

REVIEWS IN MINERALOGY AND GEOCHEMISTRY

VOLUME 58

2005

LOW-TEMPERATURE THERMOCHRONOLOGY: TECHNIQUES, INTERPRETATIONS, AND APPLICATIONS

EDITORS:

Peter W. Reiners

Todd A. Ehlers

Yale University New Haven, Conneticut

University of Michigan Ann Arbor, Michigan

COVER: *Upper left*: Apatite crystals from the Bighorn Mountains, Wyoming (scale bar is 300 μ m). *Upper right*: Arrhenius plot for step-heating helium diffusion experiment on titanite crystal fragments; after Reiners PW, Farley KA (1999) He diffusion and (U-Th)/He thermochronometry of titanite. *Geochim Cosmochim Acta* 63:3845-3859. *Lower left*: 3D thermo-kinematic model of the Himalayan front and major structures, Central Nepal; courtesy of D. Whipp and T. Ehlers. *Lower right*: View of the Washington Cascades, from Sahale Arm; photo by Drew Stolar.

Series Editor: Jodi J. Rosso

MINERALOGICAL SOCIETY OF AMERICA GEOCHEMICAL SOCIETY

TABLE OF CONTENTS

Past, Present, and Future of Thermochronology

Peter W. Reiners, Todd A. Ehlers, Peter K. Zeitler

INTRODUCTION	1
Geochronology vs. thermochronology	2
HISTORY	2
1950s and 1960s – development of fundamentals	2
1970s – a decade of closure	3
1980s – modern thermochronology is born	4
1990s and 2000s	4
CURRENT PRACTICE	6
PROSPECTS	8
Existing and emerging techniques and approaches	8
Kinetics, partitioning, and other fundamentals	9
Quantitative interpretations of data with numerical models	.10
General comments on the future of thermochronology	.11
REFERENCES	.13

2

1

Fundamentals of Fission-Track Thermochronology

Takahiro Tagami, Paul B. O'Sullivan

INTRODUCTION	19
FORMATION AND REGISTRATION OF NUCLEAR FISSION TRACKS	20
Spontaneous and induced nuclear fission decay	20
Track formation process in solids	20
Structure of the latent track	21
CHEMICAL ETCHING AND OPTICAL MICROSCOPE OBSERVATION	22
Basic process of track etching	23
Etching efficiency and prolonged-etching factor	24
Etching criteria and their influences on the observed track density and length	25
DERIVATION OF AGE CALCULATION EQUATION	27
STABILITY AND FADING OF TRACKS	28
Basic process of track fading	28
Track annealing at geological timescales: procedures and findings	29
Laboratory heating experiments: procedures and findings	32
EXPERIMENTAL PROCEDURES	34
Methods of analysis	35
Sample preparation and track etching	36
Neutron irradiation	37
Track density determination	37
Track length measurement	37
DATA ANALYSIS AND GRAPHICAL DISPLAYS	38
Statistical test of single-grain data and error calculation of sample mean age	38
Graphical displays of single-grain age distribution	39
Graphical displays of track length distribution	40

CONCLUDING REMARKS	41
ACKNOWLEDGMENTS	41
REFERENCES	41
REFERENCES	

and a state of the state of the

Apatite Fission-Track Analysis

Raymond A. Donelick, Paul B. O'Sullivan Richard A. Ketcham

APATITE AS A FISSION-TRACK ANALYSIS MATERIAL	0
General	0
Natural occurrence	0
Physical properties5	1
Major and minor element chemistries	1
Uranium and thorium as trace elements	1
Fission-track retention in the geological environment	3
Laboratory analogues to spontaneous fission-track behavior	3
AFT SAMPLE PREPARATION	4
APATITE FISSION-TRACK AGE EQUATIONS	4
AFT DATA AND DATA COLLECTION	5
General	5
Analyst bias	6
Spontaneous fission-track densities	8
Relative uranium concentrations	9
Confined fission-track lengths	0
AFT annealing kinetic parameters	6
How many AFT grain ages and lengths should be measured?	2
LABORATORY CALIBRATION OF THE APATITE FISSION-TRACK SYSTEM7	3
General	3
Setting up a calibration procedure	3
DISCUSSION AND FUTURE WORK	6
General7	6
Type of data to measure for AFT ages and lengths	7
Measurement of kinetic parameter for AFT analysis	7
Extrapolation of calibrations to geological time	8
Can AFT models be improved?7	8
ACKNOWLEDGMENTS	4
REFERENCES	4
APPENDIX 1: AFT SAMPLE PREPARATION TIPS	7
General	7
Tips for apatite mineral separation	7
Tips for mounting and polishing apatite grain mounts	9
Tips for etching apatite grain mounts	0
Tips for ²⁵² Cf-derived fission-fragment irradiation of apatite grain mounts	1
Tip for preparing apatite grain mounts for EDM age dating	2
Tips for preparing apatite mounts for the LA-ICP-MS age dating	2
Preparing apatite grain mounts for electron probe microanalysis (EPMA)	2

APPENDIX 2: DATA COLLECTION SCHEMES FOR	
APATITE FISSION-TRACK ANALYSIS	
Measurement of grain ages	93
Measurement of lengths	
AFT analysis	

Zircon Fission-Track Thermochronology and Applications to Fault Studies

Takahiro Tagami

THERMAL SENSITIVITY OF ZIRCON FISSION-TRACK 95 Laboratory heating data and annealing models 95 Long-term track annealing at geological timescales 100 ANALYTICAL PROCEDURES 103 Zircon fission-track dating 103 Track length measurement 107 APPLICATION TO THE NOJIMA FAULT ZONE 108 Geological setting 109 Sample description 110 Data and interpretation 110	DUCTION
THERMOCHRONOMETRY .95 Laboratory heating data and annealing models .95 Long-term track annealing at geological timescales .100 ANALYTICAL PROCEDURES .103 Zircon fission-track dating .103 Track length measurement .107 APPLICATION TO THE NOJIMA FAULT ZONE .108 Geological setting .109 Sample description .110 Data and interpretation .110	AL SENSITIVITY OF ZIRCON FISSION-TRACK
Laboratory heating data and annealing models	RMOCHRONOMETRY
Long-term track annealing at geological timescales 100 ANALYTICAL PROCEDURES 103 Zircon fission-track dating 103 Track length measurement 107 APPLICATION TO THE NOJIMA FAULT ZONE 108 Geological setting 109 Sample description 110 Data and interpretation 110	aboratory heating data and annealing models95
ANALYTICAL PROCEDURES	ong-term track annealing at geological timescales
Zircon fission-track dating. 103 Track length measurement 107 APPLICATION TO THE NOJIMA FAULT ZONE 108 Geological setting. 109 Sample description 110 Data and interpretation 110	TICAL PROCEDURES
Track length measurement 107 APPLICATION TO THE NOJIMA FAULT ZONE 108 Geological setting 109 Sample description 110 Data and interpretation 110	Circon fission-track dating
APPLICATION TO THE NOJIMA FAULT ZONE	rack length measurement 107
Geological setting	CATION TO THE NOJIMA FAULT ZONE
Sample description	Geological setting
Data and interpretation 110	Sample description
Duta and interpretation interpretati	Data and interpretation
Geological implications115	Geological implications115
Summary118	Summary
CONCLUDING REMARKS118	UDING REMARKS118
ACKNOWLEDGMENTS119	OWLEDGMENTS119
DEFEDENCES 110	ENCES

5

Δ

Fundamentals of Noble Gas Thermochronometry

T. Mark Harrison, Peter K. Zeitler

INTRODUCTION	
BASICS OF NOBLE-GAS GEOCHRONOLOGY	124
K-Ar and ⁴⁰ Ar/ ³⁹ Ar systematics and analysis	
⁴⁰ Ar/ ³⁹ Ar mineral thermochronometers	
Principal interpretive methods and analytical issues, ⁴⁰ Ar/ ³⁹ Ar	127
(U-Th)/He systematics and analysis	129
(U-Th)/He mineral thermochronometers	130
Principal interpretive methods and analytical issues, (U-Th)/He	130
DIFFUSION	
Background	
Diffusion mechanisms	
The Arrhenius relationship	
Episodic loss	134

Coupling fractional loss equations with the Arrhenius relationshin 1	35
Calculation of age spectra resulting from episodic loss	35
Closure temperature	36
EXPERIMENTAL DETERMINATION OF DIFFUSION PARAMETERS	40
Calculation of diffusion coefficients from bulk loss experiments	40
Calculation of Ar and He diffusion coefficients from step-heating results	41
Experimental criteria	42
Laboratory diffusion studies - helium1	42
Laboratory diffusion studies - argon1	43
INTERPRETATION OF THERMOCHRONOLOGICAL DATA	45
Heat transfer	45
Sampling considerations	45
Constraining power	46
Intercomparison and accuracy of thermochronological data	46
CONCLUDING REMARKS	46
REFERENCES	47

7

Zircon (U-Th)/He Thermochronometry

Peter W. Reiners

INTRODUCTION	151
Historical perspective	151
HELIUM DIFFUSION IN ZIRCON	
Step-heating experiments	
Radiation damage	
ANALYTICAL AND AGE DETERMINATION TECHNIQUES	
Analytical methods	
CASE-STUDY EXAMPLES	
Comparison with K-feldspar ⁴⁰ Ar/ ³⁹ Ar cooling models	
Dike heating	
Exhumed crustal sections	
Orogenic exhumation: Dabie Shan	
Detrital zircon dating	
FUTURE DEVELOPMENTS	
ACKNOWLEDGMENTS	
REFERENCES	176

⁴He/³He Thermochronometry: Theory, Practice, and Potential Complications

David L. Shuster, Kenneth A. Farley

INTRODUCTION	181
FUNDAMENTAL CONSIDERATIONS	181
The ⁴ He spatial distribution	182

Proton-induced ³ He	
The ⁴ He/ ³ He ratio evolution diagram	
The effect of -ejection	
The ³ He Arrhenius plot	
Constraining thermal histories	
⁴ He/ ³ He age spectra	
TECHNICAL ASPECTS	
Proton irradiation	
Sample requirements	
Stepwise degassing analysis	
POTENTIAL COMPLICATIONS	
Mineral surfaces	
Geometry	
Does proton irradiation affect helium diffusion kinetics?	
Diffusive fractionation of helium isotopes?	
Non-uniform U and Th distributions	
EXAMPLE APPLICATIONS	197
Example 1: controlled ⁴ He distributions	197
Example 2: natural anatite	199
Example 3: natural apatite	200
CONCLUSIONS	201
ACKNOWLEDGMENTS	202
REFERENCES	202
NEI ENERVEES	

Fission-track Analysis of Detrital Zircon

Matthias Bernet, John I. Garver

205
207
207
209
213
213
213
215
216
217
218
222
224
228
231
233
234
234

⁴⁰Ar/³⁹Ar Thermochronology of Detrital Minerals

9

K.V. Hodges, K.W. Ruhl, C.W. Wobus, M.S. Pringle

239
239
240
241
241
242
243
246
246
246
246
246
249
249
251
252
253

10 Forward Modeling and Interpretation of (U-Th)/He Ages

Tibor J. Dunai

INTRODUCTION	
FORWARD MODELING	
General remarks	
Effect of shape and surface/volume ratio	
Simultaneous treatment of alpha ejection and diffusion	
Considering parent nuclide distribution	
FT correction vs. FM an apparent conflict resolved	
A checklist for FM	
DECOMP – A USER FRIENDLY FM SOFTWARE	
A quick guide to DECOMP	
EVALUATION OF SAMPLE DATA BY FORWARD MODELING	
Qualitative evaluation of competing hypothesis	
Quantification of process rates and model parameters	270
OUTLOOK FOR FORWARD MODELING	
REFERENCES	

Forward and Inverse Modeling of Low-Temperature Thermochronometry Data

11

Richard A. Ketcham

INTRODUCTION	275
FORWARD MODELING OF THE FISSION-TRACK SYSTEM	275
Calibrations	
Length distribution calculation	
Age calculation	
Oldest track	
Example FT forward models	
FORWARD MODELING OF THE (U-Th)/He SYSTEM	
Equations defining the (U-Th)/He dating system	
Calibration	
Finite difference solution	
Example He forward models	
INVERSE MODELING	
Statistical tests	
Defining and searching candidate thermal histories	
Presentation of inversion results	
EXECUTION AND INTERPRETATION OF INVERSE MODELING	
AVAILABLE SOFTWARE	
CLOSING THOUGHTS	
ACKNOWLEDGMENTS	
REFERENCES	

12 Crustal Thermal Processes and the Interpretation of Thermochronometer Data

Todd A. Ehlers

INTRODUCTION	315
NATURAL VARIABILITY IN TERRESTRIAL HEAT FLOW	316
AGE-ELEVATION PLOTS AND SUBSURFACE TEMPERATURES	318
GEOLOGIC PROCESSES INFLUENCING THERMOCHRONOMETER AGES	321
Background thermal state of the crust	321
Erosion and sedimentation	323
Tectonics and faulting	328
Magmatism	333
Topography	337
Fluid flow	337
CONCLUDING REMARKS	341
ACKNOWLEDGMENTS	343
REFERENCES	344
APPENDIX A: THERMOPHYSICAL PROPERTIES OF EARTH MATERIALS	349

13 Quantitative Constraints on the Rate of Landform Evolution Derived from Low-Temperature Thermochronology

Jean Braun

INTRODUCTION	
TOPOGRAPHY AND TEMPERATURE	
AGE-ELEVATION DATASETS	
SPECTRAL ANALYSIS	
3D THERMAL MODELING: PECUBE	
EXAMPLE FROM THE SIERRA NEVADA	
Interpreting the Sierra Nevada data using the spectral method	
Interpreting the Sierra Nevada using Pecube	
SLOW EROSIONAL SETTINGS	
Isostasy	
INVERSION OF AGE-ELEVATION DATASETS	
Post-orogenic erosional decay, example from the Dabie Shan	
Rate and nature of passive margin escarpment evolution, example	
from SE Australia	
CONCLUSIONS AND FUTURE WORK	
ACKNOWLEDGEMENTS	
REFERENCES	

14 Exploiting 3D Spatial Sampling in Inverse Modeling of Thermochronological Data

Kerry Gallagher, John Stephenson, Roderick Brown, Chris Holmes, Pedro Ballester

INTRODUCTION	
What is a good but simple thermal history model?	
1D modeling	
2D modeling	
3D modeling	
SUMMARY	
REFERENCES	

15

Continuous Thermal Histories from Inversion of Closure Profiles

T. Mark Harrison, Marty Grove, Oscar M. Lovera, Peter K. Zeitler

INTRODUCTION	
Background	
An example: the bulk closure temperature of biotite	

Bulk mineral thermochronometry	390
How do we obtain the highest accuracy and resolution thermal histories?	391
IN SITU CLOSURE PROFILES	391
The closure profile equation	391
INFERING CLOSURE PROFILES FROM 40 Ar/39 Ar DATA	392
⁴⁰ Ar/ ³⁹ Ar step-heating of K-feldspar	393
Fundamental assumptions for recovering thermal history information	394
Recognition of problematic behavior in K-feldspar ⁴⁰ Ar/ ³⁹ Ar age spectra	395
The multi-diffusion domain model	396
Inversion of ⁴⁰ Ar/ ³⁹ Ar results to thermal history data	397
Numerical simulation of domain instability during slow-cooling	402
Other applications: Th-Pb dating of monazite	404
CONCLUSIONS	
REFERENCES	407

16 Application of Low-Temperature Thermochronometry to Extensional Tectonic Settings

Daniel F. Stockli

INTRODUCTION	411
PROCESSES OF EXTENSIONAL UNROOFING AND EXHUMATION	412
LOW-TEMPERATURE THERMOCHRONOMETRIC TECHNIQUES	415
⁴⁰ Ar/ ³⁹ Ar thermochronometry	415
Fission-track thermochronometry	416
(U-Th)/He thermochronometry	417
THERMOCHRONOMETRY AND EXTENSIONAL TECTONICS	417
Timing of extensional faulting and exhumation	418
Estimation of fault slip rates	
Thermochronometric constraints on fault dip angles	
Estimation of crustal tilting and footwall rotation	431
Estimation of normal fault offset magnitude	
Geothermal gradient estimates	
Spatial and temporal distribution of extension	
CONCLUSIONS AND FUTURE DIRECTIONS	
ACKNOWLEDGMENTS	439
REFERENCES	439

17

Applications of Low-Temperature Thermochronometry to Quantification of Recent Exhumation in Mountain Belts

James Spotila

INTRODUCTION	
DENUDATIONAL MATURITY	
CASE I: ANCIENT OROGENS AND PALEODENUDATION	

Application of Thermochronology to Hydrothermal Ore Deposits

Brent I. A. McInnes, Noreen J. Evans, Frank Q. Fu, Steve Garwin

ΙΝΤΡΟΝΙΟΤΙΟΝ	167
AN INTRODUCTION	167
AN INTRODUCTION	
(U-Th)/re memorinonology	
F ISSION LTACK	470
"AI/" AI	
A DRI LOATIONIS OF THED MOCHPONON (FTD) TO	
APPLICATIONS OF THERMOCHKONOMETRY TO	175
GOLD MINERALIZATION	
Carlin-type gold deposits	
Epithermal gold deposits	
Archean lode gold deposits	
Shale-hosted lode gold deposits	
APPLICATION OF THERMOCHRONOMETRY TO PORPHYRY COPPER-	
MOLYBDENUM-GOLD MINERALIZATION	476
Selected porphyry deposits	
Duration of hypogene ore formation: measured vs. modeled	
Emplacement depth	
Hypogene copper grade as a function of cooling rate	
Preservation potential of hypogene ores and potential formation of	
supergene ores	
CURRENT TRENDS, FUTURE DIRECTIONS	487
ACKNOWLEDGMENTS	488
REFERENCES	
APPENDIX I: U/Pb AND (U-Th)/He ANALYTICAL PROCEDURES	
APPENDIX II: EXPLANATIONS AND CALCULATIONS OF	
MODELED PARAMETERS	
1. Sample position, eroded thickness of the porphyry, and initial sample depth	
2. Determination of emplacement depth	
3. Calculation of exhumation rates	
4. Example: determination of emplacement depth and exhumation	
rate for the Batu Hijau Porphyry	
5. Limitations and future improvements	

Thermochronometers in Sedimentary Basins

Phillip A. Armstrong

INTRODUCTION	99
PROCESSES THAT AFFECT BASIN TEMPERATURES - THE HEAT BUDGET49	99
PRESENT-DAY THERMAL FIELD	00
BUILDING A BURIAL AND THERMAL HISTORY	01
THERMOCHRONOMETERS USED IN SEDIMENTARY BASINS	03
Apatite fission-track dating	03
Apatite (U-Th)/He dating	07
Combining apatite fission-track and other thermal indicators50	08
Higher temperature thermochronometers	09
EXAMPLES OF THERMOCHRONOMETER USE IN SEDIMENTARY BASINS50	09
Example of a sedimentary basin thermal history – the Williston Basin	09
Example integrating burial history with AFT data in an active-margin basin	12
A complex history example – constraining structures with outcrop and well data5	14
Additional illustrative examples of AFT analysis in sedimentary basins	16
Higher-temperature thermochronometers in sedimentary basins	17
CONCLUSIONS AND FUTURE DIRECTIONS	19
ACKNOWLEDGMENTS	20
REFERENCES	20

20

Visualizing Thermotectonic and Denudation Histories Using Apatite Fission Track Thermochronology

Barry P. Kohn, Andrew J.W. Gleadow, Roderick W. Brown, Kerry Gallagher, Matevz Lorencak, Wayne P. Noble

527
528
520
529
529
531
531
534
536
537
537
545
547
552
557
558
558

21 Low-Temperature Thermochronometry of Meteorites

Kyoungwon Min

INTRODUCTION	567
(U-Th)/He METHOD	568
Fundamentals	568
History	569
Sample preparation	570
Age corrections	570
Diffusion properties	576
(U-Th)/He ages	
Limitations	
²⁴⁴ Pu FISSION TRACK METHOD	579
Fundamentals	579
History	579
Age correction	580
Annealing properties	582
²⁴⁴ Pu fission track data	582
Limitations	584
CONCLUDING REMARKS	
ACKNOWLEDGMENTS	584
REFERENCES	
APPENDIX: SAMPLE PREPARATION AND ANALYTICAL PROCEDURES	

22

Computational Tools for Low-Temperature Thermochronometer Interpretation

Todd A. Ehlers, Tehmasp Chaudhri, Santosh Kumar, Chris W. Fuller, Sean D. Willett, Richard A. Ketcham, Mark T. Brandon, David X. Belton, Barry P. Kohn, Andrew J.W. Gleadow, Tibor J. Dunai, Frank Q. Fu

INTRODUCTION	
TERRA: FORWARD MODELING EXHUMATION HISTORIES	
AND THERMOCHRONOMETER AGES	
TERRA – 1D and 2D thermal history calculations	
TERRA – thermochronometer age prediction	
HEFTY: FORWARD AND INVERSE MODELING	
THERMOCHRONOMETER SYSTEMS	596
FTINDEX: INDEX TEMPERATURES FROM FISSION TRACK DATA	
FTIndex program operation	
BINOMFIT: A WINDOWS® PROGRAM FOR ESTIMATING	
FISSION-TRACK AGES FOR CONCORDANT AND	
MIXED GRAIN AGE DISTRIBUTIONS	600
Introduction to BINOMFIT	600
Using BINOMFIT	601

PROGRAMS FOR ILLUSTRATING CLOSURE, PARTIAL RETENTION,	
AND THE RESPONSE OF COOLING AGES TO EROSION:	
CLOSURE, AGE2EDOT, AND RESPTIME	602
Methods for CLOSURE	603
Methods for AGE2EDOT	608
Methods for RESPTIME	610
TASC: COOLING ONSET AGES AND EVENT TIMING IN NATURAL	
SAMPLES FROM FISSION TRACK LENGTH DATA	610
Background to the TASC program	610
Applications of the TASC program	612
Using the TASC program	614
TASC controls	614
TASC inputs	614
TASC outputs	614
DECOMP: FORWARD MODELING AGE EVOLUTION OF (U-Th)/He AGES	615
How to use DECOMP	615
Temperature history plot	616
Age evolution plot	616
4DTHERM: THERMAL AND EXHUMATION HISTORY OF INTRUSIONS	616
4DTHERM applications	617
4DTHERM inputs	618
4DTHERM outputs	618
CONCLUDING REMARKS	620
ACKNOWLEDGMENTS	620
REFERENCES	620