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Revised Reference Curves for Bone Mineral Content

and Areal Bone Mineral Density According to Age and

Sex for Black and Non-Black Children: Results of the

Bone Mineral Density in Childhood Study

Babette S. Zemel, Heidi J. Kalkwarf, Vicente Gilsanz, Joan M. Lappe,
Sharon Oberfield, John A. Shepherd, Margaret M. Frederick, Xiangke Huang,
Ming Lu, Soroosh Mahboubi, Thomas Hangartner, and Karen K. Winer

Context: Deficits in bone acquisition during growth may increase fracture risk. Assessment of bone

health during childhood requires appropriate reference values relative to age, sex, and population

ancestry to identify bone deficits.

Objective: The objective of this study was to provide revised and extended reference curves for

bone mineral content (BMC) and areal bone mineral density (aBMD) in children.

Design: The Bone Mineral Density in Childhood Study was a multicenter longitudinal study with

annual assessments for up to 7 yr.

Setting: The study was conducted at five clinical centers in the United States.

Participants: Two thousand fourteen healthy children (992 males, 22% African-Americans) aged

5–23 yr participated in the study.

Intervention: There were no interventions.

Main Outcome Measures: Reference percentiles for BMC and aBMD of the total body, lumbar

spine, hip, and forearm were obtained using dual-energy x-ray absorptiometry for Black and

non-Black children. Adjustment factors for height status were also calculated.

Results: Extended reference curves for BMC and aBMD of the total body, total body less head, lumbar

spine, total hip, femoral neck, and forearm for ages 5–20 yr were constructed relative to sex and age

for Black and non-Black children. Curves are similar to those previously published for 7–17 year olds.

BMC and aBMD values were greater for Black vs. non-Black children at all measurement sites.

Conclusions: We provide here dual-energy x-ray absorptiometry reference data on a well-charac-

terized cohort of 2012 children and adolescents. These reference curves provide the most robust

reference values for the assessment and monitoring of bone health in children and adolescents in

the literature to date. (J Clin Endocrinol Metab 96: 3160–3169, 2011)

Bone tissue is responsive to metabolic, genetic, and be-

havioral factors. A variety of chronic health condi-

tions are known to affect bone mineral accretion in chil-

dren and may also result in poor growth and delayed

maturation (1). Assessment of bone health in pediatric

patients is important to identify children who may be at

risk of poor mineral accretion or future risk of osteopo-

rosis due to low bone mineral density (BMD).

Dual-energy x-ray absorptiometry (DXA) is the most

widely used method for assessing BMD and is a good sur-

rogate measure of bone health. It is ideal for pediatric use

because of its wide availability, rapid scan times, and low
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radiation exposure. In healthy, normally growing chil-

dren, DXA measures of bone mineral content (BMC) and

areal BMD (aBMD) increase as a function of age and sex-

ual maturation. Therefore, accurate assessment of bone

health in children depends on robust reference data to

determine whether an individual child’s BMC or aBMD is

comparable with same-age and -sex peers.

Total body and lumbar spine scans are recommended

for clinical assessment of bone health in children (2). Total

body less head (TBLH) BMC or aBMD is preferred due to

the changes in relative contribution of the head to total

BMC and aBMD during growth and the importance of the

postcranial skeleton in fracture risk assessment. However,

there may be special circumstances for which the forearm

or proximal femur may be the preferred scan site. DXA

outcomes are influenced by bone size, so adjustment for

body size is recommended for children, particularly those

whose growth in height is at the extremes of the normal

growth continuum (2, 3).

Previously we reported reference curves for BMC and

aBMD of the total body, lumbar spine, forearm, and prox-

imal femur for children aged 7–17 yr from the Bone Min-

eral Density in Childhood Study (BMDCS), a large na-

tional cohort of children for whom standardized DXA

measurements were obtained (4). We also reported an ad-

justment procedure to account for tall or short stature

relative to age (5). These previous reports were based on

initial study data. We now present the complete data col-

lected during four additional annual evaluations with ad-

ditional recruitment of younger and older participants to

produce enhanced reference curves for children aged 5–20

yr, and corresponding height adjustment equations.

Subjects and Methods

Study population

Children were recruited from five clinical centers in the United

States: Children’s Hospital of Los Angeles (Los Angeles, CA), Cin-

cinnati Children’s Hospital Medical Center (Cincinnati, OH),

Creighton University (Omaha, NE), Children’s Hospital of Phila-

delphia (Philadelphia, PA), and Columbia University (New York,

NY). Initial recruitment occurred from July 2002 to November

2003 for girls aged 6–15 yr and boys aged 6–16 yr, with annual

visits for 6 yr (up to seven visits). A second recruitment wave oc-

curred between 2006 and 2007 to increase the number of younger

(5 yr) and older (19 yr) participants to extend the reference percen-

tiles fromages5to20yr.Thesesubjectswereevaluatedannually for

2 yr (up to three visits).

As described previously (4), the criteria for study entry were

designed to acquire a multiethnic sample of healthy, normally

developing children. These criteria included anticipated resi-

dence in the United States for 3 yr or longer; school placement

within 1 yr of expected for age; term birth (�37 wk gestation or

longer); birth weight greater than 2.3 kg; and no evidence of

precocious or delayed puberty. For females, normal puberty was

defined as onset of breast development at 8–13 yr, onset of men-

ses between 10 and 16 yr, and onset of pubic hair present at 7 y

or older in African-American and Hispanic girls and 8 yr or older

in non-Hispanic white or other ethnicities. For males, the criteria

were testes size 4 ml or greater between 9 and 14 yr and pubic hair

development at 9 yr or older. Children were excluded for two or

more fractures if age 10 yr or younger, or three or more fractures

if age older than 10 yr; current or previous medication use or

medical condition known to affect bone health; extended bed

rest; height, weight, or body mass index (BMI) outside the range

of the third to the 97th percentile; indwelling hardware; or

scoliosis.

Written informed consent was obtained from the study par-

ticipants aged 18 yr or older. For participants younger than 18

yr of age, consent was obtained from the parent or guardian and

assent was obtained from participants. The protocol was ap-

proved by the institutional review boards of each clinical center.

Bone densitometry

DXA scans were obtained using Hologic, Inc. (Bedford, MA)

bone densitometers (QDR4500A, QDR4500W, Delphi A, and

Apex models). One densitometer was used at each clinical center.

The acquisition software versions varied slightly from version

11.1 to 12.7 (Apex 2.1).

Scans were obtained following manufacturer guidelines for

patient positioning. Whole-body, posterioanterior lumbar spine

(L1-L4, fast array), nondominant forearm, and left proximal

femur (fast array) scans were acquired for each study participant.

Cross-calibration of DXA devices and longitudinal calibration

stability were monitored as previously described (4). All scans

wereanalyzedcentrallybytheDXACoreLaboratory(Universityof

California, San Francisco, San Francisco, CA) using Hologic soft-

ware version Discovery 12.3 for baseline scans. Hologic’s Apex 2.1

software was used for follow-up scan analysis using the compare

feature. By design, there are no differences in the Discovery and

APEX software for scan analysis in subjects younger than 20 yr old.

However, the use of the compare feature during analysis forced

APEX software to use the same analysis as used for the baseline

regardlessofage.An in-studyvalidationdetermined that therewere

no systematic differences between the software versions for scan

analysis over the course of the study when these procedures were

followed (data not shown).
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Descriptive measures
The study methods were identical to those previously de-

scribed (4). Weight was measured on a digital scale, and height
was measured using a stadiometer. Participants were dressed in
examination gowns or light-weight clothing with shoes removed
during the measurement. Height, weight, and BMI Z-scores were
calculated using the 2000 growth charts from the Centers for
Disease Control and Prevention (6).

Information on population of origin (African-American,
Asian, etc.) and ethnicity (Hispanic/Latino vs. non-Hispanic/La-
tino) was elicited by questionnaire using the National Institutes
of Health and U.S. Bureau of the Census classifications.

Sexual maturity stage was assessed by an experienced physi-
cian or nurse skilled in pediatric endocrinology. For this report,
puberty stage was based on breast development in girls or tes-
ticular volume by orchidometer in boys as determined using stan-

dard clinical endocrine practice and according to the criteria of
Tanner (7, 8).

Statistical analysis
aBMD and areal BMC reference curves were created as pre-

viously described (4). In brief, the power for the Box-Cox trans-
formation, median, SD (LMS) approach (9) was used to generate
BMC and aBMD curves relative to age using LMS Chartmaker
version 1.16 (10). Sex-specific curves were constructed for Black
and non-Black groups for each DXA measurement site. The LMS
analysis generates age-specific values for the median (M), SD (S),
and power for the Box-Cox transformation (L), which are used
to construct centile curves using equation 1 as follows:

Equation 1: BMC or aBMD centile � M (1 � LSZ)1/L

where Z is the Z-score that corresponds to a given percentile. For
an individual DXA measurement (X), the Z-score can be calcu-

TABLE 1. Age- and sex-specific reference percentiles for total body less head bone mineral content for Black
children

TBLH BMC (g)

Age

(yr)

Black females Black males

L S

M
HZ prediction

equation L S

M
HZ prediction

equation3rd 10th 50th 90th 97th 3rd 10th 50th 90th 97th

5 �0.051 0.154 324 355 432 527 579 �0.042 � (HZ � 0.911) 1.209 0.155 309 353 443 529 569 �0.188 � (HZ � 0.733)

6 �0.051 0.154 395 432 526 641 704 0.094 � (HZ � 0.524) 1.032 0.154 380 430 536 642 691 �0.165 � (HZ � 0.830)

7 �0.051 0.153 469 514 625 761 835 0.267 � (HZ � 0.511) 0.852 0.153 458 514 637 763 824 �0.122 � (HZ � 0.689)

8 �0.051 0.153 532 583 708 863 947 0.158 � (HZ � 0.525) 0.686 0.153 534 597 736 884 956 �0.050 � (HZ � 0.692)

9 �0.051 0.154 596 653 794 967 1062 0.053 � (HZ � 0.495) 0.539 0.154 605 673 829 1000 1085 �0.090 � (HZ � 0.607)

10 �0.051 0.155 678 743 905 1104 1213 �0.229 � (HZ � 0.596) 0.395 0.158 677 753 929 1128 1230 �0.186 � (HZ � 0.727)

11 �0.051 0.156 796 873 1065 1302 1432 �0.384 � (HZ � 0.832) 0.241 0.165 757 842 1045 1283 1409 �0.318 � (HZ � 0.729)

12 �0.051 0.155 942 1033 1260 1539 1691 �0.356 � (HZ � 0.910) 0.069 0.176 857 954 1197 1497 1660 �0.411 � (HZ � 0.710)

13 �0.051 0.151 1085 1187 1439 1749 1917 �0.192 � (HZ � 0.873) �0.090 0.188 996 1112 1411 1800 2022 �0.557 � (HZ � 0.877)

14 �0.051 0.146 1203 1313 1582 1910 2088 �0.079 � (HZ � 0.794) �0.177 0.191 1184 1320 1677 2152 2429 �0.402 � (HZ � 0.742)

15 �0.051 0.143 1286 1400 1679 2016 2199 �0.108 � (HZ � 0.797) �0.192 0.180 1381 1531 1918 2429 2724 �0.329 � (HZ � 0.786)

16 �0.051 0.140 1335 1451 1735 2077 2262 �0.143 � (HZ � 0.817) �0.177 0.164 1568 1723 2118 2625 2911 �0.276 � (HZ � 0.730)

17 �0.051 0.139 1360 1477 1763 2108 2294 �0.258 � (HZ � 0.939) �0.158 0.150 1717 1873 2264 2752 3023 �0.283 � (HZ � 0.754)

18 �0.051 0.138 1373 1491 1778 2124 2311 �0.365 � (HZ � 0.794) �0.145 0.141 1815 1971 2355 2827 3086 �0.204 � (HZ � 0.796)

19 �0.051 0.138 1385 1503 1791 2139 2325 �0.331 � (HZ � 0.827) �0.140 0.137 1855 2010 2390 2856 3109 �0.291 � (HZ � 0.946)

20 �0.051 0.137 1398 1517 1807 2155 2342 �0.417 � (HZ � 0.938) �0.139 0.136 1866 2020 2400 2863 3115 �0.108 � (HZ � 0.881)

L, M, and S values to calculate Z-scores and HZ prediction equations to calculate height adjusted Z-scores are also shown. This measure excludes

the BMC of the head from the total body measurement. HZ, Ht-Z.

TABLE 2. Age- and sex-specific reference percentiles for total body less head bone mineral content for non-Black
children

TBLH BMC (g)

Age

(yr)

Non-Black females Non-Black males

L S

M
HZ prediction

equation L S

M
HZ prediction

equation3rd 10th 50th 90th 97th 3rd 10th 50th 90th 97th

5 �0.019 0.186 258 288 365 463 518 �0.051 � (HZ � 0.958) �0.058 0.160 268 295 362 445 490 0.207 � (HZ � 0.941)

6 �0.019 0.166 344 380 470 581 643 0.134 � (HZ � 0.755) �0.058 0.160 347 382 468 575 634 0.244 � (HZ � 0.546)

7 �0.019 0.152 422 463 562 683 749 0.181 � (HZ � 0.793) �0.058 0.160 418 459 563 692 763 0.114 � (HZ � 0.716)

8 �0.019 0.146 483 527 635 766 837 0.182 � (HZ � 0.827) �0.058 0.160 479 527 646 794 876 0.062 � (HZ � 0.775)

9 �0.019 0.146 537 586 706 851 929 0.127 � (HZ � 0.742) �0.058 0.160 540 594 728 895 986 0.069 � (HZ � 0.756)

10 �0.019 0.152 598 656 797 968 1062 �0.024 � (HZ � 0.769) �0.058 0.160 596 656 804 988 1089 �0.002 � (HZ � 0.823)

11 �0.019 0.169 674 745 926 1150 1274 �0.125 � (HZ � 0.765) �0.058 0.160 664 730 895 1100 1213 �0.032 � (HZ � 0.885)

12 �0.019 0.185 777 868 1099 1393 1558 �0.103 � (HZ � 0.757) �0.058 0.160 762 838 1028 1263 1393 �0.154 � (HZ � 0.961)

13 �0.019 0.182 914 1019 1286 1624 1812 �0.090 � (HZ � 0.740) �0.058 0.160 898 988 1211 1489 1642 �0.220 � (HZ � 1.022)

14 �0.019 0.165 1049 1158 1431 1769 1954 �0.125 � (HZ � 0.693) �0.058 0.160 1079 1186 1454 1788 1971 �0.219 � (HZ � 1.041)

15 �0.019 0.151 1149 1258 1526 1852 2028 �0.165 � (HZ � 0.701) �0.058 0.160 1276 1403 1720 2114 2331 �0.201 � (HZ � 0.903)

16 �0.019 0.142 1212 1320 1582 1897 2067 �0.201 � (HZ � 0.753) �0.058 0.160 1427 1568 1923 2364 2606 �0.185 � (HZ � 0.792)

17 �0.019 0.137 1247 1354 1612 1920 2085 �0.235 � (HZ � 0.758) �0.058 0.160 1524 1676 2055 2525 2785 �0.164 � (HZ � 0.751)

18 �0.019 0.134 1263 1369 1625 1930 2093 �0.226 � (HZ � 0.785) �0.058 0.160 1577 1734 2127 2614 2882 �0.195 � (HZ � 0.741)

19 �0.019 0.134 1267 1372 1628 1932 2094 �0.235 � (HZ � 0.829) �0.058 0.160 1605 1764 2163 2659 2932 �0.190 � (HZ � 0.739)

20 �0.019 0.133 1268 1374 1629 1933 2095 �0.218 � (HZ � 0.774) �0.058 0.160 1624 1785 2189 2690 2967 �0.195 � (HZ � 0.727)

L, M, and S values to calculate Z-scores and HZ prediction equations to calculate height adjusted Z-scores are also shown. This measure excludes

the BMC of the head from the total body measurement. HZ, Ht-Z.
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lated using the age-specific L, M, and S parameters and equation
2 as follows:

Equation 2: Z � �(X/M)L) � 1�/LS

The fit of the centile curves was assessed by visual inspection
as recommended in the software guidelines (10) on obtaining
optimal L, M, and S parameter values and by comparison of the
empirical centiles with the LMS-generated curves. The number
of study participants over the age of 20 yr was sparse, so the age
of all subjects with age 20 yr or older was recoded as 20 yr.
Summary statistics were performed using Stata Version 10 soft-
ware (StataCorp, College Station, TX) using the XTSUM pro-
cedure to account for the multiple observations per subject.

To confirm the need for separate curves for Black and non-
Black groups, the non-Black reference curves were used to cal-
culate Z-scores for subjects in the Black cohort. Mixed-effects
regression analysis, accounting for multiple observations per
subject, was used to examine these Z-scores. Age and sex trends
were evaluated to determine whether separate curves for Black

and non-Black groups were needed throughout childhood and

adolescence.

We previously demonstrated an adjustment method for DXA

outcome measures among children of short or tall stature using
height Z-score (Ht-Z). Ht-Z, based on U.S. growth curves, can be
calculated using the Epi Info Nutrition Calculator, a free software
package available for download from the U.S. Centers for Disease
Control and Prevention web site (http://www.cdc.gov/epiinfo/).
The adjustment method requires three steps: 1) calculation of the
BMC/aBMD for age Z-score (equation 2 above) and Ht-Z based
on the U.S. growth curves; 2) calculation of a predicted BMC/
aBMD Z-score based on age and Ht-Z (equation 3 below); and
3) calculation of the adjusted BMC/aBMD Z-score using the
predicted BMC/aBMD Z-score and the BMC/aBMD for age Z-
score (equation 4). Adjustment equations based on the expanded
sample size and age range were calculated using generalized es-
timating equations with the population average option to deter-
mine relationships between Ht-Z and BMC/aBMD Z-scores.
Separate equations were constructed for each bone outcome ac-

TABLE 3. Age- and sex-specific reference percentiles for lumbar spine aBMD for Black children

Lumbar spine aBMD

Age,

y

Black females Black males

L S

M
HZ prediction

equation L S

M
HZ prediction

equation3rd 10th 50th 90th 97th 3rd 10th 50th 90th 97th

5 0.827 0.131 0.410 0.451 0.541 0.632 0.676 �0.459 � (HZ � 0.301) 0.612 0.126 0.386 0.420 0.498 0.581 0.621 �0.403 � (HZ � 0.082)

6 0.802 0.130 0.424 0.465 0.557 0.651 0.696 �0.319 � (HZ � 0.460) 0.612 0.126 0.407 0.444 0.526 0.613 0.656 �0.297 � (HZ � 0.214)

7 0.773 0.130 0.438 0.481 0.575 0.672 0.719 �0.096 � (HZ � 0.437) 0.612 0.126 0.428 0.467 0.553 0.645 0.690 �0.317 � (HZ � 0.267)

8 0.741 0.129 0.454 0.498 0.594 0.694 0.742 0.018 � (HZ � 0.449) 0.612 0.126 0.447 0.487 0.577 0.673 0.720 �0.251 � (HZ � 0.291)

9 0.696 0.128 0.477 0.521 0.620 0.725 0.775 �0.044 � (HZ � 0.422) 0.612 0.126 0.465 0.506 0.600 0.700 0.748 �0.123 � (HZ � 0.337)

10 0.625 0.127 0.514 0.561 0.665 0.776 0.830 �0.184 � (HZ � 0.441) 0.612 0.126 0.484 0.528 0.625 0.729 0.780 �0.147 � (HZ � 0.334)

11 0.526 0.124 0.573 0.623 0.736 0.858 0.918 �0.398 � (HZ � 0.661) 0.612 0.126 0.509 0.555 0.657 0.766 0.820 �0.232 � (HZ � 0.338)

12 0.409 0.122 0.648 0.702 0.825 0.960 1.027 �0.413 � (HZ � 0.775) 0.612 0.126 0.545 0.594 0.703 0.820 0.877 �0.277 � (HZ � 0.397)

13 0.295 0.119 0.718 0.775 0.906 1.052 1.126 �0.202 � (HZ � 0.744) 0.612 0.126 0.596 0.650 0.770 0.897 0.960 �0.416 � (HZ � 0.598)

14 0.198 0.117 0.775 0.834 0.971 1.126 1.205 �0.088 � (HZ � 0.674) 0.612 0.126 0.658 0.717 0.850 0.991 1.060 �0.313 � (HZ � 0.604)

15 0.124 0.116 0.817 0.877 1.019 1.179 1.262 �0.040 � (HZ � 0.618) 0.612 0.126 0.719 0.784 0.928 1.083 1.158 �0.179 � (HZ � 0.588)

16 0.072 0.115 0.847 0.908 1.052 1.218 1.303 �0.086 � (HZ � 0.643) 0.612 0.126 0.770 0.840 0.995 1.160 1.241 �0.048 � (HZ � 0.570)

17 0.037 0.114 0.867 0.929 1.075 1.243 1.331 �0.169 � (HZ � 0.669) 0.612 0.126 0.808 0.880 1.043 1.216 1.301 0.043 � (HZ � 0.562)

18 0.016 0.113 0.879 0.942 1.089 1.258 1.347 �0.149 � (HZ � 0.657) 0.612 0.126 0.831 0.906 1.073 1.251 1.339 0.102 � (HZ � 0.564)

19 0.005 0.113 0.886 0.948 1.096 1.267 1.356 �0.114 � (HZ � 0.631) 0.612 0.126 0.845 0.921 1.091 1.272 1.361 0.120 � (HZ � 0.584)

20 �0.003 0.113 0.891 0.953 1.101 1.273 1.362 �0.100 � (HZ � 0.724) 0.612 0.126 0.854 0.931 1.102 1.285 1.375 0.190 � (HZ � 0.604)

L, M, and S values to calculate Z-scores and HZ prediction equations to calculate height adjusted Z-scores are also shown. HZ, Ht-Z.

TABLE 4. Age- and sex-specific reference percentiles for lumbar spine aBMD for non-Black children

Lumbar spine aBMD

Age

(yr)

Non-Black females Non-Black males

L S

M
HZ prediction

equation L S

M
HZ prediction

equation3rd 10th 50th 90th 97th 3rd 10th 50th 90th 97th

5 �0.206 0.115 0.405 0.433 0.501 0.582 0.625 �0.385 � (HZ � 0.430) 0.436 0.121 0.380 0.412 0.483 0.562 0.601 �0.129 � (HZ � 0.396)

6 �0.178 0.117 0.417 0.447 0.518 0.604 0.649 �0.156 � (HZ � 0.427) 0.436 0.121 0.399 0.432 0.507 0.589 0.630 �0.077 � (HZ � 0.411)

7 �0.150 0.120 0.429 0.461 0.536 0.626 0.674 �0.007 � (HZ � 0.473) 0.436 0.121 0.417 0.451 0.530 0.616 0.658 �0.057 � (HZ � 0.455)

8 �0.120 0.122 0.442 0.475 0.555 0.650 0.701 0.041 � (HZ � 0.522) 0.436 0.121 0.434 0.470 0.552 0.641 0.685 �0.037 � (HZ � 0.469)

9 �0.080 0.126 0.457 0.493 0.578 0.680 0.734 0.034 � (HZ � 0.501) 0.436 0.121 0.450 0.488 0.572 0.665 0.711 �0.005 � (HZ � 0.510)

10 �0.022 0.131 0.479 0.518 0.612 0.725 0.785 �0.035 � (HZ � 0.485) 0.436 0.121 0.467 0.506 0.594 0.690 0.737 �0.005 � (HZ � 0.507)

11 0.061 0.139 0.510 0.555 0.664 0.792 0.861 �0.104 � (HZ � 0.542) 0.436 0.121 0.487 0.527 0.619 0.719 0.769 �0.039 � (HZ � 0.524)

12 0.169 0.145 0.560 0.613 0.740 0.888 0.966 �0.053 � (HZ � 0.593) 0.436 0.121 0.516 0.558 0.655 0.761 0.814 �0.100 � (HZ � 0.590)

13 0.286 0.140 0.631 0.690 0.829 0.988 1.069 �0.011 � (HZ � 0.592) 0.436 0.121 0.559 0.605 0.710 0.825 0.882 �0.151 � (HZ � 0.690)

14 0.392 0.128 0.703 0.764 0.904 1.059 1.137 �0.027 � (HZ � 0.539) 0.436 0.121 0.619 0.670 0.787 0.914 0.978 �0.099 � (HZ � 0.747)

15 0.473 0.116 0.757 0.817 0.954 1.101 1.174 �0.036 � (HZ � 0.553) 0.436 0.121 0.687 0.744 0.873 1.014 1.084 �0.071 � (HZ � 0.707)

16 0.527 0.108 0.794 0.853 0.984 1.125 1.195 �0.038 � (HZ � 0.595) 0.436 0.121 0.743 0.804 0.944 1.096 1.172 �0.032 � (HZ � 0.598)

17 0.560 0.103 0.817 0.874 1.003 1.140 1.206 �0.080 � (HZ � 0.589) 0.436 0.121 0.781 0.846 0.993 1.153 1.233 0.022 � (HZ � 0.565)

18 0.579 0.100 0.830 0.887 1.014 1.148 1.213 �0.080 � (HZ � 0.574) 0.436 0.121 0.805 0.872 1.023 1.189 1.271 �0.011 � (HZ � 0.601)

19 0.590 0.099 0.838 0.895 1.020 1.152 1.216 �0.083 � (HZ � 0.515) 0.436 0.121 0.821 0.889 1.043 1.212 1.296 �0.044 � (HZ � 0.617)

20 0.598 0.097 0.844 0.900 1.024 1.155 1.219 �0.091 � (HZ � 0.451) 0.436 0.121 0.833 0.902 1.059 1.230 1.316 �0.071 � (HZ � 0.587)

L, M, and S values to calculate Z-scores and HZ prediction equations to calculate height adjusted Z-scores are also shown. HZ, Ht-Z.
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cording to sex and Black vs. non-Black group. Equations with
low explanatory value (R2 � 0.10) were excluded. The calcula-
tion of HZ � adjusted bone Z-score is accomplished with the
following equations:

Equation 3: predicted bone Z-score � intercept � Ht-Z � �

where the intercept and slope (�) are provided in the tables, and
Ht-Z is calculated using the EpiInfo software; and

Equation 4: Ht-Z-adjusted bone Z-score

� bone Z-score � predicted bone Z-score

where the bone Z-score is the aBMD or BMC Z-score calculated
using equation 2 and the L, M, and S values provided in the
tables. For example, for a non-Black male aged 14.7 yr with a
height of 152.1 cm and a spine BMD of 0.604, his rounded age
would be 15 yr, and the L, M, and S values from Table 4 are
0.436, 0.873, and 0.121, respectively. To calculate the spine
BMD Z-score, using equation 2, the spine BMD Z-score �

[([0.604/0.873]0.436) � 1]/(0.436 � 0.121) � �2.81. His Ht-Z
using the EpiInfo nutrition calculator is �1.95. We then use
equation 3 to calculate his predicted spine BMD Z-score using
the values given in Table 4 for 15 yr old non-Black males:
[�0.071 � (�1.95 � 0.707)] �1.45. Using equation 4, we
calculate his Ht-Z-adjusted spine BMD Z-score: [�2.81 �

(�1.45)] � �1.36.

Results

Study sample

The sample consisted of 2,014 study participants (1022

girls) who completed 10,671 study visits. After study enroll-

ment, 615 exclusion criteria were identified on 214 study

participants as follows: medication use such as chronic ste-

roid (number of observations was 260), anticonvulsants,

oral isotrentinoin, psychiatric drugs; stimulants such as

Ritalin, depoprovera/norplants (number of observa-

tions was 313); pregnancy (number of observations was

34); or serious illness (number of observations was

eight) that might adversely affect bone mineral accrual.

The final number of visits used for the creation of the

reference curves was 10,066. Forty-one percent of sub-

jects contributed seven observations to the final data

set; 65% contributed at least four observations and only

7% had only one observation. The mean age was 13.5 �

4.2 yr. The race and ethnic distribution of the sample

was 48% Caucasian, 24% African-American, 17% His-

panic, and 11% other. In keeping with the previously

published reference curves from this cohort, all refer-

ence curves were based on the catego-

rization of either Black or non-Black

race based on the parent’s report of

the child’s race.

The distribution of observations

across puberty stages were: 27% stage

1, 9% stage 2, 8% stage 3, 11% stage 4,

and 45% in stage 5. Mean height,

weight, and BMI Z-scores were signif-

icantly greater than zero (0.2 � 0.9,

0.4 � 0.8, 0.3 � 0.9, respectively). The

percent of observations involving chil-

dren with a BMI in the range of at risk

of overweight (85th to 95th BMI per-

centile) was 16%, and for the over-

weight range (BMI 	 95th percentile)

was 6%, indicating that few were in the

obese range according to the Centers

for Disease Control and Prevention

guidelines (11). Height, weight, and BMI

Z-scores were significantly greater (all

P � 0.0001) for Black compared with

non-Black children. Black girls were sig-

nificantly (P � 0.001) younger than non-

Black girls in prepuberty (7.7 vs. 8.1 yr,

respectively)andatpubertystages2–5by

0.6–0.8 yr, signaling earlier timing of

sexual maturation. Black and non-Black

boys significantly differed (P � 0.001) in

maturational timing only in puberty

stage 4 (14.5 vs. 14.0 yr, respectively).

FIG. 1. Reference curves for total hip aBMD for healthy male and female, Black, and non-

Black children aged 5–20 yr. Shown are the curves for �2, �1, 0, �1, and �2 SD (Z-scores).

Corresponding percentile distributions and L, M, and S values are shown in Supplemental

Table 6. The dotted line curves are the previously published BMDCS reference curves (4) for

ages 7 to 17 yr based on a subset of observations used to generate the final curves. The error

bar to the right of each curve shows the young adult (20–29 yr) reference range (mean � 2

SD) from the NHANES (12).
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DXA reference curves

Reference percentiles for TBLH BMC and lumbar spine

aBMD are given in Tables 1–4 for Black and non-Black

boys and girls ages 5–20 yr. Reference percentiles for BMC

and aBMD of the total body, hip, femoral neck, and distal

one third radius BMD, lumbar spine BMC, and TBLH

aBMD are given in Supplemental Tables 1–10, published

on The Endocrine Society’s Journal Online web site at

http://jcem.endojournals.org. Each table also shows the L,

M, and S values needed for calculating Z-scores using

equation 2. The age-specific values shown are based on

rounded ages; for example, the values for 10 yr olds should

be applied to children who are 9.5–10.4 yr of age.

There was close agreement between the current curves

and those previously published on a subset of observations

and more limited age range (4) (see Supplemental Figures

1–5). Figures 1 and 2 also show previously published total

hip and femoral neck reference ranges from the National

Health and Nutrition Examination Surveys (NHANES)

for young adults (ages 20–29 yr) based on data collected

between 1988 and 1994 (12). The median for the NHANES

data are generally similar to the BMDCS curves (Fig. 1) for

total hip aBMD. However, the �2 SD levels are higher for the

BMDCS curves compared with the NHANES data for both

the total hip and the femoral neck sites. Total body BMC

(TBBMC)andtotalbodyaBMD(TBaBMD)werecompared

with recently published NHANES results (13) (see Figs. 3

and 4). The BMDCS and NHANES distributions for

TBaBMDwerecomparable.ForTBBMC,themediancurves

were similar, but the upper and lower reference percentiles

for the NHANES data were broader than those provided in

the BMDCS curves.

The previously noted pattern of greater BMC and aBMD

for Blacks compared with non-Black subjects persisted.

aBMD Z-scores and percentile ranks were computed for all

participants using the reference values for non-Blacks. The

median values for Black children were comparable to the

81st percentile for TBaBMD of the non-Black reference

curves, the 70th percentile for spine, the 77th percentile for

total hip, and the 75th percentile for radius aBMD of the

non-Black reference curves. The difference between the

Black and non-Black subsets was evident at all ages (data not

shown), emphasizing the importance of separate reference

curves for Black vs. non-Black children and adolescents.

Equations for calculating Ht-Z-

adjusted bone Z-scores

Ht-Z was significantly associated

with all bone Z-scores. The highest R2

were for TBBMC and TBLH BMC,

ranging from 0.33 to 0.43. The equa-

tions for calculating Ht-Z-adjusted

bone Z-scores are provided in each

table.

Discussion

BMC and aBMD increase substantially

during childhood and adolescence. Dif-

ferences in body size and composition

and maturational timing promote sex

differences during this period. Conse-

quently, BMC and aBMD must be eval-

uated as age- and sex-specific Z-scores

to account for expected developmental

changes in bone. Moreover, BMC and

aBMD variability increases during

adolescence. Therefore, a large healthy

reference sample is essential to charac-

terize the normal range of age-related

changes in BMC and aBMD from child-

hood to adolescence. The results pre-

sented here describe BMC and aBMD

from ages 5 to 20 yr based on about

FIG. 2. Reference curves for femoral neck aBMD for healthy male and female, Black, and

non-Black children aged 5–20 yr. Shown are the curves for �2, �1, 0, �1, and �2 SD (Z-

scores). Corresponding percentile distributions and L, M, and S values are shown in

Supplemental Table 8. The dotted line curves are the previously published BMDCS reference

curves (4) for ages 7–17 yr based on a subset of observations used to generate the final

curves. The error bar to the right of each curve shows the young adult (20–29 yr) reference

range (mean � 2 SD) from the NHANES (12).
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10,000 observations of about 2,000 healthy participants

from five centers in the United States. Standardized data col-

lection methods were used, with centralized analysis of DXA

scans to assure uniformity of results.

Many health conditions and medical therapies have

been associated with poor bone acquisition. Primary bone

disorders such as osteogenesis imperfecta as well as health

conditions that involve chronic inflammation, malab-

sorption, immobility, hematological disorders, delayed

sexual maturation, or gonadal insufficiency may adversely

affect bone growth in childhood (14). These may include

disorders such as Crohn’s disease, cystic fibrosis, cerebral

palsy, thalassemia, acute lymphocytic leukemia, and an-

orexia nervosa. Medical therapies, such as glucocortico-

ids, also threaten bone acquisition. Pediatric reference

data are vital for identifying poor bone acquisition in chil-

dren who are affected by chronic illness and its treatment.

A subset of the observations presented here was used to

create previous reference curves (4). The revised and ex-

panded curves described here closely correspond with the

previous curves, which is an important consideration for

clinicians who are already prospectively monitoring BMC

or aBMD of children at risk for poor bone acquisition or

who are receiving bone-active therapies. The median

proximal femur aBMD values for the oldest age ranges

in our study correspond approximately with published

young adult reference ranges but dif-

fered in range of variation. This may be

accounted for by use of different DXA

technologies, sampling strategies, inclu-

sioncriteria,andstatistical techniquesfor

determining reference values as well as

possible changes in aBMD during early

adulthood. For all groups, differences in

the �2 SD level between reference curves

are relevant to longitudinal monitoring

of at-risk individuals as they transition to

adult care.

The recent NHANES TBBMC and

TBaBMD data were acquired using

Hologic DXA devices and analysis soft-

ware similar to ours. NHANES and

BMDCS reference curves for TBaBMD

corresponded closely. For TBBMC, the

NHANES and BMDCS median curves

were similar, but the percentile ranges

were greater in the NHANES curves

compared with ours. The difference is

peculiar because the NHANES BMC

and aBMD data were obtained on the

same subjects. It may be related to the

construction of the reference curves

because the shape of the curves will

change as the number of degrees of freedom increases (15).

Differences between NHANES and the BMDCS in sample

size, study design, and selection criteria may also account

for curve differences, although this would not explain why

our results are similar to NHANES for aBMD but not for

BMC. Of note, we previously reported that total body

measurements varied by as much as 4–6% percent be-

tween centers (4). We did not apply corrections for center

differences because we assumed this variability to be typ-

ical of that occurring at clinical centers at which our ref-

erence curves will be used for diagnostic purposes. The

high degree of equipment-related variability in total

body measurements suggests that the use of total body

outcomes for diagnosing osteoporosis in childhood

needs further scrutiny and validation.

Most DXA outcome distributions were skewed as de-

noted by L values that differed from one. Therefore, Z-score

calculation based on a median and SD will give an inaccurate

representationofachild’sbonestatusrelativetothereference

population. We used the LMS technique to construct refer-

ence percentiles, which accounts for skewness and the non-

linear distribution. The Z-score calculation from the L, M,

and S values (equation 2 above) is not simple but can be

implemented in calculators and other programs to facilitate

FIG. 3. BMDCS reference curves (solid lines) for TBBMC compared with published values

from the NHANES (13) (dashed lines).
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computations such as the one maintained on the BMDCS

web site (www.bmdcspublic.com).

Children with health conditions that affect bone acqui-

sition often have altered growth. Short or tall stature rel-

ative to age presents a challenge when interpreting DXA

results because, on average, smaller bones have a lower

BMC and areal aBMD than larger bones (5). We provided

correction factors for adjusting BMC and aBMD for

height status. Although the height adjustment method is a

three-step process, it provides the least biased adjustment

for short (or tall stature), especially among children who

are within the age range when normal timing of puberty

occurs. Comparison of the age-based bone Z-score and the

height-adjusted bone Z-score provides the clinician with a

frame of reference for the degree to which the bone Z-score

is influenced by short (or tall) stature. Fracture studies in

children have clearly demonstrated the importance of ad-

justing for body size in the association between DXA bone

outcomes and fracture risk (17–21). Future studies are

needed to evaluate the accuracy of the height Z-score ad-

justment method in identifying individual children at-risk

for fracture.

The greater BMC and aBMD levels of Black vs. non-

Black adults and children have been reported previously in

studies using DXA (22–26), peripheral quantitative com-

puted tomography (27, 28) and spine computed tomog-

raphy (29, 30). We quantified the magnitude of the dif-

ference between Black and non-Black

children using Z-scores based on non-

Black reference curves. The Black co-

hort had mean Z-scores that were pro-

foundly greater, ranging from 0.55 to

0.83. This result confirmed the need for

separate curves so that bone health

among children of African ancestry can

be evaluated relative to their genetic po-

tential for bone accrual. Greater BMC

and aBMD in this group are consistent

with lower fracture rates among people

of African ancestry reported in studies

in the United States (21, 31, 32), the

United Kingdom (33), and South Africa

(16). However, the relationship between

fracture risk and BMC or aBMD Z-score

among Black children remains to be

determined.

The primary limitations of this study

was the inability to acquire data on a

randomly selected group of healthy

children from all regions in the United

States and the inability to apply these

reference curves to the results from

other DXA manufacturers. However,

this robust sample, characterized using standardized

methodology, offers the best pediatric reference data

available.

Conclusion

We have extended previously reported pediatric DXA ref-

erence curves to encompass the age range from 5 to 20 yr

for Black and non-Black children. These robust reference

curves are based on about 10,000 observations in well-

characterized healthy children using standardized tech-

niques. As noted by the International Society of Clinical

Densitometry Pediatric Recommendations, interpretation

of DXA results in children should be based on sex, age, and

group-specific reference ranges using similar DXA tech-

nology and analysis software and should be adjusted for

body size. The results presented here significantly improve

the information needed by clinicians for assessing and

monitoring bone health in children, especially as they tran-

sition through adolescence and into young adulthood.
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