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Abstract

Missing data is a problem often found in real-world datasets and it can degrade the
performance of most machine learning models. Several deep learning techniques have been
used to address this issue, and one of them is the Autoencoder and its Denoising and
Variational variants. These models are able to learn a representation of the data with
missing values and generate plausible new ones to replace them. This study surveys the
use of Autoencoders for the imputation of tabular data and considers 26 works published
between 2014 and 2020. The analysis is mainly focused on discussing patterns and rec-
ommendations for the architecture, hyperparameters and training settings of the network,
while providing a detailed discussion of the results obtained by Autoencoders when com-
pared to other state-of-the-art methods, and of the data contexts where they have been
applied. The conclusions include a set of recommendations for the technical settings of the
network, and show that Denoising Autoencoders outperform their competitors, particularly
the often used statistical methods.

1. Introduction

Missing data is a common problem that appears in real-world contexts and may compromise
the performance of most learning models (Abreu et al., 2014a,b). In the research community,
three missing mechanisms are recognized (Baraldi and Enders, 2010; Rubin, 1976; Little and
Rubin, 2019):

• Missing Completely At Random (MCAR) - occurs when the mechanism under the
missingness is unrelated to any observed or unobserved values from the dataset;
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• Missing At Random (MAR) - occurs when the cause of the missing data is related
with observed values from the dataset;

• Missing Not At Random (MNAR) - occurs when the probability of a value being
missing is related with that same value and/or with other unknown data.

The existent literature identifies several ways to handle these mechanisms (see Figure
1): case deletion, imputation methods, Maximum Likelihood and machine learning without
missing data estimation (Garćıa-Laencina et al., 2009; Graham et al., 2003).

Case Deletion Missing Data
Imputation 

Machine Learning 
Without Estimation Maximum Likelihood 

Statistical
Imputation 

Machine Learning
Imputation 

Mean/Mode Imputation 
Regression Imputation 

Multiple Imputation 

SVM Imputation 
MLP Imputation 
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Mixture Models 
EM Algorithm 

Ensemble Approaches  
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Decision Trees

Missing values are imputed

Heuristic 
Imputation 

Genetic Algorithms 
Ant Colony Optimization 

Particle Swarm Optimization 

Figure 1: Methods to handle missing values (adapted from Garćıa-Laencina et al., 2009).

Each of these approaches presents advantages and limitations, but the one most fre-
quently used is data imputation (Garćıa-Laencina et al., 2015; Santos et al., 2015, 2017). In
this approach, plausible values are generated to replace the missing ones, and it is mainly
divided into statistical-based and machine learning-based methods (Garćıa-Laencina et al.,
2009). Statistical methods consist in replacing the missing observations with the most sim-
ilar ones among the training data, without the need of constructing a predictive model to
evaluate their “similarity” (e.g. mean/mode imputation). Machine learning-based tech-
niques construct a predictive model with the available data to estimate values to replace
those that are missing (e.g. Support Vector Machine imputation).

Although deep learning has received much attention and has been applied to several
artificial intelligence problems over the past couple of years, its investigation for imputation
purposes remains an understudied topic. Among the deep learning approaches used for
imputation, the Autoencoder (AE) and its variants (e.g. Denoising and Variational) recently
caught the eye of the research community due to their properties in what concerns the ability
of learning from corrupted data, which is a natural extension to the field of missing data
(Nelwamondo et al., 2007; Sánchez-Morales et al., 2019; Costa et al., 2018; Gondara and
Wang, 2018). This type of neural network learns a representation of the data from the input
layer and tries to reproduce it at the output layer. By doing this, the model is able to learn
from incomplete data and generate new plausible values for imputation. Considering the
community interest in this method, a comprehensive review that covers the application of
AEs to the missing data field addresses a gap in the literature and covers a hot topic for
missing data researchers nowadays: the performance of deep learning techniques for data
imputation.
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This survey addresses the use of AEs for missing data imputation by answering the
following questions:

• How good is the imputation performed by AEs when compared to other algorithms?

• How do authors tune the AEs’ hyperparameters to achieve a better performance?

• In which data contexts have the AEs presented good results?

To answer these questions, 26 works that use AEs for imputation of tabular data were
considered, published between 2014 and 2020 (the selection criteria is described in the
following section). The analysis is focused on how the AEs were used, considering aspects
such as network structure, hyperparameters tuning, training approaches, extensions of the
algorithm, comparison with other methods and data context characterization. To the best
of our knowledge, no other studies exist in the literature that address this topic, especially
with such a wide technical and comparative analysis, which makes this survey a novelty in
the missing data field. The analysis conducted in this survey shows that AEs outperform
several state-of-the-art methods, and therefore constitute a better alternative to perform
missing data imputation.

To select the research studies for this survey’s analysis, an extensive search was con-
ducted through the Web of Science platform. The articles were searched by title and con-
tent keywords, where a combination of the sentence fragments “autoencoders” and “missing
data” was applied. Moreover, no time restrictions were set since the goal was to include
as much relevant papers as possible. Initially, 54 works were selected with the described
search criteria but 33 were discarded for being out of scope (e.g. some were only focused
on dimensionality reduction, others were related with generative approaches not applicable
for imputation purposes). At the end, 20 works were selected encompassing the period be-
tween 2014 and 2019. This search was later extended through the Google Scholar platform,
using the same criteria already described. To the 20 works already selected, 6 other articles
were added, extending the encompassed period to 2020. All these works are focused on
tabular data (i.e., structured data stored in table formats, such as relational databases or
comma-separated values files). However, 5 additional works that use unstructured data (in
this case, images) were also found during the search. Therefore, aiming to provide a more
correct and trustworthy analysis, the survey is focused on the 26 works that use tabular
data, but to avoid ignoring the remaining 5 works an independent analysis is presented in
Section 5.

The remainder of the paper is organized in the following way: Section 2 presents the
theoretical background and technical details related to the hyperparameters and training
of the AEs; Section 3 a characterization of the datasets used in the works; Section 4 the
comparison with other methods regarding imputation and classification/regression; Section
5 an analysis of the works that use non-tabular data; and Section 6 the conclusions with a
discussion of the results, recommendations and challenges found throughout the survey.

2. Autoencoders

AEs are Artificial Neural Networks (ANNs) trained in an unsupervised way and used to
reproduce, as good as possible, the data supplied to the input layer in the output layer. To
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better understand this type of ANN, its theoretical background is presented in this section.
Moreover, the works under analysis revealed tendencies regarding the architecture of the
AEs and their training approaches. Theses tendencies can be seen as a standard to be
followed, and are also presented in this section, along with extensions to AEs proposed by
some authors.

2.1 Theoretical Background

AEs are ANNs composed by at least three layers (input, hidden and output layer) which
can be divided into two parts: encoder, which goes from the input layer to the output of
the hidden layer, and decoder, that goes from the hidden layer to the end of the output
layer (Figure 2).

Figure 2: Simplified structure of an Autoencoder. f represents the encoder and g′ the
decoder. x is the input of the network and z is the output. y represents the
results of the encoding process.

The encoder part of an AE maps an input vector x to a hidden representation y,
through a nonlinear transformation fθ(x) = s(xWT + b) where θ represents the weight
matrix W and bias vector b. The resulting y representation is then mapped back to a
vector z which has the same shape of x, where z is equal to g′θ(y) = s(W ′y + b′). The
training of an AE consists in optimizing the model parameters (W , W ′, b and b′) to
minimize the reconstruction error between x and z with a Stochastic Gradient Descent
variant, using a loss function such as the Mean Squared Error or the Binary Cross-Entropy
for binary scenarios (Charte et al., 2018). Therefore, this type of network is trained in an
unsupervised way to reproduce its input at the output layer.

The AE has one variant often used for missing data imputation: the Denoising Autoen-
coder (DAE) (Vincent et al., 2008). This variant is designed to recover noisy data (x̃),
which can exist due to data corruption via some additive mechanism or by the introduction
of missing data (Charte et al., 2018) (Figure 3).

The DAE is similar to a basic AE, but the main difference is the application of a
stochastic corruption to the inputs of the model during the training phase, meaning that
z becomes a deterministic function of x̃ rather than x. One of the possible corruption
techniques consists in setting to 0 a fixed amount of features for a set of observations, which
can be seen as a dropout on the input layer (dropout is a regularization technique that
randomly drops units from an ANN to avoid overfitting, Srivastava et al., 2014). There are
other possible corruption processes, such as adding Gaussian noise or salt-and-pepper noise
to the input data (Vincent et al., 2010).

Recently, another variant of the AE family with generative capabilities has been used for
missing data imputation: the Variational Autoencoder (VAE). While a vanilla AE learns a
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Data Corruption

Figure 3: Simplified structure of a Denoising Autoencoder. f represents the encoder and g′

the decoder. x is the uncorrupted version of the data, x̃ is the corrupted input of
the network and z is the output. y represents the results of the encoding process.

compressed representation of the input data, the VAE learns a set of distribution parameters
which describe the data, usually the mean and variance of a Gaussian probability function.
By sampling from these parameters, the VAE is capable of generating data instances with
the same characteristics (Kingma and Welling, 2013). The VAE loss function contains
two terms: the reconstruction error (as the vanilla AE) and a regularizer (see Equation
1, where q(z|X) is the encoder output, p(X|z) is the decoder output, X is the input data
and z represents the generated instances). The regularizer used in the second term is
the Kullback-Leibler divergence applied to the encoder and decoder distributions. Such
regularization is used to ensure the latent space is well structured, leading to similar input
data being represented by similar latent spaces (Kingma and Welling, 2013).

L(X) = −Ez∼Q(z|X)[logp(X|z)] +KL(q(z|X) ‖ p(z)) (1)

Another generative variant of the AE is the Adversarial Autoencoder, which also relies
on variational inference but has a different loss computation: it uses the same concept of
adversarial loss as in the well-known Generative Adversarial Networks (Makhzani et al.,
2015).

AEs have two types of representations regarding the number of nodes of the hidden
layers: overcomplete, when the hidden layers have more nodes than the input layer, and
undercomplete, when the hidden layers are smaller than the input layer. In a multilayer
scenario, undercomplete representations are more often found, in which the number of nodes
decreases through each encoding layer and increases again through each decoding layer.
Such strategy is important to force the network to learn a lower-dimensional representation
of the input data. For vanilla AEs, an overcomplete architecture only learns the identity
function by copying the input to the output, which creates an overfitting scenario that
requires additional handling. However, the DAEs can be overcomplete without having this
problem because they compare the original input to its corrupted version. An undercomplete
architecture never presents this type of problem since the AE is forced to learn a more concise
representation of the input data.

2.2 Network Structure

An important aspect of the ANNs structure is the number of hidden layers, since they
are directly related with the learning capabilities of the network. The works under study
present different values for this parameter, as Figure 4 shows (the latent space is considered
as a hidden layer in the count). Among the 26 papers, only 5 use a single-layer architecture
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while the remaining use between 2 and 13 layers. An interesting aspect is that, with the
exception of the work from Zhao et al. (2016), only DAEs and VAEs use more than one
layer. This parameter is defined in an empirical way for all works, with the exception of the
work from El Esawey et al. (2015), where a hyperparameter optimization was conducted
using the Hyperopt1 library.
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Figure 4: Number of hidden layers used in each work. N/A stands for Not Available.

Regarding the number of nodes, only 15 of the 26 works under analysis describe their
type of representation, as Figure 5 shows. From this subset, 10 use undercomplete repre-
sentations and 5 use overcomplete, which means that most works force the network to learn
only the most relevant data. A more detailed analysis of how the nodes are distributed is
presented in Table 1. On the multi-layer networks, the overcomplete representations always
use a symmetric approach where the number of nodes is increased by a fixed step through
the first half of the layers, and decreased by the same step through the second half, using
as baseline the input layer. The undercomplete representations often use the same strat-
egy, but they decrease the nodes on the first half of the layers and increase them on the
second half. Other approaches are also used for this latter representation, namely a con-
stant number of nodes and different values defined in an empirical way. A hyperparameter
optimization approach is also used twice for unknown representations.

The activation functions used by the nodes of the hidden and output layers are reported
in 21 of the 26 works. For the standard AEs the Sigmoid function is always used (Hau
et al., 2016; Sakurai et al., 2017; Jia et al., 2017), but in the work of Sakurai et al. (2017) a
custom linear function is used on the output layer. For multi-layer networks the Sigmoid is
also used in some works (Duan et al., 2014, 2016; Xie et al., 2019; Sánchez-Morales et al.,
2020), but ReLU is the one more often applied (Gondara and Wang, 2017; Ryu et al., 2020;
McCoy et al., 2018; Boquet et al., 2019, 2020; Xie et al., 2019; Saeed et al., 2018; Fortuin
et al., 2020), sometimes through the Leaky ReLU variant (Ryu et al., 2020; Saeed et al.,

1. Available at http://hyperopt.github.io/hyperopt.
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Figure 5: Representation used in each work. N/A stands for Not Available.

2018). The Hyperbolic Tangent is used less often (Gondara and Wang, 2018; Chen et al.,
2015), but these works concluded it presents better results than ReLU when the datasets
are small. The Softsign function, which is very similar to the Tangent, is also used in the
work of Jaques et al. (2017).

2.3 Training

The training phase of an AE depends on the same aspects of any other ANN: an optimization
algorithm, a loss function and the maximum number of epochs. From the 17 works that
describe the used optimization algorithm, 5 use the well-known Stochastic Gradient Descent
(Sánchez-Morales et al., 2017; Hau et al., 2016; Sánchez-Morales et al., 2019; Xie et al., 2019;
Lai et al., 2019) and 6 use one of its variants called Adam (El Esawey et al., 2015; Ryu et al.,
2020; Boquet et al., 2019, 2020; Saeed et al., 2018; Fortuin et al., 2020). Other algorithms
are used less often, namely the Nesterov’s Accelerated Gradient (Gondara and Wang, 2018),
the Scaled Conjugate Gradient Algorithm (Sakurai et al., 2017) and the RMSProp (McCoy
et al., 2018).

Regarding the loss functions, the majority of the works use the standard Mean Squared
Error (MSE) (Gondara and Wang, 2017, 2018; El Esawey et al., 2015; Sakurai et al., 2017;
Jia et al., 2017; Boquet et al., 2019; Saeed et al., 2018) or the Squared Error (Hau et al.,
2016; Chen et al., 2015; Sánchez-Morales et al., 2019; Ryu et al., 2020). The exceptions are
a work that uses a custom loss function roughly based on the Squared Error (Zhao et al.,
2016), 3 works that use the Cross-Entropy (Jaques et al., 2017; Lee and Lee, 2017; Sánchez-
Morales et al., 2020), another one that uses the Binary Cross-Entropy with a modification
to handle the missing values (Beaulieu-Jones and Moore, 2017), and finally 4 VAE-based
works which use the log-likelihood (McCoy et al., 2018; Xie et al., 2019; Nazabal et al., 2020;
Fortuin et al., 2020). Notice that all VAE-based works also include the Kullback–Leibler
divergence as a second term of the loss function.
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Table 1: Nodes used in each work, grouped by organizational approach (see
Section 2.2 for more details). N/A stands for Not Available.

Approach Article Nodes Representation

Symmetric

Gondara and Wang (2017) Step of 5 over 4 layers Overcomplete

Gondara and Wang (2018) Step of 7 over 5 layers Overcomplete

Sánchez-Morales et al. (2017) 25% to 75% growth over 3 layers Overcomplete

Sánchez-Morales et al. (2019) 75% growth over 3 layers Overcomplete

Duan et al. (2014) Step of 72 over 3 layers Undercomplete

Duan et al. (2016) Step of 72 over 3 layers Undercomplete

Jaques et al. (2017) Step of 200 over 4 layers Undercomplete

Ryu et al. (2020) 50% growth; latent space of 90 Undercomplete

Sánchez-Morales et al. (2020) 75% growth over 3 layers Overcomplete

Constant

McCoy et al. (2018) Constant 20; latent space of 10 Undercomplete

Boquet et al. (2019) Constant 512; latent space of 100 Undercomplete

Beaulieu-Jones and Moore (2017) Constant 500 Undercomplete

Saeed et al. (2018) Constant 128 Undercomplete

Empirical

Xie et al. (2019) Between 3 and 13 over 7 layers Undercomplete

Xie et al. (2019) Between 3 and 10 over 5 layers Undercomplete

Chen et al. (2015) Between 5 and 36 over 6 layers Undercomplete

Fortuin et al. (2020) Variations over 4 and 6 layers Undercomplete

Sakurai et al. (2017) Between 4 and 70 Single-layer

Hau et al. (2016) Between 200 and 400 Single-layer

Lee and Lee (2017) Between 200 and 400 Single-layer

Optimization
El Esawey et al. (2015) Between 240 and 370 over 5 layers N/A

Lai et al. (2019) Between 5 and 30 over 1 or 2 layers N/A

With the exception of the modified Binary Cross-Entropy (Beaulieu-Jones and Moore,
2017), the remaining functions are not able to deal with the missing values as they require all
features to be complete. To solve this issue, pre-imputation of the missing values is often
performed. Gondara and Wang (2018) used the mean/mode method; Sánchez-Morales
et al. (2017) used and compared the methods zero imputation, kNN imputation (kNN) and
Support Vector Machines (SVM) imputation, concluding that the kNN and SVM methods
presented the best results; Jia et al. (2017) compared constant and linear imputation, the
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latter performing better in general; Jaques et al. (2017) and Saeed et al. (2018) imputed all
missing values with -1; Ryu et al. (2020) replaced all missing values with 0; Sánchez-Morales
et al. (2020) used and compared the zero imputation method with Multiple Imputation by
Chained Equations (MICE), with MICE presenting the overall best results; and finally
Sánchez-Morales et al. (2019) applied and compared the methods Multi-layer Perceptron
imputation (MLP), Singular Value Decomposition (SVD) and MICE, being the results
generally better when MICE was used.

Some works also define a maximum number for the training epochs: less than 50 (Saeed
et al., 2018; Fortuin et al., 2020), 100 (Beaulieu-Jones and Moore, 2017), 300 (Hau et al.,
2016), 500 (Gondara and Wang, 2018), 1000 (Gondara and Wang, 2017; Sakurai et al., 2017),
2000 (Nazabal et al., 2020) and 10000 (McCoy et al., 2018; Lai et al., 2019). Although early
stopping rules are common on ANNs training, they were only applied by Gondara and Wang
(2018), stopping the training when the MSE achieves 1 ∗ 10−6 or no improvement exists in
an average of 5 epochs.

As previously stated, avoiding overfitting of AEs is mandatory, particularly with over-
complete representations, otherwise the network will lose its generalization ability. To avoid
this behavior, the objective function can be modified to include a regularization term. The
one used more often is the L2 regularization, which is also known as Frobenius norm reg-
ularization or “weight decay”, because it forces the weights to decay towards zero without
achieving it (Schmidhuber, 2015). The L2 term consists of the sum of the squared values
of the weights that is multiplied by an attenuation coefficient, which results on a higher
error for larger weights, causing the training algorithm to favor smaller weights. Consider-
ing all research works, 7 use this approach (Gondara and Wang, 2018; Zhao et al., 2016;
Jaques et al., 2017; Hau et al., 2016; Boquet et al., 2019, 2020; Saeed et al., 2018) with the
coefficient values varying between 0.01 and 0.001. Gondara and Wang (2017) used batch
normalization, where the output of each node of the hidden layers is normalized using the
mean and variance of the batch, and 20% dropout in each hidden layer, meaning that 20%
of the nodes are randomly set to 0 (they are dropped, becoming inactive) in each layer. This
latter approach is also used by Beaulieu-Jones and Moore (2017) and Saeed et al. (2018).
Nazabal et al. (2020) also applied batch normalization, but with a mean of 0 and a variance
of 1. An interesting observation is that, in theory, DAEs can be overcomplete without the
need for any regularization since they compare the original data with the corrupted version.
Nevertheless, several works that use this type of AE still apply it (Gondara and Wang,
2017, 2018; Jaques et al., 2017).

A common procedure applied before the training step is to normalize the input data
(Abreu et al., 2016). This normalization is known to provide several improvements: the
training is often faster, which happens as a consequence of the faster convergence of the
weights from the networks, and it also reduces the chances of the training being stopped
on a local minimum. Only 8 works describe how this question was addressed, being the
normalization output between [0, 1] (Gondara and Wang, 2018; Jaques et al., 2017; Saeed
et al., 2018; Boquet et al., 2019, 2020; Sánchez-Morales et al., 2020) and [−1, 1] with zero
mean (Chen et al., 2015). Xie et al. (2019) also normalized the data but the scale is
unknown.

In the specific case of DAEs, an important aspect is the type of noise added to the
input data. Although such data already contains missing values, some works reinforce the
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data corruption by adding additional noise. Among all works, 14 use DAEs and 7 report
the type of noise additionally generated, which is always dropout. As described, dropout
is used to avoid overfitting by selecting a random percentage of nodes in each hidden layer
and randomly setting them to 0 (i.e., making them inactive). However, this concept can
also be seen as a type of noise when it is applied to the input layer, since setting several of
the input features values to 0 is a corruption of the data, and forces the network to learn
with that level of incompleteness. Some works propose different percentages for this random
selection, such as 5% (Jaques et al., 2017), 20% (Gondara and Wang, 2017; Beaulieu-Jones
and Moore, 2017), 30% (El Esawey et al., 2015) (although this work shows that using values
between 10% and 60% produces equally good results) and, finally, 50% (Gondara and Wang,
2018). The work from Sánchez-Morales et al. (2020) also uses additive Gaussian noise with
zero mean and a dynamic variance that is a percentage of the variance for each feature.
The authors concluded that this percentage should be between 10% and 20% to achieve the
best results.

A layer-wise unsupervised pre-training strategy is used by 7 of the works under analysis
(Sánchez-Morales et al., 2017; Duan et al., 2014, 2016; Ning et al., 2017; El Esawey et al.,
2015; Zhao et al., 2016; Sánchez-Morales et al., 2020). In this approach, the representation
of the kth layer is the input for (k + 1)th layer, which is trained after the kth layer. When
k is trained, it will have as input the uncorrupted output from the previous layers. After
some training, the fine-tuning will be performed, as the current network parameters will
be used to initialize a new network that will be trained using a regular supervised training
criterion. In theory, this strategy improves the initial solution for the optimization problem
solved during the training procedure, since the weights are no longer randomly initialized.
The approach was proposed by Vincent et al. (2010), and is called Stacked Autoencoder.

2.4 Extensions

Although AEs can be used without any modification for missing data imputation, several
extensions have been proposed on the reviewed works, introducing changes or including
them only in part of the process. In this section, such extensions are described individually.
Considering the diversity of strategies followed by the authors, it is not possible to aggregate
the analysis in similar ways to the remaining parts of this survey.

Gondara and Wang (2018) used a multiple imputation approach, where several runs
of the model are executed with different initial weights of the network, defined randomly.
The approach results in several datasets with different imputed values, attenuating the
variability of the model. The different datasets can be analyzed and combined through the
use of the mean value for numeric features or a voting mechanism for categorical ones.

Duan et al. (2016) generated individual DAE models for different sources of data but
trained each model with all sources. However, the respective data source of each model
must have a bigger impact on the data imputation. To ensure this, a hierarchical training
approach is proposed where each model is trained a second time only with the data from
that source, being the network’s weights influenced twice by it.

El Esawey et al. (2015) performed imputation on missing temporal information, which
requires strategies to ensure that the network is able to deal with the time-series data. The
proposed approach is to include recurrent connections on a DAE, transforming it into a
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recurrent network instead of a feedforward one, because this type of network is commonly
used in scenarios where temporal relations exist in the data. As a consequence of this
change, the training algorithm had to be adjusted to the Backpropagation Through Time
algorithm. Sakurai et al. (2017) also dealt with time-series data, but used a different
approach. A window of n days is defined and multiple input matrices are created from
the training data by shifting the window day by day. The resulting matrices are finally
combined in a single one through a composite transformation operation, which becomes
the network input for training. Jia et al. (2017) dealt with spatio-temporal data through
the application of a standard AE for the spatial features and a Long Short-Term Memory
(LSTM) autoencoder for the temporal ones. The latter is a direct adaptation of the well-
known LSTM model to incorporate the AE characteristics. Both AEs are treated as one,
where the output of the regular AE serves as input for the LSTM. Fortuin et al. (2020)
used a VAE to map time-series data with missing values to a complete latent space, and
the time-series are then modeled with a gaussian process using this latent representation
instead of the original data. Comparing to existent approaches, this method is suitable for
multivariate scenarios because it accounts for the correlation between different channels.

Zhao et al. (2016) applied an AE together with the Fast Clustering algorithm to enhance
the clustering accuracy, which increased almost the double. The imputation is made by the
Top k-Nearest Neighbor Hybrid Distance Weighted algorithm.

Jaques et al. (2017) used a DAE to deal with the missing data issue but also as a classifier
by adding 2 new layers at the end of the network, which are used for prediction purposes.
Saeed et al. (2018) proposed a similar approach for the same purpose.

Chen et al. (2015) used Dynamic Movement Primitives (DMPs) to generate new hu-
manoid movements, although a dimensional reduction of the input data is required to han-
dle the context appropriately. A DAE is used for this purpose and some tests of imputation
of missing humanoid joints are conducted.

Sánchez-Morales et al. (2019) used a DAE for imputation purposes but applied a deletion
strategy before the training that forces some new missing values on observations that already
have missing data. By doing this, the network should learn better how to reconstruct
incomplete data. However, the dataset becomes unbalanced after this deletion, and for that
reason a compensation strategy is also applied. This compensation is achieved through a
small change on the loss function that includes a balancing parameter that is applied to the
error of the complete and incomplete observations.

Lee and Lee (2017) proposed a new collaborative filtering approach based on AEs that
is able to perform the recommendation of the top N items using feedback data from users.
The approach has 2 steps: a first one where a regular AE is trained to impute the missing
values with positive feedback and a second one where a DAE is trained with the previous
imputed data and used to perform the recommendation tasks. Hau et al. (2016) introduced
a similar but simpler approach, where an AE is trained and used without changes for
recommendation purposes.

Nazabal et al. (2020) proposed a VAE adaptation to handle heterogenous data by model-
ing different data types with different likelihood models appropriate for the respective types.
To allow for different likelihoods, each feature has its own independent neural network. To
account for relations and dependencies between features, a hierarchical structure is used
to share network parameters among the different dimensions. Such approach addresses the
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limitation of a vanilla VAE modeling all data through a Gaussian distribution, which is not
the most appropriate solution for non-real-valued data.

Sánchez-Morales et al. (2020) proposed a multitask learning approach where a DAE
is modified to perform the imputation of missing values while it simultaneously solves a
classification task. The target of the classification problem is supplied as an additional
feature to the DAE, and the loss function uses a double weighting approach between the
classification and the imputation errors (such weights must be empirically adjusted for
different datasets).

Lai et al. (2019) introduced the concept of a tracking-removed AE (TRAE), which
removes the connection between each output neuron and its corresponding input neuron.
Such technique weakens the self-trackability of the network and helps it learn better the
relations between different features of the dataset. Moreover, the authors also proposed a
training scheme that includes the missing values in the training procedure. The approach
uses the missing values estimates of the k iteration in the input of the k+1 iteration, which
allows the training to consider the entire dataset while the estimates improve over time.
Pre-imputation is still required, but since its impact is not significant the authors use a
random number within the features domain.

3. Datasets Characterization

All the 26 analyzed works describe the datasets used in the experiments, as Table 2 sum-
marizes. This table presents a description of the datasets used in each work, containing
their number of instances and attributes, the missing rates applied and if they are public
or private.

Table 2: Datasets used in each work. N/A stands for Not Available.

Article(s) Public Dataset(s) # Instances # Features
Missing
Rates (%)

Gondara and
Wang (2017)

Yes

10 synthetic (5 with sin-
gle outcome and 5 with
multiple outcome) and 4
real-world

17703 to 40382 for
the synthetic and
861 to 52000 for
the real-world

25 to 50 for
the synthetic
and 4 to 8
for the real-
world

60, 80

Gondara and
Wang (2018)

Yes 15 real-world
101 to 58000 (the
majority are small-
sized)

5 to 180 20

Beaulieu-Jones
and Moore
(2017)

Yes
ALS Pooled Resource
Open-Access Clinical Trials
(PRO-ACT)

10723 (but only
1824 are used)

23
10, 20, 30,
40, 50

Duan et al.
(2014)

Yes
Caltrans Performance Mea-
surement System (PeMS)

250 288

1, 10, 20,
30, 40, 50,
60, 70, 80,
90
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Article(s) Public Dataset(s) # Instances # Features
Missing
Rates (%)

Duan et al.
(2016)

Yes
Caltrans Performance Mea-
surement System (PeMS)

104544 (data of
weekdays and
non-weekdays is
separated through
K-means Cluster-
ing)

288

5, 10, 15,
20, 25, 30,
35, 40, 45,
50

Sánchez-
Morales et al.
(2017)

Yes

Cloud Dataset, Blood
Transfusion Service Center
and Boston Housing (all
from UCI)

1024, 683 and 506
(respectively)

10, 4 and
13 (respec-
tively)

10, 20, 30

El Esawey
et al. (2015)

Yes

City of Vancouver data
of bicycle traffic, for 22
counter locations over 3
years

12986 2 N/A

Zhao et al.
(2016)

Yes

5 academic from UCI (Iris,
Wine, Pima, Yeast and
Housing) and air quality
monitoring from China

150 to 1484 4 to 14
3, 6, 9, 12,
15

Hau et al.
(2016)

Yes
Real-world Web Service
QoS

1974675 2 N/A

Sakurai et al.
(2017)

No
Real time series showcase
data of one month

N/A N/A N/A

Jia et al. (2017) Yes
EEG data extracted from
UCI

600 16384 30

Jaques et al.
(2017)

No
Mood data from SNAP-
SHOT project

6180 343 30

Chen et al.
(2015)

Yes
CMU Graphics Lab Mo-
tion Capture Database

5 50 N/A

Ning et al.
(2017)

No

Quality inspection data
collected from social net-
works and e-commerce
websites

N/A N/A
1, 5, 10, 15,
20, 25, 30

Sánchez-
Morales et al.
(2019)

Yes

Magic Gamma Telescope,
Pima Indians Diabetes,
Sensorless Drive Diagnosis,
Gas Sensor Array Drift,
Activity Recognition sys-
tem based on Multisensor
data fusion (AReM) and
Twonorm

768 to 58509 6 to 128 10, 20, 30

Lee and Lee
(2017)

Yes
MovieLens (ML-100K and
ML-1M)

100000 and 1M N/A N/A

Ryu et al.
(2020)

No

Real-world residential
customers from South
Korea, collected over 360
days (March 1, 2016, to
February 23, 2017)

520200 96
5, 10, 30,
50

McCoy et al.
(2018)

No Simulated Milling Circuit 104 96 20, 90
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Article(s) Public Dataset(s) # Instances # Features
Missing
Rates (%)

Boquet et al.
(2019)

Yes
Caltrans Performance Mea-
surement System (PeMS)

210432 288 10, 20, 40

Boquet et al.
(2020)

Yes
Caltrans Performance Mea-
surement System (PeMS)

210432 288 10, 20, 40

Xie et al.
(2019)

No

Industrial data collected
from the Distributed Con-
trol System of a polyester
plant in China

10000 15 10, 30, 50

Saeed et al.
(2018)

Yes ExtraSensory ≈ 300000 166 5

Nazabal et al.
(2020)

Yes

6 academic from UCI
(Adult, Breast, Default-
Credit, Letter, Spam and
Wine)

699 to 32561 10 to 58 10, 50

Fortuin et al.
(2020)

Yes
2012 Physionet Challenge
real-world medical data

4000 37 60

Sánchez-
Morales et al.
(2020)

Yes

Activity Recognition sys-
tem based on Multisensor
data fusion (AREM), Ac-
tivity Recognition from
Single Chest-Mounted
Accelerometer (CHEST),
Sensorless Drive Diagno-
sis (DRIVE), Rectangles
(RECT), Skin Segmen-
tation (SKIN) and Sloan
Digital Sky Survey RD14
(SKY)

10000 to 1926896 3 to 784 20, 50

Lai et al.
(2019)

Yes

Iris, Leaf, Friedman, Con-
crete Slump Test, Stock
portfolio performance,
Seeds, Cloud, Glass, Yacht
and Vertebral Column

103 to 1200 4 to 16
5, 10, 15,
20, 25, 30

The data contexts are diverse but some areas can be identified, namely medical and
human-related data (Beaulieu-Jones and Moore, 2017; Jia et al., 2017; Jaques et al., 2017;
Chen et al., 2015; Fortuin et al., 2020; Saeed et al., 2018), quality of service (Ning et al.,
2017; Zhao et al., 2016; Hau et al., 2016; Sakurai et al., 2017), traffic data (Duan et al., 2014,
2016; El Esawey et al., 2015; Boquet et al., 2019, 2020) and automation systems (Xie et al.,
2019; McCoy et al., 2018; Ryu et al., 2020). The remaining works use synthetic and real-
world datasets from miscellaneous contexts, the majority available at public repositories
such as the UCI Machine Learning.

The missing data mechanism is rarely a point explored by the authors. Among the
26 articles in analysis, only 9 identify the type of missing data that is being used. The
articles from Gondara and Wang (2017, 2018); Beaulieu-Jones and Moore (2017); Boquet
et al. (2019, 2020) address the MCAR and MNAR mechanisms, while the papers from Duan
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et al. (2014); Sánchez-Morales et al. (2017, 2019); McCoy et al. (2018) address only MCAR.
The MAR mechanism is not stated by any of the works.

4. Comparison and Evaluation

To evaluate the imputation results of the AEs, the works under analysis frequently compare
them with other imputation algorithms. The evaluation metric most frequently used is
the Root Mean Square Error (RMSE), applied in about 50% of the articles, as Figure 6
shows. AEs are also compared with other methods in what concerns their impact on the
performance of classification and regression tasks. In this scenario, accuracy is the metric
more often used, as shown in Figure 7.
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RMSE - Root Mean Square Error
MSE - Mean Square Error
MAE - Mean Absolute Error
ACC - Accuracy
MRE - Mean Relative Error
d2 - Index of Agreement
MAPE - Mean Absolute Percent Error
NRMSE - Normalized Root Mean Squared Error
DE - Displacement Error
SSE - Sum Squared Error
NAE - Normalized Absolute Error
NAAE - Normalized Accumulated Absolute Error

Figure 6: Metrics used for the evaluation of imputation tasks.

In both comparative scenarios, the data needs to be divided into training and test sets.
Considering the 26 works, only 11 report how this task is performed, and 8 use hold-out
validation while only 2 use cross-validation. The works that apply hold-out validation use
similar divisions, such as 65%-35% (Jaques et al., 2017), 66.666%-33.333% (Duan et al.,
2014), 70%-30% (Gondara and Wang, 2018; El Esawey et al., 2015; Sánchez-Morales et al.,
2020), 80%-20% (Sánchez-Morales et al., 2017, 2019; Xie et al., 2019; Lai et al., 2019) and
90%-10% (Sakurai et al., 2017), for training and test partitions, respectively. The works
from Jia et al. (2017) and Saeed et al. (2018) use k-fold cross validation with k = 5. Some of
these works also obtain average results over 10 experimental runs of the respective validation
strategy (Sakurai et al., 2017; Jia et al., 2017).

4.1 Imputation

AEs were compared in several works with other methods for imputation, and presented
better results in most scenarios. In this section an analysis of these results is presented.
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AUC-ROC - Area Under the ROC Curve
RMSE - Root Mean Square Error
MAPE - Mean Absolute Percent Error
BACC - Balanced Accuracy
MSE - Mean Square Error
MAE - Mean Absolute Error
R2 - Coefficient of Determination

Figure 7: Metrics used for the evaluation of classification and regression tasks.

The discussion is individualized for the Denoising and Variational AE variants. Vanilla AEs
are left out since no works use them directly for imputation.

To summarize the results of the works described for each variant, a taxonomy was created
where the algorithms from the studies are grouped by their families. The comparison is
made through a scale between 1 and 4, where each value has the following meaning: 1
means the AE presents worse results; 2 means the AE presents equal results; 3 means the
AE presents marginally better results; and 4 means the AE presents better results.

4.1.1 Denoising Autoencoders

Gondara and Wang (2017) compared the use of a DAE with the Multiple Imputation by
Chained Equations (MICE), using accuracy to evaluate binary imputation and RMSE to
evaluate continuous time imputation, and concluded that the DAE consistently outperforms
MICE in all datasets, for both metrics, sometimes achieving an improvement over 20%. For
example, the DAE outperforms MICE with a minimum and maximum difference of 2.4%
and 64.9%, respectively, for real-world datasets. The work of Gondara and Wang (2018)
is very similar to the latter, yet considers two different scenarios of missing data: all the
features are subjected to have missing values (uniform synthetic generation) and only half
of the features are set to be missing (random synthetic generation) (Santos et al., 2019).
The results show that the DAE approach outperforms MICE for all the uniform scenarios
and in 7 cases for the random scenario (this can be seen for 2 datasets under MCAR and
for 5 datasets under MNAR).

Beaulieu-Jones and Moore (2017) compared the DAE with the Iterative Singular Value
Decomposition (SVD), the k-Nearest Neighbours (kNN) imputation, the SoftImpute and the
mean/mode imputation, using RMSE for evaluation. The work shows that the DAE obtains
the best results under the MCAR mechanism, with a minimum and maximum difference
from the second best method (SoftImpute) of 0.005 (for a missing rate of 50%) and 0.1 (for
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a missing rate of 30%). For the MNAR mechanism, the work proved that the DAE achieves
the best results, although very similar to the ones obtained by kNN imputation, Softimpute
and SVD: the DAE differs from the second best method by a minimum of 0.0045 (kNN
imputation under a missing rate of 20%) and a maximum of 0.0125 (SoftImpute under a
missing rate of 40%).

Duan et al. (2014) compared the DAE with a vanilla ANN, and the RMSE values vary
between 16.9 and 20.3 for the DAE and between 17 and 21 for the ANN. The DAE also
proves to be a better imputation method than ANN regarding the MAE metric. The work
was later extended (Duan et al., 2016) to compare the same approach with ANNs, the
History Model and the Autoregressive Integrated Moving-Average (ARIMA). Again, the
DAE outperforms the remaining models: in terms of RMSE, the values range from 13.5 to
14.9, while for ANNs the range is between 15.2 and 17.5.

Ning et al. (2017) compared the DAE with variants of the kNN imputation, namely the
Weighted k-Nearest Neighbours data filling algorithm based on Grey correlation analysis
(GBWkNN) and the Mutual k-Nearest Neighbours Imputation (MkNNI). The DAE sur-
passes the remaining imputation strategies, followed by GBWkNN, and the RMSE metric
ranges from 13.4 to 14.5 and 15.2 to 17.5 for these two approaches, respectively. A time
complexity analysis study is also conducted and the DAE is once again the one with the
best results, presenting an average running time of 24.1 seconds against 30.7 for GBWkNN
and 35.7 for MkNNI.

Sánchez-Morales et al. (2017) used the DAE to improve the final imputation estimates
of datasets pre-imputed with the algorithms zero, kNN and SVM imputation, achieving
good results as the quality of imputation increases from 17% to 96% in all studied datasets.

Jaques et al. (2017) compared the DAE with Principal Component Analysis (PCA)
for multimodal data imputation, and the results show lower RMSE values for DAEs in all
scenarios, which was expected considering that PCA works only in a linear space, performing
worse with more complex data.

Sánchez-Morales et al. (2019) compared the DAE and its variant with deletion and
compensation against the methods Multilayer Perceptron Imputation (MLP), SVD and
MICE. The results show that the DAE with deletion and compensation and the MICE
algorithms consistently outperform the remaining, presenting similar imputation squared
errors for all the datasets, being the maximum difference 0.09.

Ryu et al. (2020) compared the DAE with Linear Interpolation and the Historical Av-
erage (i.e., the average of highly correlated periods), while applying a binary mask vector
to the DAE loss in order to give more weight on the accuracy of the imputed missing val-
ues. The Linear Interpolation method presents best results when the missing values are
randomly generated (presumably a MCAR scenario), but when averaging over all missing
data generation mechanisms the DAE shows better RMSE by up to 28.9% for point-wise
error and by up to 56% for accumulated error.

A summary of the results obtained with DAEs in the reviewed works is presented in Table
3. The following families of algorithms were considered: Statistical, Matrix Completion,
Distance and Connectionist.
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Table 3: Comparison of DAEs with other methods. Score is a value between
1 and 4: 1 means the DAE presents worse results; 2 means the DAE presents
equal results; 3 means the DAE presents marginally better results; and 4 means
the DAE presents better results.

Algorithms’ Family Algorithm & Article Score

Multiple Imputation by Chained Equations (Gondara and Wang, 2017) 4

Multiple Imputation by Chained Equations (Gondara and Wang, 2018) 3

Multiple Imputation by Chained Equations (Sánchez-Morales et al., 2019) 2

Mean/Median imputation (Beaulieu-Jones and Moore, 2017) 4

Autoregressive Integrated Moving-Average (Duan et al., 2016) 4

Principal Component Analysis (Jaques et al., 2017) 4

Linear Interpolation (Ryu et al., 2020) 3

Statistical

Historical Average (Ryu et al., 2020) 4

Iterative Singular Value Decomposition (Beaulieu-Jones and Moore, 2017) 3

Singular Value Decomposition (Sánchez-Morales et al., 2019) 3Matrix Completion

SoftImpute (Beaulieu-Jones and Moore, 2017) 3

k-Nearest Neighbours (Beaulieu-Jones and Moore, 2017) 3

History Model (Duan et al., 2016) 4Distance

Weighted kNNs based on Grey Correlation Analysis (Ning et al., 2017) 3

Artificial Neural Networks (Duan et al., 2014) 3

Multilayer Perceptron Imputation (Sánchez-Morales et al., 2019) 3Connectionist

Artificial Neural Networks (Duan et al., 2016) 4

4.1.2 Variational Autoencoders

McCoy et al. (2018) compared a VAE with the PCA method (applied in a multiple imputa-
tion scenario) and the mean imputation. The VAE outperformed the remaining methods,
with average improvements of 45% over the PCA and 46% over the mean approach.

Saeed et al. (2018) compared a Adversarial Autoencoder (AAE) (which is not a VAE but
is also based on variational inference) with the PCA method (mean, median and constant
imputation with -1 were also considered, but the results were not reported). The AAE
outperformed the PCA, achieving a RMSE of 0.227 compared with 0.937 for the latter
method.

Nazabal et al. (2020) compared their VAE extension that is capable of handling different
data types with mean imputation, MICE, a general latent feature model for heterogeneous
data and a Generative Adversarial Network for imputation. The proposed approach is
outperformed in most scenarios with real-valued variables, but shows promising results

1272



Reviewing Autoencoders for Missing Data Imputation

with categorical variables. In this latter case, it outperforms the remaining methods in 4
of the 6 datasets used, with an error decrease over 50% for some settings. Therefore, the
method appears to be more suitable for datasets that mostly contain categorical features.

A summary of the results obtained with VAEs in the reviewed works is presented in Table
4. The families of algorithms considered for this variant were: Statistical and Connectionist.

Table 4: Comparison of VAEs with other methods. Score is a value between
1 and 4: 1 means the VAE presents worse results; 2 means the VAE presents
equal results; 3 means the VAE presents marginally better results; and 4 means
the VAE presents better results.

Algorithms’ Family Algorithm & Article Score

Principal Component Analysis (McCoy et al., 2018) 4

Mean Imputation (McCoy et al., 2018) 4

Principal Component Analysis (Saeed et al., 2018) 4

Multiple Imputation by Chained Equations (Nazabal et al., 2020) 3

Mean Imputation (Nazabal et al., 2020) 4

Statistical

General Latent Feature Model (Nazabal et al., 2020) 2

Connectionist Generative Adversarial Network (Nazabal et al., 2020) 3

4.2 Classification and Regression

When considering the impact on classification and regression tasks, 10 of the works under
analysis presented experimental studies that try to assess the impact of data imputed with
AEs in such tasks.

Gondara and Wang (2018) showed that the accuracy of the Random Forest classifier is
higher when MNAR data is imputed with a DAE, rather than with MICE. The accuracy
improvement varies from less than 1% to 20%, depending on the dataset.

Jia et al. (2017) used a spatio-temporal AE with an adapted LSTM to impute miss-
ing values and learn a compact representation of the data, testing the impact of this
pre-processing step on SVMs, Decision Trees (DTs) and Convolutional Neural Networks
(CNNs) classifiers, using the AUC-ROC and accuracy metrics for evaluation. The experi-
ments showed that both metrics present better results when the AE is used, with accuracy
improvements between 4% and 13% for all classification algorithms.

Jaques et al. (2017) connected additional classification layers to a DAE, which turns it
into a classifier after the encoding part, and compared its accuracy results with a SVM, a
Logistic Regression (LR) and a Feedforward ANN, using different imputation methods like
PCA or filling the missing values with -1. The experiments showed that this new approach
produces very similar results to the remaining algorithms, with varying accuracy results,
although always between 58% and 64%. Saeed et al. (2018) followed the same approach
with an AAE, but only compared the method with different imputation approaches (mean,
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median, constant imputation with -1 and PCA). The results showed that the AAE achieves
the best balanced accuracy, although the improvement is not significant (smaller than 5%
in most settings) when compared to the mean and median imputations.

Sánchez-Morales et al. (2019) trained a linear classifier with the imputed data from the
DAE, MICE and SVD algorithms. The best results were obtained with the DAE, showing
accuracy values almost always above 90% and with 1 to 8% differences from the remaining
imputation methods.

Nazabal et al. (2020) compared their VAE extension that is suitable for heterogeneous
data with a deep logistic regression model and a conditional VAE. The obtained results
showed similar accuracies between all imputation strategies, with the proposed method
outperforming the remaining only in 2 of 5 datasets, and by a very narrow difference (smaller
than 0.1).

Fortuin et al. (2020) trained a logistic regression with data imputed through different
methods: a VAE extension proposed in the work, forward and mean imputation, a simple
gaussian process, a vanilla VAE, the VAE method from Nazabal et al. (2020), and two
recurrent neural network-based methods (GRUI-GAN and BRITS). The proposed VAE
approach provided the best AUC-ROC results, but the improvement is insignificant since
the differences between the methods are minor (in general smaller than 0.05).

Boquet et al. (2019) trained a 2-layer MLP with data imputed through a VAE, a vanilla
AE and the PCA method. The obtained results show the VAE outperformed the remaining
methods, providing improvements in the regression RMSE of at least 40% for MNAR values
and 17% for MCAR values. Boquet et al. (2020) extended the latter study and presented
the same results and conclusions.

Xie et al. (2019) proposed an approach which combines 2 VAEs to perform regression
tasks, and is able to automatically deal with missing values. The approach was compared
with deletion of the missing values, mean imputation and the PCA method, all combined
with a vanilla VAE for the regression. The proposed approach outperformed the remaining
for all settings, achieving MSE values below 0.05 for all missing rates. However, the differ-
ences between the methods are small, considering that the worst MSE value obtained was
under 0.2 with the PCA method.

5. Autoencoders for Non-Tabular Data

As previously stated, this survey mostly focuses its analysis on 26 works that use tabular
data. Nevertheless, during the selection of the articles, 5 works that use non-tabular data
were also found (in this case, they all use 2D images). For the sake of a fair and proper
comparison between works, they were not considered in the remaining sections of this survey.
However, to avoid neglecting them, they are discussed in this section.

From the 5 works, 4 address imputation of missing data modalities with a vanilla AE.
The key idea is that information about a feature can be obtained from different sources,
and by combining them the feature will have more information.

Shao et al. (2015) proposed the use of an AE to deal with missing modalities on image
classification. Two approaches were introduced: the first mixes all the data into one AE
whereas the second uses a bagging strategy to combine n AEs (each trained with a part of
the data) and uses a Sparse Low-Rank Feature Fusion approach to refine the results from
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the multiple AEs. The authors focus the evaluation on an image classification problem,
comparing the proposed approach to 4 methods: the Transfer Subspace Learning (TSL),
the Low-rank Transfer Subspace Learning (LTSL), the Robust Domain Adaptation with
Low-rank Reconstruction (RDALR) and the Geodesic Flow Kernel (GFK). The results
showed that the new approach is better in all scenarios, with an average accuracy between
73.47% and 89.83%, while the remaining algorithms never surpassed the 70% threshold.

Malek et al. (2018) proposed two similar approaches for the recovery of missing parts of
multispectral images, which can be seen as different modalities of the same image. The first
approach uses a vanilla AE that receives as input the images’ pixels, referred to as pixel-
based reconstruction. The second approach defines a central pixel and creates n patches
using a grid and changing the position of that pixel on the grid in each patch. This latter
approach uses n AEs, one for each patch, and their results are fused through a weighted
average. The method was compared to the Basis Pursuit, the Orthogonal Matching Pursuit
and Genetic Algorithms. The conclusions showed that the proposed approach outperforms
the remaining algorithms for all datasets, achieving Peak Signal-to-Noise Ratio (PSNR)
values between 28.47 and 43.94, greater than the remaining by an average of 6.

Shang et al. (2017) used a DAE, although only for the fusion of the modalities, whereas
the imputation is performed afterwards with Generative Adversarial Networks. The AEs
use fully connected layers for the imputation of numeric data and convolutional layers for
imputing images. The approach was compared with the a matrix completion method, a
vanilla AE, the pix2pix and the CycleGAN. The results showed that the proposed approach
outperforms the remaining algorithms for all datasets, presenting an average RMSE error
of 3.84 for the MNIST dataset and an average accuracy of 80.03% and 64.50% for each of
the remaining datasets.

Tran et al. (2017) followed an approach similar to Shang et al. (2017) regarding the
types of layers for numeric data and images, although Residual Autoencoders (RAEs) are
used instead. These are very similar to DAEs, with the difference of the output layer.
DAEs produce a replica of the input data without noise while RAEs produce the difference
between the input data with and without noise. By taking advantage of this difference, a
cascade architecture is proposed instead of the common stacked one. While the standard
approach adds layers to the AEs, the cascade model uses independent RAEs and stacks the
entire networks. Moreover, it uses a joint learning scheme where the minimization of the
loss function during the training stage is done with an overall strategy to all RAEs. The ap-
proach was compared with the Singular Value Thresholding, the SoftImpute, the OptSpace,
Genetic Algorithms, DAEs and other AE variants. The results showed that stacking RAEs
to build a deep architecture improves the imputation, particularly when convolutional layers
are used, since the proposed approach outperforms the remaining methods in all datasets,
with the resulting PSNR values being between 26.12 and 31.04, greater than the remaining
by an average of 1.5. The DAE methods have close errors to this new approach, but the
authors claim it can recover more individual characteristics of the data.

Ma et al. (2019) is the only work from the 5 that does not address missing modalities
in images. Instead, the authors proposed a Partial VAE for imputation of images, which
is similar to a vanilla VAE but is trained only with the observable data (i.e., complete
data). The method was compared with two variants of a vanilla VAE pre-imputed with
zeros (one is standard and the other one uses a mask matrix indicating which variables
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are complete), and the experiments used the MNIST dataset injected with missing pixels
randomly selected (rates vary between 1% and 70%) and removed from the upper 60%
region of the images in the test set. The approach outperformed the remaining methods,
showing bigger improvements when an entire region of the image is missing (an average
improvement of approximately 10%).

A summary of the image datasets used in these 5 works, similar to the one presented
before for the tabular datasets, is available in Table 5. Moreover, a summary of the results
obtained from the 3 works that evaluate the imputation quality is presented in Table 6. This
summary uses the same taxonomy introduced previously for the works using tabular data.
Note that the families marked with 4 were compared with the Convolutional Residual AE,
the ones marked with � with vanilla AEs and the one marked with ‖ with a VAE.

Table 5: Image datasets used in each work. N/A stands for Not Available.

Article(s) Public Dataset(s) # Instances # Features
Missing
Rates (%)

Shao et al.
(2015)

Yes
BUAA and Oulu-CASIA
images databases

15 and 80 (respec-
tively)

2 image
modalities
(NIR and
VIS)

N/A

Tran et al.
(2017)

Yes

2013 GRSS Data Fusion
Contest, RGB-D Object,
Multi-PIE and the Hyper-
spectral Face from Hong
Kong Polytechnic Univer-
sity

200, 683, 2258 and
114 (respectively)

2 modalities
with 111
and 37, 2
modalities
with 2500,
5 modal-
ities with
1024 and 24
modalities
with 625 (re-
spectively)

40, 45, 50

Malek et al.
(2018)

No

2 synthetic from the Tai-
wanese FORMOSAT-2
and the French SPOT-5
satellites, and 1 real from
the European Sentinel-2
satellite

N/A

160000,
202500 and
560000 (re-
spectively)

N/A

Shang et al.
(2017)

Yes

MNIST and 2 databases
with information about
patients of substance use
disorders

70000 and 12158
(respectively)

784 for the
MNIST and
N/A for the
remaining

N/A

Ma et al.
(2019)

Yes MNIST 70000 784 1 to 70
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Table 6: Comparison of AEs with other methods for imputation in images.
Score is a value between 1 and 4: 1 means the AE presents worse results;
2 means the AE presents equal results; 3 means the AE presents marginally
better results; and 4 means the AE presents better results.

Algorithms’ Family Algorithm & Article Score

Singular Value Thresholding (Tran et al., 2017) 4

SoftImpute (Tran et al., 2017) 4Matrix Completion4

OptSpace (Tran et al., 2017) 4

Genetic Algorithms (GA) (Tran et al., 2017) 4
Evolutionary4�

Genetic Algorithms (Malek et al., 2018) 4

Denoising Autoencoder (Tran et al., 2017) 4

Stacked Denoising Autoencoder (Tran et al., 2017) 4

Multi-modal Autoencoder (Tran et al., 2017) 4

Deep Canonically Correlated Autoencoders (Tran et al., 2017) 3

Connectionist4‖

Variational Autoencoder (Ma et al., 2019) 4

Orthogonal Matching Pursuit (Malek et al., 2018) 4
Other�

Basis Pursuit (Malek et al., 2018) 4

From these 5 works it is possible to draw some initial conclusions about the use of AEs
to impute missing parts of images: the results are encouraging, especially when AEs use
convolutional layers. Furthermore, the application of this method to multimodal data also
seems promising, particularly since the AEs can perform the necessary data fusion steps in
a direct way and with a small effort.

6. Conclusions, Recommendations and Open Challenges

This survey presents a technical analysis of AEs used for imputation of missing data, and
compares their results with other algorithms used for the same purpose. This section con-
cludes the analysis with a discussion of the results found, focusing on why AEs are a very
powerful and promising method for missing data imputation, while also giving recommen-
dations about the network architecture and hyperparameters that should be used. To the
best of the authors knowledge, this is the first work that performs this type of analysis.

6.1 Architecture and Training

Defining the architecture and the respective hyperparameters of ANNs is never an easy task.
Most decisions are usually based on empirical guesses or expensive grid search approaches.
The vast majority of the analyzed works do not present justifications for the decisions
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performed at this level. Instead, they tend to follow trends considered to be state-of-the-
art, while just a few exceptions use grid search. As stated before, this might be due to
the fact that grid search approaches are computationally expensive, and most authors do
not have the resources to do it. Considering that training AEs is already a heavy process,
further performing grid search could rapidly make the experimental setup more complex,
time-consuming, and impractical.

From the state-of-the-art trends considered by most authors, some recommendations can
be given. Regarding the number of hidden layers, although the spectrum goes from single-
layer architectures to 13 multi-layered networks, most works use small-sized networks, with
the most common amount of layers being 3. A possible explanation is that most datasets
have a level of complexity that can be easily mapped by a small amount of layers. The
benefits of using more layers in such scenarios may not compensate the increased time
performance costs. Within each layer, the number of nodes varies between works, but the
use of a regular step between layers is the approach most often applied, followed by the
use of empirical criteria. Choosing a fixed step is recommended, since it allows a certain
level of symmetry between the encoder and decoder, which appears to benefit the learning
process. For each of the nodes, the activation function more often used is the ReLU, with
the Sigmoid also appearing in a few works. This is an obvious state-of-the-art choice, since
ReLU and its variants have been presenting good results in deep learning domains.

Focusing on the training process, it is usually performed with the Stochastic Gradient
Descent or its Adam variant, with the most used loss function being the Mean Squared Error
(MSE). Regularization terms are often applied to avoid overfitting, especially the L2. Once
again, such choices are the ones commonly found in state-of-the-art works that use ANNs
and deep learning, being therefore recommended. This training process requires the data to
be complete, otherwise the optimization of the network can not be performed. Therefore,
most of the time a pre-imputation strategy is required, since the missing values cannot
exist. Not many studies address this topic (and those who address it do not often elaborate
on the used strategy), but as expected more complex imputation methods (e.g., kNN and
MICE) tend to outperform simpler methods (e.g., mean and constant imputation). The
reasoning is quite simple: if such methods perform better, they will generate better initial
guesses for the network. Therefore, the use of these more robust imputation approaches
should be preferred to simpler methods. Finally, for the specific case of DAEs, several works
use dropout to add extra noise to the input data. This appears to reduce overfitting and
improve the network robustness to missing values.

Regarding the purpose of the AEs, some works extend the basic architecture for differ-
ent tasks. A purpose that stands out is using AEs for time-series imputation. Standard
approaches for this type of data are applied (e.g., recurrent connections, LSTM models
and a time window), but the aspects explored in this survey are mostly shared with these
extensions.

6.2 Data Contexts

Being a type of ANN, AEs can be applied to any type of data that is, or can be transformed
to, numeric values. From the works under analysis, 3 predominant data contexts were
detected: medical and human-related data, quality of service and traffic data. However,
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several works use datasets from miscellaneous contexts, most of them available in public
repositories such as the UCI. Therefore, there is not enough information to say that AEs
work better for those specific 3 contexts. Instead, the analysis shows that AEs are very
versatile, since they obtain similar and stable results when used across a large variety
of contexts. ANNs are, in general, applied to solve very different problems in the most
heterogenous scenarios, and that is why the versatility of AEs comes as no surprise.

The vast majority of datasets used are small and medium-sized, mostly below 100000
observations. This may be due, once again, to the computation resources and the time
complexity needed to trained AEs (and any deep learning model) in big data scenarios.
Therefore, the generalization of these conclusions is limited to small and medium-sized
datasets, while further work in big data contexts is required.

6.3 Comparative Analysis

The works under analysis report very promising results about the use of AEs for missing
data imputation, with both the DAE and VAE variants surpassing their competitors in
the vast majority of works that report imputation results or its impact on classification
and regression tasks. In fact, when focusing on the imputation error, AEs outperform the
remaining families of algorithms in the following way:

• DAEs clearly outperform most statistical methods (the single exception is the work
from Sánchez-Morales et al., 2019, which obtains similar results with MICE), and
marginally outperform the remaining families (matrix completion, distance and con-
nectionist algorithms);

• VAEs outperform most methods considered (both statistical and connectionist), with
the single exception being the work from Nazabal et al. (2020) (the proposed method
is more suitable for categorical features).

There are several aspects that may justify why AEs show such promising results and are
a good alternative to other imputation methods. By being a ANNs-based model, AEs can
model data patterns much more complex when compared to other simpler methods. For
example, the kNN method is based on simple distances that only detect global similarity
between instances, and the MICE method relies internally on simple regressions that may
not be able to map complex patterns. Therefore, all known benefits of ANNs are inherited
to AEs. Moreover, AEs natively support multivariate scenarios, meaning they perform the
imputation of all features with missing values while accounting for the relations between
them. This is something that most imputation methods are unable to do (the main ex-
ception would be the MICE method), and is the main difference between using AEs and
vanilla ANNs to perform imputation. From a more practical perspective, although training
AEs may be time-consuming, using a trained AE is exceptionally fast, even for the most
time-restrained environments, while other methods need more time since they are executed
on-the-fly (e.g., kNN) or need multiple executions (e.g., MICE).

Addressing the reported results of both variants, although they both are AEs there is a
major difference between them: DAEs are discriminative models while VAEs are generative.
In other words, DAEs try to reconstruct the exact input data while VAEs try to generate
new instances with the same characteristics of the input data. Both variants are suitable for
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imputation of missing data, although VAEs may be more adequate for scenarios where the
uncertainty surrounding the missing values is higher (e.g., missing data under the MNAR
assumptions) because the new instances are samples of a distribution that describes the
input data, and with an increased number of samples the uncertainty will be reduced.

Focusing on the impact of imputation in classification and regression tasks, this is an
understudied topic with only 10 works touching upon this aspect. Nevertheless, the current
results are very encouraging for DAEs, since the classifiers/regressors present in general
better accuracy results. The same is not true for VAEs, which show in general very slight
improvements in such tasks. Since VAEs generate new instances, these may contain dif-
ferences that change the relation with the label, although such behavior would be highly
influenced by the missing data mechanism. One conclusion that can be drawn from these
results is that the best method for imputation may not necessarily be the one that leads
to better classification/regression results. Therefore, it is important to evaluate both the
imputation error and the impact on predictive tasks when dealing with missing data.

Finally, a trend was also found in the evaluation metrics: RMSE is the one more often
used for imputation, and accuracy is usually used for classification tasks. While the accu-
racy comes with no surprise since it is widely used for classification evaluation, the choice
of RMSE for imputation may be questionable. RMSE is the square root of the average of
squared errors, meaning that different values have a disproportional impact on final aggre-
gated result. In fact, higher errors will have more impact on the metric’s value. If this
behavior is not desired, another metric may be more suitable (e.g., MAE).

6.4 Open Challenges

The works under analysis in this survey provide important information about using AEs
for imputation purposes, and show that they present good results when compared to other
state-of-the-art methods. Nevertheless, several open challenges have also been identified
that require further study.

An important but almost unaddressed topic by these works is the missing data mecha-
nism. Only 9 of the 26 works describe the missing mechanism associated with the datasets,
which does not allow conclusions to be drawn about how well AEs perform individually
for missing values under MCAR, MAR and MNAR assumptions. Future studies should
consider the missing mechanisms more often, and individual results should be presented
for them. Moreover, the 9 works that report the mechanism only address MCAR and
MNAR, leaving a gap for the MAR mechanism to be addressed. Furthermore, in order to
have a controlled experiment most works rely on missing values artificially generated. But,
the approach followed to perform this generation is rarely presented. Future works should
describe this aspect, in order to make the experiments reproducible and to allow a more
comprehensive discussion of the results.

The use of VAEs is also understudied, both for imputation quality and classifica-
tion/regression impact. This variant was only used recently to address missing data issues,
which may explain the smaller amount of works available. Nevertheless, future studies
should address more actively this AE variant, since it presents suitable characteristics for
missing data imputation (Pereira et al., 2020) (e.g., it can generate new values following the
same distribution as the data used for training). Another understudied topic is the impact
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of AEs imputation in classification and regression tasks. This is probably the most urgent
aspect to be actively address by the community. Performing the imputation of missing
values is often an intermediate step for another goal, which usually is a classification or
regression problem. Therefore, it is important to assess the imputation quality, but evalu-
ating the impact of such operation in the other goals is of equal importance. If applicable,
further studies should focus their evaluation in both components. Furthermore, the current
works compare AEs with very different imputation methods in the experiments, but some
state-of-the-art algorithms are neglected (e.g., SVM), and therefore they should be included
in the baseline of studies.

The pre-processing operations required for the data to be used with AEs are a limitation
that could also be mitigated in the future. The pre-imputation step and the approaches
applied to categorical features (e.g., one-hot encoding) can add bias to the results. New
strategies that could reduce the impact of such operations are desired.

Only a small set of works use AEs with data containing relevant structural information
(i.e., data where the position and order of the features have a meaning, such as images).
Although the paper mostly provides an analysis over tabular data, the results presented
in Section 5 show this is a promising direction, with AEs outperforming all the remaining
methods. Therefore, such application of this type of ANN should also be further explored.

Finally, only 2 of the works under analysis report the execution time of the algorithms,
and both use small datasets. Considering that deep learning methods are usually very
computationally expensive, the existence of analysis focused on time complexity would be
important to understand the environments in which AEs can be applied or must be discarded
for being too heavy. Therefore, the resources required to train the network should also be
addressed in future studies, particularly in big data contexts.
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Fortuin, V., Baranchuk, D., Rätsch, G., and Mandt, S. (2020). Gp-vae: Deep probabilis-
tic time series imputation. In International Conference on Artificial Intelligence and
Statistics, pages 1651–1661.

Garćıa-Laencina, P. J., Abreu, P. H., Abreu, M. H., and Afonoso, N. (2015). Missing data
imputation on the 5-year survival prediction of breast cancer patients with unknown
discrete values. Computers in Biology and Medicine, 59:125–133.

1282



Reviewing Autoencoders for Missing Data Imputation
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