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Abstract 

Fourier-transform infrared (FT-IR) and Raman spectroscopy are being widely used as sensor-

based techniques towards oncology applications, in particular, to diagnose brain cancers and their 

subtypes due to their critical severity. Overtime these techniques became more sensitive and 

nowadays accuracies over 90% can be observed in several studies. This is a good indication of 

their potential for real clinical implementation. Herein, we present a min-review by revisiting some 

fundamentals of FT-IR and Raman spectroscopy along with their applications towards brain cancer 

detection in the literature.  

Keywords: brain cancer; glioma; meningioma; glioblastoma; FT-IR; infrared spectroscopy; 

Raman. 
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1. Introduction 

1.1 Brief history of Fourier-transform infrared (FT-IR) spectroscopy  

Infrared (IR) spectroscopy is a vibrational spectroscopy technique used to assess the 

chemical composition of a sample [1]. It is based on the absorption of infrared light by the 

molecules that compose the material, where all molecules with a resultant dipole moment different 

from zero will absorb infrared radiation. The scientific idea behind the Fourier-transform infrared 

(FT-IR) spectroscopy was first initiated in the late 1880s by Albert A. Michelson. The founder 

invented an interferometer, a device that Albert and Morley used to perform famous experiments 

determined to measure the exact speed of light. Besides the Michelson interferometer, he also 

introduced the scientific optical instruments. His efforts were widely accepted and appreciated by 

the scientists of the day. Later in 1907, Michelson’s efforts and inventions were still applicable 

and won the Nobel Prize in Physics.  

Michelson knew the spectroscopic potential of his interferometer, although it lacked the 

sensitive detectors and the Fourier-transform algorithms that consequently barred the instrument 

from its practical application. However, he still manipulated and used it to solve many doublet 

spectra back then in the field [2]. There were quite many challenges that scientists faced while 

using Fourier-transform spectroscopy (FTS) to compute the Fourier-transform of interferograms. 

It is because the FTS was not able to directly invert the values, so they guessed some spectra, 

calculated the inverse of their Fourier-transform, and then compared it to the interferogram they 

had earlier measured. The best results were obtained after modifying the guessed spectra to match 

the data at hand. 
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It is in the late 1940s that the practical application of the FTS was considered useful. The 

scientists first used the interferograms when measuring light from the celestial bodies after 

producing the first Fourier-transform spectrum in 1949. At this point, it became more accessible 

for the scientists to calculate the continuous necessary Fourier transforms though it became a task 

that was so difficult and consumed much time. Here, the scientists introduced the lamellar 

granting and the Fabry-Perot interferometers, besides the Michelson’s. The schematic Figure 1a 

below represents the basic Michelson interferometer. 

Movasaghi et al. (2008) [3] speculated that the lamellar granting spectrometer share many 

standard features with the Michelson’s. These two beam and multicomplex devices have high 

optical ability to produce the interferograms, which, when Fourier-transformed, provide the 

desired spectrum. However, in the lamellar granting instrument, the optical modulation part 

constitutes a pair of mirrors that are arranged in a tongue and groove manner to bring the 

appearance of one large mirror divided into two or more horizontal strips as indicated in Figure 

1b. 

Through the Fresnel mirrors, the scientists could observe interferences with the blue-ray 

path difference near line F at wavelength 1737. After the reflection on both mirror surfaces on the 

thin plate, they noticed increased interference at wavelength 3406. Later, they perfected the 

technique and used it to detect IR radiations and to measure IR wavelengths. The lamellar granting 

interferometer is preferred to Michelson’s because it uses the entire wavefront, unlike the 

Michelson’s that loses one half of the total flux even when the beam splitter is perfect and efficient. 

Additionally, the lamellar granting interferometer has high efficiency due to its far-infrared region. 
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The increased interest in spectroscopy facilitated advancements in interferometers and its 

applications in physical systems. The improvements in the theories included the fast Fourier-

transform algorithm that made the electronic computing of the Fourier transforms easy and 

efficient [4]. The idea substantially reduced the time of calculations and magnitude orders, as well 

as turning the interferogram to a readable spectrum feasible. The Fourier spectroscopy generated 

a new weapon to greater effectiveness to experimentalists in 1969. 

The IR technique applied a reliable, simple, powerful, and most effective method to analyse 

organic materials with a dispersive technology in the early 1940s. However, there were 

shortcomings attached to its scanning speed and the general manual operations; it was too slow. 

The wavelength of the light that passed through also measured one by one with just a slit 

controlling the spectral bandwidth. The dispersive spectrometer required a source of visible 

wavelength calibrations because there was no reference to any. The dispersive spectrometer is 

shown in Figure 1c. 

These shortcomings enhanced further improvements on the dispersive. Consequently, the 

improved phase came handy with three significant advantages over the dispersive FT-IR system. 

The modern FT-IR spectrometer does not separate light into individual frequencies for 

measurements; instead, every interferogram has information from each wavelength of the light 

being measured [5]. Through the interferometer, the FT-IR spectrometer modulates the wavelength 

from the broadband infrared source. The detector then measures the intensity of the transmitted 

and reflected light as a function of its wavelength.  

With increased technology, modern spectrometers availability and enhanced capabilities 

increased with a gradual reduction in costs. Currently, the FTS hastened by the fastest computers 
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processes the Fourier transformations with visible, infrared, and microwave regions in 

microseconds and are conventional devices in laboratories worldwide. The increase of 

performance and reduction in cost make FTS an attractive spectroscopy tool in many disciplines. 

Therefore, Fourier spectroscopy is a collective term that has been used while describing the 

breakdown of varying signals into the respective frequency components. It entails compelling 

mathematical methods that have been used by a series of spectroscopies, including the Fourier-

transform infrared (FT-IR), Fourier-transform near infrared (FT-NIR), and Fourier-transform 

Raman spectroscopy.  

 

1.2 Brief history of Raman spectroscopy  

On the other hand, Raman spectroscopy, a technique introduced in 1928 by Sir 

Chandrasekhara Venkata Raman, explained the effects of light changing its wavelength when it is 

passing through a transparent object. In his experiment, the Indian Physicist used sunlight as a 

source, liquid in a bucket as the collector, and his eyes, detectors. This remarkable phenomenon 

was called the Raman scattering. He gradually improved his instrumentation to achieve a better 

result; from helium, argon, rubidium and cesium lamps to lasers Ar+ (351.l-514.5 nm), Kr+ (337.4-

676.4 nm) and today laser diodes NdYAG (1,064 nm) while the photomultipliers and CCD 

cameras used as detectors. Moreover, the extended the progress to the detection systems from the 

cooled cascade RCA IP21 in 1942 to cooled RCA C-7073B photomultiplier in 1950 then cooled 

RCA IP21 photomultiplier tube that was used by 1953 [6]. In the meantime, it was introduced a 

device called Hilger E612 that was used as a photoelectric instrument. Subsequently, Cary Model 

81 Raman spectrometer came to existence. It used a three kilowatts helicon Hg arc of Toronto type 

with double gating, double slit twin monochromator. 
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The persistence in developing the optical system continued in 1960. The scientists learned 

that a twin monochromator could eliminate the stray lights more efficiently compared to the single 

monochromator. Instead, they introduced a triple monochromator, which was perfect in removing 

the stray gleams. Eventually, in 1968, the Holographic gratings appeared, which wholesomely 

improved the efficiency of the Raman scattering and collection systems. The developments have 

ensured the current commercial state of the art of the Raman measurements and instrumentation. 

Typically, the Raman scattering is used to collect spectroscopic data through an inelastic 

scattering process based on molecular polarizability changes [7]. Inelastic scattering involves the 

frequency of changes that occur in the monochromatic photons in the light after interacting with 

samples. The electromagnetic scattering occurs due to vibrations and rotations between the 

molecules. The real photons have varied energy, therefore the scattering system is likely to lose or 

gain power. The difference in the frequency of incoming and outgoing photons forms Stokes and 

anti-Stokes scattering, as shown in Figure 2.                     

 

2. Spectral features  

 

Both FT-IR and Raman spectroscopy can be employed in chemical analysis of various 

substances, where signals of vibrational modes for the molecules bonds that compose the material 

are obtained. These unique spectral features for FT-IR and Raman make these spectroscopy 

techniques very attractive to determine chemical compositions of unknown substances.  

 

2.1 Fourier-transform infrared (FT-IR) spectroscopy  
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FT-IR has been widely used to help analysts deeply understand materials and products 

through analytical testing. FT-IR can be employed in the sample through transmission, reflectance 

or transflectance, and the spectral data acquired are used to assist in the identification of the sample 

chemical composition. This technique can be applied to investigate a wide range of materials, from 

paints, foods, pharmaceuticals, polymers to biological-derived samples, such as tissue and 

biofluids [8]. 

FT-IR can be used in both qualitative and quantitative analysis of organic and inorganic 

materials. It records a spectrochemical information composed of the absorption intensities for each 

wavenumber of mid-infrared spectrum (4,000–400 cm-1). The infrared bands carry vibrational 

information used to identify the molecular components and their respective structures; thus the 

spectra generate a distinctive molecular fingerprint used to screen and scan samples in various 

segments. The fingerprint spectrum for biological samples, also called the “biofingerprint” region, 

ranges from 1,800–900 cm-1 and contains information of key biomolecules such as lipids, proteins, 

carbohydrates and nucleic acids [9] (Figure 3a). Changes in the IR signature for these biomolecules 

are associated with concentration changes (changes of band intensity) and changes of molecular 

configuration and neighboring functional groups (band shifts towards higher or lower 

wavenumbers). 

 

2.1 Raman spectroscopy  

Raman is a spectroscopy technique that, similarly to FT-IR, is used to obtain vibrational 

spectrochemical information of a sample. Raman is complementary to FT-IR, being associated 

with molecular polarizability changes while the latter is associated with changes in molecular 

dipole moments. Since the anti-Stokes scattering is less often at room temperature, the Raman 
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spectrum recorded and analysed by spectrometers is generally the Stokes scattering, whose Raman 

shift commonly varies from 0 to 4,000 cm-1 [10].  

Raman is often used to analyse biological samples, since it is water transparent, that is, the 

water signal in Raman is very small so not masking the signal from the other chemical compounds 

below 3000 cm-1 [1]. IR is sensitive to water, therefore samples are often measured dry in IR 

spectroscopy to minimise the water interference; while Raman allow measuring samples at all 

forms, including liquids or dry samples [11]. The Raman biofingerprint region is between 2000–

500 cm-1, and comprises mostly stretching vibrations for carbohydrates, lipids, proteins and nucleic 

acids (Figure 3b) [9].  

In the Raman instrumentation, the monochromatic laser light is shone on the sample. The 

sample can be measured with no prior preparation, or it may also be mixed with nanoparticles; 

coated with a transparent layer that is non-reactive to the Raman laser, like the SiO2; or by placing 

it in DI water to prevent stray lighting [13]. The electromagnetic radiation that contains the near-

infrared, visible, or the ultraviolet range that is emitted from the sample is then filtered out. The 

filtration can be done through the notch or the band pass filters, and then the resulting infrared 

light passes through the monochromator and finally to the CCD detectors.  

In Raman microspectroscopy, light is let through the microscope before it reaches the 

sample. This allows the light to focus on a smaller area of 1 µm2 for accurate mapping of a 

particular example through a confocal microscopy [14]. However, precautions should be taken 

when mapping the sample to avoid its destruction by the concentrated laser light on each sample 

spot. 
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3. Differences between FT-IR and Raman spectroscopy 

 

FT-IR and Raman are complementary spectroscopic techniques that are based on molecular 

vibration signatures. Although these similarities, there are direct points that distinguish the origin, 

functionality, and the mode of identification of unknown materials by the two techniques [15]. By 

principle, as mentioned earlier, FT-IR is based on changes of dipole moment while Raman in 

changes of molecular polarizability, hence, the spectral profile for a same sample measured by 

both techniques will be substantially different, where signatures will be present at specific 

wavenumber positions in the FT-IR spectrum while not in the Raman spectrum or vice-versa. 

Additionally, from a practical point-of-view, these techniques considerably diverge. FT-IR is a 

more robust technique with less physical interfering however not as sensitive as Raman 

spectroscopy to analyse certain compounds, such as inorganic substances. Also, FT-IR is greatly 

affected by water absorption. On the other hand, Raman is water-free and is a powerful technique 

to analyse inorganic substances, such as silica crystals and carbon nanotubes. However, Raman is 

highly affected by cosmic rays and fluorescence interfering which can mask the signal of interest. 

The latter is especially apparent when analysing coloured substances, hence, making it difficult to 

analyse these types of substances with Raman. In addition, when the biological sample is exposed 

to high-energy laser sources or prolonged exposure time, Raman may be destructive to the sample 

[11]. Table 1 summarises the main differences between the two spectroscopic techniques. 

 

4. Clinical implications 
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Brain cancers are one of the main causes of cancer-related deaths worldwide, accounting 

to 3% of all tumours diagnosed annually and with an increasing incidence rate over the last years 

[16]. They are difficult to be fully removed thus causing post-surgery consequences and likely 

reoccurrence which increases mortally, even though they comprise a small portion of all tumours 

often diagnosed [16, 17]. Most of brain cancers are either meningiomas or gliomas tumours [18]. 

Meningiomas are less aggressive types of tumours, often benign, that occurs in a supratentorial 

location, such as towards the spinal cord or the meninges surrounding the brain [19-21]. Gliomas, 

on the other hand, are a more aggressive type, comprising neuroepithelial tumours originating from 

the glial or supporting cells of the central nervous system (CNS) [22]. 

FT-IR spectroscopy, as well as other molecular spectroscopy techniques such as liquid 

chromatography-mass spectrometry (LC/MS), nuclear magnetic resonance (NMR) spectroscopy, 

near-infrared (NIR), and Raman spectroscopy often compose a benchmark to provide robust and 

supportive data about the sample chemical composition. FT-IR and Raman spectroscopy are a fast, 

low-cost, and reagent-free tool for cancer diagnostic [23]. They are high throughput techniques 

which, together with multivariate analysis or machine learning algorithms, can be used for cancer 

detection in an automatic, quick and easy fashion [24]. For brain cancers specifically, knowing the 

tumour type or subtype is essential to start the correct patient treatment and reduce post-surgery 

risks [21, 23], which ultimately will decrease its mortality.  

Brain cancers are traditionally detected by using a combination of techniques, such as 

imaging tests by means of magnetic resonance imaging (MRI), computed tomography (CT) or 

positron emission tomography (PET) scans to detect abnormal areas [25], together with tissue 

biopsies to identify the tumour type and grade by means of histopathology techniques [26]. These 

techniques show some disadvantages in comparison with FT-IR and Raman spectroscopy. Imaging 
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tests such as MRI, CT and PET scans require expensive instrumentation in comparison with FT-

IR and Raman spectroscopy techniques, thus they are not widely available in some areas, 

especially in developing regions. Biopsies are minor surgeries that may bring much discomfort to 

patients and their histological analyses are laborious, complex and can be analyst-dependent. 

Furthermore, these traditional methods for tumour detection are much slower when compared to 

spectroscopy techniques, where the results from this latter can be obtained within seconds through 

machine learning techniques. Furthermore, FT-IR and Raman spectroscopy are an objective 

technique, where the results are only dependent on the sample chemical composition; and these 

spectroscopy techniques are much less-invasive than the traditional methods, where, for example, 

biofluids instead of tissue biopsies can be used for brain cancers diagnosis [27, 28].    

Several studies have used FT-IR or Raman spectroscopy to investigate biological samples, 

either tissues or biofluids, to detect brain cancers and their subtypes. For example, Qu et al. [29] 

used FT-IR spectroscopy for rapid diagnosis of gliomas based on serum samples; Fabelo et al. [30] 

used FT-IR spectroscopy to detect brain tumour tissue samples; Depciuch et al. [31] used FT-IR 

and Raman spectroscopy to detect glioblastoma in tissue samples; Kopec et al. [32] used Raman 

imaging to detect various types of human brain tumours; Riva et al. [33] used Raman spectroscopy 

to detect gliomas based on fresh tissue samples; Zhang et al. [34] used Raman spectroscopy to 

detect gliomas based on serum samples; and, Galli et al. [35] used Raman spectroscopy to detect 

brain cancers in tumour biopsies. 

Cancers are caused by changes in the biochemical pathways undergoing in our bodies due 

to a series of factors for which their occurrence and mechanism remains very complex [36]. 

Alterations in the cellular energy metabolism is an important process that occur during the 

transition from normal to cancer cells and it is highly entwined to cell proliferation and cell death 



13 
 

[37].  For example, the activation of the polyamine metabolism is closely related with cellular 

proliferation [38]. Brain cancers show particular complexity despite some advances in discovering 

genetic and molecular features about this pathology [39], as an example, the chromosome complete 

or partial loss of the tumour suppression gene or enzymes associated to various signaling 

mechanism for the cell cycle control [40]. Several studies using both FT-IR and Raman 

spectroscopy have found spectral markers associated with tumour appearance and progression, as 

listed in Tables 2 and 3. These markers are molecular fragments directly related to the sample 

biochemical composition thus reflecting the patient status on the time of measurement, therefore, 

covering biochemical signatures related to the tumour itself or the system response. This spectral 

information acquired from FT-IR and Raman spectroscopy combined with data from other 

techniques, such as mass spectrometry, could be used to identify the real biomarkers associated to 

the disease.  Table 4 summarizes their main findings along with the classification algorithms used 

to distinguish the samples. 

The classification performance to distinguish non-cancer from cancer samples or cancer 

subtypes seems to improve overtime. The results are dependent on the instrumentation, sample 

type and preparation and the algorithm used to process the spectral data. The results also look more 

promising when using mapping or imaging techniques instead of point-spectra, since spatially-

distributed information carry more information about the sample specimen and often improves the 

classification [59, 60]. Also, the analyses were made using different algorithms which have weight 

in the classification outcomes. Often PCA-LDA (or just LDA), PLS-DA and SVM are used to 

discriminate and classify the samples. In PCA, the pre-processed data are decomposed into a few 

numbers of factors called Principal Components (PCs) responsible for most of the variance within 

the original dataset [61]. The PCs are orthogonal to each other and are built in a decreasing order 
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of explained variance, so that the first PC explains most of the variance, followed by the second 

PC and so on. Each PC is composed of scores, representing the variance on the sample direction, 

and loadings, representing the variance on the wavenumber direction. The scores can be used to 

identify similarities/dissimilarities between the samples through the visualisation of clustering 

patterns, while the loadings can be used to discover the wavenumbers of highest importance 

responsible for clustering segregation [24]. LDA can be applied to the PCA scores in order to 

classify the samples based on a Mahalanobis distance calculation [62]. 

PLS-DA is a supervised feature extraction and classification algorithm where partial least 

squares (PLS) is applied to the pre-processed spectral data reducing the original wavenumbers to 

a small number of latent variables (LVs). Then, a linear discriminant classifier is used for 

classifying the groups [63]. PLS-DA usually performs better than PCA-LDA, therefore it is 

commonly employed as a benchmark technique for spectral classification [64]. SVM works firstly 

by transforming the data space into a feature space by means of a kernel function which is often 

non-linear. Then, a linear decision boundary is fit between the closest samples to the border of 

each class (these samples are called support vectors), hence classifying the samples according to 

this boundary [24, 64]. 

These algorithms are applied after pre-processing the samples spectra, where peak removal 

(e.g., cosmic rays removal in Raman spectroscopy), selection of specific spectral regions of interest 

(e.g., biofingerprint region), smoothing, baseline corrections, derivatives, and normalisation 

procedures are performed to reduce spectral interferences and improve the signal-to-noise ratio of 

the spectra [24, 65]. The final classification is then made by these machine learning algorithms 

where a training set of samples feeds the model while a test set validates them towards external 

samples prediction [24]. It is important to test different types of algorithms since results may vary 
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depending on the algorithm chosen, and validated them by cross-validation and external 

predictions in order to avoid overfitting, which may lead to false results [24].  

Figure 4 shows a flowchart with the steps one may perform to analyse brain cancer samples 

using either FT-IR or Raman spectroscopy techniques. For each step there are key points to be 

considered. For the sample preparation, first the type of sample must be defined: biofluids, such 

as blood serum, plasma, urine; or, tissue samples. Some biofluids need further preparation such as 

unthawing (if the samples are frozen), drying to avoid water interference if the sample is going to 

be analysed by FT-IR and centrifugation if the sample contains suspended matter [45]. For tissue 

samples, the tissue type (fresh, snap-frozen, FFPE) should be considered. Fresh tissue tends to 

degrade quickly, while snap-frozen may bring water inference for FT-IR and FFPE brings paraffin 

interference [8, 11]. De-parafinisation of FFPE tissues is a common practice to be performed [45].     

During spectral acquisition, the acquisition mode is an important aspect and it will change 

according to the application purpose. For analysis of solid and dried liquid samples using FT-IR 

spectroscopy, the use of ATR module is a good option to maximise the signal-to-noise ratio [8]. If 

the equipment is equipped with an imaging apparatus, hyperspectral can also be acquired. The 

spectral resolution is recommend being set in between 4 to 8 cm-1 and the wavenumber range in 

between 400 to 4000 cm-1 [45]. Changes of resolution and wavenumber range may speed the 

spectral acquisition, but may hide important spectral information. It is also important to set correct 

parameters for the Raman laser source in order to avoid damage to sample while keeping a good 

signal-to-noise ratio [11]. In addition, spectral interferences during Raman acquisition such as 

fluorescence, signal saturation and cosmic rays should be observed and preferably corrected during 

sample acquisition. Furthermore, the file extension in which the data is saved is important. One 

should make sure the files are saved in a format readable by the data analysis software [24].  
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 For the data analysis, usually the first step is to pre-process the spectra in order to minimise 

interferences [24]. Following pre-processing, exploratory analysis by means of PCA and HCA 

algorithms can be performed. To build supervised classification models, the data must be split into 

at least training and test sets [66]. The training set is used for model construction while the test set 

for model validation. There are several algorithms for classification, such as LDA, QDA, PLS-DA 

and SVM, which can be used in conjunction with PCA [24]. Feature extraction and selection can 

also be performed with the spectral data in order to identify important wavenumbers related to 

class separation. Some techniques include the visual analysis of the difference-between-mean 

(DBM) spectra, PCA loadings, PLS-DA regression coefficients, and, the successive projections 

algorithm (SPA) and genetic algorithms (GA) selected variables [24]. Lastly, the model must be 

validated with blind test samples where parameters such as accuracy, sensitivity and specificity 

are calculation, in addition to statistical test, such as p-values test, to verify the selected 

wavenumbers related to class differentiation.    

 

5. Conclusion 

Improvements of FT-IR and Raman instrumentation overtime have finally put them in the 

lead through their improved spectral quality, reproducibility of data, and user-friendliness coupled 

with relatively reduced maintenance cost. Advancements of Raman and FT-IR spectroscopy have 

positively influenced the health sector to industrial and point-of-care applications. The real time 

application and the flexibility in the rapidly growing lasers and detectors have further offered the 

unique strengths in the existing diagnostic devices. 
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Both FT-IR and Raman generate chemically-rich spectral signatures of tissue or biofluids 

that can be used for a wide range of clinical applications, especially towards oncology. For brain 

cancers, these techniques have proved to be of great potential to detect them and their subtypes. 

Moving forward, the industrial production of lower-cost, sensitive and more modern devices are 

crucial for bringing these technologies into the clinical theatres as complementary tools to aid 

diagnostic. This in effect will reduce the death rates seen in the world today and it will also give 

timely and permanent solutions to chronic disease. 
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Figure Legends 

Figure 1: (a) Schematic diagram of Michelson interferometer; (b) the lamellar granting 

interferometer; (c) dispersive spectrometer. 

Figure 2: Stokes and Anti-Stokes Raman scattering, where continuous arrow: absorbed 

electromagnetic radiation; dashed arrow: released electromagnetic radiation. 

Figure 3: (a) IR and (b) Raman biofingerprint regions with their main band assignments. 

(Reprinted (adapted) with permission from Kelly et al., 2011 [9]. Copyright 2011 American 

Chemical Society). 

Figure 4: Flowchart showing the steps to measure and analyse brain cancer samples. FFPE: 

formalin-fixed paraffin-embedded, ATR: attenuated total reflection, PCA: principal component 

analysis, HCA: hierarchical cluster analysis, LDA: linear discriminant analysis, QDA: quadratic 

discriminant analysis, PLS-DA: partial least squares discriminant analysis, SVM: support vector 

machines, DBM: difference-between-mean, SPA: successive projections algorithm, GA: genetic 

algorithm. 

 

 

 

 

 

 



30 
 

Tables 

Table 1. Main differences between Raman and IR spectroscopy. 

Raman spectroscopy Infrared spectroscopy 

It is based on molecular polarizability 

changes, therefore, only molecules with 

variation of its polarizability after vibration 

are Raman active 

It is based on changes of molecular dipole 

moments, therefore, only molecules that 

change their resultant dipole moment after 

vibration are IR active 

Raman is a scattering technique where the 

light source is a monochromatic laser not 

necessarily in the IR region 

IR is an absorption technique where the light 

source emits IR radiation 

Raman is water-free There are several water absorptions in the IR 

spectrum which may mask the information of 

interest. Spectra of aqueous samples should 

be analysed carefully.  

Depending on the power or exposure time of 

the laser light source, Raman may be 

destructive to the sample [11] 

IR is not destructive to the sample 
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Table 2. Main spectral features in the IR biofingerprint region for brain cancer detection [3]. 

Wavenumber 
(cm-1) 

Assignment Biomolecule 
category 

Remarks 

~950 𝜐𝜐s(R − PO4
2−) of 

phosphorylated proteins 
Proteins Marker to distinguish brain tumours in tissue [18] 

~1030 𝜐𝜐(C − O/C − C) of 
glycogen 

Carbohydrates Marker to distinguish brain tumours in tissue [18] 
Marker to distinguish glioma vs. non-glioma samples based on 
biofluids [27] 
Marker to distinguish normal vs. brain tumours in biofluids [41]  

~1070 𝜐𝜐(C − C)  Carbohydrates Decrease intensity in tumour samples from rat tissue [42] 
~1080 𝜐𝜐s(PO2

−) of 
phosphodiester groups 

Nucleic acids Marker to distinguish brain tumours in tissue [23, 43] 
Increase intensity in brain tumour samples from rat tissue [42] 
Marker to distinguish glioma vs. non-glioma samples based on 
biofluids [27] 
Marker to distinguish normal vs. brain tumours in biofluids [41] 

~1155-1172 𝜐𝜐(C − O) Carbohydrates Shifted in tumour samples from rat tissue [42]  
~1225-1236 𝜐𝜐as(PO2

−) in RNA/DNA Nucleic acids Decrease intensity in tumour samples from rat tissue [42] 
Marker to distinguish brain tumour tissue [18, 43] 
Marker to distinguish normal vs. brain tumours in biofluids [41] 

~1260 Amide III: 𝜐𝜐(C − N) Proteins Marker to distinguish brain tumour tissue [18]  
Marker to distinguish normal vs. brain tumours in biofluids [41] 
Marker to distinguish glioma vs. non-glioma samples based on 
biofluids [27] 

~1380-1394 𝛿𝛿(CH)  Lipids/Proteins Marker to distinguish normal and tumour tissue [41] 
Marker to distinguish normal vs. brain tumours in biofluids [41] 

~1550 Amide II: 𝛿𝛿(N − H) 
coupled to  𝜐𝜐(C − N) 

Proteins Marker to distinguish glioma vs. non-glioma samples based on 
biofluids [27] 
Marker to distinguish normal and tumour tissue [41] 
Marker to distinguish normal vs. brain tumours in biofluids [41] 

~1650 Amide I: 𝜐𝜐(C = O) Proteins Marker to distinguish glioma vs. non-glioma samples based on 
biofluids [27] 
Marker to distinguish normal and tumour tissue [41] 
Marker to distinguish normal vs. brain tumours in biofluids [41] 

~1740 𝜐𝜐(C = 0) Lipids Band become weak and even disappearing in tumour samples from  
tissue [42] 
Marker to distinguish normal vs. brain tumours in biofluids [41] 

~1750 𝜐𝜐(C = C) Lipids Marker to distinguish brain tumour tissue [43] 
𝜐𝜐 = stretching; 𝜐𝜐s = symmetric stretching; 𝜐𝜐as = asymmetric stretching; 𝛿𝛿 = bending 
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Table 3. Main spectral features in the Raman biofingerprint region for brain cancer detection [12]. 

Wavenumber 
(cm-1) 

Assignment Biomolecule 
category 

Remarks 

~498 𝜐𝜐(C − O) glycogen Carbohydrates Marker for IDH-mutant glioma [44] 
~524 𝜐𝜐(S − S) Proteins Marker for glioma tissue [33] 
~725 Ring breathing mode 

of DNA/RNA bases 
Nucleic acids Marker for brain tumours [45] 

~750 𝛿𝛿(CH) out-of-plane Nucleic acids Marker for brain tumours [32] 
~826 𝜐𝜐(O − P − O) DNA Nucleic acids Marker for IDH-mutant glioma [44] 

Marker for glioma tissue [33] 
~875 𝜐𝜐(N+ − CH3) 

phospholipids 
Lipids Marker for glioma tissue [33] 

~911 𝜐𝜐(C − C) glucose Carbohydrate Marker for meningioma tissue [18] 
~956 𝜐𝜐(C − O) collagen Proteins Marker for brain tumours [32, 45] 
~960 𝜐𝜐(PO4

3−) 
Hydroxyapatite 

Mineral Marker for brain tumours [35] 

~1004 𝜐𝜐s(C − C) ring 
breathing of 
phenylalanine in 
collagen 

Proteins  Marker for IDH-mutant glioma [44] 
Marker for brain tumours [32, 35, 45] 
 

~1064 𝜐𝜐(C − C) skeletal 
model 

Lipids Marker for brain tumours [45] 

~1080-1158 𝜐𝜐s(P = O) nucleic 
acids and 
phospholipids 

Lipids/Nucleic 
acids 

Marker for brain tumours [45] 
Marker for brain tumours [35] 

~1126 𝜐𝜐(C − C) skeletal of 
acyl backbone 

Lipids Marker for brain tumours [32] 

~1156 𝜐𝜐(C − C) carotenoids Pigment Marker for brain tumours [32, 35] 
Absent in normal tissue [12] 

~1174 𝛿𝛿(C − H)  Proteins Marker for IDH-mutant glioma [44] 
~1200–1350 Amide III: 𝜐𝜐(C − N)  Proteins Marker for brain tumours [18, 32, 35, 45] 
~1307 𝛿𝛿(CH2/CH3) 

collagen or lipids 
Proteins/Lipids Marker for brain tumours [32] 

~1337 𝛿𝛿(CH2/CH3)  Lipids Marker for IDH-mutant glioma [44] 
~1444 𝛿𝛿(CH2) fatty acids Lipids Marker for IDH-mutant glioma [44] 

Marker for brain tumours [35, 45] 
~1480–1575  Amide II: 𝛿𝛿(N − H) 

coupled to  𝜐𝜐(C − N) 
Proteins Marker for brain tumours [45] 

~1520 𝜐𝜐(C = C) carotenoids Pigment Marker for brain tumours [32] 
Absent in normal tissue [12] 
Marker for brain tumours [35] 

~1585 𝜐𝜐(C = C) olefin proteins Marker for brain tumours [32] 
~1600–1800  Amide I: 𝜐𝜐(C = O) Proteins Marker for brain tumours [18, 35, 45] 
~1655  𝜐𝜐(C = C) fatty acids Lipids Marker for brain tumours [32 ,45] 

𝜐𝜐 = stretching; 𝜐𝜐s = symmetric stretching; 𝜐𝜐as = asymmetric stretching; 𝛿𝛿 = bending 

 

 

Table 4. Overview of FT-IR and Raman studies to investigate brain cancers.    
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Technique Sample 
type 

Samples Algorithm Main results Reference 

FT-IR 
(Imaging) 

Tissue 
(snap-
frozen) 

Non-cancer control 
Astrocytoma grade 
III 
Astrocytoma grade 
II 
Glioblastoma 

GA-LDA Sample 
discrimination at 
89% accuracy  

Steiner et 
al. (2003) 
[46] 

FT-IR 
(Imaging) 

Tissue 
(snap-
frozen) 

Non-cancer control 
Glioblastoma 
grade IV 
Astrocytoma grade 
III 
Astrocytoma grade 
II 

ga_ors 
[47]  

Samples groups 
classified at 64% 
overall accuracy. 
Control tissues 
classified at 95% 
accuracy. 

Beleites et 
al. (2005) 
[48] 

Raman 
(Mapping) 

Tissue 
(snap-
frozen) 

Normal dura mater 
Meningioma 

LDA  
PLS-DA 

100% discrimination 
between normal and 
meningioma 

Koljenović 
et al. 
(2005) [49] 

Raman 
(Resonance) 

Tissue 
(snap-
frozen) 

Meningiomas 
Normal tissue 
Glioblastoma 
Acoustic neuroma 
Pituitary adenoma 

PCA-SVM 90.9% sensitivity 
and 100% 
specificity to 
discriminate the 
samples 

Zhou et al. 
(2012) [50] 

FT-IR 
(ATR-FTIR) 
Raman 

Tissue 
(FFPE) 

Normal brain 
Meningioma 
Glioma 
Brain metastases  
LA 
AA 
GBM 

LDA 
PCA-LDA 

Statistically 
significant 
differences were 
found between the  
samples groups and 
subgroups  

Gajjar et 
al. (2013) 
[18] 

FT-IR 
(ATR-FTIR) 

Serum Non-cancer control 
Glioma (HGG, 
LGG) 

SVM Discrimination of 
non-cancer vs. 
gliomas with an 
average sensitivity 
of 93.75%, and 
average specificity 
of 96.53% 

Hands et 
al. (2014) 
[51] 

FT-IR 
(ATR-FTIR) 

Serum Non-cancer control 
Brain cancer 
Metastatic cancer 
Glioma (HGG, 
LGG) 
Meningioma 

SVM Samples groups and 
subgroups were 
classified with 
accuracies between 
80-100%   

Hands et 
al. (2016) 
[52] 

FT-IR 
(ATR-FTIR) 

Serum Non-cancer control 
Brain cancers 

Random 
forest 

Samples 
discriminated at 
92.8% sensitivity 

Smith et 
al. (2016) 
[53] 
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2D 
correlation 
analysis 

and 91.5% 
specificity. 

Raman Serum Non-cancer control 
Meningiomas 

PCA-LDA Sample 
discrimination at 
80% sensitivity and 
92% specificity 

Mehta et 
al. (2018) 
[20] 

Raman  Tissue 
(fresh,  
snap-
frozen, 
FFPE) 

Astrocytoma 
IDH-wildtype 
IDH-mutant 
Oligodendroglioma 

PCA-LDA 79%-94% sensitivity 
and 90-100% 
specificity to 
classify glioma 
subtypes and 91% 
sensitivity and 95% 
specificity to 
classify IDH 
mutation.  

Livermore 
et al. 
(2019) [54] 

FT-IR 
(ATR-FTIR) 

Serum Non-cancer control 
Brain cancers 

PLS-DA 
SVM 
Random 
forest 

Non-cancer vs. 
cancer 
discrimination at 
91% sensitivity and 
specificity. 
Glioblastoma vs. 
lymphoma 
discrimination at 
90.1% sensitivity 
and 86.3% 
specificity.  

Cameron 
et al. 
(2019) [55] 

FT-IR 
(ATR-FTIR) 

Serum Non-cancer control 
Brain cancers 

SVM Sample 
discrimination at 
93.2% sensitivity 
and 92.8% 
specificity 

Butler et 
al. (2019) 
[56] 

Raman 
(Imaging) 

Tissue 
(FFPE) 

Meningioma grade 
I 
Meningioma grade 
II 

PCA-QDA 
SPA-QDA 

Sample 
discrimination at 
96.2% accuracy 
(85.7% sensitivity 
and 100% 
specificity) 

Morais et 
al. (2019) 
[10] 
 

Raman 
(Handheld) 

Tissue 
(FFPE, 
fresh) 

Normal brain 
LGG 
HGG 
Meningiomas 
Metastases 
Lymphoma 

PCA-LDC Samples groups 
were discriminated 
at 90.3–99.6% 
accuracies (fresh 
tissue) and 88.0–
99.5% accuracies 
(FFPE) 

Bury et al. 
(2019) [57] 



35 
 

FT-IR 
(ATR-FTIR) 

Plasma Normal brain 
HGG 
LGG 
Meningioma 
Brain metastases 

PCA-LDC 
SVM 

Discrimination 
between normal vs. 
LGG vs. HGG at 
100% accuracy 
Discrimination 
between all groups 
at 97% accuracy 

Bury et al. 
(2019) [23] 

FT-IR 
(ATR-FTIR) 
Raman 

Tissue 
(fresh-
frozen) 

Normal brain 
Glioma 
Meningioma 

PCA-QDA 
GA-QDA 

Non-tumour vs. 
tumour were correct 
classified at 94% 
(Raman) and 97.2% 
(FT-IR) 

Bury et al. 
(2020) [16] 

FT-IR 
(ATR-FTIR) 

Tissue 
(FFPE) 

Meningioma grade 
I 
Meningioma grade 
II 
Meningioma grade 
I from Recurrence 

PLS-DA 79% accuracy 
(grade I vs. grade II) 
94% accuracy 
(grade I vs. grade I 
from recurrence) 
97% accuracy 
(grade II vs. grade I 
from recurrence) 

Lilo et al. 
(2020) [21] 

FT-IR 
(ATR-FTIR, 
Synchrotron) 

Serum 
Tissue 

Gliomas (IDH1 
mutated and wild-
type) 

LDA 
PLS-DA 

Discrimination of 
IDH1 samples using 
serum at 69.1% 
accuracy; and, using 
tissue at 82.9% 
accuracy 

Cameron 
et al. 
(2020) [58] 

FT-IR 
(ATR-FTIR) 

Serum Non-cancer control 
Glioblastoma 
Meningioma 
Lymphoma 
Metastasis 

PLS-DA 
SVM 
Random 
forest 

Discrimination 
between controls vs. 
brain cancers at 
sensitivity and 
specificity above 
90%. Discrimination 
brain lesions with 
accuracies above 
80%. 

Cameron 
et al. 
(2020) 
[41] 

ATR-FTIR: attenuated total reflection Fourier-transform infrared spectroscopy. FFPE: formalin-
fixed paraffin-embedded. LA: low-grade astrocytoma. AA: anaplastic astrocytoma. GBM: 
lioblastoma multiforme. HGG: high-greade glioma. LGG: low-grade glioma. GA-LDA: genetic 
algorithm linear discriminant analysis. LDA: linear discriminant analysis. PLS-DA: partial least 
squares discriminant analysis. PCA-LDA: principal component analysis linear discriminant 
analysis. PCA-SVM: principal component analysis support vector machines. SVM: support 
vector machines. PCA-QDA: principal component analysis quadratic discriminant analysis. 
SPA-QDA: successive projections algorithm quadratic discriminant analysis. PCA-LDC: 
principal component analysis linear discriminant classifier. GA-QDA: genetic algorithm 
quadratic discriminant analysis. 
Figures 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 

 

 

 

Sample 
preparation

Spectral 
acquisition Data analysis Validation

• Sample type: 
biofluid or tissue.

• Biofluid 
preparation: 
unthawing, drying, 
centrifugation, etc.

• Tissue preparation: 
fresh, snap-frozen, 
FFPE, etc.

• Acquisition mode: 
transmittance, 
reflectance, ATR, 
microscopy, 
imaging.

• Spectral resolution.
• Wavenumber range
• Raman: laser source 

wavenumber, 
power, exposure 
time, aperture.

• Raman filters: 
fluorescence, 
saturation, cosmic 
rays.

• File extension 
format.

• Pre-processing.
• Exploratory 

analysis: PCA, HCA.
• Sample splitting.
• Classification: LDA, 

QDA, PLS-DA, SVM.
• Feature extraction 

and selection: DBM 
spectra, PCA 
loadings, PLS-DA, 
SPA, GA.

• Cross-validation.
• Blind prediction of 

test samples.
• Calculation of 

quality parameters: 
accuracy, sensitivity, 
specificity, etc.

• Confusion matrices.
• Statistical test for 

the key spectral 
features.


