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Revised estimates of ocean-atmosphere CO2 flux
are consistent with ocean carbon inventory
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Peter Landschützer 2, David K. Woolf 3 & Lonneke Goddijn-Murphy 4

The ocean is a sink for ~25% of the atmospheric CO2 emitted by human activities, an amount

in excess of 2 petagrams of carbon per year (PgC yr−1). Time-resolved estimates of global

ocean-atmosphere CO2 flux provide an important constraint on the global carbon budget.

However, previous estimates of this flux, derived from surface ocean CO2 concentrations,

have not corrected the data for temperature gradients between the surface and sampling at a

few meters depth, or for the effect of the cool ocean surface skin. Here we calculate a time

history of ocean-atmosphere CO2 fluxes from 1992 to 2018, corrected for these effects.

These increase the calculated net flux into the oceans by 0.8–0.9 PgC yr−1, at times doubling

uncorrected values. We estimate uncertainties using multiple interpolation methods, finding

convergent results for fluxes globally after 2000, or over the Northern Hemisphere

throughout the period. Our corrections reconcile surface uptake with independent estimates

of the increase in ocean CO2 inventory, and suggest most ocean models underestimate

uptake.
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I
n recent years, an international effort has assembled a quality-
controlled database of surface ocean carbon dioxide observa-
tions, the Surface Ocean Carbon Dioxide Atlas (SOCAT)1–3.

SOCAT has enabled several recent studies evaluating air–sea CO2

flux from the observed partial pressure at the ocean surface4–10.
In order to use the data to obtain accurate values of ocean-
atmosphere CO2 fluxes, it is necessary to apply the gas exchange
equation to the concentration difference of dissolved CO2 across
the mass boundary layer (MBL) of the sea surface—the topmost
~100 µm within which molecular diffusion dominates vertical
transport toward the interface (see Methods section). Calculation
of the concentration at the base of this layer comes from the sea
surface data. Previous studies using the SOCAT data have gen-
erated this concentration from the measurements specified at the
temperature of the water inlet, at a depth usually several meters
below the surface. However, there are typically temperature dif-
ferences in the surface ocean layer11, which can materially affect
the partial pressure, or fugacity of CO2 (fCO2). For this reason, a
procedure was developed to recalculate the SOCAT data from the
measurement temperature to the subskin temperature, a few
millimeters below the surface11–13. This temperature is derived
predominantly from satellite infrared observations and is avail-
able as an optimally interpolated gridded product14. Furthermore,
the MBL is embedded within the ocean’s thermal skin, the
uppermost ~1000 µm which is cooler than the underlying water
because the ocean surface is a net emitter of heat, both via latent
heat and longwave radiative fluxes, to the atmosphere15. The
cooler skin temperature also affects the calculation of the CO2

flux since the CO2 concentration at the top of the MBL, at the
air–water interface, is set by the product of the fCO2 in the
atmosphere, and its solubility in the water there. The solubility is
temperature dependent and increases at the lower temperature. It
has long been known that this effect has a globally significant
impact on calculated air–sea fluxes16, but most studies have
ignored it. Recent work has however confirmed and clarified the
theory11.

Here, we apply these corrections to a recent update of the
SOCAT data, in combination with several different interpolation
techniques. We derive a time history of corrected ocean-
atmosphere fluxes and their associated uncertainties, for the
period from 1992 to 2018, finding substantially increased net
uptake of CO2 by the oceans. We then compare our results with a
recently published analysis of the increase in ocean anthropogenic
carbon dioxide calculated from global repeat hydrography pro-
grams17. In contrast to earlier surface flux estimates, our revision
is consistent with this inventory increase. Comparison with the
inventory suggests that the pre-industrial flux of CO2 from the
open ocean to the atmosphere was ~0.5 PgC yr−1 and that it
exhaled mostly from the Southern Hemisphere. The close
agreement between two independent observationally based
syntheses, one based on surface data and the other on interior
measurements, suggests that most ocean carbon models are
underestimating the net sink for atmospheric CO2 over recent
decades.

Results and discussion
Effect of temperature corrections. Figure 1 illustrates the effect
of the two adjustments described above on a calculation of annual
global ocean-atmosphere fluxes for this period, with calculations
starting from the SOCAT v2019 database. To interpolate the
SOCAT surface water fCO2 data in space and time we adopt as
our standard method the two-step neural network approach
described by Landschützer et al.8,18, (see also description below
and Methods section). The interpolation was applied to the
SOCAT data without modification, after adjusting the data to a

subskin temperature and regridding (as described in refs. 12,19, see
also Methods section) then additionally after repeating the flux
calculation assuming a ΔT across the cool skin of 0.17 K15 salinity
increase of 0.1 unit11 and the conservative “rapid transport”
scheme of Woolf et al.11 (see Methods section). Each adjustment
increases the calculated flux by ~0.4 PgC yr−1 when integrated
over the global ocean. For the period ~2000, this approximately
doubles the calculated flux into the ocean. Over the 27 years
1992–2018 inclusive, the cumulative uptake is increased from 43
to 67 PgC.

Uncertainty estimates. Ocean-atmosphere fluxes calculated using
the gas exchange equation are subject to two broad sources of
uncertainty: (1) specification of the gas transfer velocity, which
depends on the thickness of the MBL and is usually para-
meterized as a function of wind speed, and (2) specification of the
CO2 concentration difference across the MBL. The recent study
by Woolf et al.20 contains a detailed treatment of the uncertainties
due to the gas transfer, concluding that a realistic estimate
(approximately, a 90% confidence interval) is ±10% when
applying this to global data.

The second source of uncertainty, due to the concentration
difference, is dominated by that introduced by the interpolation
in time and location of surface ocean CO2. This is relatively well
constrained in the more densely observed regions such as the
North and Equatorial Atlantic and North and Tropical Pacific.
However, in more remote regions such as the Southern, South
Pacific, and Indian Oceans, the observational coverage is patchier
in space and time and often seasonally biased, with few winter
measurements (see Supplementary Fig. 3). New sensors and
designs of autonomous floats, as now being deployed in the
Southern Ocean21, show promise to solve the problem of
adequately observing surface CO2 in remote regions22, but for
the gap-prone historical data, the interpolation method used can
have a substantial influence on the results in these data-poor
regions.
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Fig. 1 Effect of near-surface temperature corrections. Global air–sea flux

calculated by interpolating SOCAT gridded data using a neural network

technique8, followed by the gas exchange equation applied to the ocean

mass boundary layer. The net flux into the ocean is shown as negative,

following convention. The uncorrected curve uses the SOCAT fCO2 at

inlet temperature as usually done. Correction of the data to a satellite-

derived subskin temperature is shown, and the additional change in flux due

to a thermal skin assumed to be cooler and saltier than the subskin by 0.17

K15 and 0.1 salinity units11. Excludes the Arctic and some regional seas—

ocean regions included are shown in Supplementary Fig. 2.
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To evaluate the uncertainty in flux estimates introduced by the
gap-filling procedure, we used three methods for interpolating in
space and time, each applied to the global data divided according
to three different spatial clustering schemes, for a total of nine
mappings. The interpolation methods were as follows: (1) a time
series (TS) of fCO2sw data, constructed by a least squares fit to all
monthly averaged fCO2 values within the defined region. The
model fitted was a seasonal cycle with three harmonics super-
imposed on a linear trend; (2) simple multilinear regression
(MLR) of the fCO2 data on latitude, longitude, and four variables
for which continuous comprehensive mappings are available,
these being sea-surface temperature (SST), salinity (SSS), mixed
layer depth (MLD), and atmospheric CO2 mixing ratio (XCO2);
(3) the feed-forward neural network method of Landschützer
et al.8,18 (FFN), which also seeks a regression on these four
variables. The spatial clustering schemes applied to each of the
techniques (shown in Supplementary Fig. 1) were as follows: (a)
division into 14 regions along latitude–longitude lines; (b)
division into the 17 biogeochemical divisions suggested by Fay
and Mckinley23, and (c) division into 16 biomes using a self-
organizing map technique employed by Landschützer et al.8.

Where the data are adequately distributed over space and time,
the use of multiple mapping techniques and different clustering
schemes to estimate uncertainty gives similar results to formal
geostatistical techniques, such as kriging7,20. However, in regions
of very sparse and uneven coverage, statistically based techniques
can underestimate uncertainties because of the assumption that
the available data are representative of the true data population
over a region, which may not be the case if whole regions or
seasons are poorly sampled. In this instance, different mapping
techniques can give substantially different results. Altering the
clustering of the data by changing the shape of the geographical
divisions can also have a major effect, because unsampled areas
are assumed to have the same statistical properties as the sampled
regions with which they are grouped.

For each combined mapping-and-clustering technique, Table 1
shows the spread and mean of the residuals (the global set of
predicted values minus observed values). The neural network
FFN mapping method provides a much smaller spread of
residuals, giving better agreement with data at a given location
and time than do the other methods. This is to be expected given
its much greater flexibility, with typically several hundred
parameters being adjusted to provide a non-linear fit to each
cluster, compared to only 8 and 11 fitted parameters for
respectively the TS and MLR methods. Figure 2 shows estimates
of global and hemispheric ocean-atmosphere CO2 flux over the
period 1992–2018 by the nine interpolations (using a single
parameterization of the gas transfer velocity). Despite the
difference in the quality of the fits to the individual data as

evidenced by Table 1, convergent results are obtained by all the
calculations for the Northern Hemisphere over the whole period,
and there is a good agreement in the Southern Hemisphere for
much of the period after 2000. The average of all the methods is
shown, with one and two standard deviations of the nine separate

Table 1 Statistics of the residuals of the predictions to data.

Method Areal division Interpolation method Half-width of Gaussian σ (μatm) Bias b (μatm)

1 Latitudinal regions TS 23.6 1.37

2 Fay and McKinley biomes TS 21.0 1.69

3 Landschützer SOM TS 15.7 0.82

4 Latitudinal regions MLR 21.8 1.86

5 Fay and McKinley biomes MLR 18.0 0.72

6 Landschützer SOM MLR 14.8 0.95

7 Latitudinal regions FFN 11.3 0.37

8 Fay and McKinley biomes FFN 10.3 0.27

9 Landschützer SOM FFN 12.2 0.60

Residuals for the nine combinations (three interpolation methods each applied to three areal divisions or clustering, as shown in Supplementary Fig. 1). Gaussian curvesG xð Þ ¼ Aexp x� bð Þ2

2σ2

n o

were fitted to

the histograms of residuals x, where A, b, and σ are parameters determined by non-linear least squares. The bias b and the width σ for all the fits are given.
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Fig. 2 Global ocean-atmosphere CO2 fluxes 1992–2018. Fluxes are

integrated a globally, and b for northern and southern hemispheres,

calculated using a standard gas exchange formulation (see Methods

section) with the nine interpolation schemes for fCO2 described in the text

shown as colored lines: TS red, MLR green, FFN blue. The line styles

indicate the spatial clustering schemes used (illustrated in Supplementary

Fig. 1): solid, Landschützer SOM; dashed, latitudinal regions; dotted, Fay and

Mckinley biomes. The standard method, SOM-FFN as described in

Landschützer et al.8, is shown as a thicker blue line. Shading indicates one-

and two-standard deviations of the nine methods around the mean (thick

black line).
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estimates. A few regions are excluded (see Supplementary Fig. 2)
to ensure compatibility in the comparison between methods, but
these affect the results by <0.05 PgC yr−1.

The wider uncertainties indicated pre-2000 arise from the
divergence of fits in the Southern Hemisphere. The majority of
studies using the historical surface CO2 data find that the Southern
Ocean sink was static or weakening during the 1990s and
strengthened considerably after 200024,25. The simpler, linearly
constrained interpolation methods show something of this change,
but it is less pronounced than in the more flexible FFN calculations.
However, we retain the wider spread pre-2000 as a realistic estimate
of uncertainty then, given the paucity of the data and its uneven,
and decadally changing, spatial distribution in the Southern Ocean
and South Pacific (see Supplementary Fig. 3, which shows the
distribution of the data in the Southern Hemisphere).

New CO2 surface fluxes compared to interior observations. We
now compare our estimates for global CO2 flux into the ocean,
with a recent independent synthesis of observations estimating
the increase in oceanic anthropogenic carbon from interior repeat
hydrography measurements, over the period 1994–200717. This
comparison requires accounting for pre-industrial ocean-atmo-
sphere fluxes: the ocean was pre-industrially a source of CO2 to
the atmosphere, with a net dissolved river flux usually estimated
as 0.45–0.6 PgC yr−1 flowing down rivers to the ocean, from
ocean to atmosphere and from the atmosphere to the land
surface26,27. We also have to add a flux for the Arctic Ocean, not
included in our study but estimated at 0.12 PgC yr−1 28. In Fig. 3,
we show our standard case estimate of the anthropogenic sink,
with the ocean-atmosphere flux increased by 0.57 PgC yr−1, (0.12
PgC yr−1 Arctic plus a pre-industrial flux of 0.45 PgC yr−1), and
with the uncertainty bands now widened to include the Woolf

et al. estimate for gas transfer velocity uncertainty20. This is
compared to the recent estimate for the accumulation of
anthropogenic carbon from interior ocean observations, over the
period 1994–200717. Two previously published estimates of the
sink calculated from the surface data are also shown for
comparison8,10. In contrast to these earlier estimates, our revised
surface flux is consistent with the interior anthropogenic accu-
mulation and most previous estimates of the pre-industrial
ocean-to-atmosphere source.

In Table 2, we show uptake integrated over the 13 years from
mid-1994 to mid-2007 in the northern and southern Pacific, Indian
and Atlantic basins, and compare these with the inventory increases
as given by Gruber et al.17. The inventory increase in each basin will
not equal the flux through the surface of that basin, both because of
the pre-industrial flux correction described above, and because
subsurface ocean transport redistributes the CO2 away from the
uptake regions. The comparison is revealing, however, because we
should not expect a very large change in inter-hemispheric CO2

exchange in the ocean during this time. We expect some
correspondence between these figures, therefore, at least at the
hemispheric level. The global flux through the ocean surface is less
than the inventory change by ~7 PgC over this period, an amount
consistent with the expected pre-industrial ocean source. However,
the Northern Hemisphere uptake, which is comparatively well
constrained by the surface data, quite closely matches the inventory
increase in the Northern Hemisphere. The majority of the
difference between surface uptake and inventory increase is in
the Southern Hemisphere, suggesting that excess river carbon that
the natural cycle puts into the open ocean was pre-industrially
compensated by net outgassing almost entirely in that hemisphere,
and that its magnitude is ~0.5 PgC yr−1. A recent proposed upward
revision of this flux to 0.78 Pg Cyr−1 29 was motivated in part by the
clear mismatch between anthropogenic carbon uptake and the
earlier, lower estimates of surface uptake, but our analysis is more
consistent with the lower values of previous studies, which come
from ocean inverse models26 and inventories of global dissolved
riverine carbon27,30. We note also that the uncertainty on the South
Pacific flux (including the Pacific sector of the Southern Ocean) is
particularly large, reflecting the paucity of data there (Supplemen-
tary Fig. 3). However, over the entire Pacific basin, and globally,
uncertainties are smaller, because there is inter-basin compensation
with some mapping estimates that give high values in the southern
Pacific giving lower values in the tropical and northern regions.

The agreement between the observational estimates of CO2

uptake by the oceans provides an important constraint on
calculations of the global carbon budget and its rate of change.
Supplementary Table 1 gives more detail on global fluxes
calculated over decadal periods compared to those of earlier
estimates, both of the net contemporary ocean-atmosphere flux
and the ocean uptake of anthropogenic carbon. As indicated in
Fig. 3, our best estimate of 2.5 ± 0.4 Pg yr−1 for anthropogenic
carbon uptake during 1994–2007 agrees closely with that of
Gruber et al. and has a similar uncertainty. This sink is stronger
than most recent estimates and is ~0.5 PgCyr−1 larger than the
central estimate of the Global Carbon Project31 for that period for
example. That estimate is the average of a number of models,
which however span a wide range, with a 2-σ uncertainty of ±0.6
PgC yr−1 for that period. The discrepancy between our value and
that of the Global Carbon Project increases with time and
approaches 1 PgC yr−1 after 2010.

We conclude that, when correctly applied, two data-led
independent estimates for the ocean sink for CO2, based
respectively on observations of the surface flux and the interior
inventory of CO2, agree within relatively well-constrained
uncertainties. The sink so determined is larger than most ocean
carbon models predict, and suggests that some revision of the
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Fig. 3 Observation-based estimates of anthropogenic CO2 uptake. The

black line is our standard case global ocean-atmosphere flux increased by

−0.57 PgC Cyr−1 to account for pre-industrial and Arctic fluxes as

described in the text. The shading gives one and two standard deviations of

estimates around this value, including the uncertainty in gas transfer rates

as assessed by Woolf et al.20. Red horizontal line and uncertainty is a

recent estimate of the global inventory increase of anthropogenic carbon in

the ocean between 1994 and 200717. Dashed lines: two previous estimates

of global uptake based on surface data: blue dashed line from Landschützer

et al.8, red dashed line from Rödenbeck et al.10, both as quoted in Le Quéré

et al.31. Both are increased by the pre-industrial flux correction and

Landschützer et al.8 also increased by Arctic correction.
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global carbon budget is required. Due weight should be given to
the constraints that ocean interior and surface observations
impose when calculating global carbon budgets, and near-surface
temperature deviations need to be taken into account when using
surface observations to calculate fluxes. Continued systematic
observation of the surface and interior ocean carbon system
remains essential to tracking how the global carbon cycle is
changing in response to human activities.

Methods
Adjustments to surface CO2 data. The individual voyage surface CO2 data
(v2019) were downloaded from the SOCAT website (www.socat.info1,2). We used
only the data from 1992 onward, since the number of observations begins to
increase substantially at around that time2. We used the surface fCO2 product,
which is closely equivalent to the partial pressure of CO2 in equilibrium with
seawater but is the more correct variable for concentration and flux calculations32.

The SOCAT database records fCO2 of surface seawater measured in an
equilibrator, temperature-corrected to an inlet temperature using an empirical
equation33. As described in Goddijn-Murphy et al.12, the SOCAT inlet temperature is
not the same as the temperature measured at the base of the MBL, the topmost ~100
µm of the ocean, which is where the water-side concentration must be specified for
the purposes of air–sea flux calculations11. We used the “FluxEngine” programs
(http://www.oceanflux-ghg.org/Products/FluxEngine13,34) to correct the SOCAT data
to a standard subskin temperature derived from satellite optimally interpolated sea-
surface temperature data, implementing the method described by Goddijn-Murphy
et al.12, and assuming an isochemical temperature correction. A new “cruise-
weighted” gridded product following the SOCAT methodology was then created
using the corrected cruise data3. This produces a 1° longitude and latitude by one-
monthly time resolution data set3. This gridded product is publically available19.

Interpolation techniques for the global fCO2. These have typically involved two
steps. First the full data set is divided into clusters (using location, time, or some
other criteria), then an interpolation procedure is applied to each of these clusters.
We used three different schemes for the initial division, and three methods of
interpolating the fCO2 data within those clusters. The divisions used are described
in the main text and illustrated in Supplementary Fig. 1. Permanently ice-covered
regions, the Arctic ocean, coastal regions, and other areas unclassified in the Fay
and Mckinley description of biomes23 were excluded from all techniques when
comparing the output of different methods, (e.g., Fig. 2 and interpolation uncer-
tainty estimates) to ensure a like-for-like comparison. Supplementary Figure 2
shows the regions excluded and included when making the comparisons and when
calculating a best estimate using our standard method, e.g., for Fig. 3 and Table 2.

The three classes of method used to interpolate the fCO2 data within these
clusters were as follows:

(1) TS curves fitted to the mean of all data in the region binned into monthly
time steps, using least squares. The curves were the sums of a linear trend
and three sinusoidal cycles having frequencies of one, two, and three cycles
per year. Each fit therefore had eight variable parameters: amplitude and
phase for each sine curve, and slope and intercept for the inter-annual trend.

(2) MLR of surface fCO2 with the co-located SST, SSS, MLD, and XCO2,
latitude and longitude. The first four of these were each decomposed into
two components: a climatology calculated as the averages over each month
of the year for the period 1992–2018, and an anomaly from that climatology.
In total, there were 10 variables therefore, which with a constant, yielded 11
parameters to be fitted by least squares. Table S1 in the supplementary
information details the sources of these “driver” variables that we used.
Surface chlorophyll derived from satellite ocean color is frequently used as a
predictor variable for fCO2 interpolations25, but we preferred not to use this
as it is not available before 1997, or in polar regions in the winter.

(3) The FFN network method as described by Landschützer et al.8, imple-
mented with the MATLAB neural net toolbox. The independent variables

were again SST, SSS, MLD, and XCO2, decomposed as for the MLR into a
seasonal climatology and anomalies from that climatology.

Calculation of air–sea fluxes. The gas exchange equation was used to calculate
FCO2, the sea-to-air flux of CO2, (positive from sea to air):

FCO2
¼ k: Csw � C0ð Þ;

where k is the appropriate gas transfer velocity, Csw is the concentration of dis-
solved CO2 at the base of the MBL and C′ is the concentration at the interface with
the atmosphere. C′ was calculated as αskin.fCO2atm, the product of the solubility of
CO2 at the surface skin temperature and salinity (αskin) and fCO2atm, the fugacity of
atmospheric CO2. The gradient from the base to the top of the thermal skin was
assumed to be 0.1 salinity units11 and −0.17 K15. Csw was calculated as αsubskin.f-
CO2subskin, the product of the seawater fCO2 corrected to the subskin temperature
derived as described above, and the solubility at the subskin temperature and
salinity. This treatment follows that by Woolf et al.11, implementing their “rapid
transport” approximation for carbonate equilibration in the surface layers. In this
approximation, the transport from the interior across the thermal boundary to the
MBL is assumed to occur more rapidly than the time scale for reaction of CO2 with
H2O molecules, so that the dissolved CO2 concentration does not change. This is a
conservative assumption, in the sense that it gives a smaller adjustment due to skin
effects than if change in the hydration state is assumed.

The gas transfer velocity was parameterized as a function of the wind speed at 10
m (we used the relation of Nightingale et al.35 based on a compilation of dual tracer
experiments, which is one of several evaluated by Woolf et al.20 that give similar
results to more recent parameterizations using the global 14C budget36,37). The wind
used was the CCMP product at 0.25o and 6-h resolution38, with gas exchange rates
subsequently averaged monthly over 1 × 1 degree tiles. Atmospheric fugacity was
calculated from XCO2, the atmospheric mixing ratio of CO2, using the method
outlined for the CO2—air mixture by Weiss32, and assuming air at 100% humidity at
the sea surface39. The sources of data for winds, surface temperature, salinity,
atmospheric pressure, ice cover, and XCO2 used are given in Supplementary Table 1.
Ice cover was assumed to suppress air–sea exchange entirely, so that the calculated
flux was reduced by a factor (1− i) where i was the fractional ice cover.

Data availability
The gridded data set of sea surface fCO2 described in the Methods section above, based

on SOCAT v2019 and adjusted to satellite-derived subskin surface temperature, is

available at https://doi.org/10.1594/PANGAEA.905316. Ocean-atmosphere fluxes

interpolated to monthly and 1 × 1 degree spatial resolution, and used to construct figures

and tables in this publication, are available on request from the corresponding author.

The mean annual fluxes used to draw the line graphs of Figs. 1–3 are included in the

Supplementary Data file linked to this publication.
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