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Viral infections are associated with coagulation
disorders. All aspects of the coagulation cas-
cade, primary hemostasis, coagulation, and
fibrinolysis, can be affected. As a consequence,
thrombosis and disseminated intravascular
coagulation, hemorrhage, or both, may occur.
Investigation of coagulation disorders as a con-
sequence of different viral infections have not
been performed uniformly. Common pathways
are therefore not fully elucidated. In many
severe viral infections there is no treatment
other than supportive measures. A better un-
derstanding of the pathophysiology behind
the association of viral infections and coagula-
tion disorders is crucial for developing thera-
peutic strategies. This is of special importance
in case of severe complications, such as those
seen in hemorrhagic viral infections, the inci-
dence of which is increasing worldwide. To
date, only a few promising targets have been
discovered, meaning the implementation in a
clinical context is still hampered. This review
discusses non-hemorrhagic and hemorrhagic
viruses for which sufficient data on the associa-
tion with hemostasis and related clinical fea-
tures is available. This will enable clinicians to
interpret research data and place them into a
perspective. J. Med. Virol. 84:1680–1696,
2012. � 2012 Wiley Periodicals, Inc.
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INTRODUCTION

An increasing body of evidence suggests the exis-
tence of an extensive correlation between inflammation

and coagulation, whereby inflammation not only leads
to coagulation, but coagulation also affects inflamma-
tory activity [Keller et al., 2003; Opal, 2003; Esmon,
2004; Levi et al., 2004; Van der Poll and Levi, 2012].
Inflammation impacts the initiation, propagation and
inhibitory phases of blood coagulation [Opal, 2003]. In
viral and bacterial infections, this can actually lead to
both thrombotic as well as hemorrhagic complications.
Pathogens, as well as inflammatory cells and media-
tors, can induce the expression of tissue factor on
monocytes and endothelial cell surfaces. Tissue factor
is a major activator of coagulation [Van der Poll et al.,
2011]. Direct or indirect activation of the endothelium
by viruses or other pathogens may result in altera-
tions in the coagulation and the fibrinolytic systems
[van Gorp et al., 1999]. Normally, coagulation is a
balance between procoagulant and (natural) anticoag-
ulant mechanisms. A regulated activation of coagula-
tion is part of the host’s defence against infectious
agents [Opal, 2003]. Inflammation may lead to altered
coagulation, resulting in an imbalance between the
pro- and anticoagulant state. The clinical picture of
altered coagulation in several viral infections mani-
fests itself in bleeding (hemorrhage), thrombosis, or
both. An exaggerated response may even lead to dis-
seminated intravascular coagulation with the forma-
tion of microvascular thrombi in various organs [Levi,
2007]. Disseminated intravascular coagulation con-
tributes to multiple organ failure and is associated
with high mortality in both bacterial and nonbacterial
diseases [Levi et al., 2004; Levi, 2007]. Other syn-
dromes associated with bacterial or viral infections
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are hemolytic uraemic syndrome, idiopathic thrombo-
cytopenic purpura and thrombotic thrombocytopenic
purpura [van Gorp et al., 1999]. It is not yet clear
why some viruses cause hemorrhaging (e.g., Ebola),
others are associated with thrombosis (e.g., cytomega-
lovirus) and yet others show both complications (e.g.,
varicella zoster virus) [Miller and Stephan, 1993; Uth-
man and Gharavi, 2002; Geisbert and Jahrling, 2004;
Squizzato et al., 2005]. In addition to this, the bleed-
ing complications of hemorrhagic viruses vary in se-
verity, such as the minor bleeding complications in
some forms of dengue and more severe bleeding in
Ebola and Marburg. For many viral infections, tar-
geted therapy is not available, and only supportive
care can be provided. In many mild cases, treatment
may not even be necessary. However, to improve ther-
apy and supportive care for complicated viral infec-
tions, a better understanding is needed of the
pathogenesis of bleeding and thrombotic complications
due to viral infections. This review briefly outlines the
coagulation cascade in general, as well as the interac-
tion between the coagulation cascade and cytokines
released during viral infections. Subsequently, the
clinical picture of coagulation alterations seen in viral
disease is reviewed. Finally, an explanation is given
of the presumed mechanism of how these viruses in-
fluence hemostasis. The influence of viral infections
on atherosclerosis and atherothrombosis is not
discussed.

METHODS

This review includes viruses for which sufficient
data on the association between hemostasis and relat-
ed clinical pictures are documented. pubmed/MED-
LINE was searched for articles that document the
relationship between viruses and hemostatic param-
eters and thrombotic complications. All possible com-
binations between the virus and coagulation groups
as stated in Appendix 1 were used.

Principles of Hemostasis, Coagulation, and
Fibrinolysis: General Aspects

The formation of a blood clot is a well-regulated
process comprising three elements: (1) primary hemo-
stasis, (2) secondary hemostasis/coagulation, and
(3) fibrinolysis (Fig. 1) [Dahlback, 2005]. Primary he-
mostasis is characterized by the adhesion, activation,
and aggregation of platelets to form a hemostatic
plug. Von Willebrand factor mediates platelet adhe-
sion to exposed subendothelium. P-selectin, a cell
adhesion molecule localized on platelets and endothe-
lial cells, supports initial tethering of leukocytes to
activated endothelial cells and activated platelets
[Othman et al., 2007]. The activation of coagulation
leads to the formation of fibrin strands, secondary
coagulation, which stabilize the platelet plug. Coagu-
lation results from a series of linked coagulation pro-
tease–zymogen reactions, ultimately ensuing in the
formation of fibrin. Tissue factor is the main initiator

of the coagulation cascade, which is localized in the
subendothelium, but also on non-circulating leuko-
cytes and possibly on platelets. Thrombin generation
is induced by the assembly of the tissue factor–factor
VIIa complex. Thrombin is able to convert fibrinogen
into (insoluble) fibrin. Coagulation is regulated by
different inhibitory mechanisms. A first mechanism
is made up of the circulating inhibitors of blood coagu-
lation: antithrombin and heparin cofactor II (both
inhibitors of thrombin), and tissue factor pathway in-
hibitor. Two other circulating inhibitors of blood coag-
ulation are protein C and protein S (the latter of
which is a cofactor for the proper functioning of acti-
vated protein C). A second inhibitory mechanism con-
sists of the endothelium-bound modulators heparin
sulfate and thrombomodulin, which facilitate the in-
hibitory activity of antithrombin and the activation of
protein C, respectively. The third element, the fibrino-
lytic system, is necessary to degrade the formed fibrin
strands. This system is initiated by tissue plasmino-
gen activator and urokinase after their synthesis by,
and release from, endothelial cells. These activators
initiate the conversion of plasminogen to plasmin,
which hydrolyses polymerized fibrin strands into solu-
ble fibrin degradation products, thus degrading the

Fig. 1. Simplified model of the coagulation cascade. Coagulation
proteins are given in roman numerals. Products of coagulation acti-
vation that can be measured in blood samples are shown in squares:
F1 þ 2, prothrombin fragment 1 þ 2; D-dimer, fibrin degradation
product; TAT, thrombin–antithrombin complex. Natural inhibitors
of coagulation shown: TFPI, tissue factor pathway inhibitor; AT,
antithrombin; APC, activated protein C (which cleaves activated fac-
tors V and VIII). TAFI, thrombin-activatable fibrinolysis inhibitor.
t-PA, tissue plasminogen activator; PAI-1, plasminogen activator in-
hibitor-1. Adapted from [van Gorp et al., 1999].
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fibrin clot. The activity of the fibrinolytic system is,
among other things, regulated by plasminogen activa-
tor inhibitor type I, of which may greatly increase
during acute phase reactions. Thrombin-activatable
fibrinolysis inhibitor is also an inhibitor of fibrinolysis
and is activated by thrombin. Fibrinolysis may be
activated primarily—and thus independently of the
activation of the coagulation cascade—or secondarily,
in response to fibrin formation.

Procoagulant/prothrombotic changes. Procoa-
Procoagulant and prothrombotic are two terms used
in literature to indicate the same thing; a tendency to
develop thrombosis. In this review the term procoagu-
lant is used to refer to a change in coagulation
markers determined in the laboratory, while a pro-
thrombotic state indicates a clinical risk situation.
Generally speaking, in viral infections several procoa-
gulant markers are elevated, indicating that the coag-
ulation system is activated. A procoagulant state can
be defined by a number of alterations in the blood.
Firstly, there will be an increased level of clotting
factors (e.g., factor VIII, factor XI), soluble tissue
factor and von Willebrand factor. Secondly, the regu-
latory system can be deficient, which is indicated by
decreased levels of the natural anticoagulants protein
C, protein S, antithrombin, and tissue factor pathway
inhibitor. Furthermore, markers of thrombin genera-
tion (prothrombin fragment 1 þ 2 and thrombin–
antithrombin complexes), platelet activation, fibrin
degradation and fibrinolysis (e.g., D-dimer and plas-
min–a2-antiplasmin complexes) can also be increased.

The effect of inflammation on coagulation.
Many studies have been carried out on the influence
of inflammation, and the (pro)inflammatory cytokines
on the coagulation system. The activation of the coag-
ulation cascade during inflammation is the result of
the stimulation of coagulant synthesis, the decreased
synthesis of anti-coagulants and the suppression of fi-
brinolysis [Lipinski et al., 2011]. This is the net result
of an increased expression of tissue factor leading to
the activation of the extrinsic coagulation pathway,
together with the downregulation of activated protein
C and the inhibition of fibrinolysis [Petaja, 2011]. Pro-
inflammatory cytokines like IL-6, IL-1, IL-12, and
TNF-a are known to increase the production of von
Willebrand factor, which may result in platelet activa-
tion. They upregulate tissue factor expression via the
activation of protease-activated receptors, on mono-
cytes, microparticles, and endothelial cells [Opal,
2003; Levi et al., 2004; Schouten et al., 2008]. Fur-
thermore, the generation of activated protein C is also
decreased, due to a lowered expression of thrombomo-
dulin on the surface of endothelial cells, which acts as
a cofactor in the thrombin-mediated activation of pro-
tein C. While on the one hand anticoagulants are de-
creased, on the other hand there is an upregulation of
plasminogen activator inhibitor-1, which is able to
block the activation of plasminogen, thus creating a
decrease in the breakdown of fibrin clots [Keller et al.,
2003; Opal, 2003; Schouten et al., 2008]. The

generation of thrombin is generally increased due to
inflammation, all of which results in a procoagulant
state of the clotting cascade [Levi et al., 2012].

Clinical Aspects of Hemostasis in
Viral Infections

As previously described, the clinical picture of the
vascular complications of viral infections consists of
thrombosis and/or hemorrhage. Table I shows an
overview of the clinical pathology and laboratory ab-
normalities seen in altered hemostasis due to viral
infections. Common viruses known to cause altera-
tions in hemostasis are discussed. The main focus is
on respiratory viruses, HIV, herpes viruses, and
hemorrhagic fever viruses. Respiratory tract infec-
tions increase the risk of deep venous thrombosis and
possibly pulmonary embolism too [Smeeth et al.,
2006]. Patients infected with the influenza A virus
have been known to suffer disseminated intravascular
coagulation and pulmonary microembolism [Davison
et al., 1973; Harms et al., 2010]. In the recent out-
break of H1N1 influenza (‘‘swine flu’’), both thrombot-
ic and hemorrhagic complications were reported,
such as deep venous thrombosis, pulmonary embo-
lism, and pulmonary hemorrhage with hemoptysis,
hematemesis, petechial rash, and one case of dissemi-
nated petechial brain hemorrhage [Agarwal et al.,
2009; Soto-Abraham et al., 2009; Adalja, 2010; Gilbert
et al., 2010; Harms et al., 2010; Mauad et al., 2010;
Mukhopadhyay et al., 2010; Shachor-Meyouhas and
Kassis, 2010; Venkata et al., 2010; Bunce et al., 2011;
Calore et al., 2011]. Frequently, a significant co-mor-
bidity was present, and in some reported complica-
tions a direct effect of H1N1 was uncertain. In several
influenza cases intrarenal fibrin deposition was found,
which lead to renal failure. H5N1 highly pathogenic
avian influenza infections resulted in disseminated in-
travascular coagulation, pulmonary hemorrhage, and
thrombocytopenia in several patients [Wiwanitkit,
2008]. One study reported a number of children who
developed hematemesis during influenza A infection
[Armstrong et al., 1991]. How frequently influenza in-
fection leads to clinically relevant thrombotic disease
has yet to be established. RSV and adenovirus are
not known to cause clinically relevant vascular com-
plications. A relatively recent outbreak of SARS, a
novel coronavirus, showed significant morbidity and
mortality. The clinical picture pertaining to coagula-
tion consisted of vascular endothelial damage in both
small- and mid-sized pulmonary vessels, disseminated
intravascular coagulation, deep venous thrombosis
and pulmonary thromboemboli resulting in pulmo-
nary infarction [Lee et al., 2003; Chong et al., 2004;
Hwang et al., 2005]. An association between CMV in-
fection and thromboembolic disease has been estab-
lished in animals [Persoons et al., 1998] and in
humans, but mostly in immunocompromised patients
[Maslo et al., 1997; Kazory et al., 2004; Sengul et al.,
2006; Lijfering et al., 2008], with some reports being
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ö
n
le
in

p
u
rp

u
ra
,
p
u
rp

u
ra

fu
lm

in
a
n
s,

IT
P
,
h
em

or
rh

a
g
e,

D
IC

,
D
V
T

M
il
le
r
et

a
l.
[1
9
9
3
],
R
a
n
d
a
n
d
W
ri
g
h
t
[1
9
9
8
],
U
th
m
a
n
a
n
d

G
h
a
ra
v
i
[2
0
0
2
],
M
a
n
co
-J
oh

n
so
n
et

a
l.
[1
9
9
6
]
a
n
d
C
er
v
er
a
a
n
d

A
sh

er
so
n
[2
0
0
5
]

H
ep

a
ti
ti
s
A

T
h
ro
m
b
oc
y
to
p
en

ia
,
IT

P
,
h
ep

a
ti
c
v
ei
n
th
ro
m
b
os
is

C
oh

en
et

a
l.
[1
9
9
3
],
E
rt
em

et
a
l.
[2
0
0
1
],
T
a
n
ir

et
a
l.
[2
0
0
5
],
a
n
d

S
a
in
ok

a
m
i
et

a
l.
[2
0
0
5
]

H
ep

a
ti
ti
s
C

S
p
la
n
ch

n
ic
v
ei
n
th
ro
m
b
os
is
,
th
ro
m
b
oc
y
to
p
en

ia
,
re
n
a
l
th
ro
m
b
ot
ic

m
ic
ro
a
n
g
io
p
a
th
y

V
io
li
et

a
l.
[1
9
9
5
],
P
ri
et
o
et

a
l.
[1
9
9
6
],
a
n
d
U
th
m
a
n
a
n
d
G
h
a
ra
v
i

[2
0
0
2
]

H
IV

D
V
T
,
P
E
,
T
T
P
,
th
ro
m
b
oc
y
to
p
en

ia
,
H
U
S

B
ec
k
er

et
a
l.
[2
0
0
4
],
K
le
in

et
a
l.
[2
0
0
5
],
a
n
d
P
a
ss
os

et
a
l.
[2
0
1
0
]

H
em

or
rh

a
g
ic

v
ir
u
se
s

C
ri
m
ea

n
-C

on
g
o
h
em

or
rh

a
g
ic

fe
v
er

E
cc
h
y
m
os
is
,
v
is
ce
ra
l
b
le
ed

in
g
,
D
IC

,
th
ro
m
b
oc
y
to
p
en

ia
,

h
em

a
te
m
es
is
,
m
el
en

a
G
ei
sb

er
t
a
n
d
J
a
h
rl
in
g
[2
0
0
4
],
B
ra
y
[2
0
0
5
],
a
n
d
S
on

m
ez

et
a
l.

[2
0
0
7
]
C
ev

ik
et

a
l.
[2
0
0
8
]]

D
en

g
u
e

In
cr
ea

se
d
v
a
sc
u
la
r
p
er
m
ea

b
il
it
y
,
sk

in
b
le
ed

in
g
,
ep

is
ta
x
is
,

g
in
g
iv
a
l
b
le
ed

in
g
,
g
a
st
ro
-i
n
te
st
in
a
l
b
le
ed

in
g
,
h
em

a
tu
ri
a
,

m
en

or
rh

a
eg

ia
,
th
ro
m
b
oc
y
to
p
en

ia
,
th
ro
m
b
oc
y
to
p
a
th
y
,
D
IC

H
u
a
n
g
et

a
l.
[2
0
0
1
],
M
a
ir
u
h
u
et

a
l.
[2
0
0
3
],
G
ei
sb

er
t
a
n
d
J
a
h
rl
in
g

[2
0
0
4
],
B
ra
y
[2
0
0
5
],
a
n
d
S
os
ot
h
ik
u
l
et

a
l.
[2
0
0
7
]

M
a
rb
u
rg

þ
E
b
ol
a

D
IC

,
co
n
ju
n
ct
iv
a
l
h
em

or
rh

a
g
e,

m
u
co
sa

l
h
em

or
rh

a
g
e,

ec
ch

y
m
os
is
,
p
et
ec
h
ia
e,

ea
sy

b
ru

is
in
g
,
u
n
co
n
tr
ol
le
d
b
le
ed

in
g

fr
om

v
en

a
p
u
n
ct
u
re

si
te
s,
h
em

a
tu
ri
a
,g

a
st
ro
-i
n
te
st
in
a
l
b
le
ed

in
g

M
a
h
a
n
ty

a
n
d
B
ra
y
[2
0
0
4
],
G
ei
sb

er
t
a
n
d
J
a
h
rl
in
g
[2
0
0
4
],
H
en

sl
ey

a
n
d
G
ei
sb

er
t
[2
0
0
5
],
a
n
d
B
ra
y
[2
0
0
5
]

H
a
n
ta
v
ir
u
s

T
h
ro
m
b
oc
y
to
p
en

ia
,
m
u
co
sa

l
b
le
ed

in
g
,
p
et
ec
h
ia
e,

g
a
st
ro
-i
n
te
st
in
a
l
b
le
ed

in
g
,
ep

is
ta
x
is
,
h
em

a
tu
ri
a
,
co
n
ju
n
ct
iv
a
l

b
le
ed

in
g

L
ee

[1
9
8
7
],
D
u
n
st

et
a
l.
[1
9
9
8
],
K
h
a
ib
ou

ll
in
a
et

a
l.
[2
0
0
5
],

a
n
d
L
a
in
e
et

a
l.
[2
0
1
0
]

S
F
T
S

T
h
ro
m
b
oc
y
to
p
en

ia
Z
h
a
n
g
et

a
l.
[2
0
1
2
]

M
os
t
of

th
e
cl
in
ic
a
l
p
ic
tu
re
s
a
re

b
a
se
d

on
li
m
it
ed

ca
se

re
p
or
ts
.
C
M
V
,
cy
to
m
eg

a
lo
v
ir
u
s;

D
IC

,
d
is
se
m
in
a
te
d

in
tr
a
v
a
sc
u
la
r
co
a
g
u
la
ti
on

;
D
V
T
,
d
ee
p

v
en

o
u
s;

th
ro
m
b
os
is
;
E
B
V
,
E
p
st
ei
n
-B

a
rr

V
ir
u
s;

H
S
V
,
h
er
p
es

si
m
p
le
x
v
ir
u
s;

H
U
S
,
h
em

ol
y
ti
c
u
re
m
ic
;
sy
n
d
ro
m
e;

IT
P
,
id
io
p
a
th
ic

th
ro
m
b
oc
y
to
p
en

ic
p
u
rp

u
ra
;
P
E
,
p
u
lm

on
a
ry

em
b
ol
is
m
;
S
A
R
S
,
se
v
er
e
a
cu

te
re
sp

ir
a
to
ry

sy
n
d
ro
m
e;

T
T
P
,

th
ro
m
b
ot
ic

th
ro
m
b
oc
y
to
p
en

ic
p
u
rp

u
ra
;
V
Z
V
,
v
a
ri
ce
ll
a
zo
st
er

v
ir
u
s.

Viral Infections and Mechanisms of Thrombosis 1683

J. Med. Virol. DOI 10.1002/jmv



made of thrombotic events during CMV infection in
immunocompetent subjects as well [Abgueguen et al.,
2003; Youd et al., 2003; Squizzato et al., 2005; Delbos
et al., 2007]. In several cases an additional procoagu-
lant risk factor was present, such as a protein C defi-
ciency, factor V Leiden mutation, or a heterozygous
prothrombin G20210A mutation [Bauduer et al.,
2003; Fridlender et al., 2007; Lijfering et al., 2007].
Hepatitis C infections (HCV) have been associated
with thrombosis. HCV was observed more frequently
in patients suffering from liver cirrhosis with splanch-
nic venous thrombosis or thrombophlebitis than those
without thrombosis, indicating that HCV infection
may contribute to venous thrombosis [Squizzato and
Gerdes, 2012; Violi et al., 1995].

Thrombocytopenia is a common hematological com-
plication observed during HIV-infection, documented
numbers range from 10% to 50%. The severity of the
thrombocytopenia correlates with the CD4 count.
While bleeding complications are rare in HIV associ-
ated thrombocytopenia, the platelet count can remain
low for a long time [Passos et al., 2010]. Thrombotic
thrombocytopenic purpura in HIV-infected patients
was relatively common before the introduction of
effective antiretroviral therapy. Since the introduction
of this treatment, thrombotic thrombocytopenic pur-
pura has been a rare condition and is associated with
advanced HIV disease [Becker et al., 2004]. Cardio-
vascular complications are reported in both acute and
chronic HIV infections [Friis-Moller et al., 2007]. The
overall risk of venous thrombotic disease in HIV-
infected patients may be between two and ten times
as high as it is in healthy individuals [Klein et al.,
2005; Crum-Cianflone et al., 2008]. The use of prote-
ase inhibitors is linked to venous as well as arterial
thrombotic events [Klein et al., 2005; Friis-Moller
et al., 2007]. There are strong indications that the in-
cidence rates of vascular complications in the antire-
troviral era are increasing [Klein et al., 2005].

Whereas HIV and respiratory viruses have more
thrombotic clinical complications many acute viral
infections may result in bleeding. Often these patho-
gens are classified as hemorrhagic fever viruses with
the most devastating being members of the filoviridae
(Ebola and Marburg) and the arenaviruses (Lassa
fever and South American hemorrhagic fever). Bleed-
ing often occurs from various mucous membranes
together with easy bruising and persistent bleeding
after venapuncture. Massive bleeding may occur in
the gastro-intestinal tract and/or intra-cerebrally
[Kortepeter et al., 2011]. These bleeding complications
are most frequent in severe forms of infection and
they correlate with the case fatality rate. Bleeding is
thought to be the consequence of an imbalanced coag-
ulation cascade, sometimes resulting in disseminated
intravascular coagulation, as seen in hantavirus,
Ebola, Marburg, Crimean-Congo hemorrhagic fever,
and Dengue infections [Geisbert and Jahrling, 2004;
Bray, 2005; Laine et al., 2010]. Bleeding manifesta-
tions are most prominent in Ebola, hantavirus, and

Crimean-Congo hemorrhagic fever [Geisbert and
Jahrling, 2004]. Thrombocytopenia is consistently
found among viral hemorrhagic fever infections, as
well as a decreased platelet function (thrombocytopa-
thia) [Geisbert and Jahrling, 2004]. Known vascular
complications in arenaviral infection, in addition to
mucosal bleedings, are severe pleural- and pericardial
effusion. The latter is also a consequence of vascular
dysfunction. Disseminated intravascular coagulation
does not seem to play a role in arenaviral infection
[Peters et al., 1989; Richmond and Baglole, 2003].

Hantaviruses circulating in Europe and Asia are as-
sociated with hemorrhagic fever and renal syndrome
(HFRS) or the milder nephropathia epidemica (NE)
variant [Khaiboullina et al., 2005a; Jonsson et al.,
2010]. Hallmark symptoms of HFRS are acute kidney
failure and alterations in hemostasis, ranging from
mild thrombocytopenia to disseminated intravascular
coagulation [Sundberg et al., 2011]. At first, less se-
vere bleeding complications like epistaxis, conjuncti-
val bleeding, hematuria, petechiae and mucosal
bleeding occur, while in a later phase gastrointestinal,
intra-cerebral and pleural bleedings are reported in
severe HFRS. Less common hemorrhagic events are
right atrial hemorrhage [Chun and Godfrey, 1984],
spleen hemorrhage [Alexeyev et al., 1994] and pitui-
tary gland hemorrhage resulting in endocrinal distur-
bance or even panhypopituitarism [Suh et al., 1995;
Pekic et al., 2005]. Hantaviruses circulating in North
and South America can cause the hantavirus cardio-
pulmonary syndrome, resulting in acute respiratory
distress and thrombocytopenia. However, bleeding
disorders play a less significant role in the pathology
of this disease. Dengue virus, one of the most wide-
spread mosquito-borne viruses worldwide and with an
annual infection rate around 50–100 million, used to
be subdivided into dengue fever, dengue hemorrhagic
fever and dengue shock syndrome [WHO, 1997].
The most recent classification breaks down dengue
patients into non-severe dengue cases, with or with-
out warning signs, and severe dengue cases. The
latter are patients presenting with either shock, respi-
ratory distress, severe organ impairment or severe
bleeding [van de Weg et al., 2012]. The occurrence of
severe dengue with bleeding or signs of shock differs
all over the world. Therefore, it is assumed that the
interaction between host, virus, vector, and environ-
ment defines the clinical presentation and outcome.
Although thrombocytopenia has been well docu-
mented in dengue infection [Sosothikul et al., 2007],
no association has been established between the pres-
ence of active bleeding and the degree of thrombocyto-
penia on admission. Bleeding symptoms in dengue
cases often start with petechiae, bleeding from the
mucous membranes and epistaxis while in severe
cases typically large gastrointestinal bleedings may
occur. Recently, an outbreak of a novel bunyavirus
caused a clinical syndrome described as severe fever
with thrombocytopenia syndrome. Patients rapidly de-
veloped thrombocytopenia, accompanied with multiple
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organ dysfunction and gastrointestinal complaints.
The case fatality rate was estimated around 16%
[Zhang et al., 2012].

Pathophysiological Mechanisms of
Hemostasis in Viral Infection

Data from experimental and human studies have
revealed the complexity of the interaction between in-
fectious pathogens, cytokines, effector cells, and the
coagulation system. This review discusses the existing
evidence of the pathogenesis of abnormal hemostasis
in viral infections with regard to primary hemostasis,
secondary hemostasis and fibrinolysis. Antiphospholi-
pid antibodies are discussed separately.

Primary Hemostasis

Platelets. Platelets are the key players in prima-
ry hemostasis; the formation of the platelet plug.
Reduced platelet function, as well as diminished
production or destruction of platelets, is a well-
documented phenomenon in several viral infections.
Thrombocytopenia often occurs in both hemorrhagic
and non-hemorrhagic viral infections. In most cases,
thrombocytopenia is caused by autoimmune antibod-
ies against platelets. Other proposed mechanisms in-
clude the increased adherence and activation of
platelets, which leads to the consumption of platelets,
and the infection of bone marrow directly affecting
megakaryocytic, and thus the production of platelets.
Thrombocytopenia caused by autoantibodies has
been described in SARS, influenza, chronic parvovirus
B19, herpes virus, CMV, VZV, Epstein Barr virus,
HIV, and hepatitis A virus and hepatitis C virus
infections [Whitaker et al., 1974; Kahane et al., 1981;
Kazatchkine et al., 1984; Mayer and Beardsley, 1996;
Neau et al., 1997; Rand and Wright, 1998; Scheurlen
et al., 2001; Sainokami et al., 2005; Yang et al., 2005;
Panzer et al., 2006; Passos et al., 2010]. Autoantibod-
ies have been identified in several viral infections.
The target is usually one of the surface glycoproteins
such as GPIIb/IIIa, GPIb/IX, or GPV, with a possible
cross reactivity between antibodies against the virus
and the platelets [Mayer and Beardsley, 1996; Tanaka
et al., 2003], as in HIV where platelets are bound via
the platelet glycoprotein IIIa integrin [Passos et al.,
2010]. Whether platelet destruction in viral hepatitis
is caused by platelet-specific glycoprotein antibodies,
by immune complexes bound to the platelet surface or
by a combination of the above, remains uncertain [Doi
et al., 2002; Weksler, 2007]. In secondary dengue
virus infection, platelet apoptosis seems to be en-
hanced, which results in increased platelet clearance
[Alonzo et al., 2012]. This is probably present in any
viral infection that leads to a systemic inflammatory
response. Platelets may serve as carriers of viral
infections, which are then damaged and partially
destroyed [Terada et al., 1966]. Platelet consumption
due to other mechanisms has been documented for in-
fluenza, SARS, hantavirus, and adenovirus infections

[Lee, 1987; Rand and Wright, 1998; Yang et al., 2005;
Othman et al., 2007]. Hantavirus-infected endothelial
cells seem to bind to quiescent platelets via an Alpha-
v beta-3 integrin dependent mechanism, which is the
cellular receptor for the hantavirus [Gavrilovskaya
et al., 2002, 2010]. This may not only result in a de-
creased number of platelets; that is, thrombocytope-
nia, but also a decreased function and an increased
vascular permeability. Furthermore, in hemorrhagic
fever renal syndrome patients in China, the intensity
of this receptor, also known as CD61—determined by
flow cytometry—on platelets correlates with the se-
verity of the disease [Liu et al., 2008].

Platelets derived from patients infected with Lassa
fever had depressed capacities for platelet aggregation
[Cummins et al., 1989; Roberts et al., 1989; Richmond
and Baglole, 2003]. Acute-phase plasma from Lassa
fever patients showed inhibition of ADP-induced
platelet aggregation. This inhibition was found in 80%
of Lassa fever patients with hemorrhage but in only
16% of those without hemorrhage. When plasma sam-
ples from Lassa fever patients were mixed 1:1 with
control, platelet-rich plasma, a marked inhibition of
ADP-induced aggregation was observed. These find-
ings indicate that platelet dysfunction may play an
important role in the bleeding characteristics of this
disease [Cummins et al., 1989; Roberts et al., 1989].
However a decreased fibrinogen concentration may
also play a role explaining this phenomenon. Further-
more, influenza, rhinovirus and other viruses stimu-
late IL-6 production [Bouwman et al., 2002]. There is
a complex platelet–endothelial–leukocyte interplay
[Othman et al., 2007]. Viruses bind to platelets, which
are then activated, leading to rapid exposure of P-
selectin on the platelet surface, which, in turn, trig-
gers the formation of platelet–leukocyte aggregates.
Subsequently, endothelial cells are activated, which is
demonstrated by increases in vascular cell adhesion of
molecule 1, von Willebrand factor and endothelial
cell-derived microparticles. A reduced production of
platelets was observed in SARS, HCV, HIV, hantavi-
rus, and Junin hemorrhagic fever infections. This can
be caused by the direct infection of hemapoietic stem/
progenitor cells and megakaryocytes [Carballal et al.,
1981; Li et al., 1999; Yang et al., 2005; Lutteke et al.,
2010; Passos et al., 2010]. For example, pathogenic
hantaviruses invade and subsequently replicate in
megakaryocytes, leading to upregulation of human
leukocyte antigen (HLA) class 1 molecules, the target
structures of cytotoxic CD8 T-cells in vitro. These T-
cells kill the infected megakaryocyte, hypothetically
leading to a decreased platelet production. This could
also explain why corticosteroid treatment increases
platelet count by inhibiting the cellular immune re-
sponse in hantavirus-infected patients [Dunst et al.,
1998; Seitsonen et al., 2006]. In addition to this, im-
paired thrombopoietin production, the primary cyto-
kine governing megakaryocyte maturation and
platelet formation [Kaushansky, 1998], is present in
HCV if there is hepatocellular damage [Weksler,
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2007]. Reduced platelet production is not always
caused by the infection itself but sometimes by the
medical therapy. Well-known examples are the pegy-
lated interferon (peg-IFN) treatment of HCV and anti-
retroviral therapy for HIV [Kowdley, 2005; Passos
et al., 2010]. Finally, hypersplenism (with the seques-
tration of platelets) due to portal hypertension can be
present in chronic hepatitis [Weksler, 2007].

Endothelial Cells, Von Willebrand Factor,
Tissue Factor and the Connection to

Secondary Hemostasis

Endothelial cells are key regulators of coagula-
tion, both producing and presenting anticoagulant
markers, thrombomodulin and antithrombin as well
as procoagulant factors like tissue factor and plasmin-
ogen activator inhibitor-1. The infection of endothelial
cells can result in the activation of these cells and,
consequently, the activation of coagulation. Endotheli-
al cell activation is mainly marked by an increase in
von Willebrand factor secretion, which can bind plate-
lets after vessel wall damage. In vitro and in vivo
studies have shown that a variety of prothrombotic
viruses are able to infect endothelial cells. These
viruses include influenza A and B, parainfluenza-1,
RSV, adenovirus, CMV, parvovirus B19, HIV, and the
hepatitis B virus [Mason et al., 1993; Poland et al.,
1995; Visseren et al., 2000; Magro et al., 2002; Arnold
and Konig, 2005; Squizzato et al., 2005; Gavrilov-
skaya et al., 2010]. Endothelial cell activation plays a
crucial role in altering coagulation and is an etiologi-
cal factor for vascular complications in HIV infection.
Endothelial cell activation is caused by the virus itself
and by HIV-induced cytokines [Chi et al., 2000]. HIV-
specific gag and env gene sequences have been suc-
cessfully amplified by polymerase chain reaction from
human microvascular endothelial cells [Poland et al.,
1995]. Markedly increased levels of soluble vascular
and soluble intercellular adhesion molecules and ele-
vated von Willebrand factor, which are indicative of
endothelial cell activation, have been shown in HIV-
infected patients before the start of antiretroviral
therapy (ART) with only partial recovery after the
start of ART [Wolf et al., 2002]. Herpes viruses are
known to convert vascular endothelial cells from an
anticoagulant to a procoagulant phenotype [Dam-Mie-
ras et al., 1992; Pryzdial and Wright, 1994; Nicholson
and Hajjar, 1999; Visseren et al., 2000]. The following
four mechanisms may be involved.

(1) The inhibition of anticoagulant/antithrombotic
properties by reducing both the heparin sulfate
proteoglycan synthesis and the expression of
thrombomodulin by endothelial cells, with a con-
sequently reduced activation of protein C [Nich-
olson and Hajjar, 1999].

(2) The induction of procoagulant properties of the
endothelium by changing the phospholipid expo-
sure. Enhanced thrombin generation and

secretion of von Willebrand factor by endothelial
cells result in an increase of platelet binding to
HSV- or CMV-infected endothelium [Nicholson
and Hajjar, 1999].

(3) HSV1 and HSV2 and CMV can initiate the
generation of thrombin directly on their surface
envelopes through the incorporation of host-
cell-derived tissue factor and procoagulant phos-
pholipids. Furthermore, the virus can use this
generated thrombin to enhance infection through
protease activated receptor-1 stimulation of tar-
get cells [Sutherland et al., 2012].

(4) An increase in binding sites for inflammatory
cells, such as granulocytes and platelets, can
lead to a further shift of the endothelial cell
surface from thromboresistance to a prothrom-
botic condition. These inflammatory cells produce
procoagulant cytokines, which further induce
the expression of prothrombotic endothelial cell
proteins [Visser et al., 1988; Nicholson and
Hajjar, 1998, 1999; Sutherland et al., 2007].

The infection of endothelial cells has also been dem-
onstrated for hemorrhagic fever viruses like dengue,
Marburg, Ebola, Crimean-Congo, hantavirus, yellow
fever, and Lassa fever [van Gorp et al., 1999;
Geimonen et al., 2002; Schnittler and Feldmann,
2003; Khaiboullina et al., 2005b; Kunz, 2009].
Although some of these viruses can productively repli-
cate in endothelial cells, much of the disease patholo-
gy, including the impairment of the vascular system,
is thought to result from the release of mediators
from the infected cells. These mediators alter the vas-
cular function and trigger coagulation disorders
[Marty et al., 2006]. For example, hantavirus is able
to infect endothelial cells directly and induce the pro-
duction of chemokines and cell adhesion molecules
like IL-8, IL-6, GRO-b, and ICAM [Song et al., 1999;
Geimonen et al., 2002; Han et al., 2008]. Levels of von
Willebrand factor and soluble tissue factor are in-
creased in patients with severe dengue infection
[Sosothikul et al., 2007], while upregulation of tissue
factor transcription has also been reported [Huerta-
Zepeda et al., 2008]. However, evidence for the activa-
tion of the tissue factor pathway in dengue infections
is both limited and conflicting [Mairuhu et al., 2003].
Furthermore, abnormal von Willebrand factor multi-
mers were seen in dengue hemorrhagic fever, with a
shift from high molecular-weight to lower molecular-
weight multimers [Sosothikul et al., 2007]. There
might be a role for the von Willebrand factor cleavage
protease: ‘‘ADAMTS13.’’ Known to degrade von Wille-
brand multimers, ADAMTS13 serves as an anticoagu-
lant protein, and increased von Willebrand factor
degradation is associated with bleeding. Decreased
ADAMTS13 activity could lead to the formation of
large von Willebrand factor multimers and increased
platelet activation. Lowered ADAMTS13 levels
have been found in acute influenza and hantavirus
(Puumala) infections [Akiyama et al., 2011; Laine
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et al., 2011]. In recent years, it has been demonstrat-
ed that the influenza virus and other respiratory
viruses can modulate inflammation and activate coag-
ulation in vitro [Visseren et al., 2000; Bouwman et al.,
2002]. The tissue factor expression on endothelial
cell surfaces after infection, which leads to a reduced
clotting time, may be a direct virus effect but it
may also be triggered by cytokines, such as IL-6
[Visseren et al., 2000; Bouwman et al., 2002;
Marsden, 2006].

In cases of human avian influenza infection, tissue
factor gene expression was upegulated [Muramoto
et al., 2006]. Elevated levels of von Willebrand factor
were found in SARS-infected humans, although solu-
ble tissue factor levels were not elevated [Wu et al.,
2006]. In viral hepatitis, activated endothelial cells
and macrophages express distinct cell-surface procoa-
gulants, which are important for both the initiation
and localization of fibrin deposition in virally induced
liver disease. Fgl2/fibroleukin has the ability to cleave
prothrombin to thrombin directly, and the increased
expression of fibrinogen-like protein 2/fibroleukin on
infected endothelial cells and macrophages has been
found in hepatitis B patients [Levy et al., 2000;
Marsden et al., 2003]. Via this mechanism, it can
bypass the tissue factor/factor VII pathway (extrinsic
pathway). In fibrinogen-like protein 2/fibroleukin defi-
cient mice infected with murine hepatitis virus strain-
3, fibrin deposition and liver necrosis were markedly
reduced, compared to controls [Marsden et al., 2003].
An experimental therapeutic study in Ebola-infected
primates has provided evidence that the tissue factor
pathway is an important pathophysiological compo-
nent of this hemorrhagic fever [Geisbert et al., 2003b].
After blocking the tissue factor pathway by recombi-
nant nematode anticoagulant protein c2 (rNAPc2),
the coagulation response was attenuated. Endothelial
cells are probably not an early target of the Ebola
virus [Geisbert et al., 2003a]. The infection of endo-
thelial cells occurs after the onset of disseminated
intravascular coagulation, indicating that the primary
coagulation abnormalities in Ebola virus infection are
not the result of endothelial cell infection [Geisbert et
al., 2003c]. The coagulopathy seen in Ebola fever is
probably caused by several factors. Data suggests that
tissue factor expression and release from infected
monocytes/macrophages, and the release of tissue fac-
tor-bearing microparticles into the circulation, are the
key inducers of coagulation abnormalities [Bray,
2005; Geisbert et al., 2003a; Hensley and Geisbert,
2005; Ruf, 2004]. Together with fibrin deposition this
may lead to severe disseminated intravascular
coagulation.

Coagulation proteins and markers of an acti-
vated coagulation system. Viral infections can
alter the levels of a variety of coagulation proteins
and may consequently lead to a prothrombotic state
that could result in a thrombotic event. A procoagu-
lant state may be present through increased levels of
coagulation proteins like fibrinogen [Horan et al.,

2001] or factor VII [Woodhouse et al., 1994]. The
presence of elevated levels of factor VIII is a risk
factor found in chronic HBV and HCV patients
[Papatheodoridis et al., 2003]. Laboratory studies
have shown that herpes viruses can facilitate factor
Xa generation from the inactive precursor factor X,
but only when factor VII/VIIa and calcium ions are
present [Sutherland et al., 1997]. Raised coagulation
markers have also been found in animal and human
tissue. Increased numbers of intravascular thrombi
and fibrin deposition in lungs were found in cases of
influenza, avian influenza, and SARS infection, and
these may well be the result of disseminated intravas-
cular coagulation and microthrombosis [Hwang et al.,
2005; Keller et al., 2006; Muramoto et al., 2006]. In
SARS infections, pulmonary infarcts were observed
[Hwang et al., 2005]. Fibrin depositions were also
found in tissue from primates infected with the Ebola
virus [Geisbert et al., 2003ab]. In contrast to the acti-
vated coagulation system described above, activities of
factors II, V, VII, VIII, IX, and X and factor XII were
decreased in dengue while in hantavirus infections
factors II, V, VIII, IX, and X seemed to be decreased
[Lee, 1987]. However, results in dengue research are
inconclusive [Mairuhu et al., 2003]. Decreased levels
of these coagulation factors are associated with hem-
orrhage and might be due to the consumption or loss
of these factors. During the convalescent phase of
DHF, factor VIII levels and factor VIIa levels were
increased, when compared to dengue fever (DF)
[Sosothikul et al., 2007]. Elevated levels of factor XIa-
C1-inhibitor complexes were found in patients with
DHF, indicating the activation of coagulation [van
Gorp et al., 2001]. Macaques infected with the Ebola
virus showed decreased levels of factor VIIa [Geisbert
et al., 2003b].

Prolonged clotting times have been reported in sev-
eral viral infections and in non-hemorrhagic and hem-
orrhagic viral infections, such as hantavirus and VZV
infections [Canpolat and Bakir, 2002; Kurugol et al.,
2000; Laine et al., 2010]. The activation of the coagu-
lation system results in elevated levels of several
systemic coagulation markers. Increased levels of
D-dimer, prothrombin fragment 1 þ 2, thrombin–
antithrombin complexes, and/or plasmin–alpha-2-
antiplasmin complexes have been found in respiratory
tract infections, influenza, SARS, HIV, HCV, VZV,
and the hanta-, Ebola-, and dengue-hemorrhagic
viruses [Bray et al., 2001; Canpolat and Bakir, 2002;
Crum-Cianflone et al., 2008; Feffer et al., 1995; Geis-
bert et al., 2003a,b; Keller et al., 2006, 2007; Kurugol
et al., 2000; Laine et al., 2010; Lee et al., 2003;
Mairuhu et al., 2003; Schouten et al., 2010; van Gorp
et al., 2001; Violi et al., 1995; Wu et al., 2003].
Patients with HCV infection had levels of prothrom-
bin fragment 1 þ 2 that were elevated significantly
[Violi et al., 1995]. Increased thrombin–antithrombin
to plasmin–alpha-2-antiplasmin ratios, indicating a
balance shifted to a procoagulant state, were found
in dengue patients and associated with an adverse
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clinical outcome [van Gorp et al., 2002]. Fatal cases of
Ebola infection showed higher levels of D-dimer and
fibrin degradation products during the acute phase of
the disease [Bray et al., 2001; Rollin et al., 2007]. The
level of these coagulation products correlate with
death, and disseminated intravascular coagulation
may therefore be an early and important component
of Ebola infection [Bray et al., 2001; Rollin et al.,
2007].

From the above it can be concluded that, generally
speaking, hemorrhagic viruses may lead to the activa-
tion of the coagulation system during the acute phase
and ultimately lead to the consumption or loss of
clotting factors, microthrombi causing organ failure,
endothelial cell dysfunction and bleeding phenotype.
However, several issues about the relationship be-
tween viral infections and the coagulation system re-
main unknown. For example, there are gaps in the
knowledge of the effect that viral hemorrhagic fevers
have on coagulation markers; most data come from
studies on dengue virus infections. Furthermore, lim-
ited data exists on the duration of a procoagulant
state during or after viral infections. For example, the
elevated levels of procoagulant proteins in viral respi-
ratory tract infections returned to baseline after two
weeks [Keller et al., 2007]. In a study of children with
dengue shock syndrome (DSS), fibrinogen levels de-
creased significantly two days after hospital admis-
sion and had returned to normal within a month
[Wills et al., 2002].

Natural anticoagulant proteins: protein C,
protein S, antithrombin, thrombomodulin, and
heparin cofactor II. Several viral infections lead to
deficiencies in the natural anticoagulants protein C,
protein S, antithrombin, and heparin cofactor II. It is
well known that these deficiencies are associated with
an increased risk of thrombosis. Such deficiencies
have been reported in respiratory tract infections in
general, VZV, HIV, HBV, HCV, hantavirus, DSS, and
Ebola virus infections [Bissuel et al., 1992; Canpolat
and Bakir, 2002; Crum-Cianflone et al., 2008; Erbe et
al., 2003; Geisbert et al., 2003b; Kaba et al., 2003;
Kurugol et al., 2000; Laine et al., 2010; Papatheodor-
idis et al., 2003; Wills et al., 2002]. Probable deficiency
mechanisms include autoantibodies against protein C,
protein S and antithrombin, as described in VZV
infections [Josephson et al., 2001; van Ommen et al.,
2002], as well as the leakage of these proteins through
the endothelium of capillaries, such as in dengue
shock [Wills et al., 2002], and the consumption of
these natural anticoagulants [Esmon, 2004; Sosothi-
kul et al., 2007; Laine et al., 2010]. Another underly-
ing mechanism could be the decreased synthesis of
clotting factors by the liver. In chronic viral hepatitis
the degree of antithrombin and protein C deficiency
was found to be strongly associated with advanced
fibrosis of the liver [Papatheodoridis et al., 2003].
An increased (local) production of thrombomodulin
may have an anticoagulant effect [Dahlback, 2005].
Thrombomodulin expression is increased on the

surface of sinusoidal endothelial cells in both chronic
hepatitis B and C patients [Zeniya et al., 1995]. Solu-
ble thrombomodulin levels were also increased in
patients with SARS and severe dengue infection
[Wills et al., 2002; Liu et al., 2005; Sosothikul et al.,
2007]. Furthermore, dengue virus promotes the ex-
pression of thrombomodulin in cultured endothelial
cells [Jiang et al., 2007]. Circulating soluble thrombo-
modulin may reflect endothelial cell activation, how-
ever thrombomodulin is most active when it is bound
to endothelium [Schouten et al., 2008].

Fibrinolysis. Impaired fibrinolysis (or a hypofibri-
nolytic state), and thus an elevated risk of thrombosis,
has been reported in several viral infections. There
are two mechanisms to consider here. Firstly, in-
creased levels of plasminogen activator inhibitor-1
have been found in influenza, SARS, VZV, CMV, den-
gue, and HIV infections [Woodroffe and Kuan, 1998;
Kurugol et al., 2000; Koppel et al., 2002; Wills et al.,
2002; Klein et al., 2005; Keller et al., 2006; Wu et al.,
2006; Sosothikul et al., 2007; Schouten et al., 2010].
In HIV infection, elevated plasminogen activator in-
hibitor-1 levels have been shown to be related to the
metabolic syndrome and the use of protease inhibitors
as part of the antiretroviral therapy [Koppel et al.,
2002]. Secondly, plasminogen deficiency is present in
patients with chronic viral hepatitis [Papatheodoridis
et al., 2003]. Dengue virus infection is associated with
a hyperfibrinolytic state due to an increase in the
levels and activity of tissue-plasminogen activator,
which results in an increased breakdown of fibrin
strands, and thus an elevated risk of hemorrhage.
However, increased levels of plasminogen activator
inhibitor-1 have also been found in dengue virus
infections and these correlate with disease severity
[Huang et al., 2001; van Gorp et al., 2001, 2002;
Wills et al., 2002; Mairuhu et al., 2003; Jiang et al.,
2007; Sosothikul et al., 2007]. In hantavirus infec-
tions, enhanced fibrinolysis could compensate for the
increased coagulation activity and contribute to clini-
cal recovery, but this does not explain the bleeding
complications seen in hantavirus cases [Laine et al.,
2010]. In addition to this, increased plasma concentra-
tions of tissue-plasminogen activator and soluble
thrombomodulin were found in SARS infections [Liu
et al., 2005]. However assays quantifying tissue-
plasminogen activator and plasminogen activator in-
hibitor-1 used to measure both the circulating pro-
teins as the protein complexes. Which makes it hard
to identify actual plasma levels. In patients infected
with Crimean-Congo hemorrhagic fever and dengue
virus, thrombin-activatable fibrinolysis inhibitor ac-
tivity was decreased, which may have contributed to
an imbalance in fibrinolysis [Mairuhu et al., 2003;
Sonmez et al., 2007; Sosothikul et al., 2007]. The de-
creased thrombin-activatable fibrinolysis inhibitor ac-
tivity may have been due to liver dysfunction during
the infection [Sonmez et al., 2007], but it may also
suggest the consumption of this inhibitor by excessive
thrombin formation [Mairuhu et al., 2003].
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Antiphospholipid Antibodies

The relationship between antiphospholipid antibod-
ies, thrombosis and infection is not fully clear. Anti-
bodies against phospholipids during acute infection
are a diverse group of autoantibodies against proteins
bound to phospholipids. They only remain in the plas-
ma for a short period and most of them are not related
to clinical thrombosis [de Groot and Urbanus, 2012].
However the Antiphospholipid antibodies, directed
against the plasma protein b2-glycoprotein I, are
associated with arterial or venous thrombosis and
pregnancy complications [Ruiz-Irastorza et al., 2002;
Asherson et al., 2008; Espinosa et al., 2008]. Antiphos-
pholipid antibodies have been associated with infec-
tions of parvovirus B19, several herpes viruses, such
as CMV, EBV and VZV, HAV, HBV, HCV, and HIV
[Yamazaki et al., 1991; Prieto et al., 1996; Violi et al.,
1997; Kurugol et al., 2000; 2001; Ertem et al., 2001;
Uthman and Gharavi, 2002; Youd et al., 2003; Yuste
and Prieto, 2003; Cervera and Asherson, 2005; van
Hal et al., 2005; Crum-Cianflone et al., 2008; Sene
et al., 2008]. Antiphospholipid antibodies that are
frequently found in patients with chronic HCV infec-
tion have not only been implicated in HCV-associated
thrombosis, but also in thrombocytopenia [Prieto
et al., 1996]. It has been suggested that antiphospholi-
pid antibodies might participate in the process of fi-
brosis by promoting thrombosis in small intrahepatic
vessels. Whether these antibodies contribute to clini-
cally important thrombotic events during infection
remains controversial [Prieto et al., 1996; Mangia
et al., 1999; Harada et al., 2000; Josephson et al.,
2001; Cervera and Asherson, 2005; Sene et al., 2008].
Gharavi et al. [2002] have shown that immunization
with peptides derived from cytomegalovirus induced
lupus anticoagulant activity and resulted in thrombot-
ic complications. While the presence of anti-b2GPI
antibodies has been reported in CMV patients pre-
senting with thrombosis [Delbos et al., 2007; de Groot
and Urbanus, 2012].

DISCUSSION AND CLINICAL IMPLICATIONS

After reviewing the available literature, it has be-
come clear that although much is known about the
pathophysiological mechanisms behind the association
between viral infections and alterations of the coagu-
lation cascade, many questions still remain. It is not
clear, for example, why some viruses have a strong
influence on coagulation and are associated with
thrombotic complications or bleeding, while in other
viral infections this effect is limited. The complex in-
terplay between the host, the virus (virulence), the
vector and the environment (infection pressure in the
community) defines the clinical presentation and out-
come. This might explain the divergent clinical pre-
sentations of viral infections in different parts of the
world. Furthermore, differences in clinical presenta-
tion could also be explained by the diverse tropism of
viruses, such as for monocytes or endothelial cells for

example. It is not always clear whether a virus exerts
its effect through the direct infection of the target cell,
through virus-specific antibodies, or via inflammatory
mediators. In addition to this, inherited host factors
also play a role in disease severity.

For implementing specific therapeutic interven-
tions, it is crucial to know how the hemostatic balance
of an individual is affected during the course of the
infection. This is extremely difficult to determine,
particularly in acute infections, and this is the main
reason that theoretically promising interventions
(anti-TNF, activated protein C) were less successful,
disappointing even, in clinical practice. Coagulation
disorders vary among the viral hemorrhagic fevers.
Both coagulation and fibrinolysis are activated, but
the degree of activation of the coagulation system is
influenced by the ability of the host to effectively bal-
ance the counteracting effects [Geisbert and Jahrling,
2004]. It is quite possible that there are major similar-
ities in mechanisms in which different viral infections
interact with the coagulation pathway. Even though
studies on the interaction of several viral infections
with coagulation have been performed with different
methods, and these were focused on various elements
of the coagulation system, it now seems evident that
these viruses interact with coagulation both in a
common way as with specific features related to the
specific virus. Furthermore, more research on the al-
teration of coagulation has been performed on some
viruses, such as CMV for example, than on others. It
is conceivable that other, less prevalent, viral infec-
tions exert the same effect on the coagulation cascade,
but studies are lacking. In the case of filoviruses, little
research has been performed, partly because of the
hazards and logistical difficulties associated with col-
lecting and processing blood samples in the remote
regions of Africa where outbreaks usually occur. Fur-
thermore, most data come from in vitro studies, which
may not accurately reflect the situation in actual
infections in humans. In vivo data are also not clear
[Squizzato et al., 2005]. For example, Ebola infections
have been induced in non-human primates, although
useful to determine pathophysiological mechanisms
these cannot be considered representative of human
infections because the disease in monkeys appears to
develop more rapidly and takes a more severe clinical
course [Rollin et al., 2007]. For some other viruses
there are not yet any adequate animal models. The
effect of viral infections on coagulation, and the
resulting clinical picture, could be exacerbated by
other factors, such as thrombophilia as a host factor
for example, and the environment (i.e., infection pres-
sure). Several studies have shown that in patients
with thrombotic complications during CMV infection,
additional thrombophilic factors were present, such as
the factor V Leiden mutation or the prothrombin
G20210A mutation [Fridlender et al., 2007; Lijfering
et al., 2007]. It is possible that those patients would
not have developed thrombosis without the co-existing
thrombophilia. In the case of respiratory viruses,
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seasonal variation in several hemostatic proteins may
contribute to a more pronounced effect on coagulation
and therefore the development of thrombosis. It has
been documented that during winter, platelet count,
fibrinogen, factor VII, and plasminogen activator
inhibitor-1 are elevated [Woodhouse et al., 1994;
Frohlich et al., 1997; Crawford et al., 2003]. Naturally
occurring seasonal variations may exist independently
of viral infections. Because respiratory viruses are
more common during winter, it has been suggested
that the combination of a seasonal variation and a
viral infection has a more pronounced effect on the
coagulation system, resulting in a higher risk of
thrombosis. It was found that the risk of thrombosis
is elevated during the first two weeks of a respiratory
tract infection [Smeeth et al., 2006]. Bleeding may re-
sult from a multifactorial process resulting from a
combination of thrombocytopenia due to autoantibod-
ies or the consumption of platelets, the consumption
of clotting factors (local), fibrinolysis, and vascular
damage or leakage. For most hemorrhagic viruses, in-
fection leads to increased anticoagulant activity and
hyperfibrinolysis, partly by activated endothelial cells.
For example, data on dengue virus infections showed
increased endothelial cell damage [Sosothikul et al.,
2007], but there is confliction in the data [Martina
et al., 2009].

Despite increasing data on the association of viral
infections and the coagulation cascade, the pathophys-
iological mechanisms behind this association have not
yet been elucidated fully for most viruses. Knowledge
of the underlying mechanisms leading to thrombosis
or bleeding is fundamental for the development of
therapeutic strategies for the treatment of thrombohe-
morrhagic complications. Given the potential role that
tissue factor may play in some of the thrombohemor-
rhagic complications of viral disease, therapeutic in-
tervention at the tissue factor level, for example, or
aimed at one of the critical cytokines that mediate its
cellular expression, may alter the clinical course of
these infections favourably. For example, in patients
infected with dengue, pharmacological agents that
block tissue factor may represent an important thera-
peutic approach [Huerta-Zepeda et al., 2008]. In a
study in rhesus monkeys infected with the Ebola vi-
rus, treatment with a recombinant inhibitor of factor
VIIa/tissue factor showed a prolonged survival time
and attenuation of the coagulation and proinflamma-
tory response [Geisbert et al., 2003a]. In another
study in rhesus monkeys infected with the Ebola vi-
rus, treatment with a recombinant human activated
protein C improved the chances of survival signifi-
cantly [Hensley et al., 2007]. Therapy reduced coagul-
opathy and decreased inflammation and viral
replication. These examples indicate that therapeutic
strategies targeted at the coagulation cascade seem
promising. However, none of them are ready for phase
2 trials. Because many issues remain unanswered,
there is an urgent need for more clinical and experi-
mental studies. Furthermore, additional studies are

needed to investigate further in several areas. These
include the efficacy of prophylactic LMWH, the need
to test for viral pathogens in patients with thrombosis
in irregular places (such as the portal vein), pro-
thrombotic intervention in patients with hemorrhagic
viral infection and the proper treatment of patients
with viral DIC. In summary, during the past decade
the world has been confronted with outbreaks of old
and new viral infections. These have often been
accompanied by the activation of coagulation at differ-
ent levels of the coagulation cascade, resulting in ve-
nous thrombosis, DIC with microvascular thrombosis
and bleeding. Although direct interaction between the
virus and the coagulation system occurs, coagulation
activation is also indirectly influenced by cytokines.
An imbalance of the coagulation cascade may be the
result, either procoagulant or profibrinolytic. General-
ly speaking, chronic viral infections seem to be associ-
ated with thrombotic complications, while acute viral
infections are associated with either thrombotic or
hemorrhagic complications. However, therapeutic
antiviral options are still limited and vaccines are of-
ten not available, which makes supportive treatment
crucial in the clinical management of these often life-
threatening infections. Although evidence is still
limited, patients with unexplained thrombosis in pla-
ces other than in the extremities or the lungs (the por-
tal vein, for example), as described in HAV, HCV, and
CMV infections (see Table I), should be tested for
those viral pathogens. Furthermore, because there is
a strong association between several viral infections
and antiphospholipid antibodies, as was discussed
above, patients with newly found antiphospholipid
antibodies should also be screened for viral pathogens,
taking into account the local epidemiology and travel
history. In patients admitted to hospital with severe
viral infection, thrombosis prophylaxis with low
molecular-weight heparin should be started, unless
there is an increased risk of bleeding. Furthermore,
patients who are bedbound but not admitted to hospi-
tal should also be considered for treatment with low
molecular-weight heparin. In mild thrombocytopenia
(with a platelet count >50 � 109/L) low molecular-
weight heparin is not contraindicated. Insufficient
studies have been made in this field to support the
recommendation. The guidelines of the American Col-
lege of Chest Physicians, ACCP, can be consulted
[Geerts et al., 2008; Eikelboom et al., 2012]. Patients
with bleeding complications, with or without systemic
inflammatory response syndrome, or sepsis due to vi-
ral infection, should receive prompt standard support-
ive care (such as fluid resuscitation or ventilatory
support, for example), as stated in the treatment
guidelines for severe sepsis or septic shock [Dellinger
et al., 2008].

In severe bleeding complications the administration
of plasma products and platelets may be necessary.
Interventions with antithrombin have not been inves-
tigated sufficiently, but they might be useful in indi-
vidual cases. Recombinant activated protein C proved
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to be useful in certain cases but larger trials did not
show a beneficial effect and this treatment is no lon-
ger available. Furthermore the ‘‘novel’’ anticoagulants
blocking thrombin or factor Xa might be of high
potential, however the occurrence of bleeding compli-
cations can be a problem. Studies to investigate the
value of these therapeutic agents are required, espe-
cially in dengue virus infections, given that this is the
most prevalent virus causing hemorrhagic fever.
Therapeutic intervention of the tissue factor pathway
seems promising, but supporting evidence is still lim-
ited and not yet near large human tirals. Research
should focus first on the development of antiviral
agents and vaccines. A better understanding of the
pathogenesis of coagulation disorders during infection
is urgently needed to improve supportive care.
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APPENDIX 1: COMPLETE SEARCH STRATEGY

We searched PubMed for articles regarding the re-
lationship between viruses (alternative search strate-
gy between brackets) and hemostatic parameters and
trombotic complications. All possible combinations
were used between the virus and coagulation groups:

Virus
Avian influenza (H5N1)
Adenovirus
Beta 2 glycoprotein I (B2GPI)
Coronavirus (corona virus)
Crimean-congo
Cytomegalovirus (CMV)
Dengue virus/dengue hemorrahic fever/dengue schock

syndrome
Ebola
Epstein Barr (EBV)
Hantavirus
Hemorrhagic fever (hemorragic fever)
Hepatitis A/B/C (HAV, HBV, HCV)
Herpesvirus/herpes virus
Herpes simplex virus (HSV)
Human immunodeficiency virus (HIV)
Influenza
Junin (junin hemorrhagic fever)
Lassa/lassa fever
Marburg
Mexican flu (H1N1)
Parvovirus (B19)
Respiratory tract infections
Respiratory syncytial virus (RSV)
Rhinovirus
Severe acute respiratory syndrome (SARS)
Varicella zoster (VZV)

Viral hepatitis
Yellow fever

Coagulation
Activated protein C (APC)
Antiphospholipid antibodies/anticardiolipin antibodies/
lupus anticoagulant

Antithrombin (AT)
Bleeding/hemorrhage/hemorrhage/bleeding complication
Coagulation
Coagulation factor/clotting factor
D-dimer
Endothelial cell protein C receptor (EPCR)
Factor XI
Factor VIII
Fibrin/fibrinogen
Fibrinolysis
Hemorrhagic/hemorrhagic complications
Hemostasis/hemostasis
Heparin cofactor II
Heparan sulfate
Plasmin–a2-antiplasmin (PAP)
Plasminogen activator inhibitor type I (PAI-1)
Platelets
Protein C/protein S
Prothrombin fragment 1 þ 2 (F1 þ 2)
P-selectin
Soluble intercellular adhesion molecule (sICAM)
Soluble vascular adhesion molecules (sVCAM)
Tissue factor (TF)
Tissue factor pathway inhibitor (TFPI)
TF-factor VIIa
Thrombin–antithrombin (TAT)
Thrombin-activatable fibrinolysis inhibitor (TAFI)
Thrombomodulin (TM)
Thrombosis/thrombotic complication
Tissue plasminogen activator (t-PA)
von Willebrand factor (VWF)
Urokinase
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