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TRANSFORMATION TOUGHENING IN CERAMICS: MARTENSITIC 

TRANSFORMATIONS IN CRACK TIP STRESS FIELDS 
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Berkeley, California 94720 

and 

A. H. Heuer 
Department of Metallurgy and Materials Science 

Case Western Reserve University 
Cleveland, Ohio 44106 

ABSTRACT 

The toughness of ceramics can be substantially enhanced by inducing 

a martensitic tranformation in the stress field of the dominant crack. 

The specific characteristics of martensitic transformations pertinent to 

this toughening process are examined in this paper. Then, a generalized 

model of the toughening is developed, which indicates the specific roles 

of the transformation parameters on the expected magnitude of the toughen­

ing. Finally, the implications of the analysis for the development of 

high toughness ceramics are briefly discussed. 
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I. Introduction 

The occurrence of martensitic transformation in the stress fields 

of propagating cracks leads to. dramatic increases in the toughness of two-

phase ceramics. This has been demonstrated for zirconia ceramics con­

tainingpr~cipitates of tetragonal zr02(1~3), which martensitically 

transform to monoclinic symmetry. The same phenomenon occurs in A1 203 

and Si3N4 ceramics, in which-the same tetragonal. Zr02 particles exist as 

a dispersed phase. Furthennore, a fine-grained single-phase tetragonal· 

Zr0
2 

can be produced(4) , which undergoes the martensitic transformation 

to monoclinic symmetry during fracture. Optimization of the toughening 

that can be achieved by such transfonnations is clearly a research goal 

of major importance. However, while the importance of martensitic trans­

formations in controlling the properties of ferrous alloys has long been 

recognized by ~etallurgists, this type of transfOrmation has not received 

much attention from ceramists. Accordingly, the first portion of this 

paper reviews the general physical characteristics of martensitic trans-
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formations. The ,mechanism of transformation appears to be the same in 

particles contained in a matrix as in bulk material. The following review 

of martensitic transformations thus makes no specific distinction between 

these two cases. However~ the presence of a matrix can perturb the trans­

formation in several subtle ways; these are given specific attention. 

The final part of the paper ;s devoted to a generalized analysis of 

transformation toughening in brittle materials, Explicit results are 

obtained for spherical particles; these provide the necessary insights 

into the physical phenomena and suggest the conditions necessary for optimum 

toughening. 

2. Martensitic Transformations 

Martensite is the hard metastable product phase which develops when 

Fe.,.C alloys are strengthened by quenching. The particular type of solid 

state transition which leads to the formation of martensite is known as a 

martensitic reaction, and has been widely studied(5). Although martensite 

in Fe-C alloys is a metastable phase and martensitic reactions are usually 

aasociated with rapid cooling, equilibrium phases are known to form mar­

tensitically in both metallic and non-metallic systems (the transformation 

in tetragonal Zr02 is to an equilibrium structure). In this section of 

the present review, we summarize the characteristic features of martensitic 

reactions. 

Martensitic transformations are usually diffusionless, occur athermally, 

and involve a shape deformation. The last characteristic is usually cited 
.~ 

as the characteristic feature of martensitic reactions and is of special 

importance; among other things, it contributes to the transformation-
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toughening in ceramics. 

2.1.1 . Shape Deformati on 

The observation of a change of shape in the transforming region is the 

most convenient experimental criterion for recognizing the occurrence of 

martensitic reactions (Fig. 1). The transition is accomplished by the 

shearing of discrete volumes ~f material, resulting in a shape change; 

This, in turn, implies (as will be seen below) that the product regions 

remain essentially coherent with the parent phase (te., for a given com­

position, there is a definite and constant-orientation relationship between 

the parent and the product crystals* and there exists a definite habit 

plane (the planar interface common to parent and product phases along which 

the plates of martensite lie)}. 

In all martensitic reactions, an originally flat and polish~d surface 
. 

remains planar in the transformed region, but is titled about its lines 

of intersection with the habit plane (Figure la). As cari be seen fro~ 

this figure, the straight line~ ST, TTl, and TISI inscribed on the su~face 

remain straight in the transformed regions, but 'their directions are 

changed, Thus, planes and straight lines in the parent phase are trans­

formed into planes and straight lines in ·the product, respectively. The 

surface region of the martensite ABCD remains plane, but is titled about 

AB and DC (with respect to the rest of the surface). In order toaccom­

modate this distortion between AB and DC~ there must beeliistit or plastic 

* The reader is reminded that when discussing martensitic reactions in pre-
cipitate particles,the language "parent" and "product" refer to partial 
transformation within the particle. 
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deformation in the surroundingmatrix~ Within the accuracy of experimental 

observation in several metallic systems, the line AB is unrotated by the 

transformation and since this applies to all arbitrary free surfaces, no 

line in the habit plane ABML can be rotated by more than a few minutes of 

arc. 

Moreover, since the originally straight reference line STT1SI remains 

continuous, lines in the habit plane must be unchanged in length to within 

a few percent. Thus, the habit plane is assumed to be an undistorted and 

un rotated plane. The position or magnitudes of vectors lying tn the habit 

plane remain unchanged due to the transformation. The macroscopic shape 

deformation involved in the formation of a martensite plate is believed to 

be a shear parallel to the habit plane plus a simple (uniaxial) tensile or 

compressive strain perpendicular to the habit plane. 

2.2 Athermal Nature of the Transformation 

Martensitic reactions are usually (but not always) athermal, i.e., 

they only occur when the temperature is changing. This behavior obtains 

because the shape and volume changes associated with the change in crystal 

structure set up large strains which, due to the diffusion1ess nature of 

the reaction (see below), are not relieved by atomic migration. The 

resultant increase in strain energy opposes the progress of the transition, 

causing it to stop while still incomplete ~- hence, only a few nuclei are 

active at a particular temperature. A greater driving force, which comes 

from larger undercooling, is required to induce further reaction. The 

additional strain energy of transformation explains both the occurrence 

of the transition over a temperature range (instead of at a single 

characteristic temperature) as well as the existence of a hysteresis in 

• 
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in the forward (~ooling) and reverse (heating) reactions. 

On cooling, transformation invariably begins ata characteristic Ilmar-

hms;te start" temperature, Ms ' and is complete when the temperature falls 

to Mf . If reversibility obtains, i.e., no intervening reactions occur, 

the reverse transformation begins at As and is complete at Af' The hypo­

thetical stress-free transformation temperature, T, is Ms+as In the 
o "" ....:::...-:::--~ 

2 
presence of an applied elastic or plastic deformation, transformation can 

be begin at Md, which must satisfy the condition that Ms< Nd <To' (Note 

that Ms is a strong function of composition in alloy systems.) 

2.3 Diffusionless Nature of the Transformation 

The transformation is diffusionless in that no thermally activated 

diffusion is required. Many martensitic reactions occur at quite low tem­

peratures, even close to absolute zero. Because of the rapid rate of 

formation of martensite at these temperatures, it is clear that diffusion 

is not required, and that the activation energy for martensite growth is 

essentially zero. Furthermore, Ms is a function o~ pressure, and such 

transformations can be induced by a change in pressure. Although some 
t 

transitions in non-metallic solids, e.g., that in bulk Zr02, occur ~t high 

temperatures, they are also believed to be diffusionless. In the absence 

of diffusion, the atomic movement must be coordinated and orderly, in 

agreement with the observation that most atoms have the same neighbors 

(differentially arranged) in the product and parent phases. Thus, the 

reactions must also be composition invariant, i.e., the product and parent 

phases must have the same composition. 
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3. Crysta 11 ographi c Theories of Martens iti t Rea.cti ons 

Two distinct but fundamentally equivalent theories .... due to Bowles 

and Mackenzie (B-M) (6) and Wechsler, Lieberman and Read (W-L-R)(7) .,. .. 

exist to deal with the crystallography ofmartensitic reactions. These 

crystallographic theories are phenomenological in nature, i.e., they provide 

a means of describing consistently ~. has happened, rather than how it 

actually happened. (It is important to note that the theories do not 

present any deta 11 ed pi cture of the actual process by whi ch atoms move 

during the transformation.) 

The theories conceive of martensitic reactions as consisting of three 

basic steps -". a Bain Cor lattice) deformation, a lattice-invariant de­

formation, and a rigid body rotation. 

3.1 Bain Deformation 

In 1924,~ainC81 first pointed out that since a fcc lattice could also 

be represented as a body-centered tetragonal lattice, the fce bce tran-

sition can be visualized as an "upsetting" of the fcc lattice, i.e,. it 

occurs by a compress i on para 11 e 1 to the c axi s and an expansion along the 

two a axes of the tetragonal cell (Fig. 21, Any simple homogeneous pure 

deformation of this nature, which converts one lattice into the other by a 

simple expansion or contraction along the crystallographic axes, is known 

as a Bain deformation. 

While the product lattice can be formed from the parent lattice by a 

Bain deformation, there is no undistorted plane that can be associated 

with the habit plane of the reaction. This can conveniently be seen by 

considering a martensitic transformation from a tetragonal 
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cubic to unit cell by a contrattion along the c axis and an expansion along 

the oth.er two axes,as shown in Fig. 3(9)~ The shape change involved in 

such a martensitic transformation can be represented by a sphere in the 

untransformed material becoming an ellipsoid after deformation. Such a 

shape change involves a combination of a rigid body rotation and a defor­

mation involving only principal strains cl' c2' c3' i.e., the deformation 

changes the lengths of three mutually perpendicular axes to 1 + cl' 1 + £2' 

and 1 + c3. If cl = 0 and c2 and c3 are of opposite sign, then part of 

the ellipsoid lies within the sphere and the ellipsoid and sphere intersect 

along two curves, which are the traces of two undistorted planes. 

In order for one part of the crystal to undergo a homogeneous deforma­

tion and remain in contact with the undeformed part along a habit plane, it 

is necessary to have a planar interface and since the undeformed part is 

not only undistorted, but ilso unrotated, the interface must also be un­

rotated. As the sphere deforms into"the ellipsoid, however,the traces 

of the undistorted planes rotate in opposite directions from their initial 

positions, and a rotation must be added to the deformation to obtain an 

undistorted and unrotated plane. A strain of this kind which permits the 

undeformed and deformed regions to meet along a habit plane is called an 

invariantplanesttain. 

Let lines ab and cd in Fig. 3 represent those directions on the front 

surface whose lengths do not change during transformation, i.e., these 

lengths are preserved both in the cubic and tetragonal phases. All other 

directions on ~his surface, such as ef and gh, have their lengths either 

increased or shortened by the deformation. An invariant plane must contain 

one of the two lines whose lengths do not change. Let that line be ab and 
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let the other trace of the plane, whose dimension is also unchanged by the 

reaction, be bm. Thus, the plane defined by abm possesses the character­

istic that the magnitudes of ab and bm are preserved during the deformation. 

However, the angle a between these two directions is obviously changed. 

For plane abm to act as a habit plane, it should not only preserve the 

magnitudes of ab and bm, but should also preserve the angular separation 

between the two. Thus, the Bain deformation alone cannot give an undis-

torted plane. 

3.2 Lattice",Invariant Deformation 

This deformation maintains the lattice symmetry, i.e., it does not 

change the crystal structure, but in combination with the Bain deformation 

produces an undistorted plane. It can occur by either slip or twinning 

and the substructure of the habit plane will be different in the two 

cases, as shown in Fig. 4. In both cases, the misfits at the parent/pro­

duct interface are periodically alleviated by the twinned or slipped 

lamellae. Local regions of the interface.are thus alternately extended 

and contracted, but on a macroscopic scale the interface is (pn the 

average) undistorted. 

3.3 Rotation of the Transformed Lattice 

The undistorted plane derived from the combination of the Sain de­

formation and the lattice invariant shear has differnet orientation in 

the parent and produ~t phases and for this reason, does not yet satisfy . 
the requirements of a habit plane. A rotation of the structure of the 

product phase must now be added to insure coincidence. 

With respect to martensitic reactions, therefore, when a body under-
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goes a Bain deformation, there must always b.e at least one set of mutually 

orthogonal dir~ctions~ theprincipalaxes~ which are transformed into a 

set of orthogonal directions by the ·distortion. The three princtpa·1 Bain 

strains must possess different signs if an undistorted plane exists. The 

Bain deformation in general does not yield a zero value for one of the 

principal strains and an arbitrary amount of lattice invariant shear must 

be imposed. The amount of shear is adjusted so that the shape ellipsoid 

touches the unH sphere along one of its priricipal axes. Thus, in com.,. 

bination with the Bain deformation, the shear makes one of the principal 

strains (£1) of the resultant deformation zero and the other two (£2 and 

£3) opposite in sign. The final rotation yields the habit plane. The 
. . . (6,7) 

crystallographic theories perform these operations using matrix algebra 

and application of the W~L .. R theory to the Zr02 transformation can be 

found in ref; 10. 

4. General Transformation Relationships 

The key to transformation toughening in ceramics containing tetra­

gonal Zr02 particles is that the transformation to monoclinic symmetry, 

which usually occurs at about -1 ,ooooe in bulk forms of, Zr02 0
0}, is 

suppressed, except in thestressfie1dOfpropag~tin~tr~cks (Fig. 5). 

While the tetragonal particles persent in bulk materials have been des­

cribed(2) as metastable with respect \0 monoclinic symmetry, it should 

be recognized that they are in fact stabie except near crack tips, implying 

that their Ms temperature must be below room temperature. Ms appears 

to be ~ function of particle ~iie in tetragonal Zr0
2

, as larger particles 

in all three matrices so far studied (cubic Zr02, A1
2
03, and Si 3N4) undergo 

spontaneous transformation on cooling from elevated temperatures. This 
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is not yet fully understood and may involve a variation of particle com­

position, and hence Ms ' with particle size, the difficulty of nucleating 

the martensitic transformation, or both*; whatever the reason, it is of 

interest to consider the general energetics governing martensitic trans­

formations within constrained particles and then how the transformation 

can be used to increase fracture toughness. A wel1 ... known approach due 

to Eshelby(14) involving ellipsoidal particles is ideally suited to this 

problem and is the basis of our analysis. We therefore first derive the 

stresses and strain energies that develop after transformation using 

Eshe1by's theory, and then deduce the transformation condition from the 

change in He1moholtz free energy. Subsequently, specific relations for 

the transformation stress and the transformation zone size around a 

crack tip, i.e., the region in the matrix where second phase particles 

will transform, are derived for the case of a spherical particle. Finally, 

the transformation toughening that results from the zone of transformed 

material is evaluated and is followed by a discussion of the implications 

for otpimum toughness. 

4-. GENERAL RELATIONS 

4.1 Transformation Stresses 

The stresses p!., that develop within a particle contained in an 
lJ 

infinite matrix when the particle undergoes a transformation characterized 

by an unconstrained t . T are 14,15; s ral n e .. 
lJ 

pI = 3Kp(eC 
_ eT) = 3K (ec _ eT*) 

m 

(1) 

'p~ . 
. c 

'e~. ) 
. c T* = 211p('eij - = 211 (' e .. - e .. 

lJ lJ m lJ lJ 
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where )l and K are the shear and bul k modul i respectively, the quantities 

pI, e are the hydrostatic components of stress and strain, while Ip~., 
lJ 

'e .. are the deviatoric components, eC is the constrained strain in the 
lJ 

particle and the subscripts p amd m refer to particle and.matrix respec-

tively; eT* is the transformation strain of the 'equivalent ' particle, a 

concept introduced by Eshelby to incorporate the elastic modulus mismatch 

between the pa~ticle and the matrix. 'The const~ained strain is related 

tothe equivalent transformation strain by the Eshelby tensor, Sijk.Q,;14 

c e .. 
lJ 

(2) 

where Sijkt depends only on the particle shape. Combining Eqns. (1) and 

(2) enables the stress to be expressed in terms of known quantities -­

the transformation strain, the parti,cle shape and the elastic constants. 

4.2 The Strain Energy 

The increase in strain energy, L\UT" of the system (particle ,and matrix) 

caused by the transformation 'is related directly to the stress within the 

particle and the unconstrained transformation strain of the particle14 ; it 

is written as 

I T = V p .. e .. /2 
p lJ lJ 

(3) 

where Vp is the particle volume. When the transformation occurs in the 

presence of an applied stress, P~j' the strain energy change is modified. 

The modification can be expressed as an interaction energy, L\UI1~ The 

interaction energy between the applied displacement field and the displace­

ment field of a particle has two components. The first, due solely to the 
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elastic modulus mismatch~ does not involve an actual transformation14and 

is given by 

A T = -V p .. e .. /2 
p 1 J lJ 

(4 ) 

where e~. is a function of the applied strain. This component of the inter-
lJ 

action energy is generally similar before and after transformation (because 

transformations do not generally produce an appreciable change in particle 

moduli) and will therefore be neglected. The second component reflects the 

relative influence of the applied stress field before and after transfor­

mation, and is given (for a uniform stress) by14; 

~UIT = -V p~.e!. 
p' 1 J 1 J 

(5) 

This component must always be taken into account, and the resultant strain 

energy change accompanying transformation is; 

T A I = -V e ' .. [p .. + (1/2)p .. ] 
p lJ lJ lJ 

(6) 

4.3 Transformation Conditions 

The transformation of a particle is governed by the Helmholtz free 

energy of the entire system, particle plus matrixl~ The change in Helmholtz 

free energy of a system containing a single particle, due to transformation, 

is given by; 

~F = -V ~F + ~U 
P 0 

- -V ~F 
p 0 

T A I 
V e .. [p .. +. (1/2)Pl'J'] p lJ lJ 

(7) 

.', 
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where llFo is the.difference i.n chemical free energy per mole between. the 

transformed and untransformed phases. It should be noted that Eqn. (7) 

includes the work done by the applied stressl~ The applied stress level 

required for the transformation to be thermodynamically favorable is thus; 

(8 ) 

In principle, a surface energy term, llS, should be added to the free energy 

term, 

(9) 

where A is the surface area of the particle, S is the surface'energy per 

unit area, and the subscripts m and s refer to the paricle/matrix inter­

faces before and after transformation. This term is ignored in the pre­

sent analysis, but can be readily introduced, as required. 

For the transformation of particles in the vicinity of a crack tip 

under a Mode I stress state, the stresses P~j can be obtained from the 

plane strain linear elastic field equatfons16 ; 

1 - sin(8/2)sin(38/2) 

1 + sin(8/2)sin(38/2) (10) 

sin(8/2)cos(38/2) 

= (r« a) 
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where KI is the stress intensity factor, a the crack length, r the dis­

tance from the crack tip, and e the angular coordinate referred to the 

crack plane. The conditions required to induce transformation of a single 

particle located in the vicinity of a crack tip can be approximately ob­

tained by simply inserting the P~j from Eqn. (10) into Eqn. (18). The 

approximation is most appropriate when the particle is small and remote 

from the tip (although still retaining the condition r<a), so that a 

relatively uniform stress is established over a zone of length 'Vn (R, is 

the particle size): this zone contains most ('V90%) of the transformation 

strain energy. Remoteness of the particle from the crack tip also mini­

mizes the influence on transformation of stress relaxation effects that 

occur over the crack surface. 

The maximum distance from the crack tip at which a single particle 

will transform, rc(e), can be regarded as a first order estimate of the 

transformation zone size, rT. Clearly, however, the presence of other 

transformed particles closer to the crack tip, especially in materials 

containing appreciable concentrations of untransformed particles, will 

modify the transformation distance. We will assume that the zone size 

is proportional to rc(e). 

'" 
rT = n(Vf ) rc (e), 

such that the proportionally constant n is some function of the volume 

'" 

(11 ) 

fraction V
f 

of untransformed particles; e is the orientation with respect 

to the crack tip that establishes the zone width (see Fig. 1 below). 

'. 
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5. TRANSFORMATION CHARACTERISTICS 

Explicit consequences of crack-tip martensitic transformations 

resulting from the present analysis can be conveniently deduced by examining 

the.energy changes that accompany the transformation of a spherical 

particle. The equivalent results for ellipsoidal particles can be ob .. 

tained numerically. 

5.1 StraihEnergyChahges 

The changes in strain energy involved in a martensitic transformation 

can be evaluated by following the sequence of calculations outlined in 

the preceding section. 

The constrained strains are firstly obtained ~y noting that they are 

related to the transformation strain of the equivalent particle, through 

the Eshelby tensor, by14;' 

2te:~ (4"5"~' le~. = lJ m 
lJ 15 1-,,· 

m 

(12 ) 

where "m is the Poisson ratio of the matrix. (The hydrostatic strain can, , 
in general, contain a component due to thermal expansion mismatch as well 

as th,e component due to th~ actual transformation.) Then, eli,minating the 

unknown eT* by substituting into Eqn. (1), we obtain; 

le~. = 
lJ 

~ + ~ (7~5" )/2(4-5" ) p m m m 

(13) 
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Similarly, the transformation strain of the 'equivalent' particle can be 

related to the actual transformation strain by eliminating e~. from 
lJ 

Eqns. (12) and (13). 

The hydrostatic and deviatoric stresses withi~ the particle can be 

obtained from Eqns. (13) and (1) and from the relations for Young's modulus 

(E = 3K(1-2v) = 2v(1+v)) as; 

, I 
p .. 
lJ 

(14 ) 

These particle stresses can be coupled with the applied stresses and 

the transformation strain of the equivalent particle to obtain the strain 

energy change that accompanies transformation (Eqn. 6); alternatively, the 

applied stresses required to induce transformation can be obtained, if the 

chemical free energy change accompanying transformation is known (Eqn. 7). 

For this purpose, it is particularly appropriate to separately obtain the 

strain energy contributions that derive from the deviatoric and hydrostatic 

components. These can be combined to yield the total strain energy; thus 

from Eqn. (6); 

(15) 

where the first term is the contribution ~Uh due to the hydrostatic strain, 

~V being the volume change that accompanies transformation, and the second 

term is the shear contribution, ~Us' 

.. 
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The influence of th.e volume cha,nge li,e., th.e hydro$tatic cO.mpO.nent) 

O.n the strain energy of transfO.rmation can be obtained directly from 

Eqns. (6), (12), (13) and (14) as; 

= (16 ) 

while the influence of each compO.nent of the shape change (the deviatori.c 

component) is 

= 
E V ('e!.)2 
p p lJ 

,A 
p .. 
lJ 

'e!.E 
lJ p 

(17) 

The relative contribution to' the total strain energy O.f the hydrostatic 

and deviatoric components, in the absence of an applied stress, is thus; 

For equivalent values of the transfO.rmation strains (eT ~ 'e~j)' and for 

typical values of Poisson's ratio, v ~ v ~ 0.2, the shear contribution 
m p 

and the hydrostatic contribution are comparable, emphasizing the Significance 

of shear in martensitic transformations. Note, however, that the shear 

contribution can be appreciably diminished when the particles are thin 

- 14 plates . 



-18-

5.'2 The Transformation Conditions 

The application of an external stress modifies the strain energy 

change accompanying transformation, but does not influence the chemical 

free energy change. The nature of the stress required to induce transfor­

mation can thus be deduced by examining the relation between the strain 

energy and the applied stress (Eqns. 16, 17); applied stresses that 

diminish the transformation strain energy obviously encourage transformation. 

Transformations involving an increase in volume, i.e., a positive eT, 

require an applied hydrostatic tension to reduce the strain energy. Con­

versely, transformations that involve a volume decrease will be encouraged 

by a hydrostatic compression. Furthermore, even a transformation involving 

no volume change, but only a shape change, can cause toughening. Combina­

tions of positive/positive or negative/negative shear stresses and shear 

strains are required to suppress the deviatoric component of the strain 

energy. Such combinations are, in fact, a prerequisite for martensitic 

transformations. 

The magnitudes of the stresses required to induce transformation, 

obtained from Eqns. (7) (16) and (17), are thus; 

P~ V +2:1 ('P~j)C 'ejj I 
;-~F +E ~ r (1/3)~V2 + 

o p l (1+vm)+2S(l-2vp) 

where B = Em/Ep and the subscript c refers to the criti ca 1 conditi on. In­

spection of Eqn. (19) indicates that, as generally anticipated, the trans­

formation stresses 'increase as the chemical free energy difference decreases 
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and as the transformation strains increa$.e. To ascertain the role of the 

elastic moduli, it ;s convenient to reduce Eqn. (19) to a form pertinent 

to a pure d;lationa1 transformation (with vp = vm = 0.2); 

B 
0.28 "['f+73T (20) 

where ~ = lIF/lIV
2
Ep. It is then evident that the transformation stress 

increases continuously as the relative matrix modulus S increases. 

5.3 Crack Tip TransfbrmationZones 

The Mode I crack tip stress field (Eqn. 10) contains both deviatoric 

and hydrostatic components of comparable magnitude (except at e ~ 0 and 

rr/3). For simplicity, we will assume that the principle transformation 

shear strains are of the type leT, and leT, and occur with equal facility 
xy yx 

in both the positive and negative directions, so that the transformation 

can initiate at all e. Then, the maximum transformation distance rc ' obtained 

from Eqn. (10) and (19), is expressed by the relation; . 

K 
I 

n:;rr-
c 

cos(e/2) [(2/3)(1+V)6V + ISin(a/2)COS(3a/2)'e~IJ 

where v is the average value of Poissonlsratio for the composite material. 

The expression for r (e) can be presented in a simpler form if we adopt 
c 
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the reasonable assumption that v::::'Vm ::: 'Vp::: 0.2. Then, Eqn. (21}simp1ifies 

to 

!b.VE ) 2 
r t ---.-2. = 
c \ Kr 

4.1 
- 7T 

2 
rCOS(8/2)[±1+1;25;lsin(8/2)cos(38/2)1](1+6) J 
l 6[1+3;2] - 3.6(1+6) J 

(22) 

where; = le:~/b.v: the positive sign refers to a positive hydrostatic 

component of transformation strain and vice versa. Contours of the dimen­

sionless transformation radius, ~[=rc(b.VEp/KI)2 or rc('e~yEp/Kr)2J are 

plotted in Fig. 1 for several ~, normalized such that the maximum zone 

radius is the same for each;. The strong dependence of the zone shape 

on the relative di1ationa1 and deviatoric components of the transformation 

strain is clearly evident from the contours. 

The transformation zone width r
T 

can be estimated from the trans­

formation distances rc as described in Section 2. For example, for ~ = 00, 

the maximum width occurs at 8 ~ 0.6rr (Fig. 7). Hence, rT is obtained by 

inserting rc from Eqn. (22), with e ~ 0.67T, into Eqn. (11). 

6. THE TRANSFORMATION TOUGHENING 

The extra toughness available from the martensitic transformation 

can be estimated from the release of strain energy needed to compensate 

for the change in Helmholtz free energy of the transformed particles, 

through the relation 

(b.U - V b.F )rTf, o p 0 

where r
T 

is the increase in toughness due to transformation, b.U is the 
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strain energy of transformation in the absence of an appl i~d stress and. 

f is the number of particles in unit vo~ume.· Values of rT can be obtained 

by susbtituting for lIU
o 

from Eqns. (16) and (17) and for rT from Eqns. (22) 

and (10): noting that KI in the latte~ should be equated to the critical 

value, KIc = f2E(rT+ro)~ The final expression for rT (when 'Vp = 'V
in 

= 0.2) 

is; 

rT = 0.73nfVp(E/Ep){COS(e/2)[~1+1.25~sin(e/2)cOS(3e/2) }2(1+S) (23) 

r 0 13( 1 +~2 )-3.6 (l +13) 1-0. 73nfV p CE/Ep Hcos (e/2)[tl + 1. 25~si n (8/2 )cos (38/2) j} 2 (1 +S) 

'" 
where e is the orientation with respect to the crack tip that yields the 

maximum zone width rr A simplified form of .Eqn. (23) suitable for pre­

dicting the trends in toughness can be obtained by allowing 8 to be 

'VTI/2, noting that fVp is the volume fraction Vf of particles, and by letting' 

E b 'VEm(l-Vf) + EpVf . Then, for n ~ 1, we obtain; 

Note that the result depends only on the volume fraction of particles and 

not on the parti~le size; and that V
f 

appears in both the numerator and 

denomin?tor by vi~tue of the dependence of Kc on the~um, rT + r o' Inspec­

tion of Eqn. (24) indicates that the toughness tends to a maximum as the 

denominator approaches zero. This is merely a manifestation of the intui­

tively obvious result that the closer the· particles are to the transfor­

mation condition in the absence ~f an external stress, the larger wili be 

the transformation zone size in the crack tip stress field and hence, the 
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larger the toughness. This result is directly analagous to the toughening 

of metals due to crack tip plasticity; wherein, the more imminent the 

plasticity (i.e., the lower the yield strength), the larger the toughness. 

Further inspection indicates that generally, the last term in the denominator 

of Eqn. (24) will be appreciably smaller than the first term (because 

particulate composites with V
f 

; 0.3 cannot normally be fabricated with 

small particle sizes). A fUrther simplification thus takes the form; 

Vf[8(1-Vf)+Vf][0.34~:1]2(l+8) 

[8(1+3·~ 2)-3.6(1+8) 'J] 
(25 ). 

demonstrating the direct dependence of the toughening on the volume fraction 

V
f 

of particles. Setting the denominator of Eqn. (21) to zero for the 

maximum, we obtain 

= 3.6(1+8) 
~ 

or reverting to the basic quantities; 

(26a) 

(26b) 

The i nterre 1 at ions between e T ~ Ie Ty ' 6F
o

' E , and E specifi ed by Eqn. (26b) 
x p m 

can be used to select particles and matrices that optimize the toughness*. 

*The reader is reminded that the numerical quantity 3 preceding the 
shear strain in Eqn. (26) has been obtained for a spherical particle that 
does not undergo twinning during transformation. For plate-like particles 
or for a twinned martensite, the numerical coefficient can be appreciably 
reduced. This factor is the most uncertain aspect of the predictive 
capability implied by Eqn. (26). 



... 

For example, given the transformation properti.es of the particle ee~y' e T, 

and ~F ), the matrix modulus can be selected that most clos-ely satisfies the 
o 

equality of Eqn. (26b); alternatively, recognizing that Em/Epwill typically 

be in the range 0.1 < EmlEp < 10 for ceramic systems, particles with the ~Fo 

and 'e~j/~v properties specified by Eqn. (26b) can be selected from the 

available possibilities. Finally, it should be noted that the toughening 

is predicted to be proportional to the fundamental toughness of the material 

fo (Eqn. 25). This proportionality arises because, the larger the funda­

mental toughness, the greater the transformation zone size that can be 

developed prior to crack extension. 

7. IMPLICATIONS 

The relations for th~ martensitic toughening developed in the pre" 

ceding section (Eqns. 25 a~d 26) su~gest clear guidelines for achieving 

optimum toughness. It is appropriate, however, to examine the constraints 

that impose potential limits upon the attainment of high toughness. The 

chemical free energy, 6F, has a strong temperature dependence, increasing 

as the undercooling below the equilibrium stress .. ·free·transformation tern.,.' 

perature To intreases. It is clearly of great importance, therefore, to 

choose a system in which 6f
o 

is maintained at the temperature range of 

interest, consistent with substantial crack tip transformation. 

The relative roles of the dilational and deviatoric transformation 

strains are also of interest. The influence of the dilational component 

is invariant with particle shape, while the deviatoric component depends 

on both the particle shape and the propensity for twinning. For approxi­

mately spherical particles, the deviatoric strain makes the larger contri-
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bution to the transformation strain energy. However; the extent to which 

the,strain can be alleviated by twinning is' likely to be unpredictable 

and not amenable to close control.· This uncertainty suggests tbat trans-· 

formations with a dominant shear strain contribution may not. be as 

desirable as those with a significant cohtribution from the more predict­

abledilational component. 

The trend toward increased toughness as the volume fraction of 

particles increases is perhaps self evident; but the predicted absence 

of a particle size effect at constant volume fraction requires some quali~ 

fication. The absence of a size effect obtains only if the shear component· 

of the strain energy and the chemical composition are independent of size. 

This requires that the particle shape, the twi'nning intensity in the trans­

formed particle, and chemical composition gradients be size~independent. 

It is not known! priori whether these conditions will be satisfi'ed. Size 

effects on toughness might well emerge from tougbening studies; the inter­

pretation of such effects should resi'de inthe.trends with size of particle 

shape, chemical composition and twinning. For example, there ;scursory 

evidence that the twinning intensity increases with particle size; such 

a trend would cause the toughness to increase with particle size. 
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APPENDIX 

STRAIN ENERGY DISTRIBUTION 

The strain energy U of a tensile body of unit wi,dth containing a 

crack of length 2a subjected to a stress (neglecting a transformatiQn 

) . 16 
zone 1 s ; 

7T0 22 2 
U = E a (1- v } + U* (Al) 

where U* is the strain energy in the absence of a crack, The decrea~e in 

strain energy accompanying a crack increment t1a under fi'xed grip conditions 

is thus; 

2 
27TO a 

E 

By comparison, the strain energy Ur contained in a zone, ro' around the 

crack tip, obtained from Eqn. (10), is 

o 

Noting that KI for a tensile sample is; 

K = crl1Ta 
I 

CA2) 

(A3) 

(A4) 

the change in strain energy in the zone ro during a fixed grip crack tip 

increment becomes; 
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(1 tv) (A5) 

Comparison with Eqn. {A2} indicates that the proportion of the change in 

strain energy that resides in the crack tip zone is 'V3r/a. The propor­

tion thus becomes negligibly small in zones ro<<.a. Also, note that the 

strain energy change in the zone r is independent of the current crack o ' 

length and therefore, represents a constant small contribution to the 

strain energy release rate. 

The presence of a transformation zone will modify the strain energy 

changes. The crack surfaces are largelY subjected to a modest level of 

stress (i.e., of the order of the applied stress). A large proportion 

of the transformation zone is thus contained tn essentially stress free 

material; only a small proportion is contained in the highly stressed 

crack tip region, ro (Fig. 10). The strain energy UR associated with 

a transformation zone of width rT can thus be approximately expressed as; 

(A6) 

Uf is that proportion of the strain energy associated with the transfor­

mation zone at the crack tip. The equiValent strain energy change is; 

(Al) 

The change in effective surface energy is 

(AB) 

.' 
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where r 0 is the fracture energy in the absence of transformation. Com-· 

bi nging Eqns. (A2), (Al) and (AB) to obtain the total energy charge and 

equating to zero for the instability condition gives; 

Since, as noted above, the strain energy change in the crack tip zone is 

a small fraction of the total strain energy change, the last term should 

be very much smaller than the fi.rst. The critical cra,ck extension stress 

thus reduces to; 

2 2 . 
and the effective fracture energy rT (;:; no a(1-v )/2E) becomes; 
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FIGURE CAPTIONS 

The shape deformation produced in a flat surface by the for­
mation of a martensite plate is indicated by the new path 
of an intitially straight scr~tch, STT'S. 

(a) shows a body-centered tetragonal (bct) unit cell delineated 
in a face centered cubic (fcc) lattice, The Bain deformation, 
involving a change from bct to bcc symmetry ((b)--+(c)), is thus 
equivalent to a change from an fcc to a bcc lattice. 

Tetragonal to cubic transformation. See text for further de.,. 
tails. 

Schematic drawing showing internally-twinned and dislocated 
martensite. 

Coherent tetragonal precipitate particle in 8 mole % MG-PSZ. 
(a) shows the precipitate distriblltion, while (b) shows that 
particles adjacent to a macro-crack (arrowed) originating 
from a 500-g Vickers microhardness indenter have transformed. 
Note that some untransformed tetragonal particles (T) are 
still present, and that none of the particles were cleaved 
during crack propagation. Bright-field transmission electron 
micrographs, 125kV, reference 2. 

A schematic indicating the orientation of the zero in-plane 
shear stress trajectory at a crack tip, and the assumed 
direction of the transformation strain 'e*y for spherical par­
ticles on each side of this trajectory. 

Contours of the normalized transformation distance R. , plotted 
for the different types of transformation strain. C 

A schematic indicattng that crack growth results in an increase 
in the volume of transformed material located near the crack 
center, where the stresses are relatively low. 

.. 
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Figure 1 
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Figure 4 
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Figure 7 

Transformation Strain l. . Equal Shear and Hydrostatic . 

... -... --------- -----­
--.---.-<..::-- - ---- - -- -- ---

Pure Deviatoric 
Transformation 

Strain 

, 
\ 

\ 

\ 
Transformation 
Zone Width, 

rr 

Pu re Hydro$tatic 
Transformation Strain 

--
XBL 7812-5296 



-38-

Figure 8 
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