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Abstract 

The PROFILE model, now incorporated in the ForSAFE model can accurately reproduce 
the chemical and mineralogical evolution of the soil unsaturated zone.  However, in deeper 
soil layers and in groundwater systems, it appears to overestimate weathering rates. This 
overestimation has been corrected by improving the kinetic expression describing mineral 
dissolution by adding or upgrading ‘breaking functions’. The base cation and aluminium 
brakes have been strengthened, and an additional silicate brake has been developed, 
improving the ability to describe mineral-water reactions in deeper soils. These brakes are 
developed from a molecular-level model of the dissolution mechanisms. Equations, 
parameters and constants describing mineral dissolution kinetics have now been obtained 
for 102 different minerals from 12 major structural groups, comprising all types of minerals 
encountered in most soils. The PROFILE and ForSAFE weathering sub-model was 
extended to cover two-dimensional catchments, both in the vertical and the horizontal 
direction, including the hydrology. Comparisons between this improved model and field 
observations is available in Erlandsson Lampa et al. (2019, This special issue). The results 
showed that the incorporation of a braking effect of silica concentrations was necessary 
and helps obtain more accurate descriptions of soil evolution rates at greater depths and 
within the saturated zone.  

 

1. Introduction 

Chemical weathering of silicate minerals, and notably the dissolution rates of these minerals are one of 
the most important factors shaping soil chemistry over longer time periods. The quality of the kinetic 
database in most cases determines the quality of the simulations. In the 1980’s, the need arose to mitigate 
acid deposition, to set critical loads for acid deposition, and to set limits for sustainable forest growth 
and nitrogen critical loads. The critical loads depend directly on the ability of the soil to neutralize the 
incoming acid, thus the critical load depends on the weathering rate. It became apparent that the usual 
approach to soil geochemical modelling of using the weathering rate as the adjustable parameter to make 
the simulations fit the data, would be inadequate for estimating the critical loads. As a consequence, a 
quest for creating a weathering rate models that would accurately reproduce field observations and based 
on fundamental principles was started (Warfvinge and Sverdrup 1985, Sverdrup and Warfvinge 1987).  

With funding from the Swedish Environmental Protection Agency, the Swedish Agricultural 
Research Council and the Swedish Ministry of the Environment, a major research effort was begun. 
This mission led to a re-evaluation of the weathering observations available in scientific publications 
and books (Sverdrup 1990, Sverdrup and Warfvinge 1992, 1993, 1995, Drever et al., 1994, Drever and 
Clow 1995, Ganor et al., 2005, Svoboda-Colberg and Drever 1993, Crundwell 2013). The mission and 
the funding allowed creation of an alternate path that led to a model that accurately reproduced 
weathering rates under field conditions. The first steps and the narrative of the development was reported 
by Sverdrup and Warfvinge (1988a,b, 1992, 1993, 1995) and Sverdrup (1990). In 1990, we had a set of 
models that described the rates 14 minerals (K-feldpar, albite, plagioclase, pyroxene, hornblende, garnet, 
epidote, chlorite, biotite, muscovite, vermiculite, apatite, kaolinite, and calcite). Later more silicate 
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minerals were added, minerals including illite-1, illite-2, illite-3, smectite, montmorillonite, sericite and 
rich volcanic glass and poor volcanic glass, and eventually 45 additional silicate minerals where we had 
full kinetic data. In addition, we had full kinetic data for 25 different carbonates1 at the time. 

At the start of this effort in the middle of the 1980’s, it became clear that we did not have a 
standard procedure for building a weathering rate model based on molecular level mechanisms. There 
are many reasons for this, the most important ones were the lack of a mechanistically oriented models 
for guiding experimental studies at the time. The lack of an understanding of the mechanisms, resulted 
in important factors being overlooked. Many essential variables were missing in the older experimental 
studies, sample preparation was often inadequate or not done, and/or the material was inadequately 
characterized (Sverdrup et al., 1981, 1984, Sverdrup, 1990). Often the experimental design had 
significant flaws and many experiments ran for too short a time; see Sverdrup (1990) for a full 
description. As such there needed to be a sorting of the data, to avoid the confusion brought by 
misleading data. This effort lead to the creation of the original PROFILE mineral kinetic weathering 
model (Sverdrup, 1990), to estimate the rate at which mineral dissolution provided essential cations to 
soil waters. Although this model provides accurate estimates for shallow soils, it became less accurate 
for deeper soils (e.g. > 1.5 meter soil depth). 

This study outlines our efforts to update these early mineral weathering kinetics models for 
watershed water chemistry and deeper groundwater. This effort is the result of preparations for, 
discussions at, and subsequent efforts after a workshop held at Ystad Saltsjöbad, Ystad, Sweden, April 
11-14, 2016, in connection to the Swedish QWARTS research programme. Key literature to read to aid 
in following this text are the weathering book by Sverdrup (1990) and the articles Sverdrup and 
Warfvinge (1988a,b, 1992, 1995) and Warfvinge and Sverdrup (1993). There is an advisory chapter on 
how to operationally estimate weathering rates in soils on a regional scale in Europe in the United 
Nations Economic Commission for Europe, Long Range Transboundary Convention Mapping Manual 
for Critical loads (Sverdrup, 1996). The weathering rate mapping methodology was tested and used 
throughout 26 different European countries, and peer reviewed at annual workshops from 1988 to 2017. 
Weathering rates in forest soils and open terrestrial ecosystem have been mapped during the period 1990 
to the present (2019). The UN/ECE-LRTAP Critical loads and levels Mapping Manual was updated 
biannually during the period.   

The revision of the original weathering rate models was motivated by several observations: 
 

1. The PROFILE model works satisfactorily in the unsaturated zone (0-1 meter), on thin soils, on 
rock surfaces, in low concentration systems (Sverdrup and Warfvinge 1988a,b, 1991, 1992, 
1993, 1995, 1998, Sverdrup 1990, Sverdrup et al., 1998, Hettelingh et al., 1992, Alveteg et al., 
1996, 1998, 2000, Alveteg and Sverdrup 2000). Test show that the weathering kinetics as of 
2015 works very well for these situations. 

2. However, it appears as the chemical weathering rate for minerals is overestimated by this model 
in deeper soils, at depths of more than 1.5 meter depth. The original PROFILE model was used 
down to this depth (Sverdrup et al., 1988a,b, 1992, 1996, Sverdrup 1990, Janicki et al., 1993, 
Holmqvist et al., 2003) for critical loads for streams (Sverdrup et al., 1996) and groundwater 
(Warfvinge et al., 1987), and may have possibly resulted in an overestimation of the critical 
load.  

3. The weathering rate is overestimated in the deeper soils and in ground water (Sverdrup 1990, 
Warfvinge and Sverdrup 1987, 1992a,b,c, Sverdrup et al., 1996). The PROFILE model was 
designed for groundwater composition calculations, and has proven to provide inaccurate 
estimates in such systems. 

4. It is evident that the new experiments published in the literature after 1995 is of far better quality 
and consistency, with better experimental designs, better characterized materials and more 
complete data than previous studies. For example, the reader is encouraged to read two studies 
published by Holmqvist et al., (2002, 2003) on the weathering rates of clay minerals under soil 

                                                
1Calcite (The calcites are all slightly different; CaCO3 with 0-3% MgCO3 and 0.05%-0.5% apatite, from Sweden, 
Norway, Denmark,and the United States. In addition, kinetics on aragonite (CaCO3), slavsonite (SrCO3), 
dolomite (CaMg(CO3)2, magnesite (MgCO3), brucite (MgOH), siderite (FeCO3), witherite (BaCO3), and 
rhodochroisite (MnCO3) is available.  
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conditions and the concept of mineral alteration sequences (Holmqvist 2004, PhD thesis from 
Chemical Engineering, Lund University). The minerals used in the weathering rate experiments 
in those studies were minerals extracted and separated from in-situ soils at experimental field 
sites near Uppsala, Sweden. The consideration of these data allow for a significant improvement 
in the previously created databases. 

 

2. Scope and objectives 

The scope of this study is to describe the updated mineral kinetics database used in the PROFILE and 
ForSAFE models, and describe how the model has been improved during the past several years.  Notably 
this update includes reaction product ‘brakes’ in the kinetic rate equations to better fit the observed data 
down to the groundwater table and below. This was necessitated when the ForSAFE model (thus also 
the PROFILE model) was reconfigured for a sloping catchment, expanding the model structure from a 
1-dimensional model, with only the vertical soil profile and forest stand aspect, to a 2-dimensional model 
accounting for vertical and horizontal solute transport in a catchment, including the ecosystem. In total 
102 minerals are considered in the updated and expanded kinetics parameter databases. An exhaustive 
description of the parameterization of the rate equations for all of the 102 minerals will require a text 
far beyond what is possible in this manuscript, so that only a summary and several examples are 
provided here. This study is focussed on updating the mineral weathering kinetics parameterizations and 
their adaptation to soil profiles, watershed water chemistry and deeper groundwater to be able to enable 
improved integrated forestry and environmental assessments.  
 

 
Figure 1. Weathering processes were mapped using systems analysis and by drawing causal loop 
diagrams (CLD) for the process and the whole system of the weathering process. This is a standard 

procedure in model building (Sverdrup and Stiernquist 2002, Sverdrup et al., 2018).  

 

3. Methodology 

The methods used in this study have their basis in terrestrial ecosystems system analysis and ecosystems 
system dynamics as described by Sverdrup and Stiernquist (2002) and in general on system dynamics 
theory in Sverdrup et al., (2018). The main tools employed are the standard methods of system analysis 
and integrated system dynamics modelling (Forrester 1961, 1969, 1971, Meadows et al., 1972, 1974, 
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1992, 2005, Roberts et al., 1982, Senge 1990, Bossel 1998, Haraldsson and Sverdrup 2005, Haraldsson 
et al., 2006, Sverdrup and Stiernquist 20002, Sverdrup et al., 2018). The overall system is analysed using 
stock-and-flow charts and causal loop diagrams (Sverdrup et al., 2002). The learning loop was used as 
the adaptive learning procedure in past studies (Senge 1990, Kim 1992, Senge et al., 2008, Sverdrup et 
al., 2018). The conceptual model must be clearly defined and constructed before any computational 
work can be undertaken. It is fundamental to understand that the causal understanding is the model. 
Systems analysis produces a causal loop diagram (CLD) linking causes, effects, and feedbacks among 
the processes in terms of causalities and flows (Albin 1997, Sverdrup et al., 2018, Kim 1992). These 
CLD need to be internally consistent. A summary of this approach is provided in Figure 1. A causal 
loop diagram is thus a map of the underlying differential equations describing the evolution of the 
system. Mass- or energy flow charts and the causal loop diagram uniquely define the system. The 
ForSAFE model with its integrated weathering model used in this study is not calibrated on large 
amounts of system output data (Sverdrup and Warfvinge 1992, Sverdrup et al., 2018). Instead, the 
underlying system causal linkages and the mass balances, lead to characteristic equations that are 
parameterized using independent system properties, initial states and boundary conditions (Sverdrup et 
al., 2018).  
 

4. Earlier development work and background 
4.1. Critical to developing a database describing mineral dissolution rates is that it is coupled together 
into a comprehensive model that can account for the large number of processes that affect rates in the 
field.  From the beginning, the weathering kinetics sub-model was developed and incorporated into the 
PROFILE model. This sub-model was parameterized using laboratory kinetics and applied to field 
conditions on a plot scale and on a regional scale for Sweden (Sverdrup 1990, Sverdrup and Wafvinge 
1988a,b, 1992, 1995, Warfvinge and Sverdrup 1992, 1993). This sub-model was subsequently coupled 
into a biogeochemical ecosystem model, linking solute transport, soil chemistry, weathering, ion 
exchange, hydrology and biological interactions with microbiology and forest plants, called the SAFE 
model (Sverdrup et al, 1995). The steady-state model PROFILE and the dynamic variant SAFE, was 
further developed into ForSAFE and ForSAFE-VEG with full ecosystems subroutines, and full base 
cation nutrients, phosphorus, nitrogen and carbon cycles (Sverdrup and Warfvinge 1996, Sverdrup et 
al., 2005, 2007, 2008, 2012, 2014, Belyazid et al., 2005, 2007, 2008, 2010, 2011a,b, 2014, McDonnel 
et al., 2014, 2015, Bonten et al., 2014, Probst et al., 2014, Rizzetto et al., 2017). A description of the 
original weathering kinetics sub-model was published by Sverdrup (1990). However, much additional 
experimental data has been obtained since.   
 

3.2. Weathering under field conditions 

The dissolution of primary minerals at ambient temperature and pressure is irreversible with the 
exceptions of a few simple chloride and sulphate salts and a few carbonates (Sverdrup 1990). Such 
irreversible reactions do not attain equilibrium in near to ambient temperate systems. A formulation 
based on transition state theory for the formation of activated surface complexes that decay irreversibly 
was developed by (Sverdrup 1985, Sverdrup and Warfvinge 1987, 1988a,b, 1992, Sverdrup 1990) and 
has been the basis for the further developments. Removal of ions takes place through precipitation of 
amorphous secondary phases, solute transport and uptake to trees and ground vegetation. The modelling 
of weathering under field conditions can only be performed with an integrated ecosystems model where 
mineral reaction rates are coupled to solute transport, ion exchange, plant nutrient uptake, organic matter 
decomposition and nitrogen transformations have been included (Sverdrup and Warfvinge 1988a,b, 
Sverdrup 1990, Akselsson et al., 2006, 2005, 2004, Sverdrup et al., 1990, 1995, 2017). A comparison 
of calculated and observed weathering rates shown in Figure 2, demonstrates this approach can 
reproduce within ±5% of the observed rates across 4 orders of magnitude for the upper unsaturated parts 
of a soil (Sverdrup and Warfvinge 1992, Barkman et al., 1999, Jönsson et al., 1995, Belyazid 2005, Kurz 
et al., 1998a,b). Further comparisons of computed and calculated rates made with these models for field 
tests at Gårdsjön, Sweden and at various sites were published by Sverdrup et al. (1988a,b, 1993, 1995, 
1996, 1998, 2010), Sverdrup (1990, 2009), Sverdrup and Alveteg (1998), Rietz (1995) and Warfvinge 
et al., (1996), and Holmqvist et al., (2003, 2002). In addition, several other authors tested this approach 
independently (In the United States; Kolka et al 1996, Phelan et al., 2014, in Scotland; Langan et al. 
2006, in Germany; Becker 2002, in New Zealand: Zabowski et al., 2007. tests on controlled experiments 
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with granite slabs in the Swedish nuclear waste storage assessment research programme at Göteborg by 
Claesson-Nyström and Andersson 1996, in Swedish soil profiles; Lång 1998). Gunnar Jacks in KTH, 
Stockholm put these models to several blind test of the alteration of blank granite surfaces used for 
ancient rock carvings and controlled mini-catchments (Jacks, unpublished 1990). In each case a close 
correspondence was observed in calculated as compared to the field weathering rates. 
 

 
Figure 2. Comparison of weathering rates calculated using the original PROFILE model with 

corresponding rates obtained from field observations of the upper undersaturated parts of soils.  Rates 
shown were reported or compiled by Sverdrup and Warfvinge (1988a,b, 1991, 1992, 1993, 1995, 1998), 

Sverdrup (1990), Sverdrup et al. (1990, 1998), Hettelingh et al. (1992), Barkmann et al. (1999), 

Holmqvist et al. (2003). 
 
In 1988, these various models were used to map the weathering rates of the upper 0.5 meter of 

forest soils of Sweden, based on a regional grid sampling. The first weathering rate map was based on 
28 sites where complete data were collected and extrapolated over the whole country using geological 
maps (Sverdrup and Warfvinge 1988a,b). This map was later enlarged to 1,306 sites and aligned in 
distinct geological provinces (Warfvinge and Sverdrup 1993, 1995). The database was subsequently 
extended to 1,884 forested sites, and finally this was expanded through a five-year sampling and analysis 
program within the Swedish Forest Inventory soil sampling program to approximately first 17,600 forest 
soil samples and finally to 27,500 forest soil sites across Sweden (Sverdrup and Warfvinge 1988a,b, 
1992, Warfvinge et al., 1992, Warfvinge and Sverdrup 1995, Alveteg et al., 1996, 1998, 2000, Akselsson 
et al., 2004, 2005, 2006, 2007a,b,c, 2018, 2016, Lång 1995). These results were later complemented 
with about 3,000 additional sites across the agricultural soils. Later the weathering rates of other 
countries were mapped for the forest soils of Switzerland (Kurz et al., 1998a,b, 2001), France (Probst et 
al., 2015, Rizzetto et al., 2016a,b, Gaudio et al., 2015), China (Duan et al., 2002), Finland  (Sverdrup et 
al., 1992) and Denmark (Sverdrup et al., 1992), Maryland (Sverdrup et al., 1996), North-western Russia 
and Far East Siberia (Semenov et al., 2000), Pennsylvania (Phelan et al., 2014, 2016), New York, Maine, 
Vermont (Sverdrup et al., 2014, Belyazid et al., 2015), New Hampshire (Sverdrup et al., 2012, Belyazid 
et al., 2015), Madrid Country (Ballesta et al., 1996), Scotland (Langan et al., 1996), Slovakia (Zavodski 
et al., 1995), and Poland (Malek et al., 2005). Further reports on regional use are available in the UN/EC 
CCE Annual Reports on mapping critical loads for the years 1995-2018. Further contributions to the 
developments of these models were made from scientists located at the Institute of Ecology and Lund 
University, in Bern, Switzerland, at the department of Soil Sciences, Swedish Agricultural University, 
and at the Physical Geography department of Stockholm University. The weathering rate map of the 
upper 0.5 meter of forest soils of Sweden is displayed in Figure 3. The grid size is 8.2 km2 or 
approximately a 3x3km grid in the forested area (Akselsson et al., 2006, 2005, 2004, 2016, Sverdrup et 
al., 2017).  Tests in many other parts of the world, suggests that the model is applicable to the unsaturated 
zone of any freely draining soil.  
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Figure 3. Map of base cation release rates from chemical weathering of soil minerals in the upper 0.5 

m of the soil in Sweden using the PROFILE model. The model accurately reproduces weathering rates 
in the upper soil layers, and provides useful estimates for soils of up to 1 meter in thickness. The map 

was created by Dr. Cecilia Akselsson at Lund University for Swedish forest sustainability assessments 

and critical loads for acid depositions (Akselsson et al., 2006, 2005, 2004, 2016, Sverdrup et al., 2017). 
 

 
Figure 4. The diagram shows the weathering rate distributed among minerals, the diagram to the right 

shows the total rate, plotted as the sum of base cations released to the aqueous phase as a function of 

depth down a soil profile. The diagram to the left shows how selected minerals contribute to this overall 
rate. The site is catchment F1 at the Gårdsjön Research site, Sweden (Adapted from Sverdrup and 

Warfvinge 1992, 1995). 

 
Figure 4 shows an example from earlier results for the Gårdsjön research site in Sweden 

(Sverdrup et al., 1992, 1993, 1998). The diagram shows the weathering rate distributed among minerals, 
and the total rate as a function of depth down a soil profile. The example shows the weathering rate at 
catchment F1 at the Gårdsjön Research site, Sweden (Sverdrup et al., 1992, 1993, 1996). The research 
site at Gårdsjön, near Göteborg, Sweden has played a key role in the development of our biogeochemical 
ecosystem models. The research site is one of Sweden’s most important field research sites for soils, 
soil chemistry, material fluxes, geology, mineralogy, ecology, forestry and environmental pollution 
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research, with nearly all aspects excellently documented and recorded for the last 40 years (Hultberg et 
al., 2007). Here the models were tested, adapted and used for assessments. Differences in calculated and 
observed results became evident when calculating weathering rates for deeper layers. Notably the model 
overestimate the weathering rate at depths below 1-1.5 meters. 

Figure 5 shows an example of a soil weathering simulation of the weathering rate at Niwot 
Ridge, Rocky Mountain National Park, Colorado for four different environmental pollution scenarios 
with background acid deposition, current policy, no pollution control and elevated temperature from 
climate change. The weathering rate is reduced under the climate change scenario. The weathering rate 
is somewhat increased by the increase in temperature, but more reduced by reduced rainfall leading to 
drier soils at the site. The ForSAFE model was used with a daily time step, estimating a weathering rate 
every day. The time-step is numerically determined by the stiffness of the differential equations in the 
system. The timestep is set automatically by the model numeric routine and thus is variable and is 
optimized during integration. Under conditions where short-term changes happen, the timestep may be 
on the scale of hours.  

 
Figure 5. Example of a soil weathering rate calculation for Niwot Ridge, Rock Mountain National Park, 

Colorado for four different environmental pollution scenarios and their effect on the ecosystems (trees 

and biodiversity): 1) background acid deposition from sulphur and nitrogen, 2) current policy, 3) no 
pollution control and 4) elevated temperature. The weathering rate was extracted from the simulations 

to assess the site for pollution control. In this case the ForSAFE model was used with a daily time step 

to estimate daily weathering rates (Sverdrup et al., 2014, McDonnel et al., 2017, Belyazid et al., 2019).   

 

3.3. Weathering Model overview 
A number of computational weathering models based on this approach have been developed over the 
years. The PROFILE model was developed for critical load assessments, forestry sustainability 
assessments, and estimation of field weathering rates. The SAFE and later ForSAFE models are dynamic 
models for making dynamic terrestrial ecosystem assessments. The PROFILE model is the steady-state 
version of the SAFE model. Both models were first completed in 1987 (Sverdrup et al., 1987a,b, 
Sverdrup and Warfvinge 1988a,b). To clarify these models and their interconnections the following list 
is provided, which also lists the key scientists involved in their research and development: 
 
1. Steady-state weathering rate models 

a. 1987-1995; Warfvinge P. and Sverdrup, H.; The single site version of the PROFILE model 
for the calculation and mapping of critical loads and rates of field chemical weathering was 
developed. It is a widely used soil model, validated and used operationally in more than 50 
countries worldwide. It uses laboratory generated kinetic models and coefficients to predict 
field weathering rates. The interface software for PROFILE became outdated, thus, this 
version is no longer available. 

b. 1992-present; Sverdrup, H., Warfvinge, P., Alveteg, M., Walse, C., Kurz, P., Posch, M., 
Belyazid, S.; The code RegionalPROFILE was developed. This code is a regionalized 
version of the PROFILE model, used for creating weathering rate maps for soils and 
catchments across regions and countries, as well as to estimate critical loads for forest soils. 
Updated versions of the code are available upon request from Sverdrup, Akselsson or 
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Belyazid. 
c. 2000; Sverdrup, H. and Alveteg, M., The CLAY-PROFILE code was developed. This 

model was made for volcanic and clayey agricultural soils. This code is no longer operable. 
Archived, the code is available upon written request from Sverdrup or Belyazid. 

2. Dynamic weathering models  

a. 1987-2008; Warfvinge P., Sverdrup, H., Alveteg, M., Walse, C., Martinsson, L.: The SAFE 
model and its helper routine MakeDep were created. SAFE is a generally applicable 
dynamic soil chemistry and acidification model. This tool is used worldwide for 
acidification research, forest sustainability assessments and for mapping critical loads.  

b. 1995-1996; Rietz, F., Sverdrup, H., Warfvinge, P.; The SkogsSAFE model was developed. 
This long-term perspective dynamic model simulates soil genesis, mineralogy dynamics, 
soil chemistry and base cation release from chemical weathering in soils over time since the 
most recent glaciation (14,000 years ago to present) (Rietz 1995, Warfvinge et al., 1996). 
This code is written in FORTRAN. This code and its databases are available upon written 
request from Sverdrup.  

c. 1996-2004; Sverdrup, H., Wallman P., Belyazid, S., Alveteg, M., Walse, C., Martinsson, 
L.: These scientists developed ForSAFE, an integrated biogechemical forest ecosystem 
model for growth, nitrogen and carbon cycling. This code is written in FORTRAN code, 
and the code is available upon written request from Sverdrup or Belyazid. 

3. Regional mineralogy estimation 

a. 1990; Sverdrup, H., Melkerud, P. A., Kurz, D.: The UPPSALA model was developed for 
the reconstruction of soil mineralogy from soil total analysis data. This model is run in a 
spreadsheet. It is available upon written request from Sverdrup. 

b. 1998; Sverdrup, H. and Erdogan, B. The Turkey mineral depletion model (TMD) was 
developed.  This model estimates soil mineralogy from bedrock geology and estimates of 
soil age. This code is written in STELLA®. It is archived and available upon written request 
from Sverdrup. 

c. 2005-2010; Posch, M., Kurz, D., Alveteg, M., Akselsson, C., Eggenberger, U., Holmqvist, 
J; 2007 A2M, a model to quantify mineralogy from geochemical analyses was developed. 
This code is available on-line from doi:10.1016/j.cageo.2006.08.007, 
https://dl.acm.org/citation.cfm?id=1231715or from Kurz or Akselsson (Posch et al., 2006, 
2007). 

 

These models are not commercial products. They do not have ready-made handbooks (only the early 
single site PROFILE models had a good users interface and a user’s manual).  The models are available, 
but the best option to learn how to run these get training from the contact scientists in how to operate 
the models and how to set up the input data for a site or a region. The core code is written in FORTRAN. 
 
4. Theory 

The model described here originates from the kinetic weathering model first proposed by Sverdrup and 
Warfvinge (1987a,b, 1988a,b, 1992a, 1995) and Sverdrup (1990), but numerous features have been 
added since. Some of the updates have been described in later studies (Akselsson et al., 2005, 2005, 
2006, 2007, Alveteg et al., 2000, Kurz et al., 1998a,b, Sverdrup et al., 1997, 2002, 2008), and the latest 
updates have been done specifically for this study. New weathering rate data published over the past 25 
years have been regressed and new temperature dependencies and modifications of some rate 
coefficients has resulted (Sverdrup 2010, Sverdrup et al., 1998, Rizzetto et al., 2016, Holmqvist et al., 
2002, 2003). The weathering sub-model in ForSAFE requires no calibration.  It originates from the 
regression of laboratory based experiments. The mineralogy and surface area inputs are based on site 
measurements, and in general are not adjustable parameters.. Some of parameters can be challenging to 
measure, such as some primary minerals with low soil content (apatite, epidote, pyroxene, amphiboles, 
garnets accurate to 0.1%), or the determination of surface area estimates. However, getting accurate 
field estimates of the weathering rates is also challenging, as it requires making many assumptions, and 
has limitations on the accuracy of the obtained estimate. Thus, we are comparing uncertain model 
estimates with equally or more uncertain field estimates at the best (Sverdrup et al., 1998). 
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a                                                                       b 

Figure 6. Overview of the PROFILE model. The original PROFILE model operates with a number of 

layers, and a vertical percolation of water. A set of processes take place in every layer. (b) A look inside 

PROFILE, showing how weathering is connected with other ecosystem processes (Sverdrup and 
Warfvinge 1995). 

 
Figure 7. Different soil processes communicate with the weathering processes via the soil solution. 
(Sverdrup et al., 2002). 

 

The main ForSAFE model is calibrated on two variables, 1) the initial base cation saturation in the fluid 
phase is adjusted to its an initial value at the starting simulation time to insure the cation concentrations 
are consistent with the observed base cation saturation, and 2) the initial stock of nitrogen in the soil is 
adjusted to match that currently observed in the system. Once this main model calibration is complete, 
the ForSAFE model can calculate weathering rates from its kinetics database (Sverdrup et al., 1996, 
1998, 2007) and the soil inputs. The ForSAFE model must be provided site specific characteristics like 
mineralogy of the soil, soil layering, soil density, soil mineral surface areas, hydrological characteristics, 
site temperature, ecosystem characteristics (trees, plants), typical inputs of rain, chemistry of that rain 
and the amount of the  major deposited pollutants. 
 

4.1. Defining chemical weathering 

We have had a utilitarian view of the chemical weathering process.  Weathering is a provider of 
neutralization for acids (neutralizing all or part of acid rain) and as a provider of nutrients for vegetation 
(Ca2+, Mg2+, K+, PO4) (Sverdrup 1990, Sverdrup and Warfvinge 1995, Sverdrup et al., 2002). Thus 
weathering rates are defined as “base cation release rates from the chemical weathering of minerals”, 
“plant nutrient base cation release from the chemical weathering of minerals”  or “the rate of acid 
neutralization by chemical weathering of soil minerals”. Only secondarily were we interested in loss of 
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minerals and soil profile development (Rietz 1995, Warfvinge et al., 1996, Sverdrup et al., 1996, 2002). 
Thus, the weathering rates have been expressed as the sum of the release rates of base cations (Ca2+, 
Mg2+, K+, Na+) from the process. This is linked to the destruction of the mineral, though results are 
generally expressed in these terms. 

 
4.2. Mineral weathering rates 

The weathering rate of a mineral, r, defined here as its dissolution rate, is assumed to stem from the sum 
of 5 simultaneous chemical reactions, one involving the mineral surface and either aqueous H+, H2O, 
OH-, organic acid ligands, or CO2. Assuming that the reactions occur at distinct active mineral surface 
sites, they can be summed linearly in accord with (Sverdrup 1990, Sverdrup and Warfvinge 1995): 
 

R" = $ A& ∗	 $ r*
+*,,-./0*-123450*-1,

*67

8*1324.,

&67
																														(1a) 

 
where RW stands for the soil weathering rate in a single soil layer. Aj refers to the soil mineral surface 
available for dissolution for each mineral j considered, ri designates the rate of the individual chemical 
reactions i. If some reactions occupy the same active mineral surface sites, the expression given above 
would  change to a quadratic sum. Note that the results of the two equations are quite similar, so that 
the importance of knowing if several reactions operate of the same surface site is relatively small. For 
the whole soil profile, we get: 

R=-*. = $ R",,
?4@32,

,67
																														(2) 

 
where RSoil denotes the weathering rate in the whole soil profile, and s represents the layer number. 
Evidence that the H+, H2O and OH- reactions take place at distinct surface sites has been reviewed by 
Sverdrup (1990) and again by Holmqvist et al., (2003). The H2O, the organic reaction and the CO2 
reactions may occur at the same sites, but considering the available data, we have assumed that they 
occur at distinct sites and thus favour a linear sum of rates. More on these assumptions have been 
reported by Sverdrup (1990), Sverdrup and Warfvinge (1995), and Holmqvist et al. (2002, 2003).  
 

4.3. Field weathering rates 

To estimate field weathering rates using laboratory determined kinetic coefficients, an ecosystem model 
is required to scale the process to field conditions. This ecosystem model includes effects of climate, 
soil morphology, plants, trees, microbiology in the soil and fungi (Lin et al., 2017, Smits and Wallander 
2016, Smits et al., 2014). An ecosystem model is incorporated within PROFILE and ForSAFE (Sverdrup 
and Warfvinge 1988a,b, 1991, 1992, 1993, 1995, 1998, Sverdrup 1990, Sverdrup et al., 1998, Hettelingh 
et al., 1992, Barkmann et al., 1999, Holmqvist et al., 2003, Barkman et al., 1999). Figure 6 shows how 
the steady-state model PROFILE was configured (Sverdrup and Warfvinge 1988a,b, 1992, 1993, 
Sverdrup and Alveteg 1998). In the dynamic integrated terrestrial ecosystem assessment model 
ForSAFE-VEG, the system evolution over time takes account of interactions with a living biosphere, 
organic matter turnover and ion exchange. Further details of these models can be found in the literature 
(Sverdrup et al., 1987, 1995, 1996a,b, 1998, 2007,  2017, 2014, 2014, 2016, 2017, 2019, Wallman et 
al., 2002, 2003, Zancchi et al., 2014, 2016a,b, Belyazid et al., 2017, 2018).  

To estimate field weathering rates, each reaction i for every mineral j is corrected for the field 
site temperature and for the partial wetting of the soil (Sverdrup 1990, Sverdrup and Warfvinge 1995, 
Sverdrup and Alveteg 1998) in accord with: 
 

R" = h(θ) ∗ $ A& ∗	 $ D	r* ∗ g*,&(T)G
+*,,-./0*-123450*-1,

*67

8*1324.,

&67
																																																														(3) 
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where θ stands for the fraction of the soil mineral surfaces wetted, Aj designates the surface area of the 
mineral j, h(θ) refers to a wetting function for the mineral material and T signifies the soil temperature 
in centigrade. gij(T) corresponds to the temperature adjustment function for reaction i of mineral j. ri 
denotes the reaction rate of dissolution reaction i.  This adjustment is based on the Arrhenius equation 
and takes account of the difference in rates between the temperature of the field site and that of the 
parameter database, which was set at 8oC (Sverdrup 1990). Figure 9 shows the reaction causal loop 
diagram for silicate minerals in the soil (Sverdrup 1990, Sverdrup and Warfvinge 1995). This diagram 
shows how the mineral weathering process communicates with other biogeochemical processes in a 
terrestrial ecosystem. The causal loop diagram is a graphical display of the differential balances in the 
system. Together with the flow charts, they define the system. The process has several intermediate 
equilibrium steps, but pass an irreversible dissolution threshold (Figure 10) The irreversible step makes 
the whole process irreversible. The reaction products exert a negative effect on the amount of activated 
complex that can decay, thus they retard the dissolution reaction. But once the activated complex has 
formed, it has a constant decay rate, set by quantum mechanics (Sverdrup 1990, Sverdrup and Warfvinge 
1995). The full derivation of the rate equations, starting from the elementary chemical reactions and the 
decay of the surface complexes in transitional state has been reviewed by (Sverdrup 1990, Sverdrup and 
Warfvinge 1995). 
 

4.4 The chemical reaction kinetics 

As stated above five reactions are assumed to contribute to the total chemical weathering rate of a silicate 
mineral in soils (Sverdrup 1990, 2009, Sverdrup and Warfvinge 1995): 
 

1. The reaction between the mineral surface and the aqueous hydrogen ion 
2. The reaction between the mineral surface and the water molecule 
3. The reaction between the mineral surface and aqueous carbon dioxide 
4. The reaction between the mineral surface and aqueous organic acid ligands 
5. The reaction between the mineral surface and the aqueous hydroxy ion 

 
Reactions 1-4 in the list above were included in earlier versions of the PROFILE and ForSAFE mineral 
dissolution rate models (Sverdrup 1990, Sverdrup and Warfvinge 1995). This original model has been 
enlarged to include reaction 5.  

The reaction of the mineral surface with the aqueous H+ ion, reaction 1, is considered part of 
the reaction with the H+ reaction regardless of the source of H+ (Figures 8 and 10). Both CO2 and organic 
acid can change the fluid pH, and this is accounted for in the H+ reaction. Figure 8 shows the reaction 
pathway through the H+ reaction, adapted after Sverdrup (1990). The solid residuals rearrange to 
secondary minerals. Amorphous phases may also precipitate from solution. These can slowly 
recrystallize to secondary minerals. This has been generalized in Figure 9.  

Reaction number 4 with organic acid ligands and the mineral surface contains at least two 
distinct contributions one from fast and one from slower reacting organic acid ligands (Sverdrup 1990). 
We have simplified this to one generic rate equation that could be parameterized for some minerals 
(feldspar, olivine, pyroxenes, hornblende, apatite; Sverdrup et al., 1990, later literature has extended the 
list somewhat). The importance of organic acids for weathering has been frequently over estimated in 
the literature, and several claims of strong effects of organic acids (For a review see Smits and Wallander 
2016, Smits et al., 2014, Sverdrup 1990, 2009 but also Keegan and Laskow-Lehey 2014 on why these 
claims have been so persistent). The highest concentration of organic acids occur in the upper soil layers, 
where the mineral content is lower. As the mineral contents increase with depth, the concentrations of 
organic acids reach low levels with only marginal effect on the overall weathering rate (Sverdrup 2009).  

Organic acids in soils are mostly sourced from soil organic matter decomposition. Trees, soil 
fungi and mycorrhiza do not have the ability to increase the weathering rate significantly (See Sverdrup 
1990, 2009, Sverdrup and Warfvinge 1992, Warfvinge and Sverdrup 1993 for details, kinetic 
expressions and data underpinning this, see Smits and Wallander 2016 and Smits et al., 2014 on the 
subject concerning apatite). Trees and vegetation can indirectly affect the weathering rates when they 
take up Ca, Mg, K as nutrients, and thereby removing weathering rate products that can slow mineral 
dissolution. Decomposition of plant debris and soil organic matter produce organic acids that may react 
with the minerals. This effect is passive, and does not occur not by design of the plants (See Smits and 
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Wallander 2016 and Smits et al., 2014 for measurements, Keegan and Laskow-Lehey 2014 for some 
social aspects and Sverdrup 2009 for a further analysis from a systemic perspective).  

Fluorides form soluble complexes in water with aluminium and silicates. The reaction of the 
mineral surface with fluoride anions forms a strong reactions, but this occurs very rarely as the fluoride 
concentrations are very low. The fluoride reaction has been ignored for most soils in natural terrestrial 
ecosystems, as this would cause an unnecessary complication of the aluminium and silicate chemistry. 

 

 
 

Figure 8. The reaction pathway through the H+ reaction passes over several reversible steps that change 

the surface sites and create an unstable surface complex; the Transition State Surface Complex that will 
decay irreversibly. Note that the process is irreversible, and thus cannot go backwards. The mineral 

may dissolve completely, be altered to an alteration mineral or form precipitates that slowly recrystalize 

to secondary solid phases.  

 
Figure 9. Reaction pathway for silicate minerals in soils according to Transition State Theory as 
implemented by the authors (See Sverdrup 1990, Sverdrup and Warfvinge 1995 for a full explanation). 
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Figure 10. The partial causal loop diagram for the weathering process in a soil. See Sverdrup et al., 

2018 for a full explanation of causal loop diagrams and their use in modelling. 
 

The dissolution rate per surface area of a mineral is thus consistent with (Sverdrup and Warfvinge 1988, 
1992):  
 rI-04.	 =	rJK 	+ 	rJMN + rONM + rP																											(4) 
 

The mineral dissolution kinetic equation for the 4 individual reactions applied in the original 
PROFILE  model was the simplified version of the full kinetic expression based on the Transition State 
Theory applied to silicate chemical weathering (see Sverdrup 1990, Sverdrup and Warfvinge 1995): 
 

r = 	 kJ ∗	 [HU]1WfJ 				+ 						kJMNfJMN 			+			kONM ∗	PONM
1Z[M 			 ∗ 	 1fONM 			+	kP ∗ 	

[R]\]1 +	KN2_ ∗ 	 [R]\] 	 ∗
1fP 				(5) 

 
where the different n designate reaction orders. The different kH, kH2O, kCO2, kR stand for rate coefficients. 
The different fH+, fH2O, fCO2, fR, fOH signify retarding functions defined by (Sverdrup 1990, Sverdrup and 
Warfvinge 1992, Warfvinge and Sverdrup 1993, Sverdrup and Warfvinge 1995): 
 

fJK = a1 +	 [BC]CdO,Je
fW ∗	a1 +	[AlhU]Ci.,J e

@W 																																		(6) 
 

fJMN = a1 +	 [BC]CdO,JMNe
fWM[ ∗	a1 +	 [AlhU]Ci.,JMNe

@WM[ 										(7) 
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fONM = a1 + [BC]CdO,ONMe
fZ[M ∗ a1 + [AlhU]Ci.,ONMe

@Z[M 																																						(8) 
 

fP =	a1 +	 [BC]CdO,Pe
fm ∗ a1 +	[AlhU]Ci.,P e

@m 																																		(9) 
 

fNJo = a1 +	 [BC]CdO,NJe
f[W ∗ 	a1 +	[AlhU]Ci.,NJe

@[W 																				(10) 
 
Take note that the retardation functions represent molecular mechanisms that slow the reaction by 
forming less active surface complexes (Sverdrup 1990, Sverdrup and Warfvinge 1995), and that it is not 
a solution saturation term. Saturation with the liquid phase requires the assumption of reversibility and 
the dissolution of these silicate minerals is not reversible under normal soil conditions. Such an 
assumption is reasonable under high pressure and high temperature, but not valid under soil conditions, 
or at normal room temperature and pressure in a chemical laboratory. The process is irreversible, thus 
any equilibrium assumption is invalid (Denbigh 1971).  
 

4.5. The updated kinetics equation 

These original equations have been enlarged with all terms fully expressed, including the OH--reaction 
and the brakes from silicate on all reactions in the present study. The complete equation adopted in this 
study for mineral dissolution rates per unit surface area is consistent with  
 rI-04.	 =	rJK 	+ 	rJMN + rONM + rPU + rNJo																													(11) 
 
The full kinetic equation for all 5 reactions is (Sverdrup 1990, Sverdrup and Warfvinge 1995): 
 

r = 	 kJ ∗	 [HU]1WfJ 				+ 						kJMNfJMN 			+			kONM ∗	
	PONM1Z[M

1 + KONM ∗		PONM1Z[M 		 ∗ 	 1fONM 				 																																								 
																													+	kP ∗	 [R]\]1 +	KN2_ ∗	 [R]\] 	 ∗

1fP 				+ 	 		kNJ ∗
[OHr]1[WfNJ 															(12) 

 
For most minerals, the effect of reaction products is the strongest for aluminium at pH < 7, followed by 
silica and base cations. At pH > 8, the retarding effect is strongest from silica and base cations, and less 
pronounced for aluminium (Sverdrup 1990). Before applying Equation (12) a number of new adaptions 
have been carried out as described below. 
 

 

4.6. Retardation of mineral dissolution rates by organic ligands 

The original formula for the effect of organic ligands on mineral dissolution rates was (Sverdrup 1990, 
Sverdrup and Warfvinge 1995): 
 

													rstu = 	kP ∗ [R]\]1 +	[R]\] 	 ∗ 1fP 																											(13) 
 
this has been reformulated to: 
 

											rstu = kP ∗ 				a [R]1 +			 [R]		e
1m ∗ 1fP 																(14) 

 

Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-38

Manuscript under review for journal Biogeosciences

Discussion started: 18 February 2019

c© Author(s) 2019. CC BY 4.0 License.



 15 

The difference in these equations is that the latter contains one additional parameter [R]Limit  in fR that 
has the effect to set a lower concentration, below which the organic acids have no effect. This equation 
has been parameterized and used in the final expression provided below. This limit was incorporated 
into the organic acid ligand retardation function fR  (Smits and Wallander 2016, Smits et al., 2014, 
Sverdrup 1990, 2009). 
 

4.7. Retardation of mineral dissolution rates by aqueous CO2  

The main effect of the presence of CO2 is to change the pH of the solution. This effect is accounted for 
in the model by the chemical solution equilibria, and dealt with in the H+ reaction. This term takes into 
account the effect of a reaction between the CO2 and the surface. The effect of the presence of aqueous 
organic species decreases at higher concentrations of organic acids as the surface sites have become 
saturated with organic acid ligands. We hypothesize that CO2 exhibits the same behaviour. Some data 
show that CO2 also reacts with mineral surface sites as some type of carbonate ligand (a bicarbonate 
coordinated towards a cation in the lattice) adsorbed to the surface, setting up a transitional surface 
complex may decay. The mechanism by which CO2 effects silicate dissolution rates appears to follow 
the sequence (Sverdrup 1990, Sverdrup and Warfvinge 1995, Brady and Carrol 1994, Golubev et al., 
2005, Navarre-Sitchler and Thyne 2007, Berg and Banwart 2000): 
 

1. The CO2 molecule attaches to the mineral surface 
2. The CO2 molecule forms a bicarbonate-water-metal complex with the mineral surface on singly 

coordinated metal cations. Indications are that it may be the CO3
2- ligand that is forming a 

surface complex. 
3. A cation is lifted into the complex (K, Na, Mg, Ca, Fe, etc..)  
4. A small fraction of the surface complexes detaches from the surface and the mineral unit 

dissolves (Decay of the transitional surface complex) 
 
Thus, potentially, there should be an upper concentration limit where additional aqueous CO2 will have 
no further effect on mineral dissolution rates. This seems to occur between 10 and 50 atmospheres of 
CO2 partial pressure for mica and chlorites (Drever et al., 1996, Mast and Drever 1987, Hausrath et al., 
2009). Some other minerals have indications of a similar behaviour, but this limit remains elusive in 
terms of parameterization due to lack of data. In addition the dissolution rates of some minerals exhibit 
no detectable effect of the presence of aqueous CO2, and some are only slightly inhibited by this species. 
Lagache (1965, 1976), Busenberg and Clemency (1976), Berg and Banwart (2000) and Golubev et al., 
(2005) reported experiments performed at different CO2 partial pressures between 0 and 26.3 CO2 
atmospheres and temperatures between 0 oC and 200 oC. The original equation used by Sverdrup (1990) 
and Sverdrup and Warfvinge (1995) to describe these data was 
 

																								rONM = 	kONM ∗ 	 	PONM1Z[M
1 + KONM ∗ 		PONM1Z[M 		 ∗ 	 1fONM 																(15) 

 
In this study we use a variation of this equation of the form: 
 

																								rONM = 	kONM ∗ 				a PONM1 +			KONM ∗	PONM	e
1Z[M ∗ 1fONM 													(16)			 

 
Evidence suggests that the value of PLimit CO2 is in the range of 5 to 10 atmospheres and KCO2=0.05 and 
nCO2 =0.6 for albite (Sverdrup 1990). Navarre-Sitchler and Thyne (2007) suggests nCO2=0.45, which is 
for practical purposes the same. Berg and Banwart (2000) suggested nCO2=0.25 at low pressures of CO2. 
As mentioned above, a similar behaviour was observed for mica, biotite and chlorites. Indications are 
that something similar takes place on the surface of montmorillonite, diaspore, gibbsite, goethite and 
lepicrocite. There almost no experimental data available that allow the retrievial of the parameters in 
Equation (14) for other minerals. The effect of increasing aqueous CO2 has been overlooked in most 
experimental studies.  

Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-38

Manuscript under review for journal Biogeosciences

Discussion started: 18 February 2019

c© Author(s) 2019. CC BY 4.0 License.



 16 

 
a                                                              b 

Figure 11. The calculated effect of aqueous carbon dioxide on mineral dissolution reactions as 

calculated using Equation 15 in (a) and  Equation 16 in (b). See Table 2 for values for different minerals. 

 

Table 1. Selection table for parameterization of the parameter z in the silica brakes to the different 
weathering reactions. 
# Silica brake response group z-values suggested by the mineral reactions 

H+  H2O  CO2 Organic acids OH- 
1 K-Feldspar and sericite 

Muscovite group and illites 
6 
7 

2 
3 

2 
3 

2 
3 

1 
2 

2 Albite 
Na-rich Plagioclase 
Ca-rich Plagioclase 

8 
7 

10 

4 
4 
6 

4 
4 
6 

4 
4 
6 

3 
3 
4 

3 Biotite group 
Chlorite group 
Serpentinite  
Aluminum-nesosilicates 
Aluminium pyroxenes 
Tourmaline group 

16 6 6 6 4 

4 Amphibole group 
Pyroxene group 
Epidote group 
Nesosilicate 

20 
32 
32 
32 

16 16 16 8 

5 All other silicates 32 16 16 16 8 
6 Carbonates n.a n.a n.a n.a n.a 

 

 
Figure 12. Calculated effect of dissolved Si on silicate dissolution rates generated using Equation (17) 
together with  KSi=100, and the saturation concentration, CSi=900 mmol per m3 and the coefficients in 

listed in Table 1. 
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Values calculated of the effect of aqueous CO2 on silicate dissolution rates are illustrated in Figure 11. 
These calculations suggests that there is a significant saturation of the surface with CO2 at approximately 
5 to 10 atmospheres partial pressure of CO2. Data regression suggests that KCO2 has a value in the range 
of 2-20. See Table 1 for the values suggested for different minerals. Note that the values of this parameter 
are based on minimal supporting experimental data - the available experimental data are few and 
somewhat incomplete (See Golubev et al., 2005 for a limited but useful assessment). Overall, the effect 
of CO2 at normal soil conditions is limited. Nevertheless, these results provide a range for model 
parameter adjustment. The effect of dissolved CO2 on rates may become significant for deep aquifers, 
subsurface CO2 storage and in industrial high-pressure situations (Sverdrup 1990). 
 
4.8 The silica retarding function 

An illustrative plot of the effect of aqueous silica on silicate mineral dissolution rates is provided in 
Figure 12. The equation proposed by the 2016 Ystad Workshop for the retardation effect of dissolved 
Si on rates was: 
 1f=* 	 = 	

1
1 + K=*,* ∗ v[Si]C=* y

z{| 																																				(17)		 
 
The values KSi,i =100 was chosen to be used, which causes a gradual reduction in the dissolution rate of 
minerals down to a minimum of approximately 0.9% of the rate unaffected by silica at very high silica 
concentrations (see Table 1). Figure 13 shows values of the silica brake function as calculated using 
Equation 17, using the surface constant value, KSi=100, and the saturation concentration CSi=900 mmol 
per m3 in Equation 17 together with the coefficients in Table 3. Exponents from zSi = 0.5 to 32 in 
Equation (17) of the silica rate brake are shown in Figure 12.  
 

 
a                                                                    b 

Figure 13. a) Plot visualizing the fate of silica during the dissolution process. b) Diagram showing  how 

the aluminium and silica concentrations are estimated in the model. The H+ concentration is used with 

the equation called the “Gibbsite” equation (Eq. 19) to estimate the Al3+ concentration in the soil 

solution. The H+ concentration and the Al3+ concentration is used in Equation 21 to estimate the silica 
concentration that is used in the silica brake on the mineral weathering reactions. 

 
Figure 13a shows a plot visualizing the fate of silica in the dissolution process. Only a small part of the 
aqueous aluminium and aqueous silica produced by the dissolution of minerals remain in solution. Most 
precipitates out as secondary phases. Figure 13b shows how the aluminium and silica concentrations are 
estimated in the model. We assume that aluminium precipitates out from the solution, controlled by 
something that appears to be gibbsite-like; it is likely something amorphous of unknown composition, 
see Alveteg et al. (1995). The “Gibbsite” reaction is: 

 
  Al3+ + 3 OH-  = Al(OH)3                           (18) 
 
Leading to the “Gibbsite” expression: 
 
  [Al 3+] = KG * [H+]Y       (19) 
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where the exponent Y has a value of 2.4-3. KG is the Gibbsite coefficient and defined in the critical loads 
mapping manual (Sverdrup et al., 1990). An expression analogous to the Gibbsite approximation is used 
to calculate the Si concentration (Equation 22b, below). We assume that the Si will be present as 
H4Si(OH)4 in the fluid phase, not upsetting any charge balance constraints. We assume that silica 
precipitates out, controlled by what that appears to be kaolinite. As such, there is a similar expression 
for approximating the silica concentration: 
 
 2 Al3+ +  2 SiO2 + 6 OH- =   Al2Si2O5(OH)4 + H2O                (20)     
 
which gives the apparent equilibrium expressions: 
 
 [Al3+]2 * [OH-]6 * [SiO2]2 = KKaolinite              (21a) 
 
And this can be re-arranged to: 
 

[SiO}] = 	K~ ∗ [HU]�[AlhU]} 																																																																																						(22a) 
 
which leads to the “kaolinite” expression: 
 

													[SiO}] = 	K~4-.*1*03 ∗ [HU]h[AlhU]																																																																																							(22b) 
 
Where KKaolinite is the equilibrium coefficient being used. Note that the “equilibrium” equations assumed 
above, are not true equilibrium, and that kaolinite and gibbsite minerals are very slowly dissolving 
minerals under normal conditions. Both the “gibbsite” and “kaolinite” mentioned above are crude 
simplifications, possibly representing an amorphous precipitate combined with precipitation kinetics 
and ion exchange in the SkogSAFE model (The long term variant with variable mineralogy and surface 
areas, and that runs for 15,000 years in one simulation, see Alveteg et al., 1995, Rietz 1995, Warfvinge 
et al., 1996 for more information). These equations have been applied in the revised ForSAFE-2D 
model. 
 

4.9. The full kinetic expression  

The equations and approximations summarized above leads to the full revised mineral dissolution rate 
equations:  
  

r = 	 kJ ∗	 [HU]1WfJ 				+ 						kJMNfJMN 			+			kONM ∗	PONM
1Z[M 	 ∗ 	 1fONM 

																													+	kP ∗ [R]\] ∗ 1fP 				+	 		kNJ ∗
[OHr]1[WfNJ 												(23)						 

where the retarding functions are given by: 
 

fJK = a1 +	 [BC]CdO,Je
fW ∗	a1 +	 [AlhU]Ci.,J e

@W ∗		a(1 + ÅÇÉ,Ñ ∗ a [ÖÜ]áÇÉ,ÑKe
àâe																																		(24) 

 

fJMN = a1 +	 [BC]CdO,JMNe
fWM[ ∗	a1 +	 [AlhU]Ci.,JMNe

@WM[ ∗		a(1 + ÅÇÉ,ÑMs ∗ a [ÖÜ]áÇÉ,ÑMse
àâMäe										(25) 

 

fONM = ã1+KCO2 ∗	 PCO2PCO2Limitè
nCO2 ∗ a1 + [BC]CdO,ONMe

fZ[M ∗ a1 + [AlhU]Ci.,ONMe
@Z[M 																																																			 

																										∗ a1 + K=*,ONM ∗ a [Si]C=*,ONMe
zZ[Me																	(26) 
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fP =		a1 +			 [R][R]?*ë*0e
1m ∗ 	a1 +	 [BC]CdO,Pe

fm ∗ a1 +	[AlhU]Ci.,P e
@m ∗ 		a(1 + K=*,P ∗ a [Si]C=*,Pe

zme				(27) 
 

									fNJo = a1 +	 [BC]CdO,NJe
f[W ∗	a1 +	[AlhU]Ci.,NJe

@[W ∗	a(1 + K=*,NJ ∗ a [Si]C=*,NJoe
z[We																				(28) 

 
where:  
 CBC,i is the lower limiting base cation concentration in reaction i,  
 CAl,i is the lower limiting aluminium concentration in reaction i,  
 CSi,i is the lower limiting silica concentration in reaction i,  
 PCO2limit  is the lower limiting carbon dioxide partial pressure in reaction i, 

[R]limit is the lower limiting organic acid concentration in reaction i as concentration of DOC, 
xi is the base cation brake reaction order for i,  

 yi is the aluminium brake reaction order for i  
 zi is the silica brake reaction order of i. 
 KCO2 is the CO2 brake coefficient and set to 20. 

KSi,i is the silica brake constant for reaction i, set to 100. 
 

Table 2. Alteration series from muscovite, biotite and feldspars to clays, corresponding to Figure 

14. 
# Mineral Interlayer Octahedral Tetrahedral 

Muscovite pathway 
1 Muscovite K Al2 Al1.0Si3.0O10(OH)2 
2 Illite 1 K0.5Mg0.01Ca0.01Al0.05 Al1.6Fe0.25Mg0.1Ti0.04 Al0.6Si3.4O10(OH)2 
3 Illite 2 K0.44Mg0.01Ca0.01Al0.07 Al1.6Fe0.25Mg0.1Ti0.04 Al0.6Si3.4O10(OH)2 
4 Illite 3 K0.39Mg0.013Ca0.013Al0.06 Al1.5Fe0.32Mg0.1Ti0.08 Al0.6Si3.4O10(OH)2 
5 Illitic vermiculite K0.35Mg0.03Ca0.03Al0.06 Al1.63Fe0.32Mg0.08Ti0.07 Al0.6Si3.4O10(OH)2 
6 Kaolinite   Al2.0Si2O5(OH)4 

Chlorite pathway 
1 Chlorite Ca0.5Mg1.5 Al1.0Fe0.5 Mg1.5 Al1.0Si3.0O10(OH)2 
2 Vermiculite 1 K0.32Mg0.07Ca0.09Al0.05 Al1.52Fe0.35Mg0.1 Al0.6Si3.4O10(OH)2 
3 Vermiculite 2 K0.30Mg0.05Ca0.05Al0.05 Al1.55Fe0.32Mg0.05Ti0.06 Al0.6Si3.4O10(OH)2 
4 Vermiculite 3 K0.25Mg0.04Ca0.04Al0.08 Al1.55Fe0.32Mg0.05Ti0.06 Al0.6Si3.4O10(OH)2 
5 Al/OH interlayered 

vermiculite 
K0.11Mg0.04Ca0.04Al0.1 Al1.52Fe0.4Mg0.05Ti0.08 Al0.5Si3.5O10(OH)2 

6 Kaolinite   Al2.0Si2O5(OH)4 
Biotite pathway 

1 Biotite K1.0Mg2.0 Al0.5Fe0.5Mg1.0 Al1.0Si3.0O10(OH)2 
2 Vermiculite 1 K0.32Mg0.07Ca0.09Al0.05 Al1.52Fe0.35Mg0.1 Al0.6Si3.4O10(OH)2 
3 Vermiculite 2 K0.30Mg0.05Ca0.05Al0.05 Al1.55Fe0.32Mg0.05Ti0.06 Al0.6Si3.4O10(OH)2 
4 Vermiculite 3 K0.25Mg0.04Ca0.04Al0.08 Al1.55Fe0.32Mg0.05Ti0.06 Al0.6Si3.4O10(OH)2 
5 Al/OH interlayered 

vermiculite 
K0.1Mg0.04Ca0.04Al0.1 Al1.52Fe0.4Mg0.05Ti0.08 Al0.5Si3.5O10(OH)2 

6 Kaolinite   Al2.0Si2O5(OH)4 
Feldspar pathway 

1 Feldspar K, Na, Ca  Al1Si3O8 
2 Sericite Na0.1K0.75 Al1.9Mg0.1 Al0.84Si3.16O10(OH)2 
3 Sericitic vermiculite 1 K0.3 Mg0.02Ca0.05 Al0.02 Al1.0Si3O10(OH)2 
4 Sericitic vermiculite 2 K0.1 Mg0.05Ca0.02 Al0.05 Al1.0Si3O10(OH)2 
5 Al/OH interlayered 

vermiculite 
K0.1Mg0.04Ca0.04Al0.1 Al1.52Fe0.4Mg0.05Ti0.08 Al0.5Si3.5O10(OH)2 

6 Kaolinite   Al2.0Si2O5(OH)4 
 

 

Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-38

Manuscript under review for journal Biogeosciences

Discussion started: 18 February 2019

c© Author(s) 2019. CC BY 4.0 License.



 20 

4.9. Secondary phases in the soil 

A significant fraction of the primary minerals dissolve incongruently to alteration minerals. Attention 
was also paid to the secondary minerals and clays. Both terms are inconsistently used in the literature, 
and thus we define them as follows: We have defined clay minerals by their composition (Kaolinite, 
gibbsite, quartz) and as listed in Table 3. This approach is thus not based on their particle size, but on 
the molecular crystalline structure. Secondary minerals formed in either two ways; a mineral that has 
been altered significantly in situ as is described in Table 2, for example when muscovite is altered 
through a series of illite and vermiculite phases and finally to kaolinite as the end product. Vermiculite, 
illite, montmorillonite are minerals of variable composition that are often called clays when they are not 
in crystalline form. However on the microscopic level, they have a crystalline structure. Thus, clay can 
be defined by particle size alone, or as a specific mineral. We have used the specific mineral name, 
independent of particle size. In the soil, amorphous phases are composed of aluminium, silicate and soil 
organic substances. These amorphous phases slowly change composition as the organic matter 
decomposes and a more solid structure emerges. The alteration series from muscovite, biotite and 
feldspars to clays, are illustrated schematically in Figure 14 and listed in Table 2. The concept behind 
Table 2 is that as these minerals go through incongruent dissolution (alteration), they become depleted 
in certain ions (like Ca, Mg, K or Na, and depending on pH, in aluminium (at low pH) or silica (at high 
pH), but the crystal structure remains constant. Thus the crystal lattice destruction rate remains, but the 
base cation content of this structure becomes poorer, yielding less cations and less acidity neutralization. 
We have simplified this process down to 4 pathways, the muscovite pathway, the chlorite pathway, the 
biotite pathway and the feldspar pathway. Muscovite changes through a series of alteration reactions to 
illite and finally to kaolinite. Chlorite alters to vermiculites and finally to kaolinite. Biotite goes through 
a series of alterations to vermiculite and kaolinite. Feldspars go through alterations, K-Feldspars through 
sericites and plagioclases to vermiculites (Holmqvist 2004, Holmqvist 2002, 2003). This sequence has 
been discussed in the SUFOR project and again in the QWARTS workshops and will be later 
implemented into ForSAFE-2D. 
 

 
Figure 14. The alteration sequence developed for primary mineral towards alteration minerals, of which 
some are clay minerals. All minerals that dissolve contribute to the precipitation of secondary minerals.  

 

4.10. The parameterization of the kinetic rate equations  

The parameterization database for the PROFILE model (and ForSAFE) was updated to be consistent 
with previous databases (Sverdrup 1990, 1996, 2009, Sverdrup and Warfvinge 1988a,b, 1991, 1992a,b, 
1993, 1995, Holmqvist 2002, 2003). The original PROFILE database had kinetic data for 59 different 
minerals, and about 25 different carbonates and some artificial silicates. In addition new data from our 
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own experiments (Sverdrup 1998, 1996, Sverdrup and Alveteg 1998, Holmqvist et al., 2002, 2003; 
Sverdrup and Holmqvist 2004) and from the literature2 have been considered. Care of these new data 
sources we have about 90 different silicate or aluminium minerals and 6 generic carbonates listed. Of 
these minerals, the regression of ~20 have yet to be published. In due time, these will get their own 
proper publications, it is not the scope of this study to do them in detail. Such a documentation would 
be 1-2 years into the future from the present time. Rather some selected examples will be presented 
below.  The estimation of rate parameters was performed using the complete rate equation 1 and 
Equations 21-26. As such for every rate from an experiment, the rate must be known, along with the 
concentrations of all reactants at the conditions that rate was observed including [H+], pCO2, [R], [OH-

], as well as the reaction products in solution potentially contributing to retarding the dissolution 
reaction; [Ca2+], [Mg2+], [K+], [Na+], [Al3+], [Al(OH)4

-], [H4SiO4] (Sverdrup 1990, Sverdrup and 
Warfvinge 1995). The experiments must have been performed over sufficient reaction conditions for 
the parameters in Equation 29 to be estimated. In some cases, the data from different experimental 
studies were combined, to determine rate parameters or a reaction orders. During the regression  process, 
experimental studies with insufficient data or documentation were omitted, unless the gap could be 
bridged with reasonable assumptions. Data regression was performed by rearranging equation (22) to:  

                                                
2Examples are the following list of articles and studies we have used, but not limited to: Ajemba and Onokwuli 2012, Alekseyev 
2007, Alexeyev et al., 1997, Amram and Ganor 2005, Amrhein and Suare 1992, Anbeek 1992a,b, Anbeek et al., 1994, Aradottir 
et al., 2013, Bandstra et al., 1998, Beig and Lüttge 2006, Bengtsson and Sjöberg 2009, Berg and Banwart 1994, 2000, Bibi et 
al., 2010, Bickmore et al., 2006, Blake and Walther 1996, Blum and Stillings 1995, Blum and Lasaga  1988, 1991, Blum 1994, 
Brady and Walther 1992, Bray et al., 2015, Brandt et al., 2005, Brantley 2003, 2008a,b, Brantley and Stillings 1994, 1996, 
Brantley and Chen 1995, Brantley and Conrad 2008, Brady and Walther 1992, Braun et al., 2016, Bray 2015, Cama et al., 
2000, Carrol and Knauss 2005, Carrol and Walther 1990, Carrol and Smith 2013, Casetou-Gustafsson et al., 2018, Casey et 
al., 1991, Casey and Sposito 1992, Casey and Westrich 1992, Chaïrat et al., 2007, Chen and Brantley 1997, 1998, 2000, Chin 
and Mills 1991, Critelli et al., 2015, 2014, Cotton 2008, Crundwell 2013, 2014a,b,c,d, 2015a,b, 2017, Daval et al., 2010a,b, 
2013, Devidal et al., 1997, Diedrich et al., 2014, Dixit and Carrol 2007, Dove and Crerar 1990, Dorozhkin 2012, Dresel 1989, 
Drever et al., 1994, 1996, Drewer and Clow 1995, Drewer and Zobrist 1992, Drever and Stillings 1997, Dorozin 2012, 
Duckworth and Martins 2003a,b, Fernandez-Bastero et al., 2008, Fischer and Liebscher 2014, Finlay et al., 2010, Fouda et al., 
1996a,b, Frogner and Schweda 1998, Fumuto et al., 2001, Gahrke et al., 2005, Ganor et al., 2005, Gautier et al., 1994, Gislasson 
and Hans, 1987, Gislasson and Oelkers 2003, Gislasson et al., 1996, Godderis et al., 2006, Glover et al., 2003, Godderis et al., 
2006, Golubev et al., 2004, 2005, Guidry and Mackenzie 2003, Goyne et al., 2006, Gudbrandsson et al., 2011, 2014, Gustafsson 
and Puigdomenech 2003, Hamilton et al., 2000, 2001, Hangx and Spiers 2009, Harouiya et al., 2007, Harouiya and Oelkers 
2004, Haug et al., 2010, Hausrath et al., 2009, Hayashi and Yamada 1990, Helgeson et al., 1984, Hellmann 2007, 2006, 2010, 
Hilley et al., 2010, Holmqvist and Sverdrup 2001, Holmqvist et al., 1999, 2002, 2003, 2004, Hodson 2006a,b, Hodson and 
Langan 1999, Hodson et al., 1996, 1997, Hänchen et al., 2006, Huertas et al., 1999, 2001, Jin et al., 2011, Johnsson et al., 1992, 
Johnson et al., 2014, Jonckbloedt 1998, Jönsson et al., 1995, Kalinowski 1997, Kalinowsli and Schweda 1995, Kalinowski et 
al., 1998, Knauss et al., 1993, Køhler et al., 2003, 2005, Kuwahara 206a,b, 2008, Labat and Viville 2006, Lagache 1965, 
Langan et al., 1996, Lartigue 1994, Lasaga 1995, 1998, Lowson et al., 2005, 2007, Lazaro et al., 2015, Lu et al., 2013, 2015, 
Ludwig et al., 2013, Maher 2010, Malmstrøm and Banwart 1997, Malmström et al., 1996, Maurice et al., 2002, Mazer and 
Walther 1994, McCourt and Hendershot 1992, Metz et al., 2005, Meyer 2014, Mongeon et al., 2007, Murakami et al., 1998, 
Murphy and Helgesson 1987, Murphy et al., 1992, 1996, Nagy 1995, Nagy and Lasaga 1992, Nagy et al., 1991, Navarre-
Sitchler and Thyne 2007, Nesbitt et al., 1991, Nyström-Claesson and Andersson 1996, Numan and Weaver 1969, Oelkers 
2001a,b,, Oelkers and Schott 1995a,b, 1998, 2001, Oelkers et al., 1994, 2008, Oelkers and Gislasson 2001, Olsen 2007, 2008, 
Olsson 2007, Opolot and Finke 2015, Oxburgh 1991, Oxburgh et al., 1994, Paces 1983, Palandri and Kharka 2004, Pokrowsky 
and Schott 2000a,b, 2002, Pokorowsky et al., 2004, Poulson et al., 1997, Prajapati et al., 2014, Price et al., 2005, Pigiobbe et 
al., 2009, Ragnarsdottir 1993, Ragnarsdottir and Graham 1996, Raschmann and Fedorockova 2008, Rietz 1995, Rimstidt et al., 
2012, Ross 1969, Rosso and Rimstidt 1999, Rozalen et al., 2014, Running and Gower 1991, Saldi et al., 2007, Sanemasa and 
Katura 1973, Schnoor 1990, Schofield et al., 2015, Schott et al., 2009, 2012, Smith et al., 2013, Smits and Wallander 2016, 
Smits et al., 2014, Soler et al., 2008, Stephens and Hering 2003, Stillings and Brantley 1995, Stillings et al., 1996, Stockmann 
et al., 2008, Stumm and Wollast 1990, Stumm and Wieland 1990, Sverdrup 1990, 1996a,b, 1998, 2009, Sverdrup and Bjerle 
1982, Sverdrup and Alveteg 1998, Sverdrup and Holmqvist 2016, Sverdrup and Warfvinge 1992a,b, 1995, Sverdrup et al., 
1986, 1987, 1995,a,b, 1998, 2002, 2006, 2008, 2010, Traven et al., 2005, Swoboda-Collberg and Drever 1993, Taylor et al., 
1999, 2000, Taylor and Blum 1995, Taylor et al., 2017, Techer  et al., 2007, Teir et al., 2007, Terry 1983a,b,c, Terry and 
Monhemius 1983, Thom et al., 2013, Valsami-Jones et al., 1998, Turpault and Trotignon 1994, Valsami-Jones et al., 1998, 
Voltini et al., 2012, Wang and Giammar 2012, Wang et al., 2017, Warfvinge and Sverdrup 1992,a,b,c,d, 1993, 1995, Warfvinge 
et al., 1987, 1992, 1993, 1996, 2000, Weissbart and Rimstidt 2000, Welch and Ullman 1993, 1996, 2000, Westrich et al., 1993, 
White and Brantley 1995, 2003, White and Blum 1995, White et al., 1999, Whitfield et al., 2009, 2010, Wogelius and Walther 
1991, 1992, Wolff-Boenisch et al., 2004a,b, 2011, Wood et al., 1999, Xie and Walter 1994, Yadaw and Chakrapani 2006, 
Yadaw et al., 2000, Yang and Steefel 2008, Yoo et al., 2009, Yu et al., 2016, 2017, Zabowski et al., 2007, Zhang and Bloom 
1999a,b, Zhang et al., 1996, 2015, Zhang et al., 2013, Zhang and Lüttge 2017, 2009a,b, Zhu et al., 2010, Zassi 2009, Zavodsky 
et al., 1995, Zysset and Schindler 1996). 
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	kJ ∗ [HU]1WfJ = rNí,32ì3î − (kJMNfJMN +	kCO2 ∗
PCO2nCO2

1 +KCO2 ∗	PCO2nCO2 ∗	 1fCO2 																								 
																														+	kR ∗ [R]ñó1 +	KR ∗ [R]ñó ∗

1fR +	kNJ ∗
[OHr]1[WfNJ )														(29) 

 
In the neutral pH range, such as pH 7 and lower, this equation can be simplified in most instances by 
removing the OH-reaction to get (Sverdrup 1990): 
 

kJ ∗	 [HU]1WfJ =	 rNí,32ì3î − (kJMNfJMN +	kONM ∗
PONM1Z[M

1 + KONM ∗	PONM1Z[M ∗ 	 1fONM 	 
+	kP ∗ [R]\]1 +	KP ∗ [R]\] ∗

1fP)							(30) 
and the in the acid pH range, this may be reduced to: 
 

kJ ∗	 [HU]1WfJ =	rNí,32ì3î 																																																																																																(31) 
 
By entering the concentrations of H+, base cations, aluminium and silica into these equations, we can 
determine the rate coefficient, kH, and fH+.  When the experiment was performed in the absence of 
organic acids, as is often the case, Equation (29) reduces to: 
 

kJ ∗ 	 [HU]1WfJ =	 rNí,32ì3î − (kJMNfJMN +	kONM ∗
PONM1Z[M

1 + KONM ∗	PONM1Z[M ∗ 	 1fONM 	)										(32) 
 

Some experiments were conducted at very low or with no dissolved CO2 present and with organic 
ligands absent.  In such cases, Equation (29) reduces to (Sverdrup 1990, Chin et al., 1991): 
 

rÑ 		 = 	kJ ∗	 [HU]1WfJ =	 rNí,32ì3î − kJMNfJMN 																																																															(33) 
 
In this latter case, two reactions influence mineral dissolution rates: 1) the H+ reaction, and 2) the water 
reaction. The variation of rates as a function of pH at such conditions consists of a ‘flat part’ where rates 
are controlled by the water reaction (Figure 17).  At these conditions, by entering the concentrations of 
retarding base cations, aluminium and silica, the rate coefficients can be determined. In the semi-neutral 
region (pH 6-8), the expression may be a flat line and the rate expression is reduced to:  
 

rNí,32ì3î =			 kJMNfJMN 		+	kONM ∗
PONM1Z[M

1 + KONM ∗	PONM1Z[M ∗	 1fONM 	+ 	kP ∗
[R]\]1 +	KP ∗ [R]\] ∗

1fP)											(34) 
 
When neither organic ligands nor CO2 is present, and in the pH range of 6-8, this is reduced to: 
 

rNí,32ì3î =			 kJMNfJMN 																																																																																																															(35) 
 
With only organic acid ligands but no CO2 present, and in the pH range of 6-8, the rate expression 
becomes: 
 

rNí,32ì3î =			 kJMNfJMN 		+ 		kP ∗
[R]\]1 +	KP ∗ [R]\] ∗

1fP)																																																						(36) 
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In the far alkaline region (pH 10-14), where we may assume that the OH- reaction will be dominant, the 
rate expression reduces to: 
 

kNJ ∗ [OHr]1[WfNJ = rNí,32ì3î																																																																																		(33) 
 
By entering the concentrations of base cations, aluminium and silica, fOH can be determined and the rate 
coefficient, kOH, and reaction order, nOH be determined. The reaction order nH and the coupled nOH for 
the H+ and the OH- reaction is derived from plots of the rate versus the solution pH  

Figure 15 shows diagrams used to quantify the retarding effect of aluminium on the dissolution 
rate of albite feldspar. The figures were adapted from Sverdrup (1990) and the work prepared for 
Sverdrup and Warfvinge (1995) and Sverdrup et al., (2009).  Similar results for aluminium was found 
by Oelkers (2001), Oelkers and Gislasson (2001), Oelkers and Schott (2001, 1995a,b), Oelkers et al., 
(1999) for several minerals.  The aluminium brake is very prominent in the range of log [Al] from -7 to 
-4.5. For further information, see Sverdrup (1990) and Sverdrup and Warfvinge (1995).   

  
a                                                               b 

Figure 15. Regression plots showing the retarding effect of aluminium on the dissolution rate of albite. 
The figures were adapted from Sverdrup (1990). The decrease of rates as a function of aqueous 

aluminium concentration (the aluminium brake) is very prominent in the range of log [Al] from -7 to -

4.5. Aluminium concentrations are in kmol m-3. The figures were adapted from (a) Sverdrup et al. (1990) 
and from (b) Carrol and Knauss (2001). For further information, see Sverdrup (1990) and Sverdrup 

and Warfvinge (1995). 

 
a                                                                       b 

Figure 16. The effect on the base cation (a) and the aluminium concentration (b) on the dissolution rate 

of albite. (Sverdrup 1990). The circles represent the data from experiments, the solid lines the model 

simulations. 
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a                                                                       b 

Figure 17. The effect on the base cation (a) and the aluminium concentration (b) on the dissolution rate 
of albite. The solid line is the reaction rate without CO2 or organic acid ligands. 

 

 
Figure 18. The weathering rate model was used to plot different combinations of conditions, to 

investigate the different shapes the weathering rate dependency can change (See Figure 10 and 12 for 
how the principle works). The experimental data were overlaid in such diagrams, to help retreive kinetic 

parameters (e.g. rate coefficients and reaction orders). The last diagram, lower right, shows the 

combination of different combinations of organic acid ligand concentrations and CO2 pressures in 
atmospheres.  

 

-16

-15.5

-15

-14.5

-14

-13.5

-13

0 2 4 6 8 10 12 14

T=25, DOC=5
T=-5, DOC=5
T=8, DOC=5
T=0, DOC=5

R
at

e 
o

f 
N

a 
re

le
as

e,
 k

eq
 m

2
s-1

Solution pH

-16

-15.5

-15

-14.5

-14

-13.5

-13

0 2 4 6 8 10 12 14

DOC=0 mg/l
DOC=5
DOC=10
DOC=50
DOC=500

R
at

e 
o

f 
N

a 
re

le
as

e,
 k

eq
 m

2
s-1

Solution pH

-16

-15.5

-15

-14.5

-14

-13.5

-13

0 2 4 6 8 10 12 14

DOC=10/3
pAl=5
DOC=10
DOC=10/5
pAl=7
pAl=3

R
at

e 
o

f 
N

a 
re

le
as

e,
 k

eq
 m

2
s-1

Solution pH

-15.5

-15

-14.5

-14

-13.5

-13

0 2 4 6 8 10 12 14

DOC=5/5
DOC=10/5
DOC=50/5
DOC=500/5
pAl=5

R
at

e 
o

f 
N

a 
re

le
as

e,
 k

eq
 m

2
s-1

Solution pH

-16

-15.5

-15

-14.5

-14

-13.5

-13

0 2 4 6 8 10 12 14

pAl=5
pAl=7
pAl=3
DOC=5
DOC=5/5
DOC=5/3

R
at

e 
o

f 
N

a 
re

le
as

e,
 k

eq
 m

2
s-1

Solution pH

-15.5

-15

-14.5

-14

-13.5

-13

0 2 4 6 8 10 12 14

pAl=5
DOC=5/5
DOC=10/5
DOC=50/5
DOC=500/5

R
at

e 
o

f 
N

a 
re

le
as

e,
 k

eq
 m

2
s-1

Solution pH

-15.5

-15

-14.5

-14

-13.5

-13

0 2 4 6 8 10 12 14

pAl=5
T8/DC.5/CO5
T8/DC.5/CO20
T8/DC,5/CO50
T8/DC.5/CO150

R
at

e 
o

f 
N

a 
re

le
as

e,
 k

eq
 m

2
s-1

Solution pH

-16

-15.5

-15

-14.5

-14

-13.5

-13

0 2 4 6 8 10 12 14

T=-5,DOC=50,CO2=30
T=-5,DOC=500,CO2=10
T=-5,DOC=5,CO2=5

R
at

e 
o

f 
N

a 
re

le
as

e,
 k

eq
 m

2
s-1

Solution pH

Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-38

Manuscript under review for journal Biogeosciences

Discussion started: 18 February 2019

c© Author(s) 2019. CC BY 4.0 License.



 25 

The reaction order for the organic acid reaction is derived from experiments where only the 
concentration of organic ligand, [R], has been varied. This was found to be nR=0.5 on most experiments 
and this exponent value was universally adopted, suggesting a divalent ligand being the reactive agent 
(Sverdrup 1990, Sverdrup and Warfvinge 1995, Oelkers and Schott 1998).   

The reaction order nCO2 for the reaction with CO2 has been very difficult to constrain, as very 
few experiments that allow it to be determined are available (Daval et al., 2013, Berg and Banwart 2000, 
Golubev et al., 2005, Fernandez-Bastero et al., 2008, Hangx and Spiers 2009, Lagache 1965, Wogelius 
and Walther 1991, Wolff-Boenisch et al., 2011, Stephens and Hering 2004, Sverdrup 1990).  The few 
experiments available to do not completely agree on the issue. Many experiments dealing with the effect 
of CO2 on weathering do not have the required resolution to allow data regression,. For the minerals 
where the CO2 has little or no effect, this is fine, but for some it is. It was found to be nCO2=0.6 and was 
universally adopted. Sometimes these parameterizations can be determined by making single factor 
plots, but more often, the whole model must be used to recreated the experiments, taking many factors 
into account simultaneously. Figure 16 shows the effect on the base cation (a) and the aluminium 
concentration (b) on the dissolution rate of albite. Various plots were used to help data interpretation. 
Figure 17-18 illustrates how the model was used to plot up different combinations of conditions, to 
investigate how distinct factors affect the weathering rates. The experimental data were overlaid in such 
diagrams (Figures 16-20) to help interpretation towards kinetic parameters (rate coefficients and 
reaction orders), for example the combination of different organic acid ligand concentrations and 
aluminium concentrations.  The last diagram, on the lower right of Figure 18, shows the combination of 
different combinations of organic acid ligand concentrations and CO2 pressures in atmospheres.  Figure 
19 shows the effect on rates of the base cation (a) and the aluminium concentration (b) on the dissolution 
rate for albite. The circles represent the data from experiments.  

A further example of parameterization efforts is shown in Figure 19 for the case of hornblende 
dissolution rate data reported by from Holmqvist  and Sverdrup (2004) and Holmqvist et al. (2002, 
2003). Figure 19a and 19b shows these data as a function of pH. The figures were adapted from 
Holmqvist et al., 2003). Figure 19c shows the retarding effect of aluminium on the dissolution rate of 
hornblende, adapted from Holmqvist et al., (2003).  Figure 19d shows a three-dimensional plot for the 
dissolution rate of hornblende, as a function of solution pH and aluminium concentration (Sverdrup, 
1990).  

In total, the dissolution rate of hornblende is defined by a response surface in at least 8 and 
perhaps 9 different chemical factors: pH, Ca+Mg, K, Na, Al, DOC, CO2, Si and sometimes Fe, and in 
addition to mineral surface area, soil wetting degree and temperature. For example changes in the 
aluminium concentration, can change the weathering rate by several orders of magnitude. Additional 
examples are presented in Figs. 20-24. 

Figure 20 shows a typical example of data generated for different minerals during the 1996-
2002 field seasons using a continuous, flow through, fluidized bed, with constant concentration feed 
solutions. This is for epidote after Holmqvist et al, (2003). Figure 21 shows the experimentally measured 
dissolution rates of epidote as a function of pH according to a number of weathering experiments. The 
release of all relevant ions were monitored by frequent during the experiments.  Figure 22a shows the 
activation energy for the dissolution of epidote. The dependence of the dissolution rate of epidote on the 
calcium concentration at pH 2 and pH 4 is shown in Figure 22b. Figure 23 and 24 shows data from 
Holmqvist and Sverdrup (2004) and Holmqvist et al., (2002, 2003) confirming that an arithmetic 
addition of the various rate contributions gives the best fit of the data, consistent with the principle 
shown in Figure 10. Figure 24 shows  results from  hornblende, the bottom diagrams (A, B) shows 
results from a natural illite mineral extracted from an agricultural soil sample taken at the agricultural 
research site at Lanna, Swedish Agricultural University, Uppsala, Sweden. Model lines were fitted to 
the data points to set the rate coefficients and reaction orders. Note that a complete set of kinetic 
parameters could not be directly generated for all minerals due to incomplete experimental data sets. 
Estimates for some of the rate coefficients in Table 3 were estimated based on mineral crystal structure 
analogies (Sverdrup 1990, Holmqvist 2003, Sverdrup and Stiernquist 2002, Crundwell 2014a,b, 2016), 
crystal bond energies (Sverdrup 1990, Velbel 1999, Crundwell 2014b, 2016) and comparison with 
analogue minerals. For many of the minerals, the dissolution kinetics patterns are very consistent. The 
dissolution rate curve shapes of feldspars, garnets, olivines, zoisites allow for this, but also muscovite 
to illite alteration series, K-feldspar to sericite alteration series.    
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a                                                                       b 

  
c                                                                       d 

Figure 19. Diagrams (a) shows the dissolution rate of minerals presented as base cation release rates 

as a function of pH and (b) shows the dissolution rate for hornblende as a function of solution pH, but 
under different experimental conditions. Diagram (c) The retarding effect of aluminium on the 

dissolution rate of hornblende. (Adapted from Holmqvist et al., 2003). Diagram (d) shows a three-

dimensional plot for the dissolution rate of hornblende, as a function of solution pH and aluminium 

concentration (Sverdrup 1990).  
 

 
Figure 20. Typical example of dissolution rate data generated for epidote during the season 1996-2002 
using a continuous, flow through, fluidized bed, with constant concentration feed solutions (Holmqvist 

2002, 2003). All relevant constituents of the mineral were monitored in the aqueous solution in the 

experiment. 
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a                                                                       b 

Figure 21. Epidote dissolution rate versus pH according to experiments reported by Holmqvist and 

Sverdrup and other literature sources data. 
 

       
a                                                                       b 

Figure 22. a) Estimates of the energy of activation for the dissolution of epidote. (b) the dependence of 

the rate of epidote on the calcium concentration at pH 2 and pH 4 (From one series of experiments by 
the authors).  

 

 
Figure 23. Hornblende dissolution rate data from Holmqvist and Sverdrup (2004) and Holmqvist et al., 

(2002, 2003) suggests that an arithmetic addition gives the best fit. 
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Figure 24. Diagram A show regression results from  hornblende, diagram (B) shows regression results 

from a natural illite mineral extracted from an agricultural soil sample taken at the agricultural 
research site at Lanna, Uppsala, Sweden. Data from Holmqvist and Sverdrup (2004) and Holmqvist et 

al., (2002, 2003) 
 

For example, for the feldspars, we have the data to parameterize the H+ reaction for 5 different 
plagioclases, the mixed composition plagioclases from albite to anorthite. A plagioclase with a different 
composition will be interpolated between these as shown in Figure 24. We have the same situation for 
K-feldpars with increasing contents of Na and Ca, giving a systematic shift in parameter values. The 
pattern is very consistent as can be seen from the diagrams shown in Sverdrup (1990). However, for the 
OH- reaction we have less information. The OH- rate equation is theoretically linked to the H+ reaction, 
but more sensitive to the concentration of the same base cation as in the mineral (Na, K, Ca). With the 
available data and the theoretical link, we can estimate the missing parameters for some of the feldspars. 
There is a similar situation for the H2O reaction. We have the experiments that allow it to be constrained 
for most of the feldspars, and the shifts between the feldspars are systematic and consistent.  

For the reaction with organic acid ligands, the situation is more complex. Many of the 
dissolution experiments run with organic acids were present were poorly documented, and getting any 
accurate parameterization out of them is not possible. For some minerals like feldspars and olivine, some 
experimental results are available (Stillings et al., 1996 is one example for feldspar) that allow for kinetic 
parameter estimation. They found nR=0.75 in the range pH 3-7. For other minerals, we have only single 
experiments, scattered among some few minerals. Few experiments are available, and for only a few 
types of minerals. These have delivered suggestions for expert judgement on what the parameter values 
probably would be. The situation is similar for the reaction between the mineral surface and CO2. The 
reaction seems to be weak, and only play a role at elevated pressures. For example, Wang (2013), based 
on the experimental results of Hänchen et al., (2006) concluded there was  no effect of the CO2 reaction 
on olivine dissolution rates beyond the effect caused by CO2 on pH.   

Retrieved kinetic parameters are provided in Table 3. Parameters that are derived directly from 
of one or more experiments are given in bold font. The kinetic parameters that were estimated are shown 
in roman font. The minerals in this table are divided into 11 groups of basic crystalline structures. Some 
of the minerals inside each group have large commonalities with respect to how they dissolve, and this 
was of great help in parameter estimation table. 

For feldspars, nesosilicates and phyllosilicates, the amount of experimental data available make 
the retrieved parameters robust. If three different compositions of basically the same type of mineral, A, 
B and C, are known to have relative rates A>B>C, and we have the kinetic parameters for A and C, then 
we can be fairly certain that the values for the kinetic parameters for B are constrained between A and 
C (see Figure 25). If they are close, then we would be able to set B fairly accurately, even with sparse 
experimental data for B. This has been the case for many minerals (In particular feldspars, nesosilicates, 
phyllosilicates), and is a way to get more parameterization out of a limited experimental data sets.  For 
the pyroxenes and amphiboles, the experiments indicate that the minerals tend to behave with some 
variety depending on their composition, making the estimates less accurate. But, many pyroxenes are 
mixtures of definable end members and this was utilized to interpolate and estimate missing parameters.  
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a: Data points drawn in                                         b: Interpolate line 

Figure 25. Some mineral groups have very similar dissolution rate behaviours. Such similarities can be 

used to interpolate between them (b) when we have intermediate minerals with only a few data points 
available (a). 

 
Nevertheless all parameters in Table 3 together with their kinetic expressions should be further validated 
as additional experimental data become available. The ultimate test of the kinetics equations and 
parameters how well they describe both laboratory experiments and field data where independent 
estimates of the weathering rate is available. Such tests have been generally successful (see the 
publications referred to earlier, and Erlandsson Lampa et al., 2016, 2019), suggesting that the combined 
methodology (experiments, analogues, interpolations, estimates based on theoretical rescaling, 
predictions made based on crystal bond energies) have captured the kinetics sufficiently well. More on 
this will be forthcoming as the publishing of further comparisons are made.  
 

5. Results 

5.1. Kinetics and parameterization 

The tabulated kinetics coefficients are the major result of this report and they are provided in the Tables 
1-4. In total the dissolution kinetics parameterization for 93 minerals are provided. The fundamental 
rate equation, as described above was adapted after Sverdrup and Warfvinge (1988, 1992, 1995) and 
Sverdrup (1990, 1998) and parameters are for a temperature of 8oC and standard atmospheric pressure. 
The numbers in bold in Table 3 represent direct measurement, normal font parameters were estimated 
by interpolation from analogues. The following default approximations were adopted due to the lack of 
data; CAl for the H+-reaction is taken to be equal to 1/

3 of the CAl for the OH--reaction. CBC for the H+-
reaction is taken to be 1/

3 of the CBC for the OH--reaction. The retarding reaction orders for base cations 
(x), aluminium (y) and silicate (z) have been extracted from separate datasets and experiments where it 
was possible to separate out the effect of silicate alone, having subtracted the effect of base cations and 
aluminium first. Default values were computed and scaled with Madelung crystal lattice site energy (See 
Sverdrup 1990 and Velbel 1999 for how a-priori weathering rate coefficient estimates are made from 
crystal properties). Irreversible dissolution implies that the mineral cannot be formed from solution 
under soil conditions, and that there is no saturation concentration or any back reaction. Pokrovsky and 
Schott (2000) and Rosso and Rimstidt (2000) reports a reaction order of nH+=0.5 for forsterite, but others 
report nH+=1.0 (Grandstaff 1986, Blum and Lasaga 1988, Siegel and Pfannkuch 1984, Sverdrup 1990). 
nH+=1.0 seems to be a property of the nesosilicate group, but there is a possibility that presence of 
impurities such as pyroxenes or feldspars in the nesosilicate may give it a different crystal structure and 
thus a different nH+. Others, Berg and Banwart (2000), report nH+ in the range 0.5 to 1, depending on 
pH.  

Table 4 shows the temperature dependencies of the dissolution rates.  All variations of rates on 
temperature are computed using a modified Arrhenius equation (Sverdrup 1990, 1998, Sverdrup and 
Warfvinge 1988, 1992, 1995). Parameters for this equation generated from experimentally measured 
rates are shown in bold. Where experimental data were not available estimates were computed and 
scaled with Madelung crystal lattice site energy from garnet (Sverdrup 1990, Velbel 1999). Values in 
normal font were estimated from the lattice energies and the properties of the mineral surface. Table 5 
shows the stoichiometry of the minerals considered in this study.  
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Figure 26. Location of the research site in Northern Sweden. The colours delineate the different 
subcatchments of the Svartberget research area. The map on the left shows the catchment co nsidered 

in this comparison. 

 
5.2. Testing the model 

The most recent comparison between model results and field observations follows in the article by 
Erlandsson-Lampa et al. (This issue). The research catchment where many of the model applications are 
focused is located in Northern Sweden (Figure 26). A few examples are shown in Figure 27 and 28. 
Figure 27 shows a comparison between calculated and observed base cation concentrations at the 
Svartberget research site. The model takes into account all the soil processes such as ion exchange, 
vegetation interactions, decomposition of organic matter, transport in the soil of the catchment in 
horizontal and vertical directions and weathering.  The model results reproduces the observed 
concentration pattern (Zanchi et al., 2016). Figure 27a shows the modelled Bc3 and Figure 27b shows 
the Si concentrations, plotted against log10 of water transit time (smooth lines). Overlaid are the observed 
base cation (Bc) and Si-concentrations from the soil profile, plotted against log10 of soil depth (solid 
lines with markers). The weathering model considers all soil processes including ion exchange, 
vegetation interactions, decomposition of organic matter, water transport in the catchment in both the 
horizontal and vertical directions (Belyazid et al., 2004, 2011a,b, 2010a,b, 2015, 2019, Erlandsson-
Lampa et al., 2019, Sverdrup et al., 1995, 2002). The model reproduces the observed field observations 
as a function of depth (Zanchi et al., 2016). The close correspondence between the calculated dissolved 
metal concentrations and the field observation are notable considering that we employed a simple 
silicate dissolution rate model to determine the composition of the aqueous phase in the soil.  
 
6.3. Discussion 

The detailed comparisons between laboratory measured and field determined weathering rates generated 
using the kinetic models coupled to soil processes performed using PROFILE and ForSAFE stand out 
in stark contrast to the traditional geochemical models, which give results that are several orders of 
magnitude off (Erlandsson-Lampa et al., 2019). It was discovered that past efforts to describe field 
weathering rates using laboratory measured dissolution rates without consideration of its coupling to the 
major soil processes yielded inaccurate results (Model types represented by codes such as PHRQKIN 
and similar codes) – see Erlandsson Lampa et al. (2016) and Nyström-Claesson and Andersson, (1996). 
Such observations demonstrate a need for a new approach that takes into account the complete set of 
processes occurring in the soil. 

                                                
3Bc is the base cations that the plants take up; Ca+Mg+K, BC is Na+K+Ca+Mg. 
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Figure 27. Comparison of calculated with measured base cation concentrations at the Svartberget field 

site, (Zanchi et al., 2016). Note the base cation concentrations refer to the sum of the concentrations of 

Na, H, Ca, and Mg in units of microequivalents per litre. 
 

 
a: Base cations                                                                       b: Silica 

Figure 28. Modelled base cation (a) and Si (b) concentrations from plotted against log10 of water transit 

time (smooth lines) at the Svartberget field site (See Erlandsson-Lampa et al., 2016, 2019 for a full 

description of the field test of the model). Overlain are the observed base cation and Si-concentrations 
from the soil profile, plotted against log10 of soil depth (straight lines with symbols).  

 

Note that the weathering brakes used in this approach act differently on the weathering rates that the 
equilibrium expressions used in earlier models (Aagaard and Helgeson 1982, Murphy et al., 1987, 
Alekseyev et al., 1997, 2004, 2007, Oelkers 2001, Oelkers et al., 1994, 2001, 2008). The preference for 
using the brakes rather than the traditional saturation expression based on an assumption of equilibrium 
between the surface and the liquid, is that the weathering process is irreversible. Thus, an equilibrium 
assumption is not permitted. The earlier models, lacked the representation of an ecosystem the soils. 
This is likely the major reason why the earlier approaches failed to estimate field weathering rates. 
 

7. Conclusions 

The complex nature of weathering in the field is nearly impossible to interpret without a comprehensive 
model for the whole process. A first step to such interpretations can be the quantitative description of 
the dissolution rates of then major rock forming minerals. Even the dissolution rates of an individual 
mineral can involve several simultaneous reactions. Thus, experimentally measured rates results can 
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only be accurately interpreted when a full system model is used . Under field conditions, the mineral 
dissolution is coupled to other soil processes, and thus a full ecosystem system model is needed for their 
interpretation. The apparent difference between field and laboratory dissolution rates arise from the 
coupling of these processes, and disappear once a full model is employed. Use of a fully coupled model 
shows these differences to be negligible (Keegan and Laskow-Lehey 2014). 

Taking account the vast literature reporting experimentally measured mineral dissolution rates, 
it was possible to create a fully parameterized kinetic database for about 92 minerals. About 40% of the 
kinetic parameters were determined directly from experiment interpretations, and the rest was with inter-
mineral interpolations and using of analogues.  

The adjustment of aluminium ‘brake functions’ and the introduction of a silica “brake function” 
as described in this work were necessary to improve the description of weathering rates in the lower part 
of the soil, below 1 meter depth. The test at the Svartberget catchment suggests that this revised mineral 
dissolution model works adequately as can be seen from Figures 28-29.  
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