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ABSTRACT
Though based on abstractions of nature, current evolution-
ary algorithms and artificial life models lack the drive to
complexity characteristic of natural evolution. Thus this
paper argues that the prevalent fitness-pressure-based ab-
straction does not capture how natural evolution discovers
complexity. Alternatively, this paper proposes that natu-
ral evolution can be abstracted as a process that discovers
many ways to express the same functionality. That is, all
successful organisms must meet the same minimal criteria
of survival and reproduction. This abstraction leads to the
key idea in this paper: Searching for novel ways of meeting
the same minimal criteria, which is an accelerated model of
this new abstraction, may be an effective search algorithm.
Thus the existing novelty search method, which rewards any
new behavior, is extended to enforce minimal criteria. Such
minimal criteria novelty search prunes the space of viable
behaviors and may often be more efficient than the search
for novelty alone. In fact, when compared to the raw search
for novelty and traditional fitness-based search in the two
maze navigation experiments in this paper, minimal criteria
novelty search evolves solutions more consistently. It is pos-
sible that refining the evolutionary computation abstraction
in this way may lead to solving more ambitious problems
and evolving more complex artificial organisms.

Categories and Subject Descriptors: I.2.6 [Artificial
Intelligence]: Learning—connectionism and neural nets,
concept learning

General Terms: Algorithms

Keywords: Evolution of Complexity, Artificial Life, Nov-
elty Search, NEAT

1. INTRODUCTION
Paradoxically, although natural evolution lacks volitional

guidance, its products exhibit functionality unmatched by
the best efforts of human engineering. The field of biology
aims primarily to decipher the vast complexity discovered
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by the process of natural evolution. A deep philosophical
question that has implications for researchers in evolution-
ary computation (EC) and artificial life, as well as in biology,
is what about evolutionary search in nature has allowed such
high levels of complexity to be discovered [5, 21]?

This question is important to researchers in EC because
current evolutionary algorithms (EAs), although based on
abstractions of natural evolution, do not exhibit the same
drive towards complexity as natural evolution; EAs will fail
to solve a problem if the complexity required to solve is
prohibitively high (e.g. an intelligent autonomous robot)
[11, 38]. Similarly, artificial life models based on evolution
tend eventually to stagnate [6, 15, 30]. An important fea-
ture that may begin to explain this disparity between nature
and its attempted emulation is the difference between how
both methods guide search: EC models typically reward
progress towards a fixed goal while natural evolution allows
exploration of any design that meets the minimal criteria of
survival and reproduction.

The fitness function in EC is often a rough measure of
progress to a predetermined objective, as with most objec-
tive functions common in machine learning and optimization
[22]. Optimizing such fitness functions is an abstraction of
selection pressure in natural evolution; the implicit assump-
tion is that such optimization is an accurate abstraction of
the high-level process by which evolution discovers complex
features. However, a consensus in biology is building that
the pressure to maximize fitness may not be responsible for
complexity growth in natural evolution [12, 18, 21].

In fact, by optimizing the fitness function in EC search
often converges onto deceptive local optima that appear
promising but from which no local step in the search space
may improve the value of the fitness function. That is, be-
cause the fitness function is a heuristic, there is no guarantee
that it will reward the stepping stones in the search space ul-
timately necessary to reach the objective of the search. Thus
the measure in EC designed to encourage the evolution of
complex features may paradoxically inhibit progress.

In part to address this problem, unlike typical EC models,
an approach in neuroevolution (i.e. evolving artificial neu-
ral networks) called novelty search does not reward progress
towards an ultimate objective; instead evolution in novelty
search is open-ended, like open-ended evolutionary models
in artificial life [2, 6, 15, 30]. The main idea of novelty search
is to reward behavioral novelty as a proxy for the stepping
stones that a fixed fitness function may fail to reward [16].
Novelty search thus circumvents the problem of deceptive
local optima because it does not search for a predetermined



objective, but instead only for what is behaviorally different
from prior individuals. Importantly, in prior research nov-
elty search has been shown to effectively solve deceptive EC
problems [16, 23, 25].

Like novelty search, natural evolution also has no ulti-
mate goal and tends to accumulate novel forms. However,
natural evolution is not a direct or raw search for novelty
either; in natural evolution there may be no direct encour-
agement for novelty, nor will a novel organism necessarily be
reproductively viable. Instead, search in natural evolution
is guided by a binary criterion applied to each organism: By
logical necessity, the lineage of an organism that reproduces
will continue, while the lineage of an organism that fails to
reproduce will end. In other words, an interesting idea for
computational purposes is to abstract natural evolution as a
passive drift over all organisms meeting the minimal criteria
of survival and reproduction.

Thus a unifying aspect of all natural life is that every suc-
cessful organism from the very beginning exhibits this same
critical functionality of reproduction. Furthermore, because
novel organisms that meet the minimal criteria are preserved
by evolution, in nature different ways of life tend to accu-
mulate even though such accumulating diversity may not be
explicitly encouraged as in novelty search. These consider-
ations lead to a potentially useful new computational ab-
straction of evolution: Natural evolution can be abstracted
as a process that discovers many different ways to do the
same thing, i.e. to survive and reproduce.

Although in natural evolution the process of discovering
many ways to live is generally passive, i.e. novel organisms
may be preserved although they are not directly encouraged,
in a computational model the process can be accelerated
by actively rewarding novelty (as in novelty search). Ad-
ditionally, while the minimal criterion in natural evolution
must always be reproduction, there is no such restriction in
a computational model; any criteria can be chosen, allowing
a search subject to minimal criteria to relate to real-world
problems. Thus this paper introduces minimal criteria nov-
elty search (MCNS), an extension to the established novelty
search method and a new artificial abstraction of natural
evolution that searches for novel ways to satisfy the same
minimal criteria.

In addition to exemplifying a different abstraction of nat-
ural evolution, MCNS also addresses a practical limitation
of novelty search: In vast behavior spaces it may take a
long time for novelty search to reach a particular goal be-
havior. While the temptation in such cases is to partially
re-introduce the guidance of fitness, if the problem is de-
ceptive then the false compass of fitness may just as likely
impair search even more instead of help it. As a practical
alternative, it may be more effective to reduce the effective
size of the behavior space by enforcing minimal criteria such
that an individual is not allowed to reproduce unless it meets
all such minimal criteria. In contrast to searching for higher
fitness, no progress is directly encouraged by enforcing min-
imal criteria in MCNS because such criteria are met from
the first generation onwards.

To demonstrate the potential of MCNS, in this paper it
is compared to traditional objective-based search and to the
raw search for novelty in a robot maze navigation task and a
more difficult two-point navigation task. In preliminary val-
idation of the argument for MCNS, it solves both problems
more consistently than either of the other methods.

The conclusion is that enforcing minimal criteria in the
search for novelty can mitigate the problem of massive be-
havior spaces by exploiting a practical new abstraction of
natural evolution. Because this new abstraction may coarsely
capture the process by which natural evolution discovers
complex organisms, MCNS may thus begin to address the
complexity disparity between computational abstractions of
evolution and natural evolution itself.

2. BACKGROUND
This section reviews the NEAT algorithm used in the ex-

periments, complexity in natural evolution, and the novelty
search method that will be extended with minimal criteria.

2.1 NEAT
In experiments in this paper, behaviors are evolved that

are controlled by artificial neural networks (ANNs). Thus
a neuroevolution (NE) method is needed to underpin these
experiments. The NEAT method is appropriate because it is
widely applied [1, 3, 31, 32, 34, 35, 37] and well understood.

The NEAT method was originally developed to evolve
ANNs to solve difficult control and sequential decision tasks
[31, 32, 34]. Evolved ANNs control agents that select actions
based on their sensory inputs. Like the SAGA method [13]
introduced before it, NEAT begins evolution with a popu-
lation of small, simple networks and complexifies the net-
work topology into diverse species over generations, leading
to increasingly sophisticated behavior. A similar process of
gradually adding new genes has been confirmed in natural
evolution [19, 36]. This section briefly reviews the NEAT
method; for comprehensive introductions see Stanley and
Miikkulainen [32, 34].

To keep track of which gene is which while new genes
are added, a historical marking is uniquely assigned to each
new structural component. During crossover, genes with the
same historical markings are aligned, producing meaningful
offspring efficiently. Speciation in NEAT protects new struc-
tural innovations by reducing competition among differing
structures and network complexities, thereby giving newer,
more complex structures room to adjust. Networks are as-
signed to species based on the extent to which they share
historical markings. Complexification, which resembles how
genes are added over the course of natural evolution [19],
is thus supported by both historical markings and specia-
tion, allowing NEAT to establish high-level features early
in evolution and then later elaborate on them. Because the
approach in this paper is in part motivated by increasing
complexity in nature, NEAT’s principled ability to add new
genes makes a good match for such an investigation.

The next section reviews the phenomenon of increasing
complexity in natural evolution to begin to uncover its causes.

2.2 Complexity in Natural Evolution
The observation of complexity in natural evolution is im-

portant in both EC and artificial life because it hints at po-
tential missing ingredients in the algorithms that we employ
today that aim to abstract from nature. Our algorithms
still do not display the same tendency towards long-term
increasing complexity that we observe in nature.

This tendency is sometimes called the arrow of complexity
[5, 21]. For example, it is hard to dispute that humans are
more complex than their bacterial ancestors. What about
evolutionary search in nature causes complexity to increase?



This question is relevant because the most difficult problems
in search, e.g. an intelligent autonomous robot, may require
discovering a prohibitive level of solution complexity.

The topic of complexity in natural evolution is debated
across biology, artificial life, and evolutionary computation
[4, 12, 18, 20, 21, 24, 33]. One important question is whether
there is a selective pressure towards complexity in evolution
(i.e. does selection drive natural evolution to create “higher”
forms). While even Darwin may have believed that evolu-
tion was a progressive process (“as natural selection works
solely by and for the good of each being, all corporeal and
mental endowments will tend to progress towards perfection”
[7, p. 489]), such beliefs, especially when human-centric (i.e.
human beings are the pinnacle or inevitable result of evolu-
tion), have since been disputed [8, 12, 20, 26]. A potentially
heretical view that is more recently gaining attention is that
progress towards higher forms is not mainly a direct conse-
quence of selection pressure, but rather an inevitable passive
byproduct of random perturbations [12, 18, 21].

Researchers like Miconi [21] in artificial life, Sigmund [28]
in evolutionary game theory, and Gould [12], McShea [20],
and Lynch [17, 18] in biology are arguing that natural selec-
tion does not always explain increases in evolutionary com-
plexity. In fact, some argue that to the extent that fitness
(i.e. in nature, the differential ability to survive and repro-
duce) determines the direction of evolution, it can be dele-
terious to increasing complexity [18, 21, 28]. In other words,
rather than laying a path towards the next major innova-
tion, fitness (like the objective function in machine learning)
in effect prunes that very path away.

Gould [12] argues that a trend of increasing complexity is
not due to selection, but simply a byproduct of a hard lower
bound on the possible complexity of organisms (i.e. the mini-
mal complexity needed for a single cell to reproduce) without
a corresponding upper bound. Lynch [18], another biologist,
argues that selection pressure in general does not explain
innovation, and that non-adaptive processes (i.e. those not
driven by selection) are often undeservedly ignored.

These arguments lead to the idea that pressure to adapt
may not be the key ingredient in natural evolution that facil-
itates complexity growth. This insight is important because
most EC models are motivated by an abstraction of natural
evolution based on selection pressure. Thus in this paper an
alternative abstraction of natural evolution is suggested that
aims to coarsely abstract the elements of natural evolution
that lead to increasingly complex purposeful behavior.

This alternate abstraction is implemented as an extension
of novelty search, which is reviewed next.

2.3 Novelty Search
The problem with the objective-based search paradigm

that is common in EC models is that an objective function
(e.g. the fitness function) does not necessarily reward the
intermediate stepping stones that lead to the objective. The
more ambitious the objective, the harder it is to identify a
priori these stepping stones.

The approach suggested by Lehman and Stanley [16] is
to identify novelty as a proxy for stepping stones. That is,
instead of searching for a final objective, the learning method
is rewarded for finding any instance whose functionality is
significantly different from what has been discovered before.
Thus, instead of an objective function, search employs a
novelty metric.

Novelty search succeeds where objective-based search fails
by rewarding the stepping stones. That is, anything that is
genuinely different is rewarded and promoted as a jumping-
off point for further evolution. While we cannot know which
stepping stones are the right ones, if we accept that the
primary pathology in objective-based search is that it can-
not detect the stepping stones at all, then that pathology is
remedied. This idea is also related to research in curiosity
seeking in reinforcement learning [27].

EAs such as NEAT are well-suited to novelty search be-
cause the population that is central to such algorithms nat-
urally covers a range of behaviors. In fact, tracking novelty
requires little change to any evolutionary algorithm aside
from replacing the fitness function with a novelty metric.

The novelty metric measures how different an individual
is from other individuals, creating a constant pressure to do
something new. The key idea is that instead of rewarding
performance on an objective, the novelty search rewards di-
verging from prior behaviors. Therefore, novelty needs to
be measured.

The novelty of a newly generated individual is computed
with respect to the behaviors (i.e. not the genotypes) of an
archive of past individuals and the current population. The
aim is to characterize how far away the new individual is
from the rest of the population and its predecessors in be-
havior space, i.e. the space of unique behaviors. A good
metric should thus compute the sparseness at any point in
the behavior space. Areas with denser clusters of visited
points are less novel and therefore rewarded less.

A simple measure of sparseness at a point is the average
distance to the k-nearest neighbors of that point, where k
is a fixed parameter that is determined experimentally. The
sparseness ρ at point x is given by

ρ(x) =
1

k

kX
i=0

dist(x, µi), (1)

where µi is the ith-nearest neighbor of x with respect to
the distance metric dist, which is a domain-dependent mea-
sure of behavioral difference between two individuals in the
search space. The nearest neighbors calculation must take
into consideration individuals from the current population
and from the permanent archive of novel individuals. Can-
didates from more sparse regions of this behavioral search
space then receive higher novelty scores.

The current generation plus the archive give a compre-
hensive sample of where the search has been and where it
currently is; that way, by attempting to maximize the nov-
elty metric, the gradient of search is simply towards what is
new, with no other explicit objective.

Once objective-based fitness is replaced with novelty, the
underlying NEAT algorithm operates as normal, selecting
the most novel individuals to reproduce. Over generations,
the population spreads out across the space of possible be-
haviors, sometimes encountering an individual that solves
the problem even though progress towards the solution is
not directly rewarded.

In fact, there have been several successful applications of
novelty search in neuroevolution [16, 23, 25]. Novelty search
was introduced in Lehman and Stanley [16] and applied to a
deceptive maze task; these results were replicated in Mouret
[23] in combination with a multi-objective evolutionary al-
gorithm. Two other investigations have also demonstrated
that encouraging behavioral novelty is useful in evolving



adaptive ANNs (i.e. ANNs that learn during their lifetimes)
[25, 29]. These results were surprising because they estab-
lished than an algorithm with no knowledge of its objective
can often outperform one specifically rewarded for achieving
that objective! The culprit behind this result is deception,
which is often profoundly deleterious to traditional EC.

Nevertheless, novelty search is so open-ended that the
question naturally arises whether it can be more effectively
constrained without losing its open-ended character. The
main idea in this paper, introduced next, is such an exten-
sion of novelty search.

3. MINIMAL CRITERIA NOVELTY SEARCH
Although natural evolution is not overall explicitly a search

for novelty, there are several mechanisms in nature that do
encourage novelty, both explicitly and implicitly. Explicit
novelty search in natural evolution does sometimes result
from negative frequency dependent selection, in which phe-
notypically rare individuals are more successful [10, 14]. On
a more fundamental level, two properties of natural evolu-
tion, novelty preservation and niching, lead to an implicit
search for novelty over evolutionary time scales.

First, novelty in natural evolution is generally preserved
as long as a novel organism’s lineage continues to meet the
minimal criteria for selection. Second, a complementary pro-
cess, niching, encourages novelty. That is, by founding a new
niche (i.e. a new way to make a living), an organism may
avoid competition and exploit untapped resources [15]. A
new niche may also lead to other new niches that are only
reachable from or depend upon the precursor niche. The re-
sult of preservation and niching is an accumulation of novel
lifestyles; thus natural evolution can be abstracted at a high
level as a passive kind of novelty search subject to mini-
mal criteria, which is an alternative to the more common
interpretation of evolution as an adaptive competition that
underpins most of EC.

This view illustrates that biological evolution is not always
about competition; selection merely specifies that a lineage
that does not meet the minimal criterion of reproduction will
end. Competition, either from its own or competing species,
is only one reason that an individual may fail to meet this
minimal criterion; if the environment precludes an individual
from reproducing or mutations render an organism sterile,
then its lineage will also lose to natural selection.

The critical functionality of all organisms is their ability
to survive until they are able to reproduce. Thus, from this
point of view, all successful organisms ultimately have the
same functionality (i.e. to reproduce) but may execute this
functionality in vastly different ways (e.g. by being a beet or
a bear, but nonetheless reproducing). Furthermore, unlike
the objective of a typical fitness function in EC, this func-
tionality has existed since the very beginning of evolution.

Contrary to the discredited egocentric view of humanity
as the pinnacle of evolution [8, 12, 20, 26], the complexity
of macro-scale organisms such as humans is orthogonal to
the fundamental evolutionary goal of efficient reproduction.
That is, it is unnecessary for an organism to grow from a
single cell (the fertilized egg) to the scale of trillions of cells
(a developed human), when ultimately the organism’s con-
tribution to its offspring is yet again only the size of one
cell (i.e. a sperm or egg cell) [9, p. 259]. Thus, the com-
plex development cycle of large animals is a kind of Rube-
Goldbergian digression. Furthermore, when compared to

the offspring of macro-scale organisms, offspring of bacteria
are more robust [12] (i.e. they are able to survive in many en-
vironments unsuitable for larger animals), and are produced
much more quickly (i.e. on the order of minutes instead of
years) and efficiently (i.e. without the need to build trillions
of additional cells).

Hence, any forward progress in evolution is orthogonal to
meeting the minimal criterion of reproduction. However, the
diversity of living forms has increased. The reason such a
diversity including inefficient replicators such as mammals
continues to exist is precisely because natural evolution is
not a free-for-all competition: There are many niches that
support life, but only limited competition among them (e.g.
grass does not compete with grasshoppers). In fact, fill-
ing one niche often leads implicitly to further niches that
depend on the first. A proliferation of niches, as seen in
natural evolution, implies a corresponding proliferation of
varied lifestyles.

The conclusion is that perhaps natural evolution can be
abstracted computationally as a process that finds many
novel ways to express the same functionality. While in na-
ture the search is guided only through the passive filter pro-
vided by the minimal criteria of survival and reproduction,
in a computational abstraction the passive accumulation in
nature can be accelerated by searching directly for novelty
through the novelty search method. While in nature the
minimal criterion is always reproduction, in a computational
abstraction, the minimal criteria can be anything. In fact, it
may be possible to choose minimal criteria in a practical do-
main such that the “epiphenomenal complexity” that results
from novelty search subject to such criteria actually solves
real-world problems.

While the choice of minimal criteria in a particular domain
may require careful consideration because they add restric-
tions to the search space, such minimal criteria may provide
a principled way to reduce the behavior space relative to
novelty search alone, which may be sometimes infeasible.
This perspective motivates studying the search for novelty
subject to minimal criteria.

Extending novelty search to incorporate minimal criteria
is straightforward. The evaluation of an individual in the
domain need only additionally return whether the minimal
criteria are met, thereby complementing the individual’s be-
havioral characterization. If the minimal criteria are not
met, then novelty search simply assigns a novelty score of
zero to the individual and changes the failed individual’s be-
havioral characterization to a dummy value that reflects its
failure. For those individuals that meet the minimal criteria,
novelty search operates as normal, assigning novelty scores
to individuals based solely on relative behavioral novelty.

A practical concern when enforcing minimal criteria is
that until an individual is found that meets the criteria,
search is effectively random. That is, all individuals not
meeting the minimal criteria are viewed equally as failures
and only considered for reproduction if there are no individ-
uals that do pass the criteria. Thus, if an individual meeting
the minimal criteria is unlikely to appear in the initial pop-
ulation, it may be necessary to seed MCNS with a genome
specifically evolved that does meet the criteria.

While enforcing minimal criteria involves only minor changes
to the novelty search algorithm, the conceptual advance is
significant. It is possible that natural evolution’s ability to
create an explosion of interesting complexity and diversity



is an inevitable result of a search for many ways to do the
same thing. That “something” is the minimal criteria.

The next section describes experiments in a maze naviga-
tion domain designed to test the potential of minimal criteria
novelty search (MCNS).

4. EXPERIMENTS
One practical motivation for enforcing minimal criteria

during a search for novelty is to reduce the size of a vast
behavior space so that finding the goal behavior can become
more tractable. To verify the hypothesis that MCNS can be
more efficient than either the raw search for novelty or the
direct search for the objective in such large spaces, the maze
navigation domain introduced in Lehman and Stanley [16]
is revisited with a maze containing vast uninteresting areas
orthogonal to successful navigation.

Another motivation for MCNS is that, as a new abstrac-
tion of natural evolution, the search for many ways to do the
same thing (upon which MCNS is based) can sometimes effi-
ciently solve difficult problems by discovering complex poli-
cies. To explore this hypothesis, a more difficult extension of
the maze navigation domain is considered in which a robot
must navigate to two points instead of just the goal. This
task is hard because after reaching one of the points, the
robot must effectively adopt a different policy to reach the
remaining point, which is non-trivial. If the minimal crite-
rion is that an individual must always reach one of the points
to be reproductively viable, MCNS will in effect search for
many ways to reach that point, some of which may become
more complex and eventually reach the other point as well.

This paper’s experiments utilize NEAT, which has been
proven in many control tasks [3, 16, 31, 32, 34, 35], including
maze navigation [16, 31], which is the basis of the experi-
ments in this paper as well as the original novelty search
paper [16]. In both experiments, NEAT with MCNS will
be compared to NEAT with novelty search and traditional
fitness-based NEAT.

The next sections describes these experiments in detail.

4.1 Maze Navigation Experiment
The maze navigational domain in Lehman and Stanley

[16] is a good model for deception and behavior spaces in
general because it is easy to understand and visualize [16,
23]. In this domain, a robot controlled by an ANN must
navigate in a maze from a starting point to an end point in
a fixed time. The robot (figure 1) has six rangefinders that
indicate the distance to the nearest wall within the maze,
and four pie-slice radar sensors that fire when the goal is
within the pie-slice. The robot’s two effectors result in forces
that respectively turn and propel the robot.

If fitness is rewarded proportionally to how close the robot
ends from the goal, cul-de-sacs in the maze that lead close
to the goal but do not reach it are deceptive local optima
to which an objective-based search may converge. Addition-
ally, if the behavior of a robot is characterized as its final
Cartesian coordinate within the maze, large empty areas of
the maze represent uninteresting areas of the behavior space
that a raw search for novelty may waste evaluations explor-
ing. Thus the basic idea of this experiment is to create a
map in which there exists a large area orthogonal to reach-
ing the goal that can be pruned from the behavior space
through enforcing minimal criteria.

Therefore, as a preliminary test for MCNS, this experi-
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ment introduces a variation of the“hard maze” from Lehman
and Stanley [16] that has a larger behavior space (figure 2a).
The only difference from the original hard maze is that the
new maze is no longer fully enclosed; a navigational robot
may travel into the vast empty region outside the maze.

Problematically, a raw search for novelty may expend un-
necessary effort exploring this vast empty region of the map.
Additionally, because the deceptive cul-de-sacs in the maze
may confound an objective-based search, fitness-based NEAT
may often fail to discover a solution as well. On the other
hand, if a minimal criterion for reproduction is enforced such
that an individual must end within the original bounds of
the maze to be viable, the reduced behavior space may be
tractable for MCNS, which may thus more consistently solve
the maze than the other approaches.

Fitness-based NEAT, which will be compared to novelty
search and MCNS, requires a fitness function to reward
maze-navigating robots. The same fitness function from the
original formulation is used, which rewards a robot’s near-
ness to the goal at the end of an evaluation [16, 23]; that
is, the fitness f of a robot is defined as: f = bf − dg, where
bf is a constant bias and dg is the distance of the robot to
the goal at the end of the evaluation. This measure reflects
that the objective of the robot is to reach the goal. Further-
more, given a maze with no deceptive obstacles, this fitness
function defines a monotonic gradient for search to follow.

NEAT with novelty search, on the other hand, requires a
novelty metric to distinguish between maze-navigating robots.



Following the original formulation, the behavior of a robot
is defined as its location in the maze at the end of the eval-
uation [16, 23]; this measure reflects that what is important
in navigating a maze is where in the maze a robot ends up
at the end of an evaluation. The novelty metric is then the
squared Euclidean distance between the ending positions of
two individuals.

Finally, NEAT with MCNS distinguishes between behav-
iors by using the same novelty metric as NEAT with novelty
search, but additionally requires a set of minimal criteria
to restrict the behavior space. Because behaviors that end
outside the maze generally will have no relation to behav-
iors that navigate the maze, a simple criterion is that to be
reproductively viable, an individual must end an evaluation
within the maze. In this way, the behavior space is reduced
to a subset that has a clear relation to successful maze nav-
igating, although no behavior within this subset is a priori
favored over another. It is important to note that because
individuals that meet this particular minimal criterion are
common in the initial population, it is unnecessary to seed
evolution with a specifically-evolved genome.

The next section describes in detail the experiment in the
two-point navigation domain.

4.2 Two-point Navigation Experiment
This second experiment elaborates on the maze naviga-

tion domain by introducing a more ambitious objective; in-
stead of navigating to a single goal, the navigational robot
must reach two separate goal points in the maze. This sub-
tle change to the task relegates the objective behavior to a
smaller portion of the behavior space, especially if both goal
points are distant from each other and the starting loca-
tion. It is important to note that which goal point the robot
reaches first does not matter as long as both are reached.

To facilitate the robot’s ability to navigate to both goal
points, the network in figure 1 is augmented with an ad-
ditional set of four pie-slice radar sensors that indicate the
direction of the second goal point. Also, an input for both
goal points is added that is continually activated after the
corresponding goal is reached, enabling the robot to poten-
tially change its policy and proceed to the unreached goal.

A new map is introduced (figure 2b) that has two goal
points; the first point is in the lower-right corner of the map
while the second is in the upper-left. The maze is deceptive
because there are cul-de-sacs that lead close to both goal
points; these cul-de-sacs create barriers in the fitness land-
scape that may stymie a traditional objective-based search.
In contrast, the raw search for novelty must explore a vast
behavior space, and thus may often fail to find a solution in
a reasonable amount of time. For example, the raw search
for novelty will likely discover separate behaviors, i.e. one
that the leads to one goal point and one that leads to the
other goal point, but may take unreasonably long to dis-
cover the highly-specific combined behavior in the vast sea
of potential combinations. The main hypothesis is that only
MCNS can search a tractable area of the behavior space to
more consistently solve the problem.

Fitness-based NEAT, which will be compared to novelty
search and MCNS, requires a fitness function to reward the
navigational robots. Because the objective is to navigate to
both goal points, the fitness f is awarded based on how close
during an evaluation the robot approaches both goal points:
f = bf−dg1 +bf−dg2 , where bf is a constant bias, dg1 is the

closest the robot navigated to the first goal point, and dg2

is the closest the robot navigated to the second goal point.
NEAT with novelty search, on the other hand, requires a

novelty metric to distinguish between navigational robots.
Because the trajectory of the robot is important in the two-
point navigation domain, the behavior of the robot is defined
as its location in the maze sampled uniformly a fixed number
of times over the course of an evaluation. The novelty metric
is then the squared Euclidean distance between the position
vectors of two individuals. Thus, an individual that reaches
both points, although there is no direct bias to find such an
individual, will appear novel.

Finally, NEAT with MCNS uses the same novelty metric
as NEAT with novelty search, but additionally requires a
set of minimal criteria to restrict the behavior space. If the
minimal criterion is that the navigator must at least reach
the first goal point, then the knowledge of how to traverse
the maze and complete one of the two objectives is always
maintained. MCNS will in effect search for novel ways to
navigate that preserve the crucial functionality of reaching
the first goal point.

By enforcing this minimal criterion, the effective behavior
space is reduced to a smaller subset with clear relation to
the ultimate objective. The hypothesis is that MCNS can
efficiently explore such a subset to discover a behavior that
reaches both goal points, while a raw search for novelty may
take longer to succeed because the full behavior space is
significantly larger and contains mainly behaviors completely
orthogonal to two-point navigation.

Note that this minimal criterion, unlike the criterion in
the first experiment, requires seeding MCNS with an indi-
vidual that can already reach the first goal point because
such behaviors are unlikely to be found in the starting pop-
ulation. Thus, prior to running this experiment, for each of
the 100 runs a seed genome was evolved that can reach the
first goal point (seen in the lower right of figure 2b) by us-
ing the raw search for novelty and the same procedure from
the first experiment. To make the comparison fair, all three
of the compared methods are started with the seed genome
able to reach the first goal point.

4.3 Experimental Parameters
Because NEAT with MCNS, NEAT with novelty search,

and fitness-based NEAT differ only in whether they enforce
minimal criteria or in substituting a novelty metric for a
fitness function, they use the same parameters. All exper-
iments were run with a modified version of the real-time
NEAT (rtNEAT) package (available from
http://nn.cs.utexas.edu/keyword?rtneat) with a population
size of 500. The steady-state rtNEAT evolutionary algo-
rithm performs equivalently to generational NEAT [31].

Offspring had a 2% chance of adding a node, a 5% chance
of adding a link, and the weight mutation power is 0.4. Pa-
rameter settings are based on standard NEAT defaults and
were found to be robust to moderate variation. Runs con-
sisted of 500,000 evaluations, which is equivalent to 1,000
generations of 500 individuals in a generational EA.

The number of nearest neighbors checked in novelty search,
k, was set to 15, and is robust to moderate variation. The
minimum threshold of novelty before adding to the per-
manent archive of points, ρmin, was initialized to 3.0, but
changed dynamically: If 2,500 evaluations pass and no new
individuals have been added to the archive, the threshold is



lowered by 5%. If over four are added in the same amount
of evaluations, it is raised by 20%.

In the first experiment, as in the original formulation in
Lehman and Stanley [16], the robot has 400 timesteps to
navigate through the maze and the fitness bias fb was 300.
In the second experiment, the robot has 1,200 timesteps to
reach both points, and the fitness bias fb was 500. The posi-
tion of the robot is sampled three times during an evaluation
to construct the behavioral characterization.

5. RESULTS
The maze navigation task and the two-point navigation

task were run 100 times with fitness-based NEAT, NEAT
with novelty search, and NEAT with MCNS. Figure 3 high-
lights that in both tasks NEAT with MCNS evolves solutions
with significantly higher probability than the other two ap-
proaches after 500,000 evaluations (p < 0.01; Fisher’s exact
test).

6. DISCUSSION
The results support the hypothesis that reducing the be-

havior space through enforcing minimal criteria can some-
times increase the efficiency of novelty search. They also fur-
ther highlight the vulnerability of traditional fitness-based
evolution. Thus, MCNS is a way to focus the search for
novelty on an interesting subset of behaviors while still re-
maining agnostic to which of the behaviors in the viable
subset will ultimately lead to the objective.

Furthermore, the two-point navigation experiment demon-
strates that the search for many ways to do the same thing,
an abstraction of how natural evolution accumulates novelty
and complexity, can discover policies that exhibit complex-
ity orthogonal to meeting the minimal criteria but essential
to solving the problem. Thus, MCNS connects a coarse ab-
straction of natural evolution to solving real world problems.

While the empirical results show that MCNS can some-
times solve problems more consistently than other methods,
the claim is not that MCNS will always work well; if the min-
imal criteria is too stringent or if evolution is seeded with
an individual that is fragile and cannot be mutated without
violating the minimal criteria, then most evaluations may be
wasted and search will be inefficient. The minimal criteria
and the seed genome must be carefully considered just like
the fitness function in standard EC models.

Although MCNS is a practical search technique for solving
difficult EC problems, it also demonstrates that EC mod-
els need not always be derived from the prevalent fitness-
pressure-based abstraction of natural evolution. Because the
drive to complexity in natural evolution may in fact be op-
posed by selection pressure, further pursuing the pervasive
objective-based paradigm may yield little progress. Instead,
alternate abstractions such as MCNS that more accurately
abstract the high-level process by which natural evolution
discovers complexity may be a more appropriate basis for
solving highly ambitious problems.

Both the raw search for novelty and MCNS exhibit an
open-ended search process that in principle could continue
indefinitely to discover novel policies of increasing complex-
ity, which makes them relevant to artificial life research as
well. Yet the maze navigation and two-point navigation do-
mains offer limited potential for behaviors that a human
observer would find interesting. This limitation is in stark

contrast to natural evolution, which exhibits a vast diversity
of interesting forms and behaviors. Thus, in future research,
MCNS will be applied in a richer domain with more poten-
tial for captivating our intuitive notions of interestingness in
artificial life. The ambitious goal of such an experiment is to
create an explosion of complexity and diversity reminiscent,
though limited in scale, of that found in natural evolution.

In summary, paradoxically, the best way to learn to do
something new may often be to try to do the same thing
again.

7. CONCLUSIONS
This paper introduced minimal criteria novelty search, an

extension of the existing novelty search method that requires
individuals in novelty search to meet minimal criteria before
being eligible to reproduce. Inspired by a new abstraction
of natural evolution, MCNS addresses both practical issues
when searching through vast behavior spaces and the com-
plexity disparity between EC models and natural evolution.
In both a maze navigation task and a more difficult two-
point navigation task, MCNS evolved solutions more con-
sistently than either the raw search for novelty or objective-
based search. The conclusion is that by refining the abstrac-
tion upon which the evolutionary algorithm is based, the
resulting search method can solve practical problems while
exhibiting dynamics more akin to natural evolution.
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