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Abstract

This contribution is the third part in a series devoted to the fundamental link between discrete particle systems and

continuum descriptions. The basis for such a link is the postulation of the primary continuum fields such as density and

kinetic energy in terms of atomistic quantities using space and probability averaging.

In this part, solutions to the flux quantities (stress, couple stress, and heat flux), which arise in the balance laws

of linear and angular momentum, and energy are discussed based on the Noll’s lemma. We show especially that the

expression for the stress is not unique. Integrals of all the fluxes over space are derived. It is shown that the integral of

both the microscopic Noll–Murdoch and Hardy couple stresses (more precisely their potential part) equates to zero.

Space integrals of the Hardy and the Noll–Murdoch Cauchy stress are equal and symmetric even though the local Noll–

Murdoch Cauchy stress is not symmetric. Integral expression for the linear momentum flux and the explicit heat flux

are compared to the virial pressure and the Green–Kubo expression for the heat flux, respectively.

It is proven that in the case when the Dirac delta distribution is used as kernel for spatial averaging, the Hardy and

the Noll–Murdoch solution for all fluxes coincide.

The heat fluxes resulting from both the so-called explicit and implicit approaches are obtained and compared for the

localized case. We demonstrate that the spatial averaging of the localized heat flux obtained from the implicit approach

does not equate to the expression obtained using a general averaging kernel. In contrast this happens to be true for the

linear momentum flux, i.e. the Cauchy stress.

Keywords

Molecular mechanics, continuum mechanics, statistical mechanics, balance equations, averaging

1. Introduction

This contribution is the third part in a series devoted to the fundamental link between discrete and continuum
descriptions. The foundation of this approach was laid down by works of Irving and Kirkwood [1] and Noll
[2]. In an attempt to clarify several open questions (e.g. the non-uniqueness of stress measure, central force
decomposition and others) as well as to unify two different approaches of deriving the balance of energy from
the discrete system, we re-obtained the continuum balance laws of mass, linear and angular momentum, and
energy in parts I and II [3, 4] based on particle mechanics and statistical physics. Thereby the resulting fluxes
(the stress, the couple stress and the heat flux) are given implicitly in terms of their divergences.

The roots of the atomistic-to-continuum correspondence could be traced back to the beginning of modern
thermodynamics. The most acknowledged contribution was that of Boltzmann leading to establish statistical
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thermodynamics and in the attempt to provide a strict derivation of Clausius’s second principle [5]. Through the
collision integral of Boltzmann it is possible to derive the Navier–Stokes equations of fluids [6]. Considering the
harmonic potential and the long wavelength approximation the macroscopic elasticity tensor corresponding to
the Wigner–Seitz cell of periodic crystal could be obtained [7]. Relationships between atomistic and continuum
worlds have been also considered in the context of thermal properties of matter [8–11] as well as dissipation
effects in solids [12]. Note that some processes, such as electron–phonon interaction, can not be explained
within the molecular mechanics formulation and require the quantum-mechanical approach.

The link between the atomistic and continuum worlds is of technological interest to new, rapidly growing,
fields of engineering such as porous materials, nano-composites and microstructured continuous media [13–17].

In the present part of the series we obtain the corresponding fluxes from their divergences based on Noll’s
lemma. There are at least two different possible solutions for each flux in terms of atomistic quantities (such as
inter-particle forces, position vectors, masses, etc.). The two solutions will be denoted in the sequel as either of
the Hardy [18] or the Noll–Murdoch [2, 19] type.

By applying Noll’s lemma to obtain the linear momentum flux we show that the Cauchy stress obtained by
space-probability averaging is not unique. That is similar to the case when space-temporal averaging is used to
derive the corresponding fluxes [18, 19].

Since molecular dynamics (MD) simulations are often used to describe the macroscopic response of a rep-
resentative volume element (RVE) [20, 21], integrals of the flux quantities over space are desired and thus are
developed in this contribution. As a result we show that macroscopically both the Hardy and the Noll–Murdoch
stresses coincide in spite of the Noll–Murdoch stress being non-symmetric microscopically, whereas the Hardy
stress is always symmetric. A similar comparison is made of the other fluxes (the microscopic couple stress and
the heat flux) appearing in the balance laws. It is shown that macroscopically the non-diffusive part of the Hardy
and Noll–Murdoch couple stresses equates to zero.

In order to make more parallels between the Hardy and the Noll–Murdoch-type solutions, we look at the
case when the Dirac delta distribution is used as a spatial averaging kernel. It then follows that the resulting
fluxes are equal not only macroscopically but also microscopically.

The balance of energy is generally derived either in the explicit or the implicit form [4]. Localized
expressions for heat fluxes obtained for the two approaches are compared.

The paper is organized as follows. Equations that define all the fluxes considered here are briefly reviewed in
Section 2. In Section 3, Noll’s lemma is given, localized generator functions are compared and some important
properties of the averaging kernel are discussed. In Sections 4 and 5, the fluxes occurring in the balance laws of
linear and angular momentum as well as their integral are obtained. Sections 6 and 7 are devoted to the fluxes
obtained from the implicit and explicit approaches to the balance of energy, respectively. At last, the discussion
and conclusions are presented in Section 8.

2. Fluxes in space-probability averaging

In this section we briefly recall some definitions and results obtained in the first two parts of this series [3, 4].
Generally, the δ-distribution of any extensive (additive) property gα is defined as

gδ(z, ξ ) =
∑

α

gα
δ (z, ξ ) :=

∑

α

gα(z)δ(xα − ξ ). (1)

Here z, ξ , xα denote the phase space coordinates, the microscopic spatial variable and the current position of a
particle α, respectively.

By postulating the continuum density ̺(x, τ ), the continuum velocity v is then obtained from the balance of
mass as

v(x, τ ) :=
p(x, τ )

̺(x, τ )
=

〈〈
pδ(z, ξ )

〉
P

〉
S〈〈

mδ(z, ξ )
〉
P

〉
S

=

∑
α

∫
P

pαw(xα − x)W(z, τ )dz∑
α

∫
P

mαw(xα − x)W(z, τ )dz
, (2)

where pα and mα are the linear momentum and mass of the particle α respectively, and x is the macroscopic
spatial variable. W (z, τ ) is the probability density function and w(ξ −x) with

∫
S

δ(xα − ξ )w(ξ −x) = w(xα −x)
is the spatial averaging kernel, p(x, τ ) is the continuum linear momentum.

For each particle α the fluctuation of the particle velocity field is then defined as

ṽα(x, τ ) := vα − v(x, τ ). (3)
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Furthermore the microscopic diffusive momentum flux s̃ α is introduced as

s̃ α =
1

2
pα ⊗ ṽ α(x, τ ), (4)

whereby its trace is denoted by s̃ α = tr( s̃ α).
We then define the macroscopic diffusive momentum flux s̃ via

s̃ =
〈〈

s̃δ(z, ξ ; x, τ )
〉
P

〉
S

. (5)

The distance between each particle position and the considered continuum point is called the microscopic
distance

r
α
(x) = xα − x. (6)

Next, the particle microscopic angular momentum flux n
α

and the particle diffusive microscopic angular
momentum flux m̃α are defined as

n
α

=
1

2
l
α

⊗ vα and m̃α =
1

2
l
α

⊗ ṽα(x, τ ), (7)

where l
α

= r
α
(x) × pα(τ ) denotes particle microscopic angular momentum w.r.t. the continuum coordinate x.

The corresponding continuum microscopic angular momentum flux ν and continuum diffusive microscopic
angular momentum flux m̃ read accordingly:

ν =
1

2
l̄(x, τ ) ⊗ v(x, τ ) and m̃ =

〈〈
m̃δ(z, ξ ; x, τ )

〉
P

〉
S

, (8)

where l̄ =
〈〈
lδ(z, ξ ; x, τ )

〉
P

〉
S

is the continuum angular momentum density w.r.t. x.
The following flux quantities appear in the balance of energy, linear and angular momentum:

• Cauchy stress s

s = ŝ − 2̃s, (9)

where ŝ is to be obtained from

div ŝ := div(s + 2̃s) =
∑

αβ

〈
fαβ(τ )w(xα − x)

〉
P

. (10)

• Couple stresses1 m

m = m̂ − 2m̃. (11)

The unknown second order tensor m̂ is given by

div m̂ := div(m + 2m̃) =
∑

αβ

〈
r
α
(x) × fαβ(τ )w(xα − x)

〉
P

. (12)

• Diffusive energy flux

q̃ := −
1

2

∑

α

〈
s̃α(τ )̃vα(x, τ )w(xα − x)

〉
P

. (13)

• Heat flux for the implicit approach

qi = q̂i − 2̃q, (14)

where q̂ i and q are defined by

div̂q i + q(x, τ ) := −
〈 ∑

α

ṽα ·
∑

β

fαβw(xα − x)
〉
P

(15)
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Here q denotes the local self-heating density [22]. In contrast to previous definitions of fluxes (e.g. equa-
tions (10) and (12)) the RHS of equation (15), as it will be shown later, can not be expressed only as a

divergence of q̂ i; therefore, a scalar term q has to be introduced. Note that in this approach the internal
potential energy is introduced implicitly (thus the name for this formulation) via

v,τ + div(vv) := gradv(x, τ ) : ŝ(x, τ ) + q(x, τ ). (16)

In contrast to the explicit approach (see below), the implicit approach avoids the need to localize the
potential energy to a single particle. That would then allow introducing the density of potential energy via
equation (1). Since potential energy is attributed to a group of particles (two and more), this localization
is not unique. Moreover it becomes cumbersome in case of three- and more point potentials. Thus in the
sequel we consider the explicit approach only for two-point potentials. An advantage of this approach is
that the energy density is readily available, as opposed to the necessity to integrate equation (16) in case
of the implicit approach. For more discussion we refer to Part II [4].

• Heat flux for the explicit approach (applied to two-point interactions)

qe = q̂e − 2̃q. (17)

The unknown part of the flux q̂ e is to be determined from

−

〈 ∑

αβ

fαβ(τ ) ·
[vα + vβ]

2
w(xα − x)

〉
P

= div(̂qe − qT − v · ŝ) (18)

=: div̂qe + q∗ =: −div̂q∗,

where the transport energy flux qT is expressed in terms of the localized particle potential energy vα as

qT :=
〈∑

α

vα(τ )̃vα(x, τ )w(xα − x)
〉
P

. (19)

For the two point interaction case, the potential energy attributed to each particle vα can be introduced as

vα =
1

2!

∑

β

vαβ(xαβ), (20)

where vαβ is a potential energy of interaction between particles α and β. In other words, the potential
energy is equally distributed among interacting particles.
In equation (19) we also introduced q∗ = −div(qT + v · ŝ) to make it look consistent with the implicit
approach (equation (15)). Note, that the interpretation of q∗ and q are different. In the implicit approach
q enters the definition of potential energy (equation (16)), whereas in the explicit approach q∗ can be
represented as a divergence of a vector quantity which affects the non-diffusive part of a heat flux, i.e.
q̂e = qT + v · ŝ − q̂∗.

3. Noll’s lemma

In this section we briefly recall the lemma, introduced by Noll [2].
Let g(x, y) be a C1 tensor-valued function of vector variables x, y such that

• g(x, y) is defined ∀x, y and continuously differentiable.
• ∃ δ > 0 : g(x, y)|x|3+δ|y|3+δ and its gradients are bounded.
• g(x, y) = −g(y, x) is antisymmetric.

For such a case, the following holds2

∫

S

g(x, y)dy = −
1

2
div

∫

S

∫ 1

0

g
(
x + az, x − [1 − a]z

)
da ⊗ zdz. (21)
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In other words, it provides one possible solution

G(x) = −
1

2

∫

S

∫ 1

0

g
(
x + az, x − [1 − a]z

)
da ⊗ zdz (22)

to ∫

S

g(x, y)dy = divG(x). (23)

The function g is called a generator. As we will see later, different generator functions give different flux
candidates. At least two different types of solutions are possible:

• Hardy-type [18], based on the δ-distribution. In such a case, the generator function is given by

gH (x, y) =
∑

αβ

〈
Aαβw(xα − x)δ([xβ − y] − [xα − x])

〉
P

, (24)

where Aαβ is a tensor of an arbitrary order expressed in terms of the atomistic quantities related to the
particles α and β. (However here we only need to consider scalar and vector-valued Aαβ .)

• Noll–Murdoch-type [2, 23], based on a general averaging kernel. The generator function has the following
format

gN (x, y) =
∑

αβ

〈
Aαβw(xα − x)w(xβ − y)

〉
P

. (25)

Recall the normalization condition for the spatial averaging kernel:

∫

S

w(y)dy = 1. (26)

Thus it is clear that ∫

S

gN (x, y)dy =

∫

S

gH (x, y)dy =
∑

αβ

〈
Aαβw(xα − x)

〉
P

. (27)

These two options coexist and are valid for all the unknown fluxes in the balance equations. Apart from these
two options, for each flux quantity we consider the case, when the δ-distribution is used for space-probability
averaging. Such solutions are called “localized” in our terms. It is easy to see that the localized versions of the
two generator functions are actually equal, i.e.

gHδ(x, y) =
∑

αβ

〈
Aαβδ(xα − x)δ([xβ − y] − [xα − x])

〉
P

=
∑

αβ

〈
Aαβδ(xα − x)δ([xβ − y])

〉
P

, (28)

gNδ(x, y) =
∑

αβ

〈
Aαβδ(xα − x)δ(xβ − y)

〉
P

. (29)

Therefore flux quantities obtained from the Hardy and Noll–Murdoch localized generator functions are always
equal. Therefore, we will not consider the localized case separately for each flux quantity, but only note that the
corresponding expression can be easily obtained by substituting the general averaging kernel w in the Hardy-
type solutions by the delta distribution. Alternatively the general averaging kernel w in the Noll–Murdoch-type
solutions could be replaced by the delta distribution δ. That does, of course, lead to exactly the same results.

Lastly, let us say some words about the averaging kernel w. We consider w to be a function of the invariant
of its argument, i.e.

w(y) = w(|y|). (30)

Note that this is actually a requirement for the resulting fields to be independent of change of observer.
Otherwise an artificial anisotropy of the resulting fields is introduced.

It is obvious that w is an even function
w(y) = w(−y), (31)



1158 Mathematics and Mechanics of Solids 20(10)

and therefore the first moment of the weighting function equals zero
∫

S

w(y)ydy = 0. (32)

This holds since the product of an even function and an odd function is an odd function, and the integral of an
odd function over space is zero if it is evaluated by limits that are symmetric w.r.t. the origin.

Let us quickly prove the above for a one-dimensional case for an odd function f (y):

∫ 0

−a

f (y)dy ⇒

[
x := −y

dx = −dy

]
⇒ −

∫ 0

a

f (−x)dx =

∫ a

0

f (−x)dx = −

∫ a

0

f (x)dx (33)

and therefore ∫ a

−a

f (y)dy = 0. (34)

Note that the second moment
∫
S

w(y)y ⊗ ydy (an integral of an even function) is not necessarily zero.3

4. Stresses

We start with the solution for the part of the Cauchy stress due to the interaction forces

div ŝ(x, τ ) =
∑

αβ

〈
fαβ(τ )w(xα − x)

〉
P

.
=

∫

S

gs(x, y, τ )dy. (35)

The total Cauchy stress is given by equation (9). Different choices for the stress generator gs, which satisfy
equation (35), are possible.

4.1. Hardy-type stress generator

The Hardy-type generator function reads

gs
H (x, y, τ ) =

∑

αβ

〈
fαβ(τ )w(xα − x)δ([xβ − y] − [xα − x])

〉
P

= −gs
H (y, x, τ ) (36)

Note that on the evaluation of g
(
x + az, x − [1 − a]z

)
in equation (22), the argument of the δ-distribution

simplifies to z − xαβ , giving the resulting expression for the Hardy-type stress as

ŝH (x, τ ) = −
1

2

∑

αβ

〈
fαβ(τ ) ⊗ x̂

αβ

H (x, xα, xβ)
〉
P

, (37)

x̂
αβ

H (x, xα, xβ) = ŵ
αβ

H xαβ , (38)

ŵ
αβ

H (x, xα, xβ) =

∫ 1

0

w
(
xα − x − axαβ

)
da. (39)

Since fαβ ×xαβ = 0 for any interaction potential in the system of constant point-mass particles [3], we conclude
that ŝ and thus s are symmetric.

Using equation (31) and equation (26), we can show that

∫

S

x̂
αβ

H (x, xα, xβ)dx = xαβ

∫ 1

0

[∫

S

w
(
xα − x − axαβ

)
dx

]
da

⇒

⎡
⎣

xα − x − axαβ =: −y

x = xα + y − axαβ

dx = dy

⎤
⎦ ⇒ xαβ

∫ 1

0

[∫

S

w
(
− y

)
dy

]
da

= xαβ

∫ 1

0

da = xαβ . (40)
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Thus the space integral of the Cauchy stress, i.e. the macroscopic (averaged) stress, results in
∫

S

ŝH (x, τ )dx = −
1

2

∑

αβ

〈
fαβ(τ ) ⊗ xαβ

〉
P

. (41)

Note that the resulting expression does not depend on the choice of w, as expected.

4.2. Noll–Murdoch-type stress generator

The Noll–Murdoch-type generator function for stresses reads

gs
N (x, y, τ ) =

∑

αβ

〈
fαβ(τ )w(xα − x)w(xβ − y)

〉
P

= −gs
N (y, x, τ ). (42)

Its substitution to equation (22) gives the Noll–Murdoch-type stress candidate

ŝN (x, τ ) = −
1

2

∑

αβ

〈
fαβ(τ ) ⊗ x̂

αβ

N (x, xα, xβ)
〉
P

, (43)

x̂
αβ

N (x, xα, xβ) =

∫

S

ŵ
αβ

N zdz, (44)

ŵ
αβ

N (x, xα, xβ , z) =

∫ 1

0

w
(
xα − x − az

)
w

(
xβ − x + [1 − a]z

)
da. (45)

Neither ŝN (x, τ ) nor sN (x, τ ) are symmetric in such a case.
Using equations (31), (26) and (32), we can prove the following:

∫

S

x̂
αβ

N dx =

∫ 1

0

∫

S

[∫

S

w
(
xα − x − az

)
w

(
xβ − x + [1 − a]z

)
dx

]
zdzda

⇒

[
xα − x − az =: −y

x = xα − az + y
dx = dy

]
⇒

∫ 1

0

∫

S

w(−y)

[∫

S

w
(
z − y − xαβ

)
zdz

]
dyda

⇒

⎡
⎣

−y + z − xαβ =: y′

z = y′ + y + xαβ

dz = dy′

⎤
⎦ ⇒

∫ 1

0

∫

S

w(−y)

∫

S

w
(
y′

)
[y′ + y + xαβ]dy′ dyda

=

∫ 1

0

∫

S

w(−y)[y + xαβ]dyda =

∫ 1

0

xαβda

= xαβ . (46)

It then follows that ∫

S

ŝN (x, τ )dx = −
1

2

∑

αβ

〈
fαβ(τ ) ⊗ xαβ

〉
P

(47)

which is equal to equation (41). Therefore, the space integrals of the Hardy and Noll–Murdoch stresses are equal
and symmetric. Note that this result holds despite the microscopic Noll–Murdoch-type Cauchy stress being not
symmetric.

5. Couple stresses

We are looking for the solutions of the unknown part of the microscopic angular momentum flux due to the
interaction forces in the following form:

div m̂(x, τ ) =
∑

αβ

〈
r
α
(x) × fαβ(τ )w(xα − x)

〉
P

.
=

∫

S

gm(x, y, τ )dy. (48)
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The total couple stress is given by equation (11). Different choices for the stress generator m̂, which satisfy
equation (48), are possible.

5.1. Hardy-type couple stress generator

The Hardy-type generator function reads

gm
H (x, y, τ ) =

1

2

∑

αβ

〈
[r

α
(x) + r

β
(y)] × fαβ(τ )w(xα − x)δ([xα − x] − [xβ − y])

〉
P

. (49)

Note that the following holds

1

2
[r

α
(x) + r

β
(y)]δ(r

α
(x) − r

β
(y)) = r

α
(x)δ(r

α
(x) − r

β
(y)) = r

β
(y)δ(r

α
(x) − r

β
(y)), (50)

and therefore equation (48) is satisfied. The Hardy-type couple stress follows as

m̂H (x, τ ) =
1

2

∑

αβ

〈
fαβ(τ ) × r̂

αβ

H (x, xα, xβ)
〉
P

, (51)

r̂
αβ

H (x, xα, xβ) =

∫ 1

0

[xα − x − axαβ]w
(
xα − x − axαβ

)
da ⊗ xαβ . (52)

Note that we deliberately changed the order of fαβ(τ ) and r̂
αβ

H so that it is consistent with the expressions for
the Cauchy stress derived in Section 5.

Using equation (32) it immediately follows that

∫

S

r̂
αβ

H (x, xα, xβ)dx = 0, (53)

thus ∫

S

m̂H (x, τ )dx = 0. (54)

Therefore, the macroscopic non-diffusive part of the Hardy-type couple stress is always zero.

5.2. Noll–Murdoch-type couple stress generator

A Noll–Murdoch-type generator function is postulated as

gm
N (x, y, τ ) =

∑

αβ

〈
[r

α
(x) + r

β
(y)] × fαβ(τ )w(xα − x)w(xβ − y)

〉
P

. (55)

Due to equation (32) the following holds

∫

S

r
β
(y)w(xβ − y)dy = 0, (56)

thus equation (48) is satisfied.
The non-diffusive part of the Noll–Murdoch-type microscopic angular momentum flux (i.e. the couple

stress) then follows as

m̂N (x, τ ) =
1

2

∑

αβ

〈
fαβ(τ ) × r̂

αβ

N (x, xα, xβ)
〉
P

, (57)

r̂
αβ

N =

∫

S

∫ 1

0

[
[r

α
(x) − az] + [r

β
(x) + [1 − a]z]

]
w

(
r
α
(x) − az

)
w

(
r
β
(x) + [1 − a]z

)
dazdz.
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Again, note the changed order of fαβ(τ ) and r̂
αβ

H .
Using equations (31), (26) and (32), we can prove the following:

∫

S

r̂
αβ

N (x, xα, xβ)dx =

∫ 1

0

∫

S

[∫

S

[xα − 2x − 2az + xβ + z]w
(
xα − x − az

)
w

(
xβ − x + [1 − a]z

)
dx

]
da ⊗ zdz

⇒

[
xα − x − az =: −y

x = xα − az + y
dx = dy

]
⇒

∫ 1

0

∫

S

w(−y)

[∫

S

[z − 2y − xαβ]w
(
z − y − xαβ

)
⊗ zdz

]
dyda

⇒

⎡
⎣

z − y − xαβ =: y′

z = y′ + y + xαβ

dz = dy′

⎤
⎦ ⇒

∫

S

∫

S

[y′ − y] ⊗ [y′ + y + xαβ]w(−y)w
(
y′

)
dy′ dy

=

∫

S

y′ ⊗ y′w(y′)dy′ −

∫

S

y ⊗ y w(−y)dy = 0. (58)

Thus, the integral of the non-diffusive part of the microscopic Noll–Murdoch couple stress is zero, i.e.

∫

S

m̂N (x, τ )dx = 0. (59)

This agrees with the macroscopic Noll–Murdoch stress being symmetric (equation (47)).

6. Heat fluxes from the implicit approach

In the implicit approach the total heat flux q̂i and the source term q due to interaction forces are determined via

div̂q i(x, τ ) + q(x, τ ) = −
∑

αβ

〈
ṽα(x, τ ) · fαβ(τ )w(xα − x)

〉
P

.
=

∫

S

g(x, y, τ )dy. (60)

Both q̂ i and q depend on the particular choice of the generator function. Following [23], we divide g into
skewsymmetric and symmetric parts

g = gskw + gsym, (61)

such that ∫

S

gskw(x, y, τ )dy = div̂q i(x, τ ) (62)

and ∫

S

gsym(x, y, τ )dy = q(x, τ ) (63)

hold.

6.1. Hardy-type heat flux generator

The Hardy-type generator function can be chosen as

gskw
sym(x, y, τ ) = −

1

2

∑

αβ

〈
[̃vα(x, τ ) ± ṽβ(y, τ )] · fαβ(τ )w(xα − x)δ([xα − x] − [xβ − y])

〉
P

. (64)
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It is easy to see that

∫

S

[gskw(x, y, τ ) + gsym(x, y, τ )]dy =

−

∫

S

∑

αβ

〈
ṽα(x, τ ) · fαβ(τ )w(xα − x)δ(xαβ − x + y)

〉
P

dy =

−
∑

αβ

〈
ṽα(x, τ ) · fαβ(τ )w(xα − x)

〉
P

.

Since gskw
sym includes δ(xαβ − x + y), it follows that xα − x = xβ − y, thus

gskw(x, y, τ ) = −
1

2

∑

αβ

〈
[̃vα(x, τ ) + ṽβ(y, τ )] · fαβ(τ )w(xα − x)δ(xαβ − x + y)

〉
P

= −
1

2

∑

αβ

〈
[̃vα(x, τ ) + ṽβ(y, τ )] · fαβ(τ )w(xβ − y)δ(xβα − y + x)

〉
P

=
1

2

∑

αβ

〈
[̃vβ(y, τ ) + ṽα(x, τ )] · fβα(τ )w(xβ − y)δ(xβα − y + x)

〉
P

= −gskw(y, x, τ ). (65)

Using gskw in equation (22), the Hardy-type heat flux follows as

q̂ i
H (x, τ ) =

1

4

∑

αβ

〈
fαβ(τ ) · ŵ

αβ

H (x, xα, xβ , τ ) xαβ
〉
P

, (66)

ŵ
αβ

H (x, xα, xβ , τ ) =

∫ 1

0

v̂
αβ

H (x, xα, xβ , τ ; a)w
(
xα − x − axαβ

)
da, (67)

v̂
αβ

H (x, xα, xβ , τ ; a) = ṽα(x + axαβ , τ ) + ṽβ(x − [1 − a]xαβ , τ ). (68)

The expression for q(x, τ ) is then obtained from equation (63) as

qH (x, τ ) =

∫

S

gsym(x, y, τ )dy

= −
1

2

∑

αβ

〈
ṽα(x, τ ) · fαβ(τ )w(xα − x)

〉
P

+

∫

S

1

2

∑

αβ

〈
ṽβ(y, τ ) · fαβ(τ )w(xα − x)δ(xαβ − x + y)

〉
P

dy

= −
1

2

∑

αβ

〈
[̃vα(x, τ ) − ṽβ(x − xαβ , τ )] · fαβ(τ )w(xα − x)

〉
P

. (69)

Since the resulting expression (equation (66)) for the heat flux in the implicit approach contains an integral
which includes the continuum velocity in ṽα = vα − v and ṽβ = vβ − v (equations (67) and (68)), the straight-
forward application of such an approach would require evaluation of the continuum velocity at each quadrature
point in that integral. Obviously, this is computationally inefficient. A mathematical development of the integral
quantities is not possible either.

One of the possible ways to circumvent this is to assume that the continuum velocity v(x) is constant on the
length-scale of inter-particle distance xαβ . In other words, we assume the following

v̂
αβ

H (x, xα, xβ , τ ) ≈ ṽα(x, τ ) + ṽβ(x, τ ). (70)
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Therefore v̂
αβ

H can be taken out of the integral in equation (67). This leads to the following expression for the
heat flux

q̂i
H (x, τ ) ≈

1

2

∑

αβ

〈
fαβ(τ ) ·

[̃vα(x, τ ) + ṽβ(x, τ )]

2
x̂

αβ

H (x, xα, xβ)
〉
P

, (71)

where x̂
αβ

H is given by equation (38).
An alternative approach, as advocated in [24], is to consider the delta-distribution instead of the general

averaging kernel w in equation (67). In such a case it is obvious that x+axαβ = xα, and therefore the expression

for v̂
αβ

H reads

v̂
αβ

δ (xα, xβ , τ ) = ṽα(xα, τ ) + ṽβ(xβ , τ ). (72)

Substituting this to equation (67) results in a form similar to equation (71), however, with the delta distribution
used as an averaging kernel:

q̂i
δ(x, τ ) =

1

4

∑

αβ

〈
fαβ(τ ) · v̂

αβ

δ (xα, xβ , τ ) x̂
αβ

δ (x, xα, xβ)
〉
P

(73)

where
x̂

αβ

δ (x, xα, xβ) = ŵ
αβ

δ xαβ , (74)

ŵ
αβ

δ (x, xα, xβ) =

∫ 1

0

δ
(
xα − x − axαβ

)
da. (75)

The “localized” version of qH (x, τ ) reads accordingly

qδ(x, τ ) = −
1

2

∑

αβ

〈
[̃vα(xα, τ ) − ṽβ(xβ , τ )] · fαβ(τ )δ(xα − x)

〉
P

, (76)

which is consistent with results obtained in Admal and Tadmor [24].

Since the only term in equation (73) which depends on x is x̂
αβ

δ , using equation (40) the space integral of
this quantity follows as ∫

S

q̂i
δ(x, τ )dx =

1

4

∑

αβ

〈
fαβ(τ ) · v̂

αβ

δ (xα, xβ , τ ) xαβ
〉
P

. (77)

Furthermore it is obvious that
∫

S

qδ(x, τ )dx = −
1

2

∑

αβ

〈
[̃vα(xα, τ ) − ṽβ(xβ , τ )] · fαβ(τ )

〉
P

. (78)

6.2. Noll–Murdoch-type heat flux generator

The Noll–Murdoch-type generator function is introduced as

gskw
sym(x, y, τ ) = −

1

2

∑

αβ

〈
[̃vα(x, τ ) ± ṽβ(y, τ )] · fαβ(τ )w(xα − x)w(xβ − y)

〉
P

. (79)

Changing α and β, it is obvious that gskw(x, y, τ ) = −gskw(y, x, τ ); therefore, Noll’s lemma can be applied to
obtain the following heat flux:

q̂i
N (x, τ ) = −

1

2

∫

S

∫ 1

0

gskw
(
x + az, x − [1 − a]z

)
da ⊗ zdz

=
1

4

∑

αβ

〈
fαβ(τ ) · ŵ

αβ

N (x, xα, xβ)
〉
P

, (80)
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with

ŵ
αβ

N (x, xα, xβ , τ ) =

∫

S

∫ 1

0

v̂
αβ

N w
(
xα − x − az

)
w

(
xβ − x + [1 − a]z

)
da ⊗ zdz, (81)

and
v̂

αβ

N (x, xα, xβ , τ , z, a) = ṽα(x + az, τ ) + ṽβ(x − [1 − a]z, τ ). (82)

Substitution of gsym into equation (63) leads to

qN (x, τ ) =

∫

S

gsym(x, y, τ )dy

= −
1

2

∑

αβ

〈
ṽα(x, τ ) · fαβ(τ )w(xα − x)

〉
P

+

∫

S

1

2

∑

αβ

〈
ṽβ(y, τ ) · fαβ(τ )w(xα − x)w(xβ − y)

〉
P

dy. (83)

Note the difference from the Hardy solution (equation (69)), where it was possible to evaluate the integral due
to the presence of the delta-distribution.

Any further simplifications of either equation (83) or equation (80) are possible only when assuming the
localized version of the generator function. In such a case, as discussed in Section 3, the solution is fully
equivalent to the localized Hardy solution for the heat flux, which was presented in the previous section.

7. Heat fluxes from the explicit approach

The generator function for the unknown part of the heat flux q̂∗ must satisfy

div̂q∗(x, τ ) =
∑

αβ

〈
fαβ(τ ) ·

[vα + vβ]

2
w(xα − x)

〉
P

.
=

∫

S

ge(x, y, τ )dy. (84)

7.1. Hardy-type heat flux generator

The Hardy-type generator function

ge
H (x, y, τ ) =

∑

αβ

〈
fαβ(τ ) ·

[vα + vβ]

2
w(xα − x)δ([xα − x] − [xβ − y])

〉
P

= −ge
H (y, x, τ ) (85)

gives rise to the following heat flux

q̂∗
H (x, τ ) = −

1

2

∑

αβ

〈
fαβ(τ ) ·

[vα + vβ]

2
⊗ x̂

αβ

H (x, xα, xβ)
〉
P

. (86)

Using equation (40) it follows that the space integral of q̂∗
H results in

∫

S

q̂∗
H (x, τ )dx = −

1

2

∑

αβ

〈
fαβ(τ ) ·

vα + vβ

2
⊗ xαβ

〉
P

. (87)

7.2. Noll–Murdoch-type heat flux generator

The Noll–Murdoch-type generator function

ge
N (x, y, τ ) =

∑

αβ

〈
fαβ(τ ) ·

[vα + vβ]

2
w(xα − x)w(xβ − y)

〉
P

= −ge
N (y, x, τ ) (88)
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leads to the unknown part of the heat flux q̂∗
N as

q̂∗
N (x, τ ) = −

1

2

∑

αβ

〈
fαβ(τ ) ·

[vα + vβ]

2
x̂

αβ

N (x, xα, xβ)
〉
P

. (89)

Using equation (46) the space integral of this quantity follows as

∫

S

q̂∗
N (x, τ )dx = −

1

2

∑

αβ

〈
fαβ(τ ) ·

[vα + vβ]

2
⊗ xαβ

〉
P

, (90)

which equals the space integral of the Hardy-type heat flux equation (87).

7.3. Total heat flux and its comparison to the implicit approach

In contrast to fluxes in Sections 4, 5 and 6, the results obtained in the above expression for q̂∗ do not represent
the total flux, but only a part of it.

Given the Hardy-type (the Noll–Murdoch) solutions ŝH ( ŝN ) and q̂∗
H (̂q∗

N ), we can evaluate q̂e in the explicit
approach for the system with two-point potentials (see equation (19)):

qP(x) := q̂e(x) − qT (x) = v(x) · ŝ(x) − q̂∗(x)

=
1

2

∑

αβ

〈
fαβ ·

[vα + vβ]

2
x̂αβ(x)

〉
P

− v(x) ·
1

2

∑

αβ

〈
fαβ ⊗ x̂αβ(x)

〉
P

=
1

2

∑

αβ

〈
fαβ ·

[̃vα(x) + ṽβ(x)]

2
x̂αβ(x)

〉
P

. (91)

Note that in the above we deliberately dropped subscripts N and H in x̂αβ , since it holds for both cases if and
only if flux candidates of the same type are used.

The total heat flux for the explicit approach is thus given by

qe(x) = qP(x) + qT (x) − 2̃q(x). (92)

By comparing equation (91) to the approximate implicit Hardy-type total heat flux equation (71) it is clear that

qP(x) = q̂e
H (x) − qT (x) = q̂i

H (x). (93)

Remark 1 From the continuum perspective, the energy balance equation has to be closed by the constitu-
tive relationship, e.g. a Fourier law for q = q(T). Since both q and T can be calculated from the atomistic
simulations, the validity of different constitutive relationships could be verified.

At last, we compare the heat flux obtained from the explicit approach to the implicit one for the localized
version

qe
δ(x) − qi

δ(x) = q̂e
δ(x) − q̂i

δ(x) = qT +
〈∑

αβ

fαβ ·
[v(xα) − v(x) + v(xβ) − v(x)]

2
x̂

αβ

δ (x)
〉
P

(94)

and the approximate solutions

qe
H (x) − qi

H (x) = q̂e
H (x) − q̂i

H (x) = qT (95)

respectively.
Thus we can conclude that the two approaches differ mainly by the diffusive potential energy term qT

introduced in the explicit case.
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8. Discussion and conclusions

Molecular dynamics simulations are usually conducted under periodic boundary conditions. In such a case, the
volume V of the particle system is uniquely4 defined. Recall the following equation proven in Part I [3]:

s̃(x) =
〈∑

α

1

2
mαvα ⊗ vα w(xα − x)

〉
P

−
1

2
p(x) ⊗ v(x). (96)

The space average over the RVE reads

1

V

∫

S

s̃(x)dx =
1

V

〈∑

α

1

2
mαvα ⊗ vα

〉
P

−
1

2V

∫

S

p(x) ⊗ v(x)dx, (97)

where the second term on the right hand side can be assumed to be zero if there is no macroscopic motion of
the RVE.

Using this, the macroscopic Cauchy stress follows from equations (9), (41) and (47) as

1

V

∫

S

sdx =
1

V

∫

S

[ ŝ − 2̃s ]dx =
1

V

〈
−

1

2

∑

αβ

fαβ ⊗ xαβ −
∑

α

mαvα ⊗ vα
〉
P

. (98)

Thus, we arrive at the well known expression called the virial stress, which is often used as a measure of the
macroscopic stresses in a particle system. In other words, the virial stress can be considered as space integral of
either Hardy or Noll–Murdoch Cauchy stress over the RVE. Note that this conclusion is different from Admal
and Tadmor [25], where the authors prove that the Hardy solution of the Cauchy stress equals the virial only in
the case of a constant averaging kernel w = 1/V .

In a similar manner, the macroscopic heat flux in the explicit approach can be developed for the localized
solution

1

V

∫

S

qe
δdx =

1

V

〈 ∑

α

1

2
mαvα · [vα − v(xα)] [vα − v(xα)]

+
∑

α

vα[vα − v(xα)]

+
1

2

∑

αβ

fαβ ·

[
[vα + vβ]

2
−

∫ 1

0

v(xα − axαβ)da

]
xαβ

〉
P

. (99)

On assuming the continuum velocity v to be zero, we obtain

1

V

∫

S

qe
δdx =

1

V

〈∑

α

1

2
mαvα · vα vα +

∑

α

vαvα +
1

2

∑

αβ

fαβ ·
[vα + vβ]

2
xαβ

〉
P

, (100)

which is fully consistent with the heat flux used in the Green–Kubo approach [26, 27] to evaluate the thermal
conductivity from MD simulations. Therefore we showed that the integral Hardy-type quantities of fluxes are
consistent with those commonly used in atomistic simulations.

From equation (94) it follows that the space integral of the heat flux for the implicit approach in a quasi-static
case (v(x) = 0) is different from the explicit one

1

V

∫

S

[qe
δ − qi

δ]dx =
1

V

〈∑

α

vαvα
〉
P

. (101)

A result of this work that distinguishes it from Admal and Tadmor [25] is a strict proof that both the Hardy
and the Noll–Murdoch solutions are possible for the space-probability averaging approach. Thus, both the
space-probability and the space-temporal averaging approaches have the same source of the non-uniqueness
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of the linear momentum flux. It was concluded by Admal and Tadmor [25] that the space-probability averaging
approach is preferable over the space-temporal averaging approach due to the absence of the non-uniqueness
of a generator function. The reason for this is that the authors first derived the balance equations for space-
probability averaging with the δ-distribution, and then applied the spatial averaging to the resulting fields. By
doing so, the generator-function for the stress-fluxes is of “localized” type in our terms; thus there seemed to be
no non-uniqueness in choosing it. As we have shown, however, space-probability averaging has the same non-
uniqueness related to the choice of the generator function as the space-temporal averaging used by Murdoch.
Thus, the preferable approach is to introduce both space and probability averaged continuum fields at the onset
and then develop the balance equations. The same procedure is also preferable for the space-temporal averaging
approach.

By comparing the resulting quantities for the total heat flux, we conclude that the explicit approach (used
by Noll [2] and Hardy [18] among others) naturally leads to easy-to-implement expressions (equation (86)).
Moreover, both the Cauchy stress and the heat flux are written in terms of the same ŵαβ , therefore the evaluation
of the linear momentum and energy fluxes, as well as the internal energy requires less computational resources.
The explicit approach, however, can be applied directly only to two-point potentials.

By contrast, the expressions arising from the implicit approach are much harder to evaluate in general, since
they require integration of the continuum velocity field over the segment xαβ . This can be circumvented via an
approximate solution (equation (71)).

An alternative approach is first to consider the localized solution (i.e. the delta-distribution instead of the
general averaging kernel w) to obtain qδ (equation (73)). The expression to be applied to the results of real MD
simulation is then obtained from an additional spatial averaging

q =
〈
qδ

〉
S

. (102)

The numerical study of this approach was performed in Admal and Tadmor [24].
Here, we would rather draw the attention to the following. In this approach it is assumed that q obtained using

equation (102) does indeed correspond to primary continuum fields introduced during the derivation using the
general averaging kernel w (that is continuum density ρ and the kinetic energy density k introduced in Parts I
and II [3, 4] respectively). This, however, is not the case for the heat flux. In other words,

q̂i
H (x) 	=

〈
q̂δ

〉
S

. (103)

It is interesting to note in contrast that for the non-diffusive part of the linear momentum flux it holds that

ŝH (x) ≡
〈

ŝδ

〉
S

, (104)

due to the dependence of ŝδ on x being concentrated solely in ŵ
αβ

δ (x, xα, xβ).
Let us quickly prove equations (104) and (103). First of all, note that

∫

S

ŵ
αβ

δ (y, xα, xβ)w(x − y)dy =

∫

S

[∫ 1

0

δ
(
xα − y − axαβ

)
da

]
w(x − y)dy

=

∫ 1

0

[∫

S

δ
(
xα − y − axαβ

)
w(x − y)dy

]
da

=

∫ 1

0

w
(
xα − x − axαβ

)
da

= ŵ
αβ

H (x, xα, xβ). (105)

Using equation (105) and keeping in mind the expression for ŝH (x) (equation (37)), it is easy to see that

∫

S

ŝδ(y)w(x − y)dy = −
1

2

∫

S

〈
fαβ ⊗ xαβŵ

αβ

δ (y, xα, xβ)
〉
P

w(x − y)dy (106)

= −
1

2

〈
fαβ ⊗ xαβŵ

αβ

H (y, xα, xβ)
〉
P

= ŝH (x).
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In a similar manner we can develop the spatially smoothed version of a localized implicit heat flux as

∫

S

q̂δ(y)w(x − y)dy (107)

=
1

4

∑

αβ

〈
fαβ(τ ) ·

[
ṽα(xα) + ṽβ(xβ)

]
xαβ

∫

S

ŵ
αβ

δ (y, xα, xβ)w(x − y)dy
〉
P

=
1

4

∑

αβ

〈
fαβ(τ ) ·

[
ṽα(xα) + ṽβ(xβ)

]
xαβŵ

αβ

H (x, xα, xβ)
〉
P

. (108)

This, however, is not the same as the general expression for the Hardy-type implicit heat flux q̂i
H (x) given in

equation (66).
Consequently, we might say that the application of the localized implicit approach somewhat lacks the con-

sistency with the introduced primary kinematic fields. That difference, however, becomes small if one assumes
slowly varying local velocity fields at both the length scale of the averaging kernel w and the length-scale of
inter-particle distance (compare equations (70) and (72) ). It is worth noting that the localized solution (or
rather its integral over the finite volume) was successfully used to couple continuum mechanics and atomistic
simulations of liquids [28].

In the present part of this series, we reviewed some of the possible solutions for all the fluxes arising in the
balance equations previously obtained in Parts I and II [3, 4]. We have shown that the localized solutions of
Hardy and Noll–Murdoch types are equal. In addition, the integral quantities of all the fluxes were developed.
These can be trivially linked to the average over the RVE in case of MD simulations with periodic boundary
conditions, thereby providing the mathematical background to the homogenization of particle systems. In addi-
tion, we proved that for the spatial kernel dependent only on the norm of its argument, both Hardy and Noll’s
couple stresses are zero macroscopically (if the diffusive contributions to the fluxes s̃ and m̃ are also zero macro-
scopically). This is consistent with the macroscopic Cauchy stresses resulting from the two approaches being
symmetric, which corresponds to standard (as opposed to generalized) continuum mechanics.

At last, we reviewed and compared results from the explicit and implicit approaches to the balance of energy.
It was shown that the two are different by the diffusive potential energy flux introduced in the explicit approach.
Additionally, the consistency of the localized implicit heat flux to the introduced kinematic fields was discussed.
An approximate solution to the Hardy-type implicit heat flux was proposed (equation (71)). Note, that in both
cases we arrived at the equations containing the first gradient only, as opposed to the higher gradient theories,
which, for example, could be obtained during the homogenization of pantographic-type structures [29].
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Notes

1. It appears in the balance of microscopic angular momentum [4].

2. For a proof we refer the reader to Noll [2] and Lehoucq and Lilienfeld-Toal [30].

3. As an example, consider the Gaussian distribution with zero mean (it satisfies both equation (30) and equation (26)). The second

moment is not zero and equals σ 2.
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4. Note that in general the volume of the particle system can not be uniquely defined. Often it is introduced for homogeneous states

with the known constant-in-space density.
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