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Abstract form of a conflict, called attack. For example, a logical argu-
ment can be a paifset of assumptions, conclusionyhere
the set of assumptions entails the conclusion according to
ment which interacts with one previous argument. We study Some Ioglpal Inference_schema. Then a conflict oceurs, for
the impact of such an addition on the outcome of the argu- '”Sta”Pev if the conclusion of an arg“mer?t qomrad":ts an as-
mentation system, more particularly on the set of its exten- ~ Sumption of another argument. The main issue for any ar-
sions. Different kinds of revision are defined accordingtothe ~ gumentation system is the selection of acceptable sets of ar-
change induced on the number or on the contents of the ex-  guments, called “extensions”, based on the way arguments
tensions. Two particular revisions are studied, for which we interact. The outcome of an argumentation system is often
propose characterization theorems. defined by the set of its extensions but, depending on the
applications, it may also be defined as the set of arguments
Keywords: Argumentation, belief revision, Knowledge Represen-  that belongs to every extension. Intuitively, an acceptable

In this paper, we address the problem of revising a Dung-style
abstract argumentation system, when we add a new argu-

tation, Multi-Agent Systems, Nonmonotonic Reasoning set of arguments must be in some sense coherent and strong
] enough (e.g. able to defend itself against all attacking argu-
1 Introduction ments). Itis convenient to explore the concept of acceptabil-

When an agent receives a new piece of information, she must ity through argumentation frameworks, and especially the
adapt its beliefs; this adaptation is not always easy because framework of (Dung 1995), which abstracts from the argu-
it may imply to drop some previous knowledge. Choosing ments nature, fimd reriresents interaction under the form of a
the better way to adapt itself to its environment is a very old binary relation “attack” on a set of arguments.
problem for human being, this is, perhaps, a reason why be- ~ When a new argument is added to a set of arguments to-
lief change theory has been so largely studied in the artificial gether with its interactions with ;he initial set of arguments,
intelligence community. The seminal work of Alchoom; the outcome of the argumentation system may change. In
Gardenfors and Makinson (AGM) (Alchoum, Gardenfors, this paper, we study the impact of this addition on the set of
and Makinson 1985) has settled a formal framework for rea- |n|t|.all extensions. Thl_s leads us to characterize the; possible
soning about belief change and introduced the concept of révision operations with respect to the change they induce on
“belief revision”. Belief revision consists in answering the the outcome. This study has two main applications, the first
question of what remains of the old beliefs after the arrival of ©On€ concerns the computation, while the second one belongs
a new piece of information. In this paper, we transpose this {0 the field of dialogue strategies. On the first hand, the in-
guestion into argumentation theory, and study the case of the terest for computational processing is that knowledge about
arrival of a new argument into an argumentation system.  the kind of revision that is done may help to deduce what are
Argumentation has become an influential approach to the ch&_m_ges_ in the extensions. For instance, knowing that
handle Al problems including defeasible reasoning, see thg revision is conservative aII'ows usto (J!educe that the re-
e.g. (Dung 1995; Bondarenko et al. 1997; Gresr, Ma- vision will not change the previous extensions. On the other
guitman, and Loui 2000; Prakken and Vreeswijk 2002; hand, knowing the impact of adding an argument may help
Amgoud and Cayrol 2002), and modeling agents inter- phoosmg t_he good one in order_ to achieve a given goal. For
actions, see e.g. (Amgoud, Maudet, and Parsons 2000; Instance, in order“to make a dialogue more open, an argu-
Kakas and Mor#is 2003). Argumentation is basically con- ~Mentinducing an “expansive revisionfust be added (see
cerned with the exchange of interacting arguments. This set Séction 5). _ .
of arguments may come either from a dialogue between sev-  1he paper is organized as follows, Section 2 recalls the
eral agents but also from the available (and possibly contra- Pasic concepts in argumentation and in revision theory. Sec-
dictory) pieces of information at the disposal of one unique tion 3 settles a definition of revision in argumentation. In

agent. Usually, the interaction between arguments takes the this paperwe restrict our study to the case of adding one
argument having only one interaction with an initial argu-

Copyright(© 2008, Association for the Advancement of Atrtificial -

Intelligence (www.aaai.org). All rights reserved. Theprecise definition of this notion is given in Definition 8.
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ment.So, the research reported here is a first step towards ae £ is admissibleiff £ is conflict-free and defends all its
study of general revision operators. A typology of revision elements (i.e£ C F(&)).

in argumentation is proposed, based on the impact of the re- ¢ ¢ is a preferred extensioiff £ is a maximal (w.rt. set-
vision under the set of extensions. A particular property for inclusion) admissible set.

the revision operator is to keep the added argument in each, ¢ is the grounded extensioiff £ is the least fixed point
extension. It is called “classical” and the cases when the re- (w.r.t. set-inclusion) of the characteristic functigh
vision operator is classical are described in Section 3.3. Sec- £ table extensioiff & | nflict-fr nd attack
tion 4 is dedicated to the study of two particular revision op- ¢ shas avle € eh'shod S Cg | ctiree and attacks
erators, namely the “decisive” and the “expansive” revision each argument which does not belong'to
operators. A last section discusses the related approaches in An argumentation framework can be represented as a di-
the literature. All the proofs and several important lemmas rected graph, called attack graph, where nodes are the argu-

are given in Appendix. ments and edges represent the attack relation. Throughout
the paper examples are using this graph representation.
2 Background Example1 A = {A,B,C,D,F} and R = {(4,B),
In this section, we recall the necessary background concepts (B, 4), (B,C), (C, D), (D, F), (F,C)}.
at work in argumentation systems and in revision theory. [ 5] | p|The admissible sets arer, {A}, {B}
and{B, D}. The preferred extensions are
2.1 Basic concepts in argumentation frameworks {A} and {B, D}. The grounded exten-

The present work lies in the frame of the general the- tsion_is@. {B, D} is the unique stable ex-
ory of abstract argumentation frameworks proposed by ension. .

Dung (Dung 1995). Such an abstract framework assumes Dung (Dung 1995) has proved the following results.

that a set of arguments is given, as well as the different con- Property 1 Let(A, R) be an argumentation framework.
flicts between them, and focuses on the definition of the sta- ;  thare is at least one preferred extension, always a unique

tus of arguments. grounded extension, while there may be zero, one or many

Definition 1 Anargumentation framewoik a pair (A, R.), stable extensions.

where A is a non-empty set anR is a binary relation on 2. Each admissible set is included in a preferred extension.

A, called attack relation. Letd, B € A, (A,B) € R or 3. Each stable extension is a preferred extension, the con-

equivalentlyAR B means that attacksB, or B is attacked verse is false.

by A. 4. The grounded extension is included in each preferred ex-
In the following, (A, R) is an argumentation framework, tension.

and we assume that the set of argumeAitss finite. It is 5. Each argument which is not attacked belongs to the

useful to extend the concept of attack to sets of arguments.  grounded extension (hence to each preferred and to each

Definition 2 Let A € A andS C A. S attacksA iff 3B ¢ stable extension). _

S such thatBRA. 6. If R is finite, the grounded extension can be computed by

. ) ) iteratively applying the functiotf from the empty set.
The main issue of any argumentation system is the selec-

tion of acceptable sets of arguments. Intuitively, an accept- 1 he presence of cycles in the attack graph has often raised
able set of arguments must be in some sense coherent and®oMe problems, namely for the stable semantics, for which it
strong enough (e.g. able to defend itself against every at- May happen that no extension exists. Note that some authors
tacking argument). An argumentation semantics defines the Only consider attack graphs without odd-length cycles, argu-
properties required for a set of arguments to be acceptable. N9 thatan odd-[ength cycle carries counterintuitive informa-
The selected sets of arguments under a given semantics ardion. The following results give properties of the preferred,
called extensions of that semantics. We recall the basic con- 9rounded and stable extensions depending on the existence
cepts used for defining usual semantics: of cycles in the attack graph.

- Property 2 (Dunne and Bench-Capon 2001; 2002) I¢et
Def|r_1|t|on 3_ LetA _e AandSC A. denote the attack graph associated w(ith, R).
* Sis confl|ct-free|ﬁ 24, B S such thatARB. 1. If G contains no cycle{A,R) has a unique preferred
o SdefendsA iff S attacks each argument which attacks extension, which is also the grounded extension and the

The set of arguments whichdefends will be denoted by unique stable extension.

F(S). F is called thecharacteristic functioof (A, R). 2. If & is the unique preferred extension @&, R), G con-
The literature proposes an increasing variety of seman- tains an odd-length cycle.

tics, refining Dung’s traditional ones (Baroni, Giacomin, and 3. |f (A,R) has no stable extensiog; contains an odd-
Guida 2005; Caminada 2006; Dung, Mancarella, and Toni  |ength cycle.

2006; Coste-Marquis, Devred, and Marquis 2005). In this 4 |t ¢ contains no odd-length cycle, preferred and stable
paper, only the most well-known semantics are considered:  gyiensions coincide.

the grounded, preferred and stable semantics. 5. If G contains no even-length cycleA, R) has a unique
Definition 4 Let& C A. preferred extension.
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In the following, we only consider argumentation frame-

express change minimalitk* 7 implies that revising by a

works such that the attack graph is connected. It does not conjunctionp A ¢ should not contain more information that

restrict generality, since any graph can be split into its con-
nected components.

2.2 Basic concepts in revision theory

In the field of belief change theory, the paper of AGM (Al-
chourbn, Gardenfors, and Makinson 1985) has introduced
the concept of “belief revision”. Belief revision consists in
answering the question of what remains of the old beliefs
after the arrival of a new piece of information. Beliefs are

what can be logically derived from the revision &f by p
together with the piece of informatian K* 8 means that,
when revisingK by p A ¢, every logical deduction from
and K = p should be kept as soon ass not contradictory
with K x p.

Note that in the following we are going to limit our study
to the case oK* 2. And we call “classical” an operator
which satisfieK*2. However this precise postulate may
not always be suitable in the argumentation framework, this

represented by sentences of a formal language. AGM have is developed in Section 3.3.

defined three types of belief change, namely contraction, ex-
pansion and revision. Expansion consists only in adding
information without checking its consistency with previous
beliefs. Contraction is an operation designed for removing
information. Revision consists in adding information while
preserving consistency. This last operation is the most inter-
esting one since inconsistency leads to un-exploitable infor-
mation. The main interest of AGM's work is the definition
of a set of postulates which should hold for any rational revi-
sion operator. As noticed in (So@ld994) these postulates
are founded on three principles:

e a consistency principle (the result should be consistent),

e a minimum change principle (as few beliefs as possible
should be modified),

e priority to the new piece of information principle (the new
piece of information should hold after the revision pro-
cess).

More formally, a revision operator associates to a set
of deductively closed formula& (encoding the initial be-
liefs?) and to a formula (encoding a new piece of informa-
tion), another set of beliefs denoted By« p. In order to be
“rational” the operator should satisfy the following AGM
postulates:

K*1 K xp=Th(K p).

K¥*2 pe K xp.

K*3 Kxp CTh(KU{p}).

K*4 If -p ¢ K,thenTh(K U{p}) C K *p.

K*5 le Kxpifandonlyifp < 1.

K¥6 If p«— gthenK xp =K xq.

K*7 K=x(pAq) CTh((K *p)U{q}).

K*8 If ~q ¢ KxpthenTh((Kxp)U{q}) C Kx(pAq).

K* 1 ensures that the result of the revision is deductively
closed. K* 2 imposes that the new piece of information
should belong to the revised belief§* 3 implies that be-
liefs after revision should not contain more information than
what can be logically derived frot” and the new piece of
informationp. K* 4 together withK* 3 means that when the
new piece of information is not contradictory with the old
beliefs then revision is simply an expansidt. 5 says that
the revised beliefs set is inconsistent if and only if the new
piece of information is itself inconsistenK* 6 expresses
that belief revision is syntax-independent. These first six

postulates are the basic revision postulates and the last two

2If BC is a set of formulas encoding these beliefs ttién=
Th(BC) whereT'h is the deductive closure operator.
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A last recall about belief change is the distinction between
belief revision and belief update (this was first established
in (Winslett 1988)). The difference is in the nature of the
new piece of information: either it is completing the knowl-
edge of the world or it informs that there is a change in the
world. More precisely, update is a process which takes into
account a physical evolution of the system while revision is
a process taking into account an epistemic evolution, itis the
knowledge about the world that is evolving. In this paper, we
suppose that we rather face a revision problem : the agent
was not aware of some argument that suddenly appears, it
means that the world has not changed but the awareness of
the agent has evolved.

3 Revision in argumentation

First, we introduce a formal definition of revision in argu-
mentation. The outcome of a revision process is the set of
extensions under a given semantics. Then, by considering
how the set of extensions is modified under the revision pro-
cess, we propose a typology of different revisions.

3.1 Definition

Informally, a revision occurs when a new argument is pre-
sented. Note that the case of adding a new argument which
is not connected toA, R) is trivial. It has only to be added

to each preferred extension. Indeed, revision is more inter-
esting when the new argument interacts with previous ones.
In this paper, which reports a preliminary study on revision
in argumentation, we restrict revision to the additiorerf
actlyone argumen¥ that hasexactlyone interactionZR X

or XRZ, whereX belongs toA.

In the following, we identify an argumentation framework
(A, R) with its associated attack gragh We write X € G
instead of “Xis an argument represented by a nod&; of
The set of extensions dfA, R) is denoted byE (with &,

..., &, denoting the extensions).

Revising(A, R) consists in adding an argumetitwhich
attacks (or is attacked by) an argumghof A. The revision
process produces a new framework represented by a graph

G’ and a new set of extensiolis (with &7, ..., &, denoting
the extensions).
revision withZ andi
(6. B) (¢ )

i=(Z,X)ori=(X,2)

Definition 5 LetG be an attack graph. Letbe a semantics.
LetX € G, Z ¢ G andi a pair of arguments (eithefX, 2)



or (Z,X)). LetG’ be the graph obtained froi by adding Example 3 Under the preferred (or stable) semantics, with
the nodeZ and the edge. Therevision operato® maps 1= (Z,4A)
(Z,i,G, s) to E' which is the set of extensions @f under nen E = {{A,C,F}, {A, D}, {B,D},

the semantics. {B, F}},
H H H H E, = Z’ C’ F ’ Z’ Ba D )
Let us mention several results which will be useful in the (Z,B F}}{{ b }

following. As we revise with only one new argument having
only one interaction with an already existing argument, it is
easy to prove that:

An opposite point of view enables to consider revisions
which raise ambiguity, by increasing the number of exten-
sions. This is the case for instance wh@rhas at least
Property 3 one non-empty extension agdhas strictly more extensions

. L . o, thangG. A slightly different situation occurs wheg has no
o If the new interaction i$Z, X), Z is not attacked irg’. extension or an empty one, whi% has more than one ex-
e Ifthe new interaction i$ X, Z), Z attacks no argument of  tension. In that case, revision brings some information, but

g'. is not decisive. Such revisions are callgagestioning. As
e The revision process introduces no cyclgin for selective revision, questioning revision does not make

] o ) sense under the grounded semantics.

As defined above, revising an argumentation framework , )
may change the set of extensions. Given a semantics, the Ex@mple 4 Under the preferred (or stable) semantics, with
modifications are more or less important. It depends on the * =
kind of interaction which is added and more precisely on
the status of the argument involved in that interaction. In
the next section, we propose a typology of different kinds

E={{A,D,F}},E = {{Z,B,C},
{Z,B,F},{Z,D,C},{Z,D,F}}

of revision according to how the set of extensions is modi-  Under the stable semantics, witk (Z, A)

fied. The next step is to characterize each kind of revision ‘E [pf—=c] g_g4

by providing conditions on the interaction ﬁ E = {{Z, B,F},{Z,B,G}}

3.2 Typology of revisions Pursuing along the previous line, we consider revisions
Let (A, R) be an argumentation framework aRdhe set of removing every extension, thus leading to a kind of' deci-
extensions of A, R) under a given semantics Different sional dead-end. A revision such thgthas no extension,
situations may be encountered in the general cisenay while G had at least one, is calladkstructive. Note that

be empty (implying that is the stable semantics), may be destructive decision makes sense only under the stable se-
reduced to a singletof&; } (where&; may be empty), or mantics.

may contain more than one extensid@h, ..., £,}. The sit- Example 5 Under the stable semantics, wit (Z, A)

uation with only one non-empty extension is convenient for [A}—{B}— I

the determination of the status of an argument. In contrast, Bl Tl tl E={{4,D,F},{4,D,G}},
when several extensions exist, different choices are avail- ‘ E =90

able. We have first considered revisions such gHdtas a

unique non-empty extension, while it was not the case¢for
Such a revision is calledecisive.

So far, the considered revisions have an impact on the
number of extensions. Now, we are interested in revisions
which modify the content of extensions, without modifying

Example 2 the number of extensions. The most interesting situation oc-
) i curs when each extension @f strictly includes one exten-
1. Under the stable semantics, witk (Z, 4) sion of G, the number of extensions being the same. Such
Before revisiorE = @, revisions are calledxpansive.
after revisionE’ = {{Z, B}} Example 6 Under the preferred (or stable) semantics, with
i=(B,2)

2. Under the grounded semantics, with (Z, A)
B =0 E = ({z.8)

3. Under the preferred semantics, witk (Z, A)

(5] E = {{A,C}, {A, D}},
a E = {{Z A,C},{Z A D}}

Y When nothing is changed, thatis= E’, the revision is
2] o] E- {{A}, {B,D}}, calledconservative.
E'={{Z, B,D}} . ,
Example 7 Under the preferred semantics, witk (B, Z)

A weaker requirement is the decrease of the number of E ,
choices. A revision such thé has strictly less extensions E={{}}J E'={{}}
thang, but still has at least two, is calleglective. Note that
selective revision does not make sense under the grounded Otherwise, it may happen that some extensions (and
semantics, since there is always a unique grounded exten-sometimes all of them) are altered. This is calleckering
sion. revision. It is the case for instance when each extension of
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G’ has a non-empty intersection with (but does not include)
an extension of.

Example 8 Under the grounded semantics, witk (7, A)

=_\’_/ E = {{4,D},E = {{Z,B,D}}

The above discussion can be summarized on the follow-

ing table.
E" = 2] Hi {et} {&r,.... &}
E= p>2
D
T {@}} coni(zrvatlve. ) n:&elrv aive decisive questioning
conservative
{&1} #3 expansive | questioning
altering
n < p:
questioning
(& _ n>p:
’ destructive selective
'g' } #4 decisive | n =p: .
" 15 9 conservative
= expansive
altering

With &; # @ and & # . Each cell of the table contains
the name of the corresponding revision. It can be checked
that cells with #i correspond to situations which cannot oc-
cur:

#1 and #2 The only acceptability semantics in which an ar-
gumentation framework may have no extension is the sta-
ble semantics. However, with the stable semantics, an ar-
gumentation framework cannot have an empty extension
when its set of arguments is not empty. And, by assump-
tion, the cases #1 and #2 correspond to argumentation
frameworks with non-empty sets of arguments (because
at leastX belongs tog and X and Z belong toG’). So

these cases cannot occur for all the acceptability seman-

tics used in this paper.

#3 Under the stable semantics, this case cannot occur for the

same reason as that given previously (cases #1 and #2).
Under the grounded semantics, @$ias one non-empty

extension, there exists at least one unattacked argument

W, so, if the added interaction is (X7), W is al-
ways unattacked an@’ has always one non-empty ex-
tension; and, if the added interaction is,(X), thenZ

is unattacked and it belongs to the grounded extension of
G’; s0,G’ cannot have an empty extension.

Under the preferred semantics, if the added interaction is
(Z, X), Z is unattacked and it belongs to the preferred
extensions ofG’; so these preferred extensions are not
empty. And, if the added interaction is (X), thenZ
does not attack the arguments&f so these arguments
also belong to a preferred extension@fand the pre-
ferred extensions are not empty.

In conclusion, this case cannot occur for all the accept-
ability semantics used in this paper.

#4 This case could appear only with the preferred semantics
(because with the grounded semantics there exists only

cannot be empty since the set of arguments is not empty).
If the added interaction is (ZX), Z can “remove” or
“create” extensions, but it belongs to each of them (be-
cause it is unattacked), $B cannot have an empty exten-
sion. And if the added interaction is (%), Z does not
attack the arguments éf, Vi, so these arguments belong
to the preferred extensions ¢f andG’ cannot have an
empty extension. Thus, this case cannot occur.

3.3 Classical revision in argumentation

Revising a knowledge base consists in changing its beliefs in
a minimal way in order to take into account a new piece of
information considered as “prior” (according to AGKA 2
postulate). However, the revision operators defined above
do not ensure at all that the new argument is accepted in
the new graph extensions. In this section, we study when
this property (called “classical”) holds for a given revision
operator.

Definition 6 The revision® is classicaliff G’ has at least
one extension and the added argumgnbelongs to each
extension ofj’.

Property 4 If the added interaction is (ZX), then the re-
vision is classical under the grounded and the preferred se-
mantics.

Moreover, ifG has no odd-length cycle then the revision
is also classical under the stable semantics.

Example 9 Under the grounded semantics:

,
ﬁ i E={{4,C}}E'= {{z}}

Example 10 Let us compute the extensions of the two fol-
lowing graphs under the preferred semantics:

_? E = {{4,C},{B}},
E/:{{Z,B},{Z,C}}
[a] 5] E = {{A,C},{B}},

E ={{Z A,C}}

Example 11 Under the stable semantics:

[al_[5]
ﬁ <—E]
The condition that; should not have an odd-length cycle

ensures the existence of at least one stable extension after
addingZ. It is a sufficient but not necessary condition.

Example 9 (continued): Before revision the stable exten-
sion is{A, C}, and after revision there is no stable exten-
sion.

E = {{A,C, F},{B,D}},
E = {{Z,C,F},{Z, B,D}}

Property 5 If the interaction is (X Z) such thatX is at-

tacked by each extension @fthen the revision is classical

under the grounded and the preferred semantics.
Moreover, ifG has at least one stable extension then the

one extension, and with the stable semantics, an extensionrevision is also classical under the stable semantics.
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Example 12 Under the grounded semantics:
[a—fB}—lc ,
E={{A}}.E' ={{Z A}}
[rJ—{p]

Example 13 Under the preferred or the stable semantics:

! Y E = {{A,C,G}, {A, D, F}},
[z] E ={{Z,A,C G}, {Z A D,F}}

Note that, under the grounded semanti&smust be at-
tacked and the fact that is not in the only extensio& of
E does not ensure that the revision is classical :

Example 14 Under the grounded semantics:

Wi

C'is notin&, and neverthelesg does not belong t6’.

£=¢={A}.
S,E=E = {{A}}.

As said before, revising a graph by one argument and (one

interaction) does not systematically lead to accept this argu-
ment. Hence, classicality is not the only property that is
worth being studied for revision operators.

4 Case study

In this section, we study two cases: the decisive revision
and the expansive revision. In the first case, after the re-
vision there is only one extension (so it is easy to take a

decision); in the second case, the number of extensions re-
mains unchanged but each new extension is a superset of an

extension which existed before the revision.

4.1 Decisive revision

Decisive revision makes possible a decision: before this re-
vision, in G there is either no acceptable set of arguments

(no possible conclusion), or too many acceptable sets of ar-

Theorem 2 Under the preferred semantics, if the added in-
teraction is(Z, X ), E = {{}} and there is no even-length
cycle inG, then the revision is decisive.

Example 15 Under the preferred semantics:

T E={{}}E'={{Z A,D}}
[}
Note that, if even-length cycles exist in the graph, the re-
vision may induce several extensions; this revision would be
a questioning one:

LTHE B-
0 B
B[] B ={{2,4,D},{2,4,F}}

For this reason, we have considered graphs without even-
length cycle in Theorem 2.

Note: under the stable semantics, we have not found any
characterization theorem for the decisive revision.

4.2 Expansive revision
A revision is said “expansive” when it does nothing but to
add new arguments in the existing extensions.

Definition 8 The revision® is expansivdff G andG’ have
the same number of extensions and each extensigH of
strictly includes an extension gf

Property 7 The expansive revision is classical.
Example 16 Under the grounded semantics:

sk

E’_{{ZA C,H,G}}
Example 6 glves also an illustration of the expansive revi-
sion under preferred and stable semantics.
Theorem 3 Under the grounded semantics with= {£},
if the added interaction is (ZX), X ¢ £ and€ # &, then
the revision is expansive.

guments (so too many possible conclusions), and after this Example 17 Under the grounded semantics:

revision there is only one acceptable set of argumeng®.in

Definition 7 The revision® is decisiveiff © applied tog,
WthE = g, 0rE = {{}}, orE = {&,..., &}, n > 2,
the result of® is G’ WithE' = {£'}, &' # @.

Property 6 If a revision is decisive then the added interac-
tionis (Z, X). A decisive revision is classical.
Example 2 (continued):

1. Under the stable semantics, Example 2.1 illustrates the
decisive revision witlt = @ andE’ = {{Z, B}}.

2. Under the grounded semantics, Example 2.2 illustrates
the decisive revision witk = {{}} andE’' = {{Z, B}}.

3. Under the preferred semantics, Example 2.3 illustrates
the decisive revision witk = {{A},{B, D}} andE’ =
{{Z.B,D}}.

Theorem 1 Under the grounded semantics, if the added in-
teraction is(Z, X) andE = {{}}, then the revision is deci-
sive.
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(=] - -/H E = {{A,C}},

E ={{Z AC,G
4 i. {{z.4.0.6y)
Theorem 4 Under the grounded semantics, if the added in-
teraction is (X, Z2), X ¢ £ and €& attacksX, then the revi-
sion is expansive anBl’ = {£ U {Z}}.

Example 18 Under the grounded semantics:

2]
a E = {{4}},E' = {{Z, A}

Theorem 5 Under the stable semantics, if the added inter-
actionis (X, 2), if E # @, andVi > 1, X ¢ &;, then the
revision is expansive and, £ = &, U {Z}.
Example 19 Under the stable semantics:

Elyy Ll E = {{A,C,F},{A,D, F}},

E ={{Z A C,F},{Z, A D,F
] o it b H
Note that, in an acyclic graph, Theorem 4 may be applied

under the stable semantics. It is a particular case of Theo-
rem 5.



Theorem 6 Under the preferred semantics, if the added in-

teraction is (X, Z), andVi > 1, &; attacks X, then the

revision is expansive and, £/ = &; U {Z}.

Example 18 (continued): Under the preferred semantics,

E={{A,C},{A,D}}andE' = {{Z,A,C},{Z, A, D}}
Note that when the initial graph is acyclic, Theorem 4 may

be applied under the preferred semantics. It is a particular
case of Theorem 6.

If the interaction is(Z, X'), weaker results can be ob-

tained. In that case, the revision is not expansive in the sense

that G’ may have more extensions th@nhowever, adding
Z to an extension of yields an extension dj’'.

Property 8 Under the stable semantics, if the added inter-
actionis (7 X), andVi > 1, X ¢ &;, thenVi, & U{Z} is
a stable extension @f'.

However, other stable extensions may appeaj’insee
Example 20 for instance. So the revision is not expansive.

Example 20 Under the stable semantics:

E = {{A}},

E = {{Zv A}7 {Z7 C}}

Note that in the particular case when the initial graph is

acyclic, Theorem 3 may be applied under the stable seman-

tics. And the obtained result is stronger than the result pro-
posed by Property 8. Another interesting property is:

Property 9 Under the preferred semantics, if the added in-
teraction is (4 X) andVi > 1, X ¢ &, thenVi, & =
& U{Z} is admissible irg’.
Moreover, if there is no odd-length cycle ¢h Vi, £/ =
& U{Z} is a preferred extension i@’.

Example 20 also shows that other preferred extensions
may appear iy’. And the following example illustrates the
first part of Property 9.

Example 21 Under the preferred semantics:

Bz E={}}

{} u{Z} is admissible irg’
butE’ = {{Z, B}}.

Note that in the particular case when the initial graph is

first case, the outcome is a new set of logical formulas,
whereas, in the second case, the outcome is a new set of
accepted arguments.

e Revision is a task in knowledge representation which is
strongly related to concepts such as inference and consis-
tency. The postulates for standard belief revision (AGM)
are built on a consistency notion, since it aims at incorpo-
rating a new piece of information while preserving con-
sistency. Moreover, “revision” has also been studied in
the framework of nonmonotonic theories (Witteveen and
van der Hoek 1997). Argumentation theory is linked to
nonmonotonicity, but postulates for nonmonotonic theo-
ries are also based on consistency and inference notions
that are not explicitly present in our framework. So, these
postulates are not suited for our problem. Some of the be-
lief revision postulates can be transposed (this is the case
for what we call classical revision), but other principles
must be proposed.

Our work is a preliminary step towards a formal revi-
sion in argumentation frameworks. And it departs from
previous work relating argumentation and revision. In-
deed, we have chosen to remain at an abstract level in this
preliminary study. We do not consider knowledge from
which arguments and interactions could be built. More pre-
cisely, there are many approaches that deal with adding
new pieces of information within an argumentation sys-
tem. The point of view adopted in this family of works is
different because of the status of the new piece of infor-
mation that is added. For instance, Wassermann (Wasser-
mann 1999), as well as (Falappa, Garand Simari 2004;
Paglieri and Castelfranchi 2005), define under which condi-
tions, expressed in terms of arguments, unjustified beliefs
should become accepted. The approach of (Pollock and
Gillies 2000) studies the properties of knowledge revision
under the argumentation point of vieve., the problem is to
generate a knowledge base in which each piece of informa-
tion is justified by “good” arguments.

Very recently, (Rotstein et al. 2008) have proposed
a warrant-prioritized revision operation, which consists in
adding an argument to a theory in such a way that this argu-
ment is warranted afterwards. Even if the underlying ideas
are similar, this work differs from our approach in at least
two points:

acyclic, Theorem 3 may also be applied under the preferred o First, in (Rotstein et al. 2008), arguments are given a
semantics and gives a stronger result than the one proposed  strycture through the subargument relation, and proper-

by Property 9.

5 Discussion and future works

In this paper, we transpose the basic question of revision
into argumentation theory. We propose a study of the im-
pact of the arrival of a new argument on the outcome of an
argumentation framework. The term "revision” is used by

analogy with traditional belief revision. However, there are

two main differences.

e The basic underlying formalism is different: in stan-
dard belief revision, logical formulas are used for knowl-

ties such as minimality, consistency and atomicity. And
the definition of warranted arguments relies upon an eval-
uation of argumentation lines. In contrast, our approach
remains at the most abstract level, and our sets of accepted
arguments are computed with the well-known extension-
based semantics.

e Secondly, the warrant-prioritized argument revision is de-
signed in order to satisfy the AGM postuldf&2, since
the added argument must be warranted in the revised the-
ory. Our work follows another direction. We propose an
extensive theoretical study of the impact of an addition

edge representation whereas, in this paper, an argumenta- on the outcome of an abstract argumentation framework,

tion framework represents the current knowledge. In the
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which enables us to define several kinds of revision.



Note that other crucial cognitive tasks linked to belief
change theory have already been transposed in the field of
argumentation, see for instance the work on merging pre-
sented in (Coste-Marquis et al. 2007).

A promising application of our work could be to design
dialogue strategies. Most of the works about dialogue strate-
gies consider that a dialogue is defined by a protocol giving
the set of legal moves and that a strategy selects exactly one
move (the move which must be done next). For instance,
(Bench-Capon 1998) proposes a selection strategy leading
to more cooperative dialogues. Other approaches propose
dialogue games for answering queries such as: does a given
initial argument belong to some extension? In that case, a
strategy helps to choose which argument must be defeated
in order that the initial argument should be accepted. (Am-
goud and Maudet 2002) have proposed heuristics that select
the less attackable arguments in a persuasion dialogue. In a
similar way, (Riveret et al. 2008) have proposed an optimal
strategy in order to win a debate based on the probability of
success of the argument and on the cost of this argument for
the agent. (Hunter 2004), with a more global approach, has
defined a strategy which builds an optimal subtree of argu-
ments maximizing the resonance with the agent goals and
minimizing their cost.

Our approach takes another point of view. We do not de-
fine any protocol and we do not restrict to a dialogue type.
Given a set of arguments which may interact, we are inter-
ested in the outcome of the argumentation system, that is the
set of extensions under a given semantics. In other words,
we study the impact of an argument with respect to the struc-
tural change induced on the set of extensions. We do not fo-
cus on a particular argument that should be accepted at the
end. We just want to act as to modify the form of that out-
come (by doing an expansive revision, or a decisive revision
for instance). The work reported in this paper enables us
to choose the right way of revising (which argument must
be affected by the revision, with which kind of interaction)
in order to obtain the new outcome. This is why we plan
to focus more on strategies for directing a dialogue than on
strategies for taking part in it. For instance, if a dialogue
arbitrator wants the debate to be more open then she should
rather force the next speaker to use arguments appropriate
for an expansive revision. If she wants the debate to be more
focused then only arguments appropriate for a selective (and
even decisive) revision should be accepted.

In order to continue this work, the following directions
seem to be of interest:

1. generalize our revision operation to the adding of one ar-
gument with several interactions and to the adding of a
subgraph of arguments;

. restate other existing standard belief revision postulates
and study the postulates for revision in nonmonotonic sys-
tems, in the case where arguments are built from knowl-
edge bases and the outcome of the argumentation frame-
work is a set of formulas;

. since decisive revision seems to be a “good” kind of re-
vision, it would be interesting to investigate the question
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“How to make theminimal chang@to a given argumen-
tation framework so that it has a unique non-empty ex-
tension?”. We thank an anonymous reviewer for this last
suggestion.
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A Appendix

Lemma 1 If the added interaction i$Z, X') and G’ has at least
one extensiod’ thenZ € &’.

Proof: This result is deduced from Properties 1 and 3.0

Lemma 2 Under the stable semantics, if the added interaction is
(X, Z) and&' is a stable extension ¢f then&’ \ {Z} is a stable
extension ofj.

Proof:

o &' is conflict-free inG’ so&’ \ {Z} is also conflict-free in
G’ anding.

o &' attacks each argument 6f which is not in&’. Z at-
tacks no argument, s¢ \ {Z} attacks all the arguments
which are notir€’. So&’ \ {Z} attacks all the arguments

of G which are not i€’ \ {Z}. So&’ \ {Z} is a stable
extension ofj.
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is (X, Z) and€&’ # o is a preferred extension ¢f then&’ \ {Z}
is admissible irg.

Proof:

o &' is conflict-free inG’ so&’ \ {Z} is also conflict-free in
G anding.

LetY € &'\ {Z}. Assume that there is an argument
U such thatURY thenU # Z (becauseZ attacks no
argument). £’ is a non-empty preferred extension @f,

so there is an argumeff € &’ such thatVRU, V #

Z, (always becausg attacks no argument). So, we have
V e &\ {Z},and€’\ {Z} defends all its arguments. So,
&'\ {Z} is admissible irg.

g
Lemma 4 If the added interaction i§X, Z) and there is no stable

extension irg thenE = E' = 2.

Proof:(reductio ad absurdum) Assume that there exists a sta-
ble extension oy’ denoted by¢’. Using Lemma 2G would
have an extension, which is contradictory with the assump-
tion.

Lemma5 If the added interaction i$X, Z) andE = {{}} then
E = {{}}.
Proof:(note that this case is impossible under the stable se-
mantics when at least one argument exists)

e under the grounded semantids: = {{}}, so there is no
unattacked argument {. Z is attacked so there is also no
unattacked argument & andE’ = {{}}.

under the preferred semantics (reductio ad absurdum): As-
sume that there exists a non-empty extensiaf afenoted

by £'. So there exist¥” such thaty” ¢ £’. EitherY = Z,
orY € G. In both casesY is attacked (because all ar-
guments ofG are attacked and the added interaction is
(X,2)), so& must defendy’. If Y = Z, & cannot be
reduced toY” (becauseZ attacks no argument and cannot
defenditself). S€'\{Z} £ 2. fY # Z,Y € &'\{Z},
and&’ \ {Z} # @. Due to Lemma 3£’ \ {Z} is admis-
sible inG and so&’ \ {Z} C & with £ being a preferred
extension ofj. SoG has a non-empty extension, which is
in contradiction with the assumption.

O

Lemma 6 If the added interaction i$X, Z) and there is at least

one non-empty extensiondh E = {&1, ..., &}, thenvi > 1:

e either&; is an extension off’ (it is the case whe#; does not
attack X),

e or & U{Z} is an extension of’ (it is the case whe#; attacks
X).
Proof:

o under the grounded semantics €E£{&} andE’ = {&'}):
Due to the fact thaR. is finite, we havef = U;>1F*(2)
and&’ = U;>1F"(2). LetS be a set of arguments 6f
First, asZ attacks no argument df, it is easy to prove that
F(8) € F/(S). Then, it follows by induction ori > 1
that F*(@) C F"(@). So,E C &'. Secondly, as¥ is the
unique attacker o, it is easy to check thaf attacksX
iff Z € F'(S). So we have eithe$ attacksX and.F'(S)
=F(S)u{Z}, or S does not attack’ and.F'(S) = F(S).
Now, we consider two cases : eith€rattacksX or not.
If £ attacksX, Z € F'(£), which is included inF’'(£").



And by definition of the grounded extensiaR;(£’) is &’
So, if £ attacksX, £ U {Z} C &'. Conversely,F'(£)=
FEYU{Z}=EU{Z}. So,F (Eu{zZ})=F(E)u{Z}
= £ U {Z}. By definition of the grounded extension gf
(least fixed point), it follows thaf’ C £ U {Z}. So, we
have proved that if attacksX, &' =& U {Z}. If £ does
not attackX, F'(€) = F(&) = £€. So, by definition of the
grounded extension @’ (least fixed point)g’ C £. So,
we have proved that i does not attack’, £’ = €.

e under the stable semanticsi, &; is conflict-free inG’.
Moreover, if X € &; thenZ ¢ &, (becauseX attacksZ?)
andé; is a stable extension ¢f . X is the unique attacker
of Z. If X ¢ &;, & U {Z} is conflict-free. Moreover, in
g, &; attacks all the arguments which are no€in so, in
G', & U {Z} attacks all the arguments which are not in
& U{Z}; s0&; U {Z} is a stable extension oF .

e under the preferred semanticg: attacks no argument of
G, soVi, &; is admissible irg’. So there exists a preferred
extensiong; of G’ including &;. ButZ ¢ &;, so&; C
&\ {Z}. Due to Lemma 3¢; \ {Z} is admissible irg,
so there exists > 1 suchthat; C £;\{Z} C &. Using
the definition of a preferred extension (C-maximal among
the admissible sets), we can conclude that £;\{Z} =
Ex. So, eithe; = & (f Z ¢ &), or & = & U{Z} (if
Z € &;). Moreover, ifZ € £}, £; defendsZ so&; attacks
X and sag; = £;\{Z} attacksX . Conversely, i; attacks
X, & defendsZ andé&; U {Z} is conflict-free inG’. So,
& U{Z} isadmissible ing" andZ € &;.

O

Lemma 7 If the added interaction i$X, Z), then the number of
extensions is preserved by the revision.

Proof: Due to Lemma 4 (resp. Lemma 5), B = & (resp.

E = {{}}) then the revision does not create new extensions.

Let us study the case wheke = {&1,...,&,},n > 1 and

Vi, & # o

e under the stable semantics: Due to Lemm6; 1 either
X € & andé; is an extension of)’, or X ¢ &; and
& U{Z} is an extension of’. So,G’ has at least as many
extensions ag. Let & be an extension of’. Due to
Lemma2£;\{Z} is an extension of. Let&; = £\ {Z}.
EitherZ € £ and thert} is&;U{Z}, or Z ¢ £} and then
&; = &; is an extension of. So,G andG’ have the same
number of extensions.

e under the preferred semantics: Due to Lemmai6> 1
either&; does not attacl” and¢; is an extension of’, or
&; attacksX and&; U{Z} is an extension of’. So,G’ has
at least as many extensions@s Let £; be an extension
of G'. Due to Lemma 3¢; \ {Z} is admissible ing. So
there exists’;, an extension of such that; \ {Z} C &..

— Either&; attacksX, and using Lemma &; U {Z} is an
extension off’. So,&; C £;U{Z}, and a<; is maximal
admissible ing’, & = & U {Z}.

— Or &; does not attackX’, and using Lemma €£; is an
extension ofg’. As &; is maximal admissible i, we
haveZ ¢ &} and&; = £\ {Z} = &:.

So,G andg’ have the same number of extensions.
O

Lemma 8 LetS be a set of arguments ¢f such thatX ¢ F(S).
If the added interaction i$Z, X ), thenF(S) C F'(S)

Proof: LetY € F(S). If Y is not attacked i then, due to
the fact tha’” # X, Y is not attacked iy, soY € F'(S).
Consider the case whé is attacked inG and assume that
the argument! is the attacker ot in G’. EitherA € G and
S defendsY againstA, soS attacksA andY € F'(S), or
A = Z andX =Y which is impossible. d

Proof of Property 4: Due to Property 1 and Lemma 1, each ex-
tension ofG’ containsZ. If G has no odd-length cycle, as revision
introduces no cycle, the@’ has no odd-length cycle. Henog,
has at least one stable extension (Property 2.4). O

Proof of Property 5:

e Grounded semantics: The only extenstbof G contains at least
the argument that attack¥, so £ is a non-empty extension.
Lemma 6 may be applied and eitt@r= £ or &’ = £ U {Z}.
Z is only attacked byX so Z is defended by in G, and then
Z e F(E). K& =& F(&) = F'(&). By definition of£’,
we havet’ = F'(£'), so& = &' = F'(€), which contradicts the
factthatZ € F'(€). Hence&' = £ U {Z}.

o Preferred semantics: Léf be a preferred extension 6f. As-
sume thaZz ¢ &/ then&! is conflict-free inG. &/ is admissible
in G sinceZ attacks no argument. Moreover, &sis an exten-
sion of G’, £/ is maximal admissible iy and so is a preferred
extension ofj. SinceX is attacked by each preferred extension
of G, we know that€] attacksX, so X ¢ & and so€; U {Z}
is conflict-free inG’. Moreover,&; defendsZ. It follows that
& U{Z} is admissible irg’. That contradicts the fact th&f is
a preferred extension @’ not containingZ. So Z belongs to
each preferred extension 6f.

e Stable semantics: L&t/ be a stable extension ¢f. Assume
thatZ ¢ £ then&; attacksZ. SinceX is the only attacker of
Z,X € &.. Moreover, as] is a subset of, it is also a stable
extension ofG. That contradicts the fact that each extension of
G attacksX. SoZ belongs to each stable extensiorgof

O

Proof of Property 6:

e E = g andE’' = {£'} (that case can appear only under the
stable semantics): The revision creates an extension, that is im-
possible if we add an attacked argument [emma 4]; so the
added interaction i6Z, X ).

e E = {{}} andE’ = {£’} (that case can appear only under the
grounded and preferred semantics since at least one argument
exists): IfE = {{}} and the added interaction (X, Z) then
E’ = {{}} [cf. Lemma 5]; so the added interaction(ig, X).

e E = {&,...,& ) andE’ = {&'} (under the stable or pre-
ferred semantics): The revision removes some extensions, that
is impossible if we add an attacked argumenftlLemma 7]. So
the added interaction i&Z, X).

Now, if the added interaction i6&Z, X), each extension of’
containsZ [cf. Lemma 1]. SoZ € &’, and the revision is classical.
O

Proof of Theorem 1: In G’, Z is not attacked. So, due to
Property 1.5,7Z belongs to the grounded extension. @ohas a
grounded extension which is not empty. O

Proof of Theorem 2: The added interaction i&Z, X ), soZ is not
attacked; it belongs to each preferred extensanRroperty 1.5].
Moreover, there is no even-length cyclegnso there is no even-
length cycle inG’. G’ has only one preferred extension [Efrop-
erty 2.5], which is not empty (it contains). O
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Proof of Property 7:

e |f the added interaction is (ZX): due to Lemma 1Z belongs
to each extension @’; so the revision is classical.

¢ If the added interaction is (XZ): due to Lemma 6Y4, either
& =&, or& = & U{Z}. Because the revision is expansive,
we havef; = & U {Z}; so the revision is classical.

d

Proof of Theorem 3: Due to the fact thaR is finite, we have
E = U;j»1 F (@) and€’ = U;>1F*(@). We prove by induction
on: > 1thatF' (@) C F"*(2).

Basic case (= 1): If Y € F(o) thenY is not attacked irg
and due to the fact thaX’ ¢ &£, we haveY # X andY is not
attacked ing’ andY € F'(@).

Induction hypothesis (fot < i < p, F (@) C F'(2)): let
S = FP(@) andS’ = F'P(o). Sis a set of arguments &
and X ¢ F(S) (sinceX ¢ £). So Lemma 8 may be applied
and we haveF(S) C F/(S). Using the induction hypothesis, we
also haveS C S’. Moreover, by definition” is monotonic. So
F(S) = Frti(@) C F/(S) C FI(S') = F*H(@).

So,£ C &'. Moreover,Z is not attacked, s& € &£’ (cf Prop-
erty 1.5). Scf ¢ &'\ |

Proof of Theorem 4: £ # @ sincef attacksX. So Lemma 6
appliesand’ = £ U {Z}. O

Proof of Theorem 5: X is the only attacker o and X ¢ &;;
so &; U {Z} is conflict-free. Moreover, irg, &; attacks all the
arguments which are not ify; so, inG’, & U {Z} attacks all the
arguments which are not ifi; U {Z}; so & U {Z} is a stable
extension of;’. Due to Lemma 7¢G’ andG have the same number
of stable extensions. So, the stable extensior¥ afre exactly the
&g U {Z} O

Proof of Theorem 6: Vi, &; attacksX so X ¢ &;. It follows that

& U{Z} is conflict-free inG’. Vi, &; defendsZ againstX, and¢;

is admissible, s&; U {Z} is admissible irG’. Now, we prove that

& U{Z} is C-maximal admissible ig’. Assume that it is not the
case:3&; preferred extension @’ such tha€; 2 & U {Z}. Due

to Lemma 3£7\ {Z} is admissible ig. So,&; ¢ £;\{Z}, which

is in contradiction with the fact th&,; is a preferred extension 6f.
So,Vi, & U {Z} is a preferred extension ¢f . Due to Lemma 7,

G’ andG have the same number of preferred extensions. So, the
preferred extensions ¢f are exactly the; U {Z}. O

Proof of Property 8: Vi > 1, X & &;, soZ attacks no argument
of &, and&; U {Z} is conflict-free inG’. Let A ¢ & U {Z}.
A ¢ & andA € G. & is stableg; attacksA, so&; U {Z} also
attacksA. So&; U {Z} is a stable extension oF . O

Proof of Property 9: Vi > 1, X ¢ &; so&; U {Z} is conflict-free
ing’. Let A € & U {Z} being attacked iig’. Since no argument
attacksZ, A # Z,s0A € &;. SinceX & &, A # X,s0A
is attacked ing. &; is admissible inG, so&; defendsA and then
& U {Z} also defendst. So,&; U {Z} is admissible irg’.

If there is no odd-length cycle i, preferred and stable exten-
sions coincide. So, Property 8 may be applied. a
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