exploitation.

PSO has shown good performance in solving numeric problems.

In the context of intrusion detection, PSO algorithms have been

used to learn classification rules. Chen et al. [55] demonstrated a

‘‘divide-and-conquer’’ approach to incrementally learning a

classification rule set using a standard PSO algorithm. This

algorithm starts with a full training set. One run of the PSO is

expected to produce the best classifier, which is added to the rule

set. Meanwhile, data covered by this classifier is deleted from the

training dataset. This process is repeated until the training dataset

is empty. Abadeh et al. [9] embedded a standard PSO into their

fuzzy genetic algorithm. The GA searches for the best individual in

every subpopulation. The PSO was applied to the offspring

generated by crossover and mutation, aiming to improve the

quality of fuzzy rules by searching in their neighborhood. Age was

assigned to individuals before the start of local search. Fitter

individuals live longer, thus having a longer time to perform local

search. In their algorithm, the population consists N subpopula-

tions, where N is the number of classes. Steady-state strategy was

employed to update populations.

The classification task usually involves a mixing of both

continuous and categorical attribute values. However, a standard

PSO does not deal with categorical values: category values do not

support the ‘‘þ’’ and ‘‘�’’ operations shown in Eq. (3). Hence Chen

et al. mapped category values to integers. The order in mapped

sequences sometimes makes no sense in the context of original

nominal values, and mathematical operations applied to this

artificial order may generate counter-intuitive results. Abadeh

et al. then redefined the meaning of ‘‘þ’’ and ‘‘�’’ operators in Eq.

(3) by the Rule Antecedent Modification (RAM) operator. The RAM

operator can be explained by a simple example. Suppose a

linguistic variable R has five fuzzy sets: fS;MS;M;ML; Lg. Ante-
cedent A and B in two particles may contain fS;Mg and fS; Lg,
respectively. B� A ¼ RAMð2;3Þ, which means B can be converted

to A if the 2nd fuzzy set in B is replaced with the 3rd fuzzy set in R.

Here RAMð2;3Þ is a RAM operator. Bþ RAMð2;3Þ ¼ A means

applying RAM operator RAMð2;3Þ to B will result in A.

4.5.4. Summary

In this section, ant colonyoptimization (ACO) andparticle swarm

optimization (PSO) and their applications to intrusion detection

domain were reviewed. They either can be used to discover

classification rules for misuse detection, or to discover clusters for

anomaly detection, or even can keep track of intruder trails.

Experiments results have shown that these approaches achieve

equivalent or better performance than traditional methods.

ACO and PSO both have their roots in the study of the behavior

of social insects and swarms. Swarms demonstrate incredibly

powerful intelligence through simple local interactions of inde-

pendent agents. Such self-organizing and distributed properties

are especially useful for solving intrusion detection problems,

which are known for their huge volume and high dimensional

datasets, for real-time detection requirement, and for diverse and

constantly changing behavior. Swarm intelligence would offer a

way to decompose such a hard problem into several simple ones,

each of which is assigned to an agent to work on in parallel,

consequently making IDSs autonomous, adaptive, parallel, self

organizing and cost efficient.

4.6. Soft computing

Soft computing is an innovative approach to construct a

computationally intelligent system which parallels the extra-

ordinary ability of the human mind to reason and learn in an

environment of uncertainty and imprecision [289]. Typically, soft

computing embraces several computational intelligence meth-

odologies, including artificial neural networks, fuzzy logic,

evolutionary computation, probabilistic computing, and recently

also subsumed artificial immune systems, belief networks, etc.

These members neither are independent of one another nor

compete with one another. Rather, they work in a cooperative and

complementary way.

The synergism of these methods can be tight or loose. Tightly

coupled soft computing systems are also known as hybrid systems.

In a hybrid system, approaches are mixed in an inseparable

manner. Neuro-fuzzy systems, genetic-fuzzy systems, genetic-

neuro systems and genetic-fuzzy-neuro systems are the most

visible systems of this type. Comparatively, loosely coupled soft

computing systems, or ensemble systems, assemble these

approaches together. Each approach can be clearly identified as

a module.

In this section, we will discuss how to learn uncertain and

imprecise intrusive knowledge using soft computing. Hence,

neuro-fuzzy and genetic-fuzzy hybrid approaches are introduced

first. The discussion about the genetic-neuro and genetic-fuzzy-

neuro hybrid systems can be found in Section 4.3.1.2. The last part

of this section will examine the role of ensemble approaches

played in intrusion detection.

4.6.1. Artificial neural networks and fuzzy systems

Artificial neural networks model complex relationships

between inputs and outputs and try to find patterns in data.

Unfortunately, the output models are often not represented in a

comprehensible form, and the output values are always crisp.

Fuzzy systems, in contrast, have been proven effective when

dealing with imprecision and approximate reasoning. However,

determining appropriate membership functions and fuzzy rules is

often a trial and error process.

Obviously, the fusion of neural networks and fuzzy logic

benefits both sides: neural networks perfectly facilitate the process

of automatically developing a fuzzy system by their learning and

adaptation ability. This combination is called neuro-fuzzy systems;

fuzzy systems make ANNs robust and adaptive by translating a

crisp output to a fuzzy one. This combination is called fuzzy neural

networks (FNN). For example, Zhang et al. [294] employed FNNs to

detect anomalous system call sequences to decide whether a

sequence is ‘‘normal’’ or ‘‘abnormal’’.

Neuro-fuzzy systems are commonly represented as a multi-

layer feed forward neural network, as illustrated by Fig. 26. The

neurons in the first layer accept input information. The second

layer contains neurons which transform crisp values to fuzzy sets,

and output the fuzzy membership degree based on associated

fuzzy membership function. Neurons in the third layer represent

the antecedent part of a fuzzy rule. Their outputs indicate howwell

the prerequisites of each fuzzy rule are met. The fourth layer

performs defuzzification, and associates an antecedent part with

an consequent part of a rule. Sometimes more than one

defuzzification layer is used. The learning methods work similarly

to that of ANNs. According to the errors between output values and

target values, membership functions and weights between

reasoning layer and defuzzification layer are adjusted. Through

learning, fuzzy rules and membership function will be auto-

matically determined.

Intrusion detection systems normally employ neuro-fuzzy

systems for classification tasks. For example, Toosi et al. [268]

designed an IDS by using five neuro-fuzzy classifiers, each for

classifying data from one class in the KDD99 dataset. The neural

network was only responsible for further adapting and tuning the

membership functions. The number of rules and initial member-
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ship functions were determined by a subtractive clustering

method. Other similar neuro-fuzzy based IDSs can be found in

[25] and [225].

To avoid determining the number of rules before training a

ANN, the NEFCLASS system has been introduced. The NEFCLASS

system is created from scratch and starts with no rule reasoning

layer at all. Rules (neurons in the rule reasoning layer) are created

by using of the reinforcement learning algorithm in the first run

through the training data (rule learning). In the second run, a fuzzy

back propagation algorithm adapts the parameters of membership

functions (fuzzy set learning). Hofmann [150] and Alshammari

[22] used this method for misuse detection on the DARPA98 and

DARPA99 datasets, respectively. Hofmann et al. compared the

performance of four neural and fuzzy paradigms (multilayer

perceptrons, RBF networks, NEFCLASS systems, and classifying

fuzzy-k-means) on four attack types. The NEFCLASS is the first

runner-up after the RBF. Alshammari et al. pointed out that the

performance of the NEFCLASS depends on the heuristics’ learning

factors. Through their experiments they found that a trapezoid

membership function using the weight as an aggregation function

for the ANN extensively reduces the number of false positive alerts

with fewer mistakes. In addition, providing more background

knowledge about network traffic provided better results on

classification.

Another interesting type of neuro-fuzzy systems is the fuzzy

cognitive map (FCM). FCM is a soft computing methodology

developed by Kosko as an expansion to cognitive maps which are

widely used to represent social scientific knowledge [187]. They

are able to incorporate human knowledge, adapt it through

learning procedures, and provide a graphical representation of

knowledge that can be used for explanation of reasoning. Xin

et al. [284] and Siraj et al. [256,257] both used FCM to fuse

suspicious events to detect complex attack scenarios that involve

multiple steps. As Fig. 27 shows, suspicious events detected by

misuse detection models are mapped to nodes in FCM. The nodes

in the FCM are treated as neurons that trigger alerts with

different weights depicting on the causal relations between

them. So, an alert value for a particular machine or a user is

calculated as a function of all the activated suspicious events at a

given time. This value reflects the safety level of that machine or

user at that time.

4.6.2. Evolutionary computation and fuzzy systems

Evolutionary computation is another paradigm with learning

and adaptive capabilities. Hence, EC became another option for

automatically designing and adjusting fuzzy rules. In Section 4.3.1,

we discussed how to use EC approaches, especially GAs and GP, to

generate crisp rules to classify normal or intrusive behavior. Here,

evolving fuzzy rules is as an extension of that research.

Comparedwith crisp rules, fuzzy rules have the following form:

if x1 ¼ A1 and . . . and xn ¼ An then ClassC j withCF ¼ CF j

where xi is the attribute of the input data; Ai is the fuzzy set; C j is

the class label; CF j is the degree of certainty of this fuzzy if–then

rule belonging to class C j.

Technically, evolving fuzzy rules is identical as evolving crisp if-

then rules, but with two extra steps. The first step is to determine

fuzzy sets and corresponding membership functions for contin-

uous attributes before evolution. Since it is difficult to guarantee

that a partition of fuzzy sets for each fuzzy variable is complete and

well distinguishable. Therefore, genetic algorithms have been

proven [42,268,271,272] useful at tuning membership functions.

The second step is to calculate the compatibility grade of each data

instance with fuzzy rules either at the fitness evaluation or

detection phase. Possibly the same input data instance will trigger

more than one fuzzy rule at the same time. The winner-takes-all

approach andmajority vote are two commonly used techniques to

resolve the conflict. Winner refers to the rule with maximum CF j.

Buildingmodels formisuse detection essentially is amulti-class

classification problem. Please recall that the crisp classification

rules discussed in Section 4.3.1 were evolved in one population,

even they have different class labels. Each individual, in a sense,

represented only a partial solution to the overall learning task.

They cooperatively solve the target problem. Niching was required

to maintain the diversity or multimodality in a population.

Normally, we call such a method Michigan approach. The XCS

mentioned in Section 4.3.1 is an example of this kind. The

Pittsburgh approach and the iterative rule learning are another two

methods. In the Pittsburgh approach, each individual is a set of

rules, representing a complete solution for the target problem.

Crossover exchanges rules in two individuals, and mutation

creates new rules. The iterative rule learning basically is a

divide-and-conquer method. Individuals are defined in the same

way as in the Michigan approach. After a pre-defined number of

generations, the best classification rule is added to a population

which keeps track of the best individuals found so far. The data

covered by this best rule is either removed from the training

dataset or decreased the probability of being selected again. Work

by Chen et al. in Section 4.5 explained this method.

Gómez et al. first showed evolving fuzzy classifiers for intrusion

detection in [120,121]. Complete binary trees enriched the

representation of a GA by using more logic operators, such as

‘‘AND’’, ‘‘OR’’, and ‘‘NOT’’. The authors defined a multi-objective

fitness function, which considered sensitivity, specificity and

conciseness of rules. Similar ideas were also applied to their

negative selection algorithm [122,130], but the fitness function

Fig. 26. A generic model of a neuro-fuzzy system [25].

Fig. 27. A FCM to fuse suspicious events to detect complex attack scenarios that

involve multiple steps [256].
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considered the volume of the subspace represented by a rule and

the penalty a rule suffered if it covered normal samples.

Recent work conducted by Tsang et al. [271,272], Abadeh et al.

[8,10,11] and Özyer et al. [236] further developed Gómez’s

research in the following way:

- Parallel learning: Tsang et al. and Abadeh et al. both suggested a

parallel learning framework. Tsang et al. used multiple fuzzy set

agents (FSA) and one arbitrator agent (AA). A FSA constructed and

evolved its fuzzy system. The AA evaluated the parent and

offspring FSAs by accuracy and interpretability criteria. Abadeh

et al. [10] divided the training dataset by class labels, and sent

subsets to different hosts, where a GA worked on each sub-

dataset in parallel.

- Seeding the initial population: Instead of generating the initial

population randomly, Abadeh et al. randomly selected a training

data sample, and determined the most compatible combinations

of antecedent fuzzy sets. The consequent part was decided by a

heuristic method. If the consequent part was consistent with the

class label of data samples it covered, then this rule was kept,

otherwise the generation process was repeated. Özyer et al. [236]

ran the fuzzy association rule algorithm first. The strongest

association rules were used as seeds to generate the initial

population.

- Representation: All the research work represent fuzzy if–then

rules as string. ‘‘don’t care’’ (�) symbol is included in their

representation as a wild card that allows any possible value in a

gene, thus improving the generality of rules.

- Dynamically changing training data weights: Abadeh et al. [8] and

Özyer et al. [236] associated a weight to every training sample.

Initially, the weights were the same. Weights of misclassified

samples remained the same, while weights of correctly classified

samples were decreased. Therefore, hard samples had higher

probabilities to be exposed in the training algorithms.

These three contributions, of course, were different in many

other ways. Mostly, they had different goals. Tsang et al.

emphasized the importance of interpretability of fuzzy rules;

Abadeh et al. tried to refine fuzzy rules by using local search

operators [10]; Özyer et al. integrated boosting genetic fuzzy

classifiers and datamining criteria for rule pre-screening. The three

work also employed different classifier learning methods. Tsang

et al. employed the Pittsburgh approach; Abadeh et al. [8] the

Michigan approach; Özyer et al. the iterative learning approach.

4.6.3. Ensemble approaches

Misuse intrusion detection is a very active and well-studied

research area. Many classification approaches from artificial

intelligence, machine learning, or computational intelligence have

been applied to improve detection accuracy, and to reduce false

positive errors as well.

However, every approach has its strengths and weaknesses,

resulting in various accuracy levels on different classes. The

winning entry of the KDD99 cup, for instance, assembled 50� 10

C5 decision trees by cost-sensitive bagged boosting. This indicates

that even models built by the same algorithm show differences in

misclassification.

Abraham and his co-workers, therefore, investigated the

possibility of assembling different learning approaches to detect

intrusions [14,16,15,54,229,238]. Their approach is also known as

the ensemble approach. One example of their studies [16] is shown

in Fig. 28. In this study, they trained and tested a decision tree

model, a linear genetic programmodel, and a fuzzy classifiermodel

on the KDD99 dataset, respectively. They observed in the

experiments that different models provided complementary

information about the patterns to be classified. For example,

LGP achieved the best accuracy on Probe, DoS and R2L classes,

while the fuzzy classifier on the U2R class. So instead of using one

model to classify all classes, they selected the best model for each

class, and then combined them in a way that both computational

efficiency and detection accuracy can be maximized. Sometimes

techniques, such as majority vote or winner-takes-all, will be used

to decide the output of an ensemblemodel when the predictions of

different models conflict.

4.6.4. Summary

Soft computing exploits tolerance for imprecision, uncertainty,

low solution cost, robustness, and partial truth to achieve

tractability and better correspondence to reality [289]. Their

advantages, therefore, boost the performance of intrusion detec-

tion systems. Evolutionary computation and artificial neural

networks automatically construct fuzzy rules from training data,

and present knowledge about intrusion in a readable format;

evolutionary computation designs optimal structures of artificial

neural networks. These methods in soft computing collectively

provide understandable and autonomous solutions to IDS pro-

blems. In addition, research has shown the importance of using

ensemble approach for modeling IDS. An ensemble helps to

combine the synergistic and complementary features of different

learning paradigms indirectly, without any complex hybridization.

Both the hybrid and ensemble systems indicate the future trends of

developing intrusion detection systems.

5. Discussion

Over the past decade intrusion detection based upon computa-

tional intelligence approaches has been a widely studied topic,

being able to satisfy the growing demand of reliable and intelligent

intrusion detection systems.

In our view, these approaches contribute to intrusion detection

in different ways. Fuzzy sets represent and process numeric

information in a linguistic format, so theymake system complexity

manageable by mapping a large numerical input space into a

smaller search space. In addition, the use of linguistic variables is

able to present normal or abnormal behavior patterns in a readable

and easy to comprehend format. The uncertainty and imprecision

of fuzzy sets smooth the abrupt separation of normal and abnormal

data, thus enhancing the robustness of an IDS.

Methods like ANNs, EC, AISs, and SI, are all developed with

inspiration from nature. Through the ‘‘intelligence’’ introduced via

the biologicalmetaphor, they can infer behavior patterns fromdata

without prior knowledge of regularities in the data. The inference

is implemented by either learning or searching. Meanwhile, there

remain differences (see also [71]):

- Structures: All approaches mentioned are composed of a set of

individuals or agents. Individuals are neurons in ANNs;

chromosomes in EC; immune cells or molecules in AISs; ants

and particles in SI. The collection of these individuals form a

Fig. 28. A exemplar of ensemble models [16].
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network in ANNs; a population in EC; repertories in AISs;

colonies and swarms in SI.

- Performance evaluation: The performance of individuals is

evaluated. In ANNs, the goal is to minimize the error between

actual and desired outputs; in EC and SI, the fitness function

defines how good an individual is; in AISs, the goodness of an

individual is measured by the affinity between antibodies and

antigens.

- Interactions within the collection: Individuals inside the collection

interact with each other. In ANNs, neurons are connected with

each other directly. The weights associated with these connec-

tions affect the input to a neuron. In the other methods,

interaction between individuals is indirect. For example, in AISs,

interactions can be the suppression or stimulation within

artificial immune networks, or the comparison of affinities

between detectors in negative selection and in clonal selection;

in SI, ants interact indirectly with pheromone, and particles

interact with neighboring particles.

- Adaptation: All of these methods demonstrate the ability of

adaptation, but in different ways. In EC, adaptation is achieved by

evolution. Through crossover and mutation, the genetic compo-

sition of an individual can be changed. Selection weeds out poor

individuals and conserves fit individuals. As a result, the entire

population will converge to an optimum. Similar selection

processes are at work in negative and clonal selection in AISs. SI

and ANNs achieve adaptation by learning. Weights in ANNs,

pheromones in ACO and positions in PSO are updated according

to feedback from the environment or from other individuals.

Applications of the above approaches revealed that each has

pros and cons. Hence, soft computing either tightly (hybrid) or

loosely (ensemble) couples them together in a way that they

supplement each other favorably. The resulting synergy has been

shown to be an effective way for building IDSs with good accuracy

and real-time performance.

We further compared the performance of different CI

approaches on solving intrusion detection problems, as shown

in Table 8. These researchworkswere trained on either the KDD99-

10 or the KDD99 dataset, but were all tested on the KDD99 test

dataset. The first five rows in this table record the detection rates

obtained by each approach on each class; the last two rows are for

the overall detection rate and false positive rate.

From this table, we can easily see that all research work did not

perform well on class ‘‘U2R’’ and ‘‘R2L’’, because 11 attack types in

these two classes only appear in the test dataset, not the training

set; and they constitute more than 50% of the data. However, in

general CI approaches achieve better performance than the

winning entry which has 50� 10 decision trees. This observation

xconfirms that CI approaches possess the characteristics of

computational adaptation, fault tolerance, less error prone to

noisy information. In particular, transformation functions evolved

by GP or LGP (columns 6–8) have higher detection rates than

evolved classification rules (columns 4 and 5). They especially

improved the detection rates on the ‘‘U2R’’ and ‘‘R2L’’. This is

because classification rules have limited description power

confined by the limited operators, such as ‘‘AND’’, ‘‘OR’’, and

‘‘NOT’’. In addition, rules aremore or less a high-level abstraction of

data samples. They cannot separate data in two classes very well if

the two classes have overlaps. Evolved rules again cannot

outperform evolved fuzzy rules (column 10-11). Fuzzy rules

obtained noticeable improvement on all classes, which clearly

exhibits fuzzy sets are able to increase the robustness and adaption

of IDSs. Transform functions and fuzzy rules achieve similar

results, but fuzzy rules are easier to comprehend. The hierarchical

SOM in column 3 and the ACO algorithm in column 9 are two

unsupervised learning approaches. Since the hierarchical SOM

lacks a suitable ‘‘boosting’’ algorithm [173], it cannot beat the ACO

algorithm.

In order to have a global picture of research work carried out

under the heading of CI, publication statistics according to the year

of appearance is given in Fig. 29. One can see clearly that the

increasing number of research work indicates that IDSs are a

growing research area in the computational intelligence field,

notably since 2005.

From this figure, a number of trends become obvious in the

surveyedwork. The first trendwe encounter is the popularity of EC.

Among 193 papers surveyed, 85 are related to evolutionary

computation. Although EC methods were introduced into IDS as

early as 1997, they became popular only in recent years. There

seems to be a decline in 2006 and 2007, but in fact, the practice of

EC in these years merges with fuzzy sets to generate fuzzy

classification rules, research classified to be in the SC category.

Besides, EC plays an important role in other computational

intelligence approaches, such as in negative selection or clonal

selection algorithms from AISs. The PSO algorithm does not belong

to EC, since no reproduction and selection is involved.

The appearance of SI is another trend. SI is a pretty new research

direction for intrusion detection problems. It decomposes a hard

problem into several simple sub-problems, assigningagents towork

on smaller sub-problems in parallel, thusmaking IDSs autonomous,

adaptive, self organizing and cost efficient. Currently, SImethods are

mainly employed to learn classification rules and clusters. More

research work in this area is expected in the near future.

We also see a trend to applying SC to intrusion detection

problems. Tightly or loosely assembling different methods in a

cooperative way definitely improves the performance of an IDS.

The most popular combinations are genetic-fuzzy and genetic-

neuro systems. The interest in integrating fuzzy sets as a part of

these solutions is noticed. In our survey, 23 out of 26 research

contributions in SCs utilize fuzzy sets.

Although some promising results have been achieved by

current computational intelligence approaches to IDSs, there are

Table 8

Performance comparison of various CI approaches on the KDD99 test dataset.

Type Wining entry ANN EC SI SC

GA GP LGP

Decision Tree Hierarchical SOM XCS Rules Transformation function LGP Coevolution ACO Fuzzy sets +EC

[92] [173] [65] [104] [96] [261] [200] [270] [272] [268]

Normal 94.5 98.4 95.7 – 99.93 96.5 99.5 98.8 98.3645 98.4

DoS 97.1 96.9 49.1 – 98.81 99.7 97 97.3 97.2017 99.5

Probe 83.3 67.6 93 – 97.29 86.8 71.5 87.5 88.5982 89.2

U2R 13.2 15.7 8.5 – 45.2 76.3 20.7 30.7 15.7895 12.8

R2L 8.4 7.3 3.9 – 80.22 12.35 3.5 12.6 11.0137 27.3

Detection rate 90.9 90.6 – 91.0165 98 94.4 – – 92.7672 95.3

FP rate 0.45 1.57 – 0.434 0.07 3.5 – – – 1.6
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still challenges that lie ahead for researchers in this area. First and

foremost, good benchmark datasets for network intrusion detec-

tion are needed. The KDD99, and the DARPA98&99 datasets are

main benchmarks used to evaluate the performance of network

intrusion detection systems. However, they are suffering from a

fatal drawback: failing to realistically simulate a real-world

network [45,215,219]. An IDS working well on these datasets

may demonstrate unacceptable performance in real environments.

In order to validate the evaluation results of an IDS on a simulated

dataset, one has to develop a methodology to quantify the

similarity of simulated and real network traces, see for instance the

research conducted by Brugger [44].

These datasets possess some special characteristics, such as

huge volume, high dimension and highly skewed data distribution.

Such features can hardly be found in other benchmarks, so they

have been widely used for another purpose: challenging and

evaluating supervised or unsupervised learning algorithms.

However, this purpose is also under criticism [45]. For instance,

(i) the DARPA datasets include irregularities, such as differences in

the TTL for attacks versus normal traffic, so that even a simplistic

IDS could achieve a good performance [215], (ii) the KDD99

training and test datasets have dissimilar target hypotheses for

U2R and R2L classes [246]. Therefore, using these datasets alone is

not sufficient to demonstrate the efficiency of a learning algorithm.

Other benchmark datasets are recommended to use as well.

It is also worthwhile to note that the datasets shown in Table 1

were collected about 10 years ago. Maybe it is time to produce a

new and high-quality dataset for the intrusion detection task. Such

a dataset would also be meaningful for machine learning tasks in

general. When recollecting data from networks, in addition to

storing information in the header of individual packets, payload

information [22,57,290,292] and temporal locality property

[114,115] have been proven beneficial.

Secondly, an important aspect of intrusion detection is the

ability of adaptation to constantly changing environments. Not

only the intrusive behavior evolves continuously, but also the

legitimate behavior of users, systems or networks shifts over time.

If the IDS is not flexible enough to cope with behavioral changes,

detection accuracy will dramatically decrease. Although adapta-

tion is an important issue, only few research has addressed it so far.

Recurrent networks introduced context nodes to remember clues

from the recent past [21,47,48,57,76,78,114]; in AIS, the lifecycle of

immune cells andmolecules provides a rolling coverage of non-self

space, which guarantees adaptation [153,183]. The Dendritic Cell

Algorithm in Danger theory fulfills adaptation requirements by

considering signals from the environment [134,135]. A focus on

adaptation in IDSs is highly recommended.

Another challenge to confront in IDS is the huge volume of audit

data that makes it difficult to build an effective IDS. For example,

the widely used KDD99 training benchmark comprises about

5,000,000 connection records over a 41-dimensional feature set.

Song et al. suggested the combination of Random Data Subset

Selection and Dynamic Data Subset Selection so that linear genetic

programming could process the data within an acceptable time

[260,261]. A similarmethod is to dynamically adjust theweights of

data samples according to classification accuracy, hence changing

the probability of data being selected [8,236]. Other researchers

have applied divide-and-conquer algorithms to the dataset. Data

that have been classified correctly are removed from the training

set. Consequently, the size of the dataset exposed to the learning

algorithm shrinks. Another good way to exploit this problem is to

utilize a distributed environment. Folin et al. [104] and Abadeh

et al. [11] both examined distributed intrusion detection models,

where each node was only assigned part of the data. An ensemble

method was used to fuse decisions. Although AISs and SI have

properties of self-organization and parallelism, their application to

distributed IDS is not thoroughly examined.

Most of themethods discussed in this survey have their roots in

the field of biology. However, the analogy between algorithms and

their counterpart in biology is still relatively simple. This survey

clearly shows that some researchers in this field have begun to

apply a more detailed understanding of biology to intrusion

detection, for instance the danger theory, swarm intelligence, or

advanced topics in evolutionary computation and artificial neural

networks. It is expected that new discoveries and a deepened

understanding of biology suitable for the intrusion detection task

will be the subject of future work.

6. Conclusion

Intrusion detection based upon computational intelligence is

currently attracting considerable interest from the research

community. Its characteristics, such as adaptation, fault tolerance,

high computational speed and error resilience in the face of noisy

information, fit the requirement of building a good intrusion

detection system.

This paper presents the state-of-the-art in research progress of

computational intelligence (CI) methods in intrusion detection

systems. The scope of this review was on core methods in CI,

including artificial neural networks, fuzzy systems, evolutionary

computation methods, artificial immune systems, and swarm

intelligence. However, the practice of these methods reveals that

each of them has advantages and disadvantages. Soft computing

has the power to combine the strengths of these methods in such a

Fig. 29. Publication statistics according to the year of appearance.
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way that their disadvantages will be compensated, thus offering

better solutions.We therefore included soft computing as a topic in

this survey. The contributions of research work in eachmethod are

systematically summarized and compared, which allows us to

clearly define existing research challenges, and highlight promis-

ing new research directions. It is hoped that this survey can serve

as a useful guide through the maze of the literature.
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