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Abstract. Understanding the global carbon (C) cycle is of

crucial importance to map current and future climate dynam-

ics relative to global environmental change. A full charac-

terization of C cycling requires detailed information on spa-

tiotemporal patterns of surface–atmosphere fluxes. However,

relevant C cycle observations are highly variable in their cov-

erage and reporting standards. Especially problematic is the

lack of integration of the carbon dioxide (CO2) exchange of

the ocean, inland freshwaters and the land surface with the

atmosphere. Here we adopt a data-driven approach to syn-

thesize a wide range of observation-based spatially explicit

surface–atmosphere CO2 fluxes from 2001 to 2010, to iden-

tify the state of today’s observational opportunities and data

limitations. The considered fluxes include net exchange of

open oceans, continental shelves, estuaries, rivers, and lakes,

as well as CO2 fluxes related to net ecosystem productiv-

ity, fire emissions, loss of tropical aboveground C, harvested

wood and crops, as well as fossil fuel and cement emissions.

Spatially explicit CO2 fluxes are obtained through geostatis-

tical and/or remote-sensing-based upscaling, thereby mini-

mizing biophysical or biogeochemical assumptions encoded

in process-based models. We estimate a bottom-up net C ex-

change (NCE) between the surface (land, ocean, and coastal

areas) and the atmosphere. Though we provide also global

estimates, the primary goal of this study is to identify key

uncertainties and observational shortcomings that need to be

prioritized in the expansion of in situ observatories. Uncer-

tainties for NCE and its components are derived using resam-

pling. In many regions, our NCE estimates agree well with

independent estimates from other sources such as process-

based models and atmospheric inversions. This holds for Eu-

rope (mean ± 1 SD: 0.8 ± 0.1 PgC yr−1, positive numbers are

sources to the atmosphere), Russia (0.1 ± 0.4 PgC yr−1), East

Asia (1.6 ± 0.3 PgC yr−1), South Asia (0.3 ± 0.1 PgC yr−1),

Australia (0.2 ± 0.3 PgC yr−1), and most of the Ocean re-

gions. Our NCE estimates give a likely too large CO2 sink

in tropical areas such as the Amazon, Congo, and Indone-

sia. Overall, and because of the overestimated CO2 uptake

in tropical lands, our global bottom-up NCE amounts to a

net sink of −5.4 ± 2.0 PgC yr−1. By contrast, the accurately

measured mean atmospheric growth rate of CO2 over 2001–

2010 indicates that the true value of NCE is a net CO2 source

of 4.3 ± 0.1 PgC yr−1. This mismatch of nearly 10 PgC yr−1

highlights observational gaps and limitations of data-driven

models in tropical lands, but also in North America. Our

uncertainty assessment provides the basis for setting prior-

ity regions where to increase carbon observations in the fu-

ture. High on the priority list are tropical land regions, which

suffer from a lack of in situ observations. Second, exten-

sive pCO2 data are missing in the Southern Ocean. Third,

we lack observations that could enable seasonal estimates

of shelf, estuary, and inland water–atmosphere C exchange.

Our consistent derivation of data uncertainties could serve

as prior knowledge in multicriteria optimization such as the

Carbon Cycle Data Assimilation System (CCDAS) and at-

mospheric inversions, without over- or under-stating bottom-

up data credibility. In the future, NCE estimates of carbon

sinks could be aggregated at national scale to compare with

the official national inventories of CO2 fluxes in the land use,

land use change, and forestry sector, upon which future emis-

sion reductions are proposed.

1 Introduction

The global carbon (C) cycle is crucial for sustaining life on

Earth (Vernadsky, 1926). Humans have largely modified the

C cycle over centuries if not millennia (Ruddiman, 2003;

Pongratz et al., 2009). In the Industrial Era, the human-

caused perturbation of the C cycle is largely driven by emis-

sions of CO2 from burning fossil fuel C previously stored in

geological deposits, and changes in land use, which transfer

CO2 from C stocks in the land biosphere to the atmosphere,

but can also result into CO2 removal and increase of land

stocks. As those anthropogenic C emissions are partly taken

up by oceans and terrestrial ecosystems not affected by land

use change, the different reservoirs of the global C cycle and

the fluxes between them change over time (Houghton, 2007).

A precise knowledge of the various stocks and fluxes in the

C cycle is a prerequisite to monitor these changes and make

well-informed predictions under future climate change.

The Global Carbon Project (GCP) has made major efforts

in this direction and its annual updates of the global C bud-

get have become a key source of information for the scientific

community and policy makers (Le Quéré et al., 2015). The

GCP annual C budget quantifies the partitioning of anthro-

pogenic C emissions among the atmosphere, land, and ocean

components of the global C cycle, and separates the net land

flux into land use change emissions and a so-called “residual

land C sink” obtained by difference with other terms of the

budget and thus corresponding to the net land–atmosphere

CO2 flux over non-land-use affected ecosystems. The budget

of the GCP focuses on annual values integrated at the global

scale. An important point is that the GCP budget quantifies

solely the anthropogenic perturbation of CO2 fluxes, i.e. it

provides information about the fate of anthropogenic CO2

emissions in natural reservoirs (Ciais et al., 2013). Accord-

ing to the GCP, during the years 2000–2009 about 45 % of

the anthropogenic CO2 emissions each year stay in the atmo-

sphere, the rest being taken up by the oceans (27 %) and land

(27 %) (Le Quéré et al., 2015).

Recently, a case has been made for a globally policy-

relevant integrated C observation and analysis system (Ciais

et al., 2014). This system would go beyond the update of

global budgets, for which the CO2 growth rate accurately

measured at a single station (e.g. Mauna Loa) is sufficient
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to constrain the global annual time–space integral of all

CO2 sources and sinks. It proposes to quantify regional CO2

fluxes with sufficient spatial details to monitor the effective-

ness of CO2 mitigation and to detect and monitor trends of

CO2 losses and gains by land and terrestrial systems. This is

partly relevant for monitoring country-level intended nation-

ally determined contributions (INDCs) to incept a CO2 emis-

sion trajectory consistent with global warming below 2 ◦C

(UNFCCC, 2015). In such a policy-relevant C observing sys-

tem, an uncertainty assessment for each data stream of CO2

fluxes at different spatial and temporal scales is important to,

for instance, identify significant regional emission hotspots

and trends in emissions and sinks (Ciais et al., 2014).

The steadily increasing number of Earth observations, in

particular since the start of the satellite era, has improved

our knowledge of the Earth system (Berger et al., 2012;

Tatem et al., 2008). Especially C cycle science has bene-

fited from globally available satellite observations and com-

munity efforts to unify in situ observational networks such

as FLUXNET on land (Baldocchi, 2014), the Surface Ocean

CO2 Atlas (SOCAT) (Bakker et al., 2014), and more re-

cently CO2 outgassing from lakes and rivers (Raymond et al.,

2013). Combining these available point measurements of ei-

ther CO2 fluxes (e.g. from eddy covariance towers on land),

or variables that can be directly related to CO2 fluxes (e.g.

pCO2 over aquatic surfaces) with climate fields and remotely

sensed variables (e.g. vegetation greenness), provides a ba-

sis to robustly upscale surface–atmosphere CO2 exchange to

larger areas using statistical models (Jung et al., 2011; Rö-

denbeck et al., 2015).

In this study we aim at characterizing the ability of cur-

rent C cycle observations on ground for quantifying a spa-

tiotemporally explicit picture of the net CO2 exchange be-

tween the Earth’s surface (terrestrial and aquatic) and the at-

mosphere (NCE). Unlike the GCP global budget of anthro-

pogenic CO2, we consider here the full contemporary net

exchange of surface–atmosphere CO2 fluxes. We focus our

analysis on fluxes that can be directly derived from observa-

tions. That is, we use data-driven empirical models instead

of process-based models that are only indirectly constrained

by observations. Further, we only consider “bottom-up” es-

timates derived from measurements at the Earth’s surface or

from satellites. Inversions, which largely rely on atmospheric

measurements in combination with a transport model, are not

directly included but used for comparison. The goal of this

analysis is to test the up-scaling of local flux-related observa-

tions to regional and global budgets, and point out the limita-

tions of the current observational networks and data-driven

models used to interpolate point-scale CO2 fluxes across

larger scales, for quantifying the most important CO2 fluxes

exchanged between the Earth’s surface and the atmosphere.

One of the major innovations of this study is combining

data-driven estimates of oceanic, inland waters, and terres-

trial ecosystems CO2 exchange and providing spatially ex-

plicit maps of the CO2 exchange between the surface and the

atmosphere at a monthly scale for the decade 2001–2010. At

the same time, by adding emissions from fossil fuels and ce-

ment production and comparing with the annual growth rate

of CO2, we identify the limits of a C budget purely driven

by surface data. We characterize regions in which surface–

atmosphere CO2 fluxes are most uncertain based on the cur-

rently available data and the models used for upscaling, and

thus point out regions where either more observations or a

better understanding of the processes are necessary. It is not

the primary goal of this study to provide the best global CO2

flux inventory, but rather to identify the key uncertainties and

observational shortcomings that need to be prioritized in the

expansion of in situ observatories.

The paper is structured as follows. In Sect. 2 we intro-

duce the different data streams used in the analysis, including

spatially explicit estimates of aquatic and terrestrial CO2 ex-

change. In Sect. 3 we present the resulting combined synthe-

sis as global maps, regionally aggregated fluxes, absolute and

relative uncertainties, latitudinal averages and seasonal cy-

cles. Section 4 addresses the benefits and limits of the current

observational system for constraining global net CO2 fluxes.

Section 5 summarizes the main conclusions drawn from this

synthesis.

2 Data and methods

We collected ensembles of data-driven estimates of the NCE

for the major subsystems of the Earth from 2001 to 2010

(Table 1). Each data set was aggregated to 1 × 1◦ spatial res-

olution. All data sets have an original spatial resolution of

at least 1 × 1◦ and were aggregated to the lower-resolution

common grid. The temporal resolution is monthly. For data

sets that were only available at yearly timescale or once

over the complete time period (Table 1), we distributed

fluxes evenly across all months. In this synthesis, we in-

clude NCE from open oceans, continental shelves, estuar-

ies, rivers, lakes, and terrestrial ecosystems, which we com-

bine with estimates of fossil fuel and cement emissions (FF).

The terrestrial ecosystem component accounts for fire emis-

sions (Fire), loss of tropical above-ground biomass assumed

to be released as CO2 to the atmosphere (ELUC), emissions

of the CO2 contained in harvested wood (Wood) and crops

(Crops), and net ecosystem productivity (NEP). We combine

fluxes from oceans, shelves, and estuaries into a homoge-

neous marine flux product in order to account for overlap-

ping or missing regions from the different aquatic products

(Marine, Sect. 2.2.6). We further compare the net CO2 ex-

change (NCE) derived from the combination of all the above

products with the growth rate of atmospheric CO2 (CGR).

Combining all fluxes, the overall NCE between the Earth’s

surface and the atmosphere is given as

NCE = Marine + Lakes + Rivers − NEP

+ Crops + Wood + ELUC + Fire + FF. (1)

www.biogeosciences.net/14/3685/2017/ Biogeosciences, 14, 3685–3703, 2017
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Table 1. Data sets used in this study including reference, time period and number of ensemble runs. If not specified, temporal resolution is

monthly.

Data set Reference Time period used No. runs

Ocean Landschützer et al. (2014) 2001–2010 5 + 5 = 10

Rödenbeck et al. (2014)

Shelf Laruelle et al. (2014) 1 estimate 1

Estuaries Laruelle et al. (2013) 1 estimate 1

Marine 2001–2010 10

Rivers Lauerwald et al. (2015) 1 estimate 50

Lakes Raymond et al. (2013) 1 estimate 1

NEP Tramontana et al. (2016) 2001–2010 8

Crops Wolf et al. (2015b) 2001–2010, annual 10

Wood Poulter (2015) 2000, 1 estimate 1

Fire Giglio et al. (2013) 2001–2010 1

ELUC Tyukavina et al. (2015) 2000–2012, 1 estimate 1 + 1 = 2

Harris et al. (2012) 2000–2005, 1 estimate

FF (fossil fuels) CARBONES 2001–2010 1

Atmospheric growth rate NOAA 2001–2010 1

All units were transformed into fluxes of C per unit time.

If all CO2 fluxes were included, NCE would translate into

the CGR. By convention negative fluxes indicate an up-

take by the Earth surface. Data scarcity precludes including

all known vertical CO2 fluxes in this study. Missing fluxes

include geological CO2 fluxes, erosion-related fluxes, non-

CO2 fluxes, wood product pools decay, and biofuel burning.

2.1 Uncertainty estimation and propagation

For five of the nine variables contributing to the NCE of

Eq. (1), we obtained multiple spatiotemporally explicit es-

timates directly from the raw data products. These estimates

are expected to sample the uncertainty in each variable. We

could obtain 10 different estimates for the terms Marine and

Crops respectively, 50 estimates for Rivers, eight estimates

for NEP, two estimates for ELUC, and only one estimate

for each of the remaining four variables (Table 1). To esti-

mate NCE including spatiotemporally explicit uncertainties,

we randomly draw ensemble members from each of these

nine terms to create an integrated ensemble for NCE (Eq. 1).

With the available estimates, we could in principle create

10×50×8×10×2 = 80 000 spatiotemporal explicit estimates

of NCE. From these 80 000 possible NCE estimates we ran-

domly select 200 (to reduce computational expense) to con-

struct the NCE ensemble, which is used in the remainder of

the paper. This resampling approach is illustrated in Fig. 1

and ensures a consistent propagation of spatiotemporally cor-

related uncertainties. For instance, by aggregating each mem-

ber of NCE to the desired region and estimating uncertainty

through the 200 members, we can compute regional uncer-

tainties. In addition, we computed mean fluxes, uncertainty

(defined as 1 standard deviation (SD) of the annual mean

across all realizations), interannual variability (IAV, defined

here as 1 SD of annual means across all available years) and

the coefficient of variation (CV = IAV/mean) for each of the

nine flux terms in Eq. (1).

2.2 Aquatic fluxes

2.2.1 Oceans

For the global open ocean flux estimate we used two com-

plementary data-driven estimates (Table 1). Both approaches

computed maps of the sea surface partial pressure of CO2

(pCO2). They relied on the surface ocean CO2 observations

from the SOCATv2 database (Bakker et al., 2014) and filled

data gaps by either establishing relationships between aux-

iliary driver data and observations, which can then be ap-

plied to extrapolate pCO2 in regions without data cover-

age (SOM-FFN; Landschützer et al., 2014), or by assimilat-

ing the available observations in a mass-balance model of

the mixed layer and directly interpolating data gaps (Jena

CarboScope mixed-layer scheme oc_v1.2; Rödenbeck et al.,

2014). To test the established predictor–target relationship,

the SOM-FFN method holds back a certain fraction of the

observations proportional to the method’s degrees of freedom

for internal validation. Repeating this relationship building

process and withholding different sets of validation data has

created the five ensemble members used for this study. For

the Jena CarboScope mixed-layer scheme, we used the five

sensitivity cases with varied parameters such as changes in

correlation length as described in Rödenbeck et al. (2014).

The pCO2 fields of both methods have been validated

against independent observations (Landschützer et al., 2014,

2015; Rödenbeck et al., 2014) and were compared with other

complementary data-based interpolation methods (Röden-

beck et al., 2015), illustrating their good performance in re-

constructing interannual variation.

Biogeosciences, 14, 3685–3703, 2017 www.biogeosciences.net/14/3685/2017/
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Figure 1. Schematic explanation of the uncertainty propagation.

Each spatiotemporal estimate of NCE is computed as the sum of

randomly selected estimates of the nine fluxes contributing to NCE

(see Eq. 1, here denoted by Fi ). For this study we compute 200 es-

timates of NCE. Uncertainties can be assessed at different spatial

scales by first aggregating all NCE estimates to the desired scale

and then using the 200 members for uncertainty estimation.

Both methods calculate the air–sea flux using a bulk for-

mulation of the air–sea CO2 transfer, driven by the air–

sea pCO2 difference (1pCO2) (Jähne et al., 1987) and

a quadratic dependence of the wind speed at a height of

10 m (Wanninkhof, 1992) updating the gas transfer coeffi-

cient to fit a mean transfer velocity of 16 cm per hour fol-

lowing Wanninkhof (2013). High-resolution wind speeds

at 10 m are calculated from the u and v wind compo-

nents of the ERA-Interim wind speed analysis (Dee et

al., 2011) and atmospheric pCO2 fields, required to cal-

culate the 1pCO2, are calculated are estimated from the

GLOBALVIEW-CO2 (2012) marine boundary layer CO2

product.

2.2.2 Shelves

For continental shelf seas we derived the 1pCO2 from

3 × 106 surface pCO2 measurements extracted from the SO-

CATv2 database (Bakker et al., 2014) and observational at-

mospheric pCO2 data (GLOBALVIEW-CO2, 2012). The lo-

cal CO2 air–sea flux values were then obtained using a wind-

dependent quadratic formulation parameterized as in Wan-

ninkhof et al. (2013) and wind speeds extracted from a cross-

calibrated multiplatform (CCMP) high-resolution data prod-

uct for ocean surface winds (Atlas et al., 2011). The re-

sulting local fluxes were then integrated spatially over 150

coastal regions (COSCATs – COastal Segmentation and re-

lated CATchments; Laruelle et al., 2013; Meybeck et al.,

2006) using distinct integration methods depending on the

data density (Laruelle et al., 2014). In addition, a temporal

integration was also performed at the monthly, seasonal, or

yearly timescale depending on the data coverage. These tem-

porally and regionally averaged air–sea CO2 fluxes were then

disaggregated using a 1◦ resolution map excluding land areas

and open ocean waters using the shelf break as outer limit

(Laruelle et al., 2014).

2.2.3 Estuaries

The CO2 emissions from estuaries were derived from 161 an-

nually averaged local CO2 air–water exchange rates reported

in the literature (Laruelle et al., 2013). The data were allo-

cated to one of the 45 coastal MARCATS regions (MAR-

gins and CATchments Segmentation) defined in Laruelle et

al. (2013) and further categorized among the four domi-

nant estuarine types (i.e. small deltas, tidal systems, lagoons,

fjords; see Dürr et al., 2011) to calculate regionally averaged,

type-specific CO2 emission rates. In MARCATS regions de-

void of estuarine data, the global average type-dependent air–

water CO2 flux was used from Laruelle et al. (2013). These

flux densities were then multiplied by the estuarine surface

areas for each type, estimated at 1◦ resolution from the length

of the coastline and a type-specific length to estuarine surface

ratio (Dürr et al., 2011).

2.2.4 Marine

We created 10 marine estimates by combining the 10 esti-

mates for the open oceans with shelves and estuaries to a

consistent marine product. For pixels with observations from

multiple products (e.g. estuaries and oceans) we follow a

“priority rule” whereby the shelves, estuaries, or oceans ob-

servation value only (in that order) is retained. Empty pixels

are gap-filled with a 3 × 3 mean window. This same filter is

also applied to the rest of the merged data set to smooth out

hard borders between the different estimates. This applica-

tion does not significantly change the overall flux estimates,

but arguably results in a more realistic interface. Note that in

the merged Marine product, uncertainty and IAV could only

be assessed for the ocean flux.

2.2.5 Rivers

Fifty estimates of CO2 evasion from streams and rivers were

derived from a spatially explicit, empirical model of river

water pCO2 and global maps of stream surface areas and

gas exchange velocities at a resolution of 0.5◦ (Lauerwald et

al., 2015). The empirical pCO2 model was trained on 1182

river catchments from the GLORICH database (Hartmann et

al., 2014) for which averages of pCO2 could be calculated.

Steepness of terrain, terrestrial net primary production, aver-

age air temperature, as well as population density were iden-

tified as predictors (R2 = 0.47). The global maps of stream

surface area and gas exchange velocities were obtained by

a GIS-based application of published empirical scaling laws

(Raymond et al., 2012, 2013) using topography (Lehner et

al., 2008) and runoff (Fekete et al., 2002). The CO2 eva-

sion was calculated as product of water–air pCO2 gradient

(assuming an atmospheric pCO2 of 390 µatm), river surface

areas, and gas exchange velocities. A Monte Carlo simula-

www.biogeosciences.net/14/3685/2017/ Biogeosciences, 14, 3685–3703, 2017
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tion based on standard errors of the predictors in the pCO2

model and uncertainty ranges for estimates of stream surface

area and gas exchange velocity was run to produce 50 CO2

evasion estimates.

2.2.6 Lakes

Estimates of CO2 evasion from lakes and reservoirs were

taken from Raymond et al. (2013), which reports average

lake pCO2, total lake/reservoir surface area, and total CO2

evasion for 231 COSCAT regions (including endorheic re-

gions). For the total lake/reservoirs surface area, data from

the Global Lakes and Wetland Database (GLWD; Lehner and

Döll, 2004) were combined with an estimate for small lakes

and reservoirs not represented in the GLWD using a scal-

ing law. Here, we used the GLWD data to downscale the

estimates of Raymond et al. (2013) to a continuous 1◦ res-

olution. For this purpose, we combined a uniform air–water

CO2 flux (per unit surface area) within each COSCAT re-

gion with a spatially explicit estimate of the lakes/reservoirs

surface at this resolution. The small lakes/reservoirs not rep-

resented in the GLWD were assumed evenly distributed over

the COSCAT area.

2.3 Terrestrial fluxes

2.3.1 NEP

We used eight empirical, machine learning based products

from FLUXCOM (www.fluxcom.org) for net ecosystem pro-

ductivity (NEP), derived from more than 200 FLUXNET

sites and exclusively remote-sensing-based predictor vari-

ables (“FLUXCOM-RS”; see Tramontana et al., 2016). The

eight machine learning methods used here include artificial

neural networks, four variants of model or regression tree

ensembles, kernel methods (support vector machines, ker-

nel ridge regression), and multivariate adaptive regression

splines (Tramontana et al., 2016). All methods were trained

on 8-daily tower-based NEP estimates.

2.3.2 Crops

About 42 % of global crop biomass is harvested, transported,

and respired offsite (Wolf et al., 2015a). The impact of this

lateral C transport on fluxes can be seen at the country scale

in the form of import and exports, but even more so at sub-

regional scales where the movement of crop biomass to feed

livestock and humans is evident (Hayes et al., 2012; West et

al., 2011). To capture the spatial distribution of CO2 fluxes

from agricultural harvest, we used livestock and human CO2

emissions estimates (Wolf et al., 2015b) that are available

from 2005 to 2011 at 0.05◦spatial resolution. CO2 that has

previously been taken up from the atmosphere by the har-

vested biomass of crops is included in the NEP estimates

from FLUXCOM. We aggregated best estimates of the data

to 1◦, added all uncertainty estimates within one 1◦ pixel and

used them as estimates for 1 standard deviation on the new

1◦ grid. Assuming Gaussian-distributed errors we sampled

1000 values at each pixel and used 10 maps of the 5th, 15th,

. . . , 95th quantiles as different ensemble members. Data were

then linearly extrapolated back to 2001–2004. In a final step,

and because it is not known in which months the emissions

occur, we further distributed the annual estimates equally

across all 12 months.

2.3.3 Wood

We used one estimate of globally gridded forest harvesting

data around year 2000 as described in the Supplement S1.

These data include fuelwood and roundwood harvested vol-

umes in m3. We translated wood volumes into units of C us-

ing a value of 0.275 MgC m−3 from FAO (http://www.fao.

org/docrep/w4095e/w4095e06.htm), assuming wood density

of 0.55 t m−3. To avoid double counting wood harvest with

aboveground biomass loss in tropical areas exposed to land

use change, we use wood harvesting data only in locations

where the amount of harvested wood (in C) exceeds ELUC

(Sect. 2.3.4). We assume that 100 % of the harvested wood

is respired back to the atmosphere within a year, thus assum-

ing no change in C stock of wood products and constant har-

vesting rates across years. However, C contained in harvested

wood is usually emitted at a different location than where the

harvest took place. We thus incorporated lateral shifts of har-

vested wood by redistributing wood harvest according to the

consumption of wood as explained in the Supplement (see

also Fig. S2).

2.3.4 ELUC

We used two estimates for CO2 fluxes due to tropical de-

forestation and degradation. It is assumed here that 100 %

of biomass loss is converted to a CO2 flux being released in-

stantly (within a year) to the atmosphere. In reality, a fraction

of lost tropical biomass decays in ecosystems (belowground

biomass and slash) and a fraction is used in wood products

of various lifetime. However, slash is decomposed fast and

biomass from deforested areas is transformed on average to

short-lived products (≈ 5 years after Earles et al., 2012).

1. Gross tropical deforestation emissions were taken from

Harris et al. (2012). They represent total (above- and be-

lowground) C loss from gross forest cover loss in the

tropical regions due to human or natural causes (e.g.

disturbances without forest recovery) for the period of

2000–2005.

2. More recent estimates of aboveground C loss in the

tropics from stand-replacement disturbance of forest

cover due to human or natural causes were provided

by Tyukavina et al. (2015). Sample-based estimates of

mean 2000–2012 aboveground C loss for each 30 m res-

olution forest C stratum were attributed to all pixels of
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Figure 2. Different components of observation-driven C exchange between the Earth’s surface and the atmosphere. Red arrows denote a

flux from the surface to the atmosphere (net source), green arrows denote a flux from the atmosphere to the surface (net sink). Units are in

PgC yr−1.

the corresponding stratum and averaged to the 1 × 1◦

resolution.

We used ELUC only in those pixels where the average

of the two estimates (1 and 2) exceeds wood harvesting

(Sect. 2.3.3).

2.3.5 Fire

We used fire emissions from the Global Fire Emissions

Database version 4 with small fires (GFED4s, http://www.

globalfiredata.org) based on burned area from Giglio et

al. (2013) and Randerson et al. (2012) and an updated ver-

sion of the biogeochemical modelling framework of van der

Werf et al. (2010) to convert burned area to C emissions.

We included all fire types except tropical deforestation and

degradation fires, which are included in ELUC and should

thus not be counted twice (Sect. 2.3.4). For an earlier ver-

sion of fire emissions (GFED3) a Monte Carlo simulation

indicated an uncertainty of about 20 % (1SD) for continental-

scale estimates but these estimates turned out to be not very

reliable (van der Werf et al., 2017). For example, the inclu-

sion of small fire burned area led to an increase in burned

area exceeding the previously assumed uncertainty and the

current version therefore has no uncertainty assessment at

pixel level. Note that GFED fire emissions depend on esti-

mates of net primary production and combustion factors as

computed by the CASA model.

2.3.6 FF

We use the IER-EDGARv4.2 product for fossil fuel and ce-

ment emissions, which was derived within the CARBONES

project by the Institute für Energiewirtschaft und Rationelle

Energieanwendung (IER). It is based on the Edgar v4.2 fos-

sil fuel spatial distribution (with the highest spatial resolu-

tion of 0.1 × 0.1◦) and uses national consumption and global

production statistics. Based on the sectorial distinguished

EDGARv4.2 emissions, sector-specific and country-specific

temporal profiles were included. A detailed description of the

construction of the product is given at http://www.carbones.

eu/wcmqs/project/ccdas/#Fossil_Fuel. It is important to note

that FF emissions here are not observation based as the IER-

EDGARv4.2 product is partly based on national estimates

from official inventories reported by countries to the UN-

FCCC.

2.4 Atmospheric growth rate

We used the atmospheric rate of change of CO2, which is

equal to the space and time integral of all emissions and

sinks at the surface, using the calculations made by the GCP

(Le Quéré et al., 2015). These calculations are based on

the global growth rate of atmospheric CO2 (CGR) provided

by the US National Oceanic and Atmospheric Administra-

tion Earth System Research Laboratory (NOAA/ESRL) and

were derived from multiple stations selected from the ma-

rine boundary layer sites with well mixed background air

(Ballantyne et al., 2012; Masarie and Tans, 1995). They

applied conversion from concentrations to carbon mass is

1 ppm = 2.12 PgC (Prather et al., 2012).

2.5 Inversions

For a comparison of yearly variability, spatial patterns, and

latitudinal bands of NCE, we used annual means of 10 at-

mospheric CO2 inversions collected in Peylin et al. (2013),

available at the same spatial and temporal resolution. Atmo-

spheric CO2 inversions estimate the spatiotemporal explicit

CO2 exchange between the Earth surface and atmosphere us-

ing atmospheric CO2 measurements and a transport model.

Inversions have a closed budget by construction. The me-

dian and interquartile range for each year is taken over all

www.biogeosciences.net/14/3685/2017/ Biogeosciences, 14, 3685–3703, 2017
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Table 2. Net carbon exchange for different subsystems and variables that contribute to NCE (Eq. 1; negative numbers are surface uptake).

Uncertainty (Unc.) is SD over ensemble runs. IAV is SD over annual values (2001–2010) and CV is coefficient of variation, computed as

IAV divided by the mean.

Variable Marine Rivers Lakes −NEP Crops Wood ELUC FF Fire NCE

Mean −1.60 0.65 0.32 −18.41 2.68 0.71 0.83 7.78 1.81 −5.45

Unc. 0.15 0.08 2.08 0.21 0.16 1.99

IAV 0.36 0.36 0.09 0.75 0.11

CV 0.22 0.02 0.03 0.10 0.06 0.11

available inversions for that year, as not all inversions were

available until 2010. Atmospheric CO2 inversions estimate

surface CO2 fluxes such that they best fit observed atmo-

spheric constraints. They usually rely on prior information

provided by terrestrial and oceanic biogeochemical models

but are mostly independent from the bottom-up data sets in-

cluded in the present synthesis. They further use FF as an

input and then provide the surface–atmosphere flux exclud-

ing FF.

3 Results

3.1 Global net carbon exchange

Mean fluxes, their uncertainties, interannual variability

(IAV), and CV (the mean-normalized IAV) for all individual

fluxes contributing to NCE are presented in Table 2. Mean

fluxes are also summarized graphically in Fig. 2 (mean over

2001–2010). Our best surface-data-driven bottom-up global

estimate of NCE is −5.4 ± 2.0 PgC yr−1. That means that the

observation-based data sets suggest a large net sink, even if

FF and ELUC are included in NCE. By contrast, the accu-

rately measured CO2 growth rate constrains NCE to being

a net CO2 source to the atmosphere of 4.3 ± 0.1 PgC yr−1

(2001–2010, Le Quéré et al., 2015). Thus, there is a large

mismatch with our NCE of 9.7 ± 2.0 PgC yr−1. This high-

lights that our observation-based NCE is biased towards a too

large sink. Potential reasons for this mismatch are discussed

in Sect. 4. For most fluxes, uncertainty estimates strongly

exceed IAV (Table 2). Interestingly, process-based models,

which are only indirectly constrained by observations, pro-

vide an NCE that matches roughly the CO2 growth rate

(Le Quéré et al., 2015). Developers of process-based mod-

els have access to CO2 growth rate data and may be in the

position to tune their models so that they give realistic NCE

values (Schwalm et al., 2015), whereas in our bottom-up ap-

proach, we conducted a blind up-scaling of ground measure-

ments without trying to match the CO2 growth rate.
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Figure 3. Gridded spatial patterns of NCE. (a) 2001–2010 decadal

mean. (b) Uncertainty; 1SD across the NCE ensemble. (c) Relative

uncertainty; uncertainty normalized by absolute mean. Latitudinal

plots in (b) and (c) denote median across latitudes.

3.2 Spatial patterns of net carbon exchange

The 200-member NCE ensemble and the uncertainty distri-

bution of each flux component enables us to provide a best

estimate for a gridded average surface–atmosphere CO2 flux

map for the time period 2001–2010 (Fig. 3a). According to

these estimates, tropical land areas are a larger CO2 sink than

Biogeosciences, 14, 3685–3703, 2017 www.biogeosciences.net/14/3685/2017/
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the mid-latitudes despite the visible forest bands in North

America and Russia that function as sinks. In contrast, the

high latitudes indicate a relatively small source. In the ocean,

these patterns are reversed, with sources in the tropics and a

sink in the mid-latitudes. Clearly, there is a strong land–sea

contrast and land NCE is much higher in magnitude com-

pared to ocean NCE. In areas with high human population

densities and active industry (Europe, eastern China, US,

South Africa), emissions from fossil fuels and cement pro-

duction clearly dominate the land CO2 fluxes.

Absolute uncertainty of NCE generally scales with the

mean flux and is highest in the most productive areas over

land (Amazon basin, Congo basin, Indonesia; Fig. 3b). Due

to the small contribution of the oceans, absolute uncertain-

ties are barely discernible there. Although gross air–sea ex-

change fluxes have typical uncertainties of more than 20 %,

their differences are determined from independent measure-

ments with a much higher accuracy (Ciais et al., 2013).

Relative uncertainties, however, show very distinct pat-

terns (Fig. 3c). These are high on land in semi-arid and arid,

and in mountainous regions (i.e. rather unproductive areas

with near-zero mean) such as Australia, the Middle East, the

Midwest US, the Sahel, South Africa, the Andes, and around

the Tibetan Plateau. Marine–atmosphere CO2 exchange is

most uncertain in relative terms in the Bay of Bengal and

in the Southern Ocean, which is known to be undersampled,

and where the two data-driven NCE fluxes show substantial

regional patterns (Landschützer et al., 2014; Rödenbeck et

al., 2014). In addition, linear features with high relative un-

certainty are visible, especially in the Southern Hemisphere.

These are related to the borders of the clusters used for de-

riving homogeneous regions of sea–air exchange in one of

the ocean-exchange products, which result in this product

in strong spatial gradients in the sea surface pCO2 (Land-

schützer et al., 2014). Relative uncertainties are mostly below

100 % for the median across latitudinal bands (Fig. 3c). Only

in the Southern Ocean is the relative uncertainty substantially

higher, reflecting difficulties in reconstructing seasonal to in-

terannual variabilities with sparse observational constraints

(Landschützer et al., 2014; Rödenbeck et al., 2014). Never-

theless, Landschützer et al. (2015) have shown that there is

a better agreement between the estimates of Landschützer et

al. (2014) and Rödenbeck et al. (2014) when low-frequency

variability, such as decadal variability, is analysed.

Averaged over latitudinal bands, the tropics are clearly

a CO2 sink (Fig. 4a), a feature of the FLUXCOM models

used for NEP, whereas mid-latitudes form a net CO2 source,

mostly due to fossil fuel and cement emissions surpassing

natural CO2 sinks. This latitudinal pattern is strongly driven

by the terrestrial fluxes (Fig. 4b). Marine and land aquatic

CO2 exchange in turn is about 4 times smaller in magnitude

and shows CO2 sources in the tropics and CO2 sinks in the

extratropics (Fig. 4c). The aquatic CO2 source in the tropics

is not only the result of the ocean air–sea exchange, but also

of the very intense river outgassing in low-latitude regions
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Figure 4. Median and interquartile range of different subsets of

NCE (2001–2010 decadal mean). (a) All fluxes. (b) Terrestrial

fluxes. (c) Aquatic fluxes. (d) NCE without fossil fuels from this

synthesis (black) and from inversions (blue).

(Lauerwald et al., 2015). NCE in the mid-latitudes is dom-

inated by fossil fuel emissions (black line in Fig. 4d shows

NCE-FF). FF contribute little in the tropics and the high lat-

itudes but offset land and ocean CO2 sinks in the northern

mid-latitudes so that the net CO2 balance of this latitude band

is a net CO2 source.

We use the land cover map of FLUXCOM to iden-

tify tropical forests (all pixels where broadleaved ever-

green trees dominate). Tropical forest, which covers about

3.5 % of the Earth’s surface, are allocated a CO2 sink

of −5.0 ± 0.6 PgC yr−1, which is unrealistic, if compared

to, for example, forest biomass inventories (Pan et al.,

2011). Without this large sink, global NCE would be

of −0.4 ± 1.8 PgC yr−1. This corrected estimate (assum-

ing neutral C exchange in tropical forests) is still a

sink more than 4 PgC yr−1 larger than the global NCE

accurately constrained by CO2 growth rate observations

(4.3 ± 0.1 PgC yr−1). Including missing fluxes (e.g. biogenic

fluxes and emissions from wetlands; see Sect. 4.2) for which

we do not have spatially explicit estimates (see Sect. 4.4)

could close this gap. These considerations suggest that the

CO2 sink of tropical forests from FLUXCOM is probably

strongly overestimated and responsible for at least half of

the global mismatch with the observed CO2 growth rate (see

Sect. 4.1 for further discussion).
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over land, including (red) and without fossil fuels (blue). Shown
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(whiskers). The regional estimates including uncertainties of NCE

collected in Ciais et al. (2017) are underlain in grey. NA: North

America; SA: South America; EU: Europe; AF: Africa; RU: Rus-

sia; EA: East Asia; SAs: South Asia; SEA: Southeast Asia; AU:

Australia; Rest: remaining land areas.

3.3 Net carbon exchange over the RECCAP regions

3.3.1 3.3.1 RECCAP over land

Here we compare our NCE estimates over land with largely

independent estimates of net ecosystem exchange (NEE)

over continental-scale regions collected in RECCAP (RE-

gional Carbon Cycle Assessment and Processes). Ciais et

al. (2017) compiled regional estimates of land–atmosphere

CO2 fluxes in the RECCAP regions from the original publi-

cations, complemented by river CO2 outgassing fluxes from

Raymond et al. (2013) and Lauerwald et al. (2015). Thus,

these estimates are not fully independent of those presented

in this study because they use the same river fluxes, fire emis-

sions, and FF emission. All other fluxes are independent. The

RECCAP budgets were based on inventories, and in some in-

stances on process models results. For ELUC, RECCAP pub-

lications used regional data sets or bookkeeping models (a

bookkeeping model combines local or regional observation-

based estimates of C stocks before land use change and tra-

jectories of C stocks after land use change including slash,

biomass, soil carbon, and harvested wood products with

changing areas of different land use types, Houghton and

Nassikas, 2017), that are independent from estimates gath-

ered in Sect. 2.3.4. The RECCAP regions include North

America (NA; King et al., 2015), South America (SA; Gloor

et al., 2012), Europe (EU; Luyssaert et al., 2012), Africa (AF;

Valentini et al., 2014), Russia (RU; Dolman et al., 2012),

East Asia (EA; Piao et al., 2012), South Asia (SAs; Patra

et al., 2013), and Australia (AU; Haverd et al., 2013). No

regional study is yet available for Southeast Asia (SEA).

Greenland, the Middle East, Ukraine, Kazakhstan and New

Zealand are omitted in regional RECCAP studies because of

the difficulty of obtaining local ground-based observations.

Ciais et al. (2017) collected the regional estimates and com-

bined them with estimates of lateral transport to estimate C

budgets for each region. NEE in Ciais et al. (2017) minus

C export by rivers should in principle be equal to our NCE

estimates without FF over the same regions (Fig. 5). In re-

gions without tropical forest except NA (that is, EU, RU, EA,

SAs, and AU) the estimates by Ciais et al. (2017) are within

the uncertainty range of our assessment. For NA and regions

containing the tropics, our approach shows a much stronger

C sink.

Using our methodology, the annual NCE-FF for all REC-

CAP regions amounts to −11.0 ± 1.9 PgC yr−1 in contrast

to −1.3 ± 0.6 PgC yr−1 in Ciais et al. (2017). If we ex-

clude SA, AF, and SEA, the numbers are −2.8 ± 1.0 and

−1.5 ± 0.4 PgC yr−1, respectively, bringing both estimates

in each other’s uncertainty range. For SA, AF and SEA,

the two estimates even differ in sign. While our estimates

indicate strong C sinks of −4.3 ± 0.5, −2.7 ± 0.9, and

−1.2 ± 0.3 PgC yr−1, respectively, Ciais et al. (2017) report

0.1 ± 0.3, 0.1 ± 0.3, and 0.0 ± 0.2 PgC yr−1.

Given that Ciais et al. (2017) rely on an independent

method, this demonstrates that a relatively good understand-

ing and observational coverage of net C fluxes exists for EU,

RU, AU, SAs, and EA to some extent. It is somewhat sur-

prising that both approaches largely differ over North Amer-

ica, where good observational coverage for instance through

eddy covariance towers exist. The comparison also reveals

the high uncertainties and biases in bottom-up estimates of

NCE over tropical forests (see Sect. 3.2, but also Gloor et al.,

2012; Valentini et al., 2014) and underlines the importance of

long-term ground-based measurement campaigns in those re-

gions (e.g. RAINFOR, http://www.rainfor.org/: Malhi et al.,

2002; ATTO: Andreae et al., 2015; Zhou et al., 2014).

3.3.2 RECCAP over ocean

We compare our estimates of marine C exchange over the

ocean with estimates from the RECCAP initiative. The Pa-

cific Ocean is divided into North Pacific extratropics (NP),

tropical pacific (TP), and South Pacific extratropics (SP)

(Ishii et al., 2014). The Atlantic Ocean is divided into Arc-

tic Ocean (AR), northern subtropics (NS), equatorial (EQ),

and southern subtropics (SS) (Schuster et al., 2013). Further,

there are estimates for the northern (NI) and southern Indian

Ocean (SI) (Sarma et al., 2013) as well as for the Southern

Ocean (SO) (Lenton et al., 2013). While there is large over-

lap between the pCO2 data used in the RECCAP estimates

and our NCE estimates over oceans, different independent

methods have been used to obtain flux estimates of ocean

CO2 exchange (Sect. 2.2.1). Overall, the estimates from both

sources agree very well (Fig. 6) and show ocean net C re-

lease in tropical regions (TP, EQ, and NI) and net C uptake in

all other regions. In SO our estimates predict a smaller sink

compared to the RECCAP estimates, a difference probably

Biogeosciences, 14, 3685–3703, 2017 www.biogeosciences.net/14/3685/2017/
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owing to the weak observational constraint (Landschützer

et al., 2014; Rödenbeck et al., 2014). Our estimates gener-

ally have smaller uncertainty ranges, which is because (i) the

RECCAP studies include many more approaches (including

process-based models, atmospheric and ocean inversions) in

their estimates and (ii) in our analysis we include the uncer-

tainty from the ocean pCO2 products and their realizations

but do not account for the uncertainty in the kinetic gas trans-

fer.
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Figure 8. NCE median seasonal cycle and interquartile range for

Northern Hemisphere (NH, 0–90◦ N, blue) and Southern Hemi-

sphere (SH, 90–0◦ S, green) for estimates from this study (dark

colours) and inversions (light colours).

3.4 Comparison with inversions

We compare NCE without FF (NCE-FF) with annual values

from 10 inversions estimating the surface–atmosphere CO2

flux without FF (Peylin et al., 2013). While both estimates

agree well in the mid-latitudes, they show opposite patterns

in the tropics and northern high latitudes (Fig. 4d). The es-

timates of NEP in our NCE-FF probably have a substantial

bias towards too much uptake over tropical land (Sect. 4.1).

The comparison suggests that CO2 fluxes are comparably

well constrained in the mid-latitudes where bottom-up and

top-down approaches agree. Similar results have been ob-

tained in a comparison of a bottom-up upscaling approach

with a more recent inversion based on CO2 concentra-

tion data from the Greenhouse gases Observing SATellite

(GOSAT; Kondo et al., 2015). The temporal evolution be-

tween both estimates show little agreement except the trend

towards more net C uptake by the Earth’s surface (Fig. 7).

The comparison shows that NCE-FF estimated from this

study has lower interannual variability compared to inversion

estimates. Uncertainties are very high for our NCE-FF. In ad-

dition, the mean annual C uptake in our estimates is nearly

10 PgC yr−1 higher than for inversions.

3.5 Monthly variability and mean seasonal cycle

NCE in the Northern Hemisphere (NH) exhibits a much

stronger mean seasonal cycle compared to the Southern

Hemisphere (SH), ranging from a net C uptake of nearly

2 PgC (per month) in July to a net C release of about 0.9 PgC

in December and January (Fig. 8). The SH is always a net

C sink, ranging between slightly under 0.8 PgC uptake in

January to roughly 0.1 PgC in August and September. This

illustrates the “breathing of the Earth” – that is, vegetation

activity largely follows the annual cycle of the sun. NH NCE

is strongly offset by fossil fuel emissions. The uncertainties

www.biogeosciences.net/14/3685/2017/ Biogeosciences, 14, 3685–3703, 2017
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for the SH seasonal cycle are generally much lower than for

the NH fluxes due to the larger contribution of the latter to

the overall flux pattern, which is related to the distribution

of land areas. If compared to inversions, we find that both

estimates only match in the summer of the NH. In all other

months and in the SH, our NCE estimates show a consistently

much larger surface C sink. In addition, the NCE estimates

from this synthesis show a smaller amplitude of the mean

seasonal cycle compared to the inversions. The difference in

amplitude of the mean seasonal cycle is on average 0.7 PgC

for the NH and 0.4 PgC for the SH.

4 Current limitations of a bottom-up spatiotemporal

assessment of net carbon exchange

Our study shows that today’s spatiotemporally explicit

and independent bottom-up observation-driven estimates of

surface–atmosphere CO2 exchange suffer from large bias,

such that they do not match the global NCE well constrained

from the CO2 growth rate. This statement is not downgrad-

ing the advances in the area, but rather a systematic reflec-

tion of the state of current research and monitoring. In fact,

at the regional scale, those estimates are often well con-

strained and may be used for model–data integration stud-

ies and validation purposes. The regions where observation-

driven CO2 exchange is constrained the best include Europe,

Russia, South Asia, East Asia, Australia and all oceanic re-

gions except the Southern Ocean. The most likely candidate

for inducing the mismatch between data-driven estimates and

the atmospheric CO2 growth rate is terrestrial NEP. In partic-

ular, tropical NEP estimates suggest a too large tropical sink.

In the following sections, we discuss (i) the possible reasons

for the large bias in NEP (Sect. 4.1), (ii) which fluxes are

missing in our synthesis (Sect. 4.2), (iii) how this synthe-

sis data set could be used for model–data fusion (Sect. 4.3),

(iv) uncertainties in fire emissions (Sect. 4.4), and (v) the

impact of missing seasonal cycles in some of the data sets

(Sect. 4.5).

4.1 Difficulties in estimating NEP over land

Correctly predicting NEP from remote sensing requires es-

tablishing universal relationships between those predictors

and respiratory processes (Jägermeyr et al., 2014; Tramon-

tana et al., 2016). However, predicting such processes still

poses major challenges to researchers (Trumbore, 2006). The

CO2 flux related to heterotrophic decomposition processes,

for instance, relates to factors controlling biological activity

via temperature, moisture availability, and the decomposable

substrate material. The question how soil respiration or to-

tal ecosystem respiration depends on these variables is not

yet entirely understood. Advancing our knowledge on these

processes is challenging due to both a lack of theory of res-

piration and the difficulty of obtaining relevant data to test

models (Trumbore, 2006).

In addition to a good theory for respiration, information

on disturbance history (e.g. time since last fire) and forest

age would improve the upscaling of NEP from sites to re-

gions (Ciais et al., 2014). Disturbances that cause physical

damage to vegetation properties tend to temporarily increase

respiration and reduce photosynthesis and thus alter the bal-

ance between gross C uptake and release. Disturbed ecosys-

tems are thus initially assumed to be strong C sources until

plant production recovers. However, how these regrowth pro-

cesses compensate a given disturbance regime cannot yet be

quantified at global scales, as the area covered by disturbed

ecosystems is variable and unknown (Ciais et al., 2014). For

example, regrowth of vegetation after fires and other distur-

bances is not well sampled neither in the FLUXNET stations

nor in the set of predictors used by the FLUXCOM models

and is assumed to be implicit in our NEP estimate. Further-

more, management can have strong effects on annual NEP of

croplands, which form large parts of the land surface (Jung

et al., 2011). However, not all of the relevant predictors (i.e.

disturbance maps, management practices, soil moisture) are

currently available to be included in empirical upscaling ex-

ercises (Tramontana et al., 2016).

In addition to the above difficulties, some regions are un-

dersampled by eddy covariance towers and thus NEP is not

well constrained. This is the case for tropical forests and the

northern high latitudes. In the tropics, undersampling leads

to a large overestimation of net CO2 uptake in comparison

to inversion and forest inventories (Peylin et al., 2013; Pan et

al., 2011), whereas in the high latitudes it leads to a compa-

rably large CO2 release (Fig. 4).

Given the difference between NCE and inversions in the

tropics (Fig. 4), we can assume that a bias of FLUXCOM

NEP towards a too high C sink is the main reason why the

C budget is not closed in our approach. This raises the ques-

tion why upscaled NEP has such a strong systematic bias to-

wards a sink, particularly in the tropics (see also Jung et al.,

2011). We suspect that the eddy covariance towers collected

in FLUXNET, which provide the empirical basis for the

global data-driven estimates (see Sect. 2.3.1) do not represent

the different age classes of forests very well. For instance,

young and regrowing forests with a generally higher-than-

average NEP are possibly over-represented in FLUXNET.

However, such an age dependency (Amiro et al., 2010; Cour-

solle et al., 2012; Hyvönen et al., 2007; Magnani et al., 2007)

has not yet been included in global upscaling of NEP. This

hypothesis should be tested in future upscaling exercises.

4.2 Missing fluxes

Due to a focus on spatially explicit maps, not all known

fluxes between the land surface and the atmosphere are con-

sidered in our analysis. We assume that including the follow-

ing fluxes may have an influence on the regional and global
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flux estimates (estimates of the flux magnitude are given if

known):

– emissions from biogenic volatile organic compounds

(VOCs) amount to approximately 0.76 PgC yr−1 glob-

ally (Sindelarova et al., 2014);

– CO2 emissions from wetlands, estimated globally at

around 2.1 PgC yr−1 (Aufdenkampe et al., 2011);

– CH4 emissions from biogenic sources and animals;

– crop residues burning in households;

– biofuel burning;

– changes in land management, e.g. shifts in agriculture,

soil tillage, grassland ploughing and grazing;

– geological fluxes;

– Raymond et al. (2013) estimate a much higher river eva-

sion (1.8 PgC yr−1 instead of 0.65 PgC yr−1 used in this

study).

All known missing fluxes add up to an additional C release of

about 4 PgC yr−1. Although substantial, they do not cover the

mismatch of more than 9 PgC yr−1 by far (Sect. 3.1). How-

ever, they would suffice to close the budget if tropical forests

are assumed to be C neutral (tropical forests are responsible

for a net C sink of about 5 PgC yr−1, Sect. 3.2). This signifi-

cant amount of missing fluxes prohibits constraining FLUX-

COM runs with all the remaining fluxes. In other words, we

cannot be certain of the bias in upscaled NEP as long as the

major fluxes are not quantified in a spatially explicit man-

ner. Emissions from VOCs and wetlands should thus receive

particular attention if a consistent spatiotemporal picture of

vertical CO2 exchange is to be obtained.

4.3 Uncertainty estimates and model–data fusion

Our uncertainty estimates of ocean and land C exchange

likely underestimate the true uncertainty. In particular, Land-

schützer et al. (2014) estimated that the choice of sea–air

gas transfer formulation (also including other relationships

than quadratic) and the pCO2 mapping mismatch lead to an

uncertainty of 37 % for the global average over sea–air ex-

change between 1998 and 2011, with the majority of this un-

certainty stemming from the gas transfer formulation. Fur-

thermore, the uncertainty of NEP is likely underestimated

because all upscaling methods in FLUXCOM use the same

set of predictors (Tramontana et al., 2016). Hence, the un-

certainty estimates only cover the uncertainty related to the

upscaling method but do not contain uncertainties related to

the selection of predictors or observational uncertainty of the

predictors themselves.

A comprehensive spatiotemporally explicit bottom-up es-

timate of NCE can be a powerful ingredient for model–data

integration exercises (Rayner et al., 2005). Yet model–data

integration requires uncertainty characteristics of all data

streams used (Raupach et al., 2005). Furthermore, it is im-

portant that uncertainties can be described in terms of ran-

dom errors (Ciais et al., 2014). Error estimates at the local

or regional level are difficult to use if no spatial error covari-

ance matrix is available. The uncertainty analysis presented

in this study obtained through Monte Carlo sampling aims to

be of use for model–data integration studies. Errors are au-

tomatically propagated through different spatial resolutions

by aggregating the individual ensembles of NCE. Naturally,

efforts should be made to obtain error estimates for all in-

tegrated data sets (i.e. Wood, Fires, Shelves, Estuaries, and

Lakes). Nevertheless, this first integrated NCE estimate of-

fers new possibilities for approaches such as the Carbon Cy-

cle Data Assimilation System (CCDAS; Rayner et al., 2005),

by providing not only a full spatiotemporal grid of fluxes but

also a transparent and consistent error propagation scheme.

This can have also practical applications, for instance for de-

signing new measurement campaigns in regions with high

uncertainties to reduce knowledge gaps in the global CO2

fluxes.

4.4 Uncertainties in fire emissions

Fire emission estimates combine satellite-based fire data with

ecosystems models. Uncertainties in global fire emission es-

timates are substantial and different fire products vary largely

by location, vegetation type, and fire weather (Ciais et al.,

2014; French et al., 2011).

While GFED4 burned-area estimates come with regional

uncertainty estimates (Giglio et al., 2013), the actual uncer-

tainty of C emissions from fires are probably much larger,

of the order of 50 % (van der Werf et al., 2017). The un-

certainties of fire emission estimates depend regionally and

temporally on the various input data sets such as burned area,

small fire burned area, biomass loadings, and combustion

completeness. Better quantifying this uncertainty requires an

assessment of the burned-area estimates as well as new field

data on fuel consumption and emission factors. In this study

we cannot propagate this uncertainty into the NCE estimates

as this would require spatiotemporal error covariance matri-

ces.

4.5 Seasonality for coastal and inland waters, wood

and crop harvest emissions

Recently, major steps have been undertaken to resolve the

spatial variability of coastal and inland water CO2 fluxes

(Laruelle et al., 2013, 2014; Lauerwald et al., 2015; Ray-

mond et al., 2013). Estimates of the seasonal variation in

these fluxes are necessary to better constrain seasonal vari-

ations in NCE. For inland waters, seasonality has so far only

been investigated at regional scale (Laruelle et al., 2015;

Richey et al., 2002). For shelves some seasonal estimates
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are currently available in temperate and high latitudes, in-

dicating that net C uptake is highest in spring, whereas C

release is highest in summer (Laruelle et al., 2014, 2017).

These estimates indicate that seasonal differences in shelf

net C exchange are as high as the annually integrated latitu-

dinal gradient. An analysis performed over Atlantic shelves

suggests that the seasonal variability in the air–sea CO2 ex-

change is most pronounced over temperate latitudes. In these

regions, shelves generally behave as strong CO2 sinks in

winter and spring, partly sustained by CO2 fixation during

the spring phytoplankton bloom, but can become mild CO2

sources to the atmosphere in summer due to the effect of

temperature-driven decrease CO2 solubility in water (Laru-

elle et al., 2014). Such behaviour is consistent with that of

the open ocean at similar latitudes (Takahashi et al., 2009).

In the continental shelves surrounding other oceanic basins,

however, a recent study suggests more complex seasonal pat-

terns involving the contributions of processes other than tem-

perature to the seasonality of coastal pCO2 (Laruelle et al.,

2017).

Biogenic C emissions related to tropical aboveground

biomass loss as well as crop and wood harvest were equally

distributed across months in this study. When exactly C emis-

sions from humans and livestock occur is difficult to predict

and would require more detailed consumption data (Wolf et

al., 2015a).

5 Conclusions

From the presented synthesis, we draw the following main

conclusions:

i. Current estimates of surface–atmosphere CO2 ex-

changes that are spatiotemporally explicit and entirely

driven by surface observation are not sufficiently well

constrained to close the C budget at the global scale.

The data-driven estimates show a large bias towards

too much C uptake by the Earth surface of nearly

10 PgC yr−1.

ii. The most likely candidate for inducing the mismatch

between data-driven surface–atmosphere CO2 exchange

and the atmospheric CO2 growth rate is land NEP. In

particular, tropical NEP estimates appear to be strongly

overestimated (too large land sink). Understanding this

bias will help designing better upscaling approaches

(e.g. by including currently missing relevant predictors)

and pinpointing variables that need to be (better) moni-

tored in the future.

iii. Regionally, the estimates of NCE are partly well con-

strained and may be used for model–data integration

studies, validation of models, and evaluating claims and

potentials of net C uptake within the framework of the

Paris Agreement (UNFCCC, 2015). These regions in-

clude Europe, Russia, South Asia, East Asia, Australia,

and most oceanic regions. Better constraining C fluxes

in regions with currently high uncertainties should be a

priority of future research.

Data availability. All variables used in Eq. (1) (including all en-

sembles runs listed in Table 1) are available for download (2001–

2010, monthly, 1◦). For NCE we provide the 200 ensemble runs

which are used in this study. The landing page of the DOI is a

data portal. After registration any user can download the data with-

out restriction (https://dx.doi.org/10.17871/GEOCARBON_synth_

obs_v2).
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