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Abstract

In this paper, we address the problem of revising a Dung-style
abstract argumentation system, when we add a new argu-
ment which interacts with one previous argument. We study
the impact of such an addition on the outcome of the argu-
mentation system, more particularly on the set of its exten-
sions. Different kinds of revision are defined according to the
change induced on the number or on the contents of the ex-
tensions. Two particular revisions are studied, for which we
propose characterization theorems.

Keywords: Argumentation, belief revision, Knowledge Represen-
tation, Multi-Agent Systems, Nonmonotonic Reasoning

1 Introduction
When an agent receives a new piece of information, she must
adapt its beliefs; this adaptation is not always easy because
it may imply to drop some previous knowledge. Choosing
the better way to adapt itself to its environment is a very old
problem for human being, this is, perhaps, a reason why be-
lief change theory has been so largely studied in the artificial
intelligence community. The seminal work of Alchourrón,
Gärdenfors and Makinson (AGM) (Alchourrón, G̈ardenfors,
and Makinson 1985) has settled a formal framework for rea-
soning about belief change and introduced the concept of
“belief revision”. Belief revision consists in answering the
question of what remains of the old beliefs after the arrival of
a new piece of information. In this paper, we transpose this
question into argumentation theory, and study the case of the
arrival of a new argument into an argumentation system.

Argumentation has become an influential approach to
handle AI problems including defeasible reasoning, see
e.g. (Dung 1995; Bondarenko et al. 1997; Chesñevar, Ma-
guitman, and Loui 2000; Prakken and Vreeswijk 2002;
Amgoud and Cayrol 2002), and modeling agents inter-
actions, see e.g. (Amgoud, Maudet, and Parsons 2000;
Kakas and Moräıtis 2003). Argumentation is basically con-
cerned with the exchange of interacting arguments. This set
of arguments may come either from a dialogue between sev-
eral agents but also from the available (and possibly contra-
dictory) pieces of information at the disposal of one unique
agent. Usually, the interaction between arguments takes the
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form of a conflict, called attack. For example, a logical argu-
ment can be a pair〈set of assumptions, conclusion〉, where
the set of assumptions entails the conclusion according to
some logical inference schema. Then a conflict occurs, for
instance, if the conclusion of an argument contradicts an as-
sumption of another argument. The main issue for any ar-
gumentation system is the selection of acceptable sets of ar-
guments, called “extensions”, based on the way arguments
interact. The outcome of an argumentation system is often
defined by the set of its extensions but, depending on the
applications, it may also be defined as the set of arguments
that belongs to every extension. Intuitively, an acceptable
set of arguments must be in some sense coherent and strong
enough (e.g. able to defend itself against all attacking argu-
ments). It is convenient to explore the concept of acceptabil-
ity through argumentation frameworks, and especially the
framework of (Dung 1995), which abstracts from the argu-
ments nature, and represents interaction under the form of a
binary relation “attack” on a set of arguments.

When a new argument is added to a set of arguments to-
gether with its interactions with the initial set of arguments,
the outcome of the argumentation system may change. In
this paper, we study the impact of this addition on the set of
initial extensions. This leads us to characterize the possible
revision operations with respect to the change they induce on
the outcome. This study has two main applications, the first
one concerns the computation, while the second one belongs
to the field of dialogue strategies. On the first hand, the in-
terest for computational processing is that knowledge about
the kind of revision that is done may help to deduce what are
the changes in the extensions. For instance, knowing that
the revision is conservative allows us to deduce that the re-
vision will not change the previous extensions. On the other
hand, knowing the impact of adding an argument may help
choosing the good one in order to achieve a given goal. For
instance, in order to make a dialogue more open, an argu-
ment inducing an “expansive revision”1 must be added (see
Section 5).

The paper is organized as follows, Section 2 recalls the
basic concepts in argumentation and in revision theory. Sec-
tion 3 settles a definition of revision in argumentation. In
this paper,we restrict our study to the case of adding one
argument having only one interaction with an initial argu-

1Theprecise definition of this notion is given in Definition 8.
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ment.So, the research reported here is a first step towards a
study of general revision operators. A typology of revision
in argumentation is proposed, based on the impact of the re-
vision under the set of extensions. A particular property for
the revision operator is to keep the added argument in each
extension. It is called “classical” and the cases when the re-
vision operator is classical are described in Section 3.3. Sec-
tion 4 is dedicated to the study of two particular revision op-
erators, namely the “decisive” and the “expansive” revision
operators. A last section discusses the related approaches in
the literature. All the proofs and several important lemmas
are given in Appendix.

2 Background
In this section, we recall the necessary background concepts
at work in argumentation systems and in revision theory.

2.1 Basic concepts in argumentation frameworks
The present work lies in the frame of the general the-
ory of abstract argumentation frameworks proposed by
Dung (Dung 1995). Such an abstract framework assumes
that a set of arguments is given, as well as the different con-
flicts between them, and focuses on the definition of the sta-
tus of arguments.

Definition 1 Anargumentation frameworkis a pair〈A,R〉,
whereA is a non-empty set andR is a binary relation on
A, called attack relation. LetA, B ∈ A, (A,B) ∈ R or
equivalentlyARB means thatA attacksB, or B is attacked
byA.

In the following,〈A,R〉 is an argumentation framework,
and we assume that the set of argumentsA is finite. It is
useful to extend the concept of attack to sets of arguments.

Definition 2 Let A ∈ A andS ⊆ A. S attacksA iff ∃B ∈
S such thatBRA.

The main issue of any argumentation system is the selec-
tion of acceptable sets of arguments. Intuitively, an accept-
able set of arguments must be in some sense coherent and
strong enough (e.g. able to defend itself against every at-
tacking argument). An argumentation semantics defines the
properties required for a set of arguments to be acceptable.
The selected sets of arguments under a given semantics are
called extensions of that semantics. We recall the basic con-
cepts used for defining usual semantics:

Definition 3 LetA ∈ A andS ⊆ A.

• S is conflict-freeiff ∄A,B ∈ S such thatARB.
• S defendsA iff S attacks each argument which attacksA.

The set of arguments whichS defends will be denoted by
F(S). F is called thecharacteristic functionof 〈A,R〉.

The literature proposes an increasing variety of seman-
tics, refining Dung’s traditional ones (Baroni, Giacomin, and
Guida 2005; Caminada 2006; Dung, Mancarella, and Toni
2006; Coste-Marquis, Devred, and Marquis 2005). In this
paper, only the most well-known semantics are considered:
the grounded, preferred and stable semantics.

Definition 4 LetE ⊆ A.

• E is admissibleiff E is conflict-free and defends all its
elements (i.e.E ⊆ F(E)).

• E is a preferred extensioniff E is a maximal (w.r.t. set-
inclusion) admissible set.

• E is thegrounded extensioniff E is the least fixed point
(w.r.t. set-inclusion) of the characteristic functionF .

• E is a stable extensioniff E is conflict-free and attacks
each argument which does not belong toE .

An argumentation framework can be represented as a di-
rected graph, called attack graph, where nodes are the argu-
ments and edges represent the attack relation. Throughout
the paper examples are using this graph representation.

Example 1 A = {A,B,C,D, F} and R = {(A,B),
(B,A), (B,C), (C,D), (D,F ), (F,C)}.

B C D

A F

The admissible sets are∅, {A}, {B}
and{B, D}. The preferred extensions are
{A} and {B, D}. The grounded exten-
sion is∅. {B, D} is the unique stable ex-
tension.

Dung (Dung 1995) has proved the following results.

Property 1 Let 〈A,R〉 be an argumentation framework.

1. There is at least one preferred extension, always a unique
grounded extension, while there may be zero, one or many
stable extensions.

2. Each admissible set is included in a preferred extension.
3. Each stable extension is a preferred extension, the con-

verse is false.
4. The grounded extension is included in each preferred ex-

tension.
5. Each argument which is not attacked belongs to the

grounded extension (hence to each preferred and to each
stable extension).

6. If R is finite, the grounded extension can be computed by
iteratively applying the functionF from the empty set.

The presence of cycles in the attack graph has often raised
some problems, namely for the stable semantics, for which it
may happen that no extension exists. Note that some authors
only consider attack graphs without odd-length cycles, argu-
ing that an odd-length cycle carries counterintuitive informa-
tion. The following results give properties of the preferred,
grounded and stable extensions depending on the existence
of cycles in the attack graph.

Property 2 (Dunne and Bench-Capon 2001; 2002) LetG
denote the attack graph associated with〈A,R〉.

1. If G contains no cycle,〈A,R〉 has a unique preferred
extension, which is also the grounded extension and the
unique stable extension.

2. If ∅ is the unique preferred extension of〈A,R〉, G con-
tains an odd-length cycle.

3. If 〈A,R〉 has no stable extension,G contains an odd-
length cycle.

4. If G contains no odd-length cycle, preferred and stable
extensions coincide.

5. If G contains no even-length cycle,〈A,R〉 has a unique
preferred extension.
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In the following, we only consider argumentation frame-
works such that the attack graph is connected. It does not
restrict generality, since any graph can be split into its con-
nected components.

2.2 Basic concepts in revision theory
In the field of belief change theory, the paper of AGM (Al-
chourŕon, G̈ardenfors, and Makinson 1985) has introduced
the concept of “belief revision”. Belief revision consists in
answering the question of what remains of the old beliefs
after the arrival of a new piece of information. Beliefs are
represented by sentences of a formal language. AGM have
defined three types of belief change, namely contraction, ex-
pansion and revision. Expansion consists only in adding
information without checking its consistency with previous
beliefs. Contraction is an operation designed for removing
information. Revision consists in adding information while
preserving consistency. This last operation is the most inter-
esting one since inconsistency leads to un-exploitable infor-
mation. The main interest of AGM’s work is the definition
of a set of postulates which should hold for any rational revi-
sion operator. As noticed in (Sombé 1994) these postulates
are founded on three principles:

• a consistency principle (the result should be consistent),

• a minimum change principle (as few beliefs as possible
should be modified),

• priority to the new piece of information principle (the new
piece of information should hold after the revision pro-
cess).

More formally, a revision operator associates to a set
of deductively closed formulasK (encoding the initial be-
liefs2) and to a formulap (encoding a new piece of informa-
tion), another set of beliefs denoted byK ∗ p. In order to be
“rational” the operator∗ should satisfy the following AGM
postulates:

K* 1 K ∗ p = Th(K ∗ p).
K* 2 p ∈ K ∗ p.
K* 3 K ∗ p ⊆ Th(K ∪ {p}).
K* 4 If ¬p /∈ K, thenTh(K ∪ {p}) ⊆ K ∗ p.
K* 5 ⊥∈ K ∗ p if and only if p ↔⊥.
K* 6 If p ↔ q thenK ∗ p = K ∗ q.
K* 7 K ∗ (p ∧ q) ⊆ Th((K ∗ p) ∪ {q}).
K* 8 If ¬q /∈ K ∗p thenTh((K ∗p)∪{q}) ⊆ K ∗(p∧q).
K* 1 ensures that the result of the revision is deductively

closed. K* 2 imposes that the new piece of information
should belong to the revised beliefs.K* 3 implies that be-
liefs after revision should not contain more information than
what can be logically derived fromK and the new piece of
informationp. K* 4 together withK* 3 means that when the
new piece of information is not contradictory with the old
beliefs then revision is simply an expansion.K* 5 says that
the revised beliefs set is inconsistent if and only if the new
piece of information is itself inconsistent.K* 6 expresses
that belief revision is syntax-independent. These first six
postulates are the basic revision postulates and the last two

2If BC is a set of formulas encoding these beliefs thenK =
Th(BC) whereTh is the deductive closure operator.

express change minimality.K* 7 implies that revising by a
conjunctionp ∧ q should not contain more information that
what can be logically derived from the revision ofK by p
together with the piece of informationq. K* 8 means that,
when revisingK by p ∧ q, every logical deduction fromq
andK ∗ p should be kept as soon asq is not contradictory
with K ∗ p.

Note that in the following we are going to limit our study
to the case ofK* 2. And we call “classical” an operator
which satisfiesK*2. However this precise postulate may
not always be suitable in the argumentation framework, this
is developed in Section 3.3.

A last recall about belief change is the distinction between
belief revision and belief update (this was first established
in (Winslett 1988)). The difference is in the nature of the
new piece of information: either it is completing the knowl-
edge of the world or it informs that there is a change in the
world. More precisely, update is a process which takes into
account a physical evolution of the system while revision is
a process taking into account an epistemic evolution, it is the
knowledge about the world that is evolving. In this paper, we
suppose that we rather face a revision problem : the agent
was not aware of some argument that suddenly appears, it
means that the world has not changed but the awareness of
the agent has evolved.

3 Revision in argumentation
First, we introduce a formal definition of revision in argu-
mentation. The outcome of a revision process is the set of
extensions under a given semantics. Then, by considering
how the set of extensions is modified under the revision pro-
cess, we propose a typology of different revisions.

3.1 Definition
Informally, a revision occurs when a new argument is pre-
sented. Note that the case of adding a new argument which
is not connected to〈A,R〉 is trivial. It has only to be added
to each preferred extension. Indeed, revision is more inter-
esting when the new argument interacts with previous ones.
In this paper, which reports a preliminary study on revision
in argumentation, we restrict revision to the addition ofex-
actlyone argumentZ that hasexactlyone interaction,ZRX
or XRZ, whereX belongs toA.

In the following, we identify an argumentation framework
〈A,R〉 with its associated attack graphG. We writeX ∈ G
instead of “X is an argument represented by a node ofG”.
The set of extensions of〈A,R〉 is denoted byE (with E1,
. . . ,En denoting the extensions).

Revising〈A,R〉 consists in adding an argumentZ which
attacks (or is attacked by) an argumentX of A. The revision
process produces a new framework represented by a graph
G′ and a new set of extensionsE′ (with E ′

1
, . . . ,E ′

p denoting
the extensions).

revision withZ andi
(G,E) −−−−−−−−−−−−−→ (G′,E′)

i = (Z,X) or i = (X,Z)

Definition 5 LetG be an attack graph. Lets be a semantics.
LetX ∈ G, Z 6∈ G andi a pair of arguments (either(X,Z)
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or (Z,X)). LetG′ be the graph obtained fromG by adding
the nodeZ and the edgei. Therevision operatorΘ maps
(Z, i,G, s) to E

′ which is the set of extensions ofG′ under
the semanticss.

Let us mention several results which will be useful in the
following. As we revise with only one new argument having
only one interaction with an already existing argument, it is
easy to prove that:

Property 3

• If the new interaction is(Z,X), Z is not attacked inG′.

• If the new interaction is(X,Z), Z attacks no argument of
G′.

• The revision process introduces no cycle inG′.

As defined above, revising an argumentation framework
may change the set of extensions. Given a semantics, the
modifications are more or less important. It depends on the
kind of interaction which is added and more precisely on
the status of the argumentX involved in that interaction. In
the next section, we propose a typology of different kinds
of revision according to how the set of extensions is modi-
fied. The next step is to characterize each kind of revision
by providing conditions on the interactioni.

3.2 Typology of revisions

Let 〈A,R〉 be an argumentation framework andE the set of
extensions of〈A,R〉 under a given semanticss. Different
situations may be encountered in the general case.E may
be empty (implying thats is the stable semantics), may be
reduced to a singleton{E1} (whereE1 may be empty), or
may contain more than one extension{E1, . . . , En}. The sit-
uation with only one non-empty extension is convenient for
the determination of the status of an argument. In contrast,
when several extensions exist, different choices are avail-
able. We have first considered revisions such thatG′ has a
unique non-empty extension, while it was not the case forG.
Such a revision is calleddecisive.

Example 2

1. Under the stable semantics, withi = (Z,A)
A B

Z C

Before revisionE = ∅,
after revisionE′ = {{Z, B}}

2. Under the grounded semantics, withi = (Z,A)
Z A B C

E = {{}}, E′ = {{Z, B}}

3. Under the preferred semantics, withi = (Z,A)
A B C D

Z F

E = {{A}, {B, D}},
E

′ = {{Z, B, D}}

A weaker requirement is the decrease of the number of
choices. A revision such thatG′ has strictly less extensions
thanG, but still has at least two, is calledselective. Note that
selective revision does not make sense under the grounded
semantics, since there is always a unique grounded exten-
sion.

Example 3 Under the preferred (or stable) semantics, with
i = (Z,A)

A B C

Z F D

E = {{A, C, F}, {A, D}, {B, D},
{B, F}},
E

′ = {{Z, C, F}, {Z, B, D},
{Z, B, F}}

An opposite point of view enables to consider revisions
which raise ambiguity, by increasing the number of exten-
sions. This is the case for instance whenG has at least
one non-empty extension andG′ has strictly more extensions
thanG. A slightly different situation occurs whenG has no
extension or an empty one, whileG′ has more than one ex-
tension. In that case, revision brings some information, but
is not decisive. Such revisions are calledquestioning. As
for selective revision, questioning revision does not make
sense under the grounded semantics.

Example 4 Under the preferred (or stable) semantics, with
i = (Z,A)

A B D

Z C F

E = {{A, D, F}}, E
′ = {{Z, B, C},

{Z, B, F}, {Z, D, C}, {Z, D, F}}

Under the stable semantics, withi = (Z,A)
A B D G

Z C F

E = ∅,
E

′ = {{Z, B, F}, {Z, B, G}}

Pursuing along the previous line, we consider revisions
removing every extension, thus leading to a kind of deci-
sional dead-end. A revision such thatG′ has no extension,
while G had at least one, is calleddestructive. Note that
destructive decision makes sense only under the stable se-
mantics.

Example 5 Under the stable semantics, withi = (Z,A)
A B D H

Z C G F

E = {{A, D, F}, {A, D, G}},
E

′ = ∅

So far, the considered revisions have an impact on the
number of extensions. Now, we are interested in revisions
which modify the content of extensions, without modifying
the number of extensions. The most interesting situation oc-
curs when each extension ofG′ strictly includes one exten-
sion ofG, the number of extensions being the same. Such
revisions are calledexpansive.

Example 6 Under the preferred (or stable) semantics, with
i = (B,Z)

A B C

Z D

E = {{A, C}, {A, D}},
E

′ = {{Z, A, C}, {Z, A, D}}

When nothing is changed, that isE = E
′, the revision is

calledconservative.

Example 7 Under the preferred semantics, withi = (B,Z)
A B

C Z

E = {{}}, E′ = {{}}

Otherwise, it may happen that some extensions (and
sometimes all of them) are altered. This is called analtering
revision. It is the case for instance when each extension of
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G′ has a non-empty intersection with (but does not include)
an extension ofG.

Example 8 Under the grounded semantics, withi = (Z,A)
A B C

Z D

E = {{A, D}, E′ = {{Z, B, D}}

The above discussion can be summarized on the follow-
ing table.

E
′ = ∅ {{}} {E ′

1} {E ′
1, . . . , E

′
p}

E = p ≥ 2
∅ conservative #1 decisive questioning

{{}} #2 conservative

{E1}

destructive

#3
conservative
expansive
altering

questioning

{E1,
. . . ,
En}

n ≥ 2

#4 decisive

n < p:
questioning

n > p:
selective
n = p:
conservative
expansive
altering

With Ei 6= ∅ andE ′

i 6= ∅. Each cell of the table contains
the name of the corresponding revision. It can be checked
that cells with #i correspond to situations which cannot oc-
cur:

#1 and #2 The only acceptability semantics in which an ar-
gumentation framework may have no extension is the sta-
ble semantics. However, with the stable semantics, an ar-
gumentation framework cannot have an empty extension
when its set of arguments is not empty. And, by assump-
tion, the cases #1 and #2 correspond to argumentation
frameworks with non-empty sets of arguments (because
at leastX belongs toG andX andZ belong toG′). So
these cases cannot occur for all the acceptability seman-
tics used in this paper.

#3 Under the stable semantics, this case cannot occur for the
same reason as that given previously (cases #1 and #2).
Under the grounded semantics, asG has one non-empty
extension, there exists at least one unattacked argument
W ; so, if the added interaction is (X, Z), W is al-
ways unattacked andG′ has always one non-empty ex-
tension; and, if the added interaction is (Z, X), thenZ
is unattacked and it belongs to the grounded extension of
G′; so,G′ cannot have an empty extension.
Under the preferred semantics, if the added interaction is
(Z, X), Z is unattacked and it belongs to the preferred
extensions ofG′; so these preferred extensions are not
empty. And, if the added interaction is (X, Z), thenZ
does not attack the arguments ofE1; so these arguments
also belong to a preferred extension ofG′ and the pre-
ferred extensions are not empty.
In conclusion, this case cannot occur for all the accept-
ability semantics used in this paper.

#4 This case could appear only with the preferred semantics
(because with the grounded semantics there exists only
one extension, and with the stable semantics, an extension

cannot be empty since the set of arguments is not empty).
If the added interaction is (Z, X), Z can “remove” or
“create” extensions, but it belongs to each of them (be-
cause it is unattacked), soG′ cannot have an empty exten-
sion. And if the added interaction is (X, Z), Z does not
attack the arguments ofEi, ∀i, so these arguments belong
to the preferred extensions ofG′ andG′ cannot have an
empty extension. Thus, this case cannot occur.

3.3 Classical revision in argumentation
Revising a knowledge base consists in changing its beliefs in
a minimal way in order to take into account a new piece of
information considered as “prior” (according to AGMK* 2
postulate). However, the revision operators defined above
do not ensure at all that the new argument is accepted in
the new graph extensions. In this section, we study when
this property (called “classical”) holds for a given revision
operator.

Definition 6 The revisionΘ is classicaliff G′ has at least
one extension and the added argumentZ belongs to each
extension ofG′.

Property 4 If the added interaction is (Z, X), then the re-
vision is classical under the grounded and the preferred se-
mantics.

Moreover, ifG has no odd-length cycle then the revision
is also classical under the stable semantics.

Example 9 Under the grounded semantics:
A B C

Z D

E = {{A, C}}, E′ = {{Z}}

Example 10 Let us compute the extensions of the two fol-
lowing graphs under the preferred semantics:

A B

Z C

E = {{A, C}, {B}},
E

′ = {{Z, B}, {Z, C}}

A B C

Z

E = {{A, C}, {B}},
E

′ = {{Z, A, C}}

Example 11 Under the stable semantics:

A B C

Z F D

E = {{A, C, F}, {B, D}},
E

′ = {{Z, C, F}, {Z, B, D}}

The condition thatG should not have an odd-length cycle
ensures the existence of at least one stable extension after
addingZ. It is a sufficient but not necessary condition.

Example 9 (continued): Before revision the stable exten-
sion is{A,C}, and after revision there is no stable exten-
sion.

Property 5 If the interaction is (X, Z) such thatX is at-
tacked by each extension ofG then the revision is classical
under the grounded and the preferred semantics.

Moreover, ifG has at least one stable extension then the
revision is also classical under the stable semantics.
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Example 12 Under the grounded semantics:
A B C

Z F D

E = {{A}}, E′ = {{Z, A}}

Example 13 Under the preferred or the stable semantics:
A B C D

Z F G

E = {{A, C, G}, {A, D, F}},
E

′ = {{Z, A, C, G}, {Z, A, D, F}}

Note that, under the grounded semantics,X must be at-
tacked and the fact thatX is not in the only extensionE of
E does not ensure that the revision is classical :

Example 14 Under the grounded semantics:
A B C

Z F D

E = E ′ = {A}.
So,E = E

′ = {{A}}.

C is not inE , and neverthelessZ does not belong toE ′.

As said before, revising a graph by one argument and (one
interaction) does not systematically lead to accept this argu-
ment. Hence, classicality is not the only property that is
worth being studied for revision operators.

4 Case study
In this section, we study two cases: the decisive revision
and the expansive revision. In the first case, after the re-
vision there is only one extension (so it is easy to take a
decision); in the second case, the number of extensions re-
mains unchanged but each new extension is a superset of an
extension which existed before the revision.

4.1 Decisive revision
Decisive revision makes possible a decision: before this re-
vision, in G there is either no acceptable set of arguments
(no possible conclusion), or too many acceptable sets of ar-
guments (so too many possible conclusions), and after this
revision there is only one acceptable set of arguments inG′.

Definition 7 The revisionΘ is decisiveiff Θ applied toG,
with E = ∅, or E = {{}}, or E = {E1, . . . , En}, n ≥ 2,
the result ofΘ is G′ with E

′ = {E ′}, E ′ 6= ∅.

Property 6 If a revision is decisive then the added interac-
tion is (Z,X). A decisive revision is classical.

Example 2 (continued):

1. Under the stable semantics, Example 2.1 illustrates the
decisive revision withE = ∅ andE

′ = {{Z,B}}.

2. Under the grounded semantics, Example 2.2 illustrates
the decisive revision withE = {{}} andE

′ = {{Z,B}}.

3. Under the preferred semantics, Example 2.3 illustrates
the decisive revision withE = {{A}, {B,D}} andE

′ =
{{Z,B,D}}.

Theorem 1 Under the grounded semantics, if the added in-
teraction is(Z,X) andE = {{}}, then the revision is deci-
sive.

Theorem 2 Under the preferred semantics, if the added in-
teraction is(Z,X), E = {{}} and there is no even-length
cycle inG, then the revision is decisive.

Example 15 Under the preferred semantics:
A B D

C Z

E = {{}}, E′ = {{Z, A, D}}

Note that, if even-length cycles exist in the graph, the re-
vision may induce several extensions; this revision would be
a questioning one:

A B D

Z C F

E = {{}},
E

′ = {{Z, A, D}, {Z, A, F}}

For this reason, we have considered graphs without even-
length cycle in Theorem 2.

Note: under the stable semantics, we have not found any
characterization theorem for the decisive revision.

4.2 Expansive revision
A revision is said “expansive” when it does nothing but to
add new arguments in the existing extensions.

Definition 8 The revisionΘ is expansiveiff G andG′ have
the same number of extensions and each extension ofG′

strictly includes an extension ofG.

Property 7 The expansive revision is classical.

Example 16 Under the grounded semantics:
B C D H

A Z G F

E = {{A}},
E

′ = {{Z, A, C, H, G}}

Example 6 gives also an illustration of the expansive revi-
sion under preferred and stable semantics.

Theorem 3 Under the grounded semantics withE = {E},
if the added interaction is (Z, X), X 6∈ E andE 6= ∅, then
the revision is expansive.

Example 17 Under the grounded semantics:
B C H F

A D Z G

E = {{A, C}},
E

′ = {{Z, A, C, G}}

Theorem 4 Under the grounded semantics, if the added in-
teraction is (X, Z), X 6∈ E andE attacksX, then the revi-
sion is expansive andE′ = {E ∪ {Z}}.

Example 18 Under the grounded semantics:
A B C

Z D

E = {{A}},E′ = {{Z, A}}

Theorem 5 Under the stable semantics, if the added inter-
action is (X, Z), if E 6= ∅, and∀i ≥ 1, X 6∈ Ei, then the
revision is expansive and∀i, E ′

i = Ei ∪ {Z}.

Example 19 Under the stable semantics:
A B C

Z F D

E = {{A, C, F}, {A, D, F}},
E

′ = {{Z, A, C, F}, {Z, A, D, F}}

Note that, in an acyclic graph, Theorem 4 may be applied
under the stable semantics. It is a particular case of Theo-
rem 5.
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Theorem 6 Under the preferred semantics, if the added in-
teraction is (X, Z), and ∀i ≥ 1, Ei attacksX, then the
revision is expansive and∀i, E ′

i = Ei ∪ {Z}.

Example 18 (continued): Under the preferred semantics,
E = {{A,C}, {A,D}} andE

′ = {{Z,A,C}, {Z,A,D}}

Note that when the initial graph is acyclic, Theorem 4 may
be applied under the preferred semantics. It is a particular
case of Theorem 6.

If the interaction is(Z,X), weaker results can be ob-
tained. In that case, the revision is not expansive in the sense
thatG′ may have more extensions thanG, however, adding
Z to an extension ofG yields an extension ofG′.

Property 8 Under the stable semantics, if the added inter-
action is (Z, X), and∀i ≥ 1, X 6∈ Ei, then∀i, Ei ∪ {Z} is
a stable extension ofG′.

However, other stable extensions may appear inG′, see
Example 20 for instance. So the revision is not expansive.

Example 20 Under the stable semantics:

A B C

Z

E = {{A}},
E

′ = {{Z, A}, {Z, C}}

Note that in the particular case when the initial graph is
acyclic, Theorem 3 may be applied under the stable seman-
tics. And the obtained result is stronger than the result pro-
posed by Property 8. Another interesting property is:

Property 9 Under the preferred semantics, if the added in-
teraction is (Z, X) and ∀i ≥ 1, X 6∈ Ei, then∀i, E ′

i =
Ei ∪ {Z} is admissible inG′.

Moreover, if there is no odd-length cycle inG, ∀i, E ′

i =
Ei ∪ {Z} is a preferred extension inG′.

Example 20 also shows that other preferred extensions
may appear inG′. And the following example illustrates the
first part of Property 9.

Example 21 Under the preferred semantics:
Z A B

C

E = {{}}
{} ∪ {Z} is admissible inG′

butE′ = {{Z, B}}.

Note that in the particular case when the initial graph is
acyclic, Theorem 3 may also be applied under the preferred
semantics and gives a stronger result than the one proposed
by Property 9.

5 Discussion and future works
In this paper, we transpose the basic question of revision
into argumentation theory. We propose a study of the im-
pact of the arrival of a new argument on the outcome of an
argumentation framework. The term ”revision” is used by
analogy with traditional belief revision. However, there are
two main differences.

• The basic underlying formalism is different: in stan-
dard belief revision, logical formulas are used for knowl-
edge representation whereas, in this paper, an argumenta-
tion framework represents the current knowledge. In the

first case, the outcome is a new set of logical formulas,
whereas, in the second case, the outcome is a new set of
accepted arguments.

• Revision is a task in knowledge representation which is
strongly related to concepts such as inference and consis-
tency. The postulates for standard belief revision (AGM)
are built on a consistency notion, since it aims at incorpo-
rating a new piece of information while preserving con-
sistency. Moreover, “revision” has also been studied in
the framework of nonmonotonic theories (Witteveen and
van der Hoek 1997). Argumentation theory is linked to
nonmonotonicity, but postulates for nonmonotonic theo-
ries are also based on consistency and inference notions
that are not explicitly present in our framework. So, these
postulates are not suited for our problem. Some of the be-
lief revision postulates can be transposed (this is the case
for what we call classical revision), but other principles
must be proposed.

Our work is a preliminary step towards a formal revi-
sion in argumentation frameworks. And it departs from
previous work relating argumentation and revision. In-
deed, we have chosen to remain at an abstract level in this
preliminary study. We do not consider knowledge from
which arguments and interactions could be built. More pre-
cisely, there are many approaches that deal with adding
new pieces of information within an argumentation sys-
tem. The point of view adopted in this family of works is
different because of the status of the new piece of infor-
mation that is added. For instance, Wassermann (Wasser-
mann 1999), as well as (Falappa, Garcı́a, and Simari 2004;
Paglieri and Castelfranchi 2005), define under which condi-
tions, expressed in terms of arguments, unjustified beliefs
should become accepted. The approach of (Pollock and
Gillies 2000) studies the properties of knowledge revision
under the argumentation point of view,i.e., the problem is to
generate a knowledge base in which each piece of informa-
tion is justified by “good” arguments.

Very recently, (Rotstein et al. 2008) have proposed
a warrant-prioritized revision operation, which consists in
adding an argument to a theory in such a way that this argu-
ment is warranted afterwards. Even if the underlying ideas
are similar, this work differs from our approach in at least
two points:

• First, in (Rotstein et al. 2008), arguments are given a
structure through the subargument relation, and proper-
ties such as minimality, consistency and atomicity. And
the definition of warranted arguments relies upon an eval-
uation of argumentation lines. In contrast, our approach
remains at the most abstract level, and our sets of accepted
arguments are computed with the well-known extension-
based semantics.

• Secondly, the warrant-prioritized argument revision is de-
signed in order to satisfy the AGM postulateK*2, since
the added argument must be warranted in the revised the-
ory. Our work follows another direction. We propose an
extensive theoretical study of the impact of an addition
on the outcome of an abstract argumentation framework,
which enables us to define several kinds of revision.
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Note that other crucial cognitive tasks linked to belief
change theory have already been transposed in the field of
argumentation, see for instance the work on merging pre-
sented in (Coste-Marquis et al. 2007).

A promising application of our work could be to design
dialogue strategies. Most of the works about dialogue strate-
gies consider that a dialogue is defined by a protocol giving
the set of legal moves and that a strategy selects exactly one
move (the move which must be done next). For instance,
(Bench-Capon 1998) proposes a selection strategy leading
to more cooperative dialogues. Other approaches propose
dialogue games for answering queries such as: does a given
initial argument belong to some extension? In that case, a
strategy helps to choose which argument must be defeated
in order that the initial argument should be accepted. (Am-
goud and Maudet 2002) have proposed heuristics that select
the less attackable arguments in a persuasion dialogue. In a
similar way, (Riveret et al. 2008) have proposed an optimal
strategy in order to win a debate based on the probability of
success of the argument and on the cost of this argument for
the agent. (Hunter 2004), with a more global approach, has
defined a strategy which builds an optimal subtree of argu-
ments maximizing the resonance with the agent goals and
minimizing their cost.

Our approach takes another point of view. We do not de-
fine any protocol and we do not restrict to a dialogue type.
Given a set of arguments which may interact, we are inter-
ested in the outcome of the argumentation system, that is the
set of extensions under a given semantics. In other words,
we study the impact of an argument with respect to the struc-
tural change induced on the set of extensions. We do not fo-
cus on a particular argument that should be accepted at the
end. We just want to act as to modify the form of that out-
come (by doing an expansive revision, or a decisive revision
for instance). The work reported in this paper enables us
to choose the right way of revising (which argument must
be affected by the revision, with which kind of interaction)
in order to obtain the new outcome. This is why we plan
to focus more on strategies for directing a dialogue than on
strategies for taking part in it. For instance, if a dialogue
arbitrator wants the debate to be more open then she should
rather force the next speaker to use arguments appropriate
for an expansive revision. If she wants the debate to be more
focused then only arguments appropriate for a selective (and
even decisive) revision should be accepted.

In order to continue this work, the following directions
seem to be of interest:

1. generalize our revision operation to the adding of one ar-
gument with several interactions and to the adding of a
subgraph of arguments;

2. restate other existing standard belief revision postulates
and study the postulates for revision in nonmonotonic sys-
tems, in the case where arguments are built from knowl-
edge bases and the outcome of the argumentation frame-
work is a set of formulas;

3. since decisive revision seems to be a “good” kind of re-
vision, it would be interesting to investigate the question

“How to make theminimal change3 to a given argumen-
tation framework so that it has a unique non-empty ex-
tension?”. We thank an anonymous reviewer for this last
suggestion.
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Kakas, A., and Moräıtis, P. 2003. Argumentation based de-
cision making for autonomous agents. InProc. of AAMAS,
883–890.
Paglieri, F., and Castelfranchi, C. 2005. Revising beliefs
through arguments: Bridging the gap between argumenta-
tion and belief revision in mas. InArgumentation in Multi-
Agent Systems. Springer. 78–94.
Pollock, J., and Gillies, A. 2000. Belief revision and epis-
temology.Synthese122(1-2):69–92.
Prakken, H., and Vreeswijk, G. 2002. Logics for defea-
sible argumentation. InHandbook of Philosophical Logic,
volume 4. Kluwer Academic. 218–319.
Riveret, R.; Prakken, H.; Rotolo, A.; and Sartor, G. 2008.
Heuristics in argumentation: a game-theoretical investiga-
tion. In Proc. of COMMA, 324–335.
Rotstein, N. D.; Moguillansky, M. O.; Falappa, M. A.;
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A Appendix
Lemma 1 If the added interaction is(Z, X) andG′ has at least
one extensionE ′ thenZ ∈ E ′.

Proof: This result is deduced from Properties 1 and 3.�

Lemma 2 Under the stable semantics, if the added interaction is
(X, Z) andE ′ is a stable extension ofG′ thenE ′ \ {Z} is a stable
extension ofG.

Proof:

• E ′ is conflict-free inG′ soE ′ \ {Z} is also conflict-free in
G′ and inG.

• E ′ attacks each argument ofG′ which is not inE ′. Z at-
tacks no argument, soE ′ \ {Z} attacks all the arguments
which are not inE ′. SoE ′ \ {Z} attacks all the arguments
of G which are not inE ′ \ {Z}. SoE ′ \ {Z} is a stable
extension ofG.

�

Lemma 3 Under the preferred semantics, if the added interaction
is (X, Z) andE ′ 6= ∅ is a preferred extension ofG′ thenE ′ \ {Z}
is admissible inG.

Proof:

• E ′ is conflict-free inG′ soE ′ \ {Z} is also conflict-free in
G′ and inG.

• Let Y ∈ E ′ \ {Z}. Assume that there is an argument
U such thatURY then U 6= Z (becauseZ attacks no
argument).E ′ is a non-empty preferred extension ofG′,
so there is an argumentV ∈ E ′ such thatV RU , V 6=
Z, (always becauseZ attacks no argument). So, we have
V ∈ E ′ \{Z}, andE ′ \{Z} defends all its arguments. So,
E ′ \ {Z} is admissible inG.

�

Lemma 4 If the added interaction is(X, Z) and there is no stable
extension inG thenE = E

′ = ∅.

Proof:(reductio ad absurdum) Assume that there exists a sta-
ble extension ofG′ denoted byE ′. Using Lemma 2,G would
have an extension, which is contradictory with the assump-
tion. �

Lemma 5 If the added interaction is(X, Z) andE = {{}} then
E

′ = {{}}.

Proof:(note that this case is impossible under the stable se-
mantics when at least one argument exists)

• under the grounded semantics:E = {{}}, so there is no
unattacked argument inG. Z is attacked so there is also no
unattacked argument inG′ andE

′ = {{}}.
• under the preferred semantics (reductio ad absurdum): As-

sume that there exists a non-empty extension ofG′ denoted
by E ′. So there existsY such thatY ∈ E ′. EitherY = Z,
or Y ∈ G. In both cases,Y is attacked (because all ar-
guments ofG are attacked and the added interaction is
(X, Z)), soE ′ must defendY . If Y = Z, E ′ cannot be
reduced toY (becauseZ attacks no argument and cannot
defend itself). SoE ′\{Z} 6= ∅. If Y 6= Z, Y ∈ E ′\{Z},
andE ′ \ {Z} 6= ∅. Due to Lemma 3,E ′ \ {Z} is admis-
sible inG and soE ′ \ {Z} ⊆ E with E being a preferred
extension ofG. SoG has a non-empty extension, which is
in contradiction with the assumption.

�

Lemma 6 If the added interaction is(X, Z) and there is at least
one non-empty extension inG, E = {E1, . . . , En}, then∀i ≥ 1:

• eitherEi is an extension ofG′ (it is the case whenEi does not
attackX),

• or Ei ∪ {Z} is an extension ofG′ (it is the case whenEi attacks
X).

Proof:

• under the grounded semantics (E= {E} andE
′ = {E ′}):

Due to the fact thatR is finite, we haveE = ∪i≥1F
i(∅)

andE ′ = ∪i≥1F
′i(∅). LetS be a set of arguments ofG.

First, asZ attacks no argument ofG, it is easy to prove that
F(S) ⊆ F ′(S). Then, it follows by induction oni ≥ 1
thatF i(∅) ⊆ F ′i(∅). So,E ⊆ E ′. Secondly, asX is the
unique attacker ofZ, it is easy to check thatS attacksX
iff Z ∈ F ′(S). So we have eitherS attacksX andF ′(S)
=F(S)∪{Z}, orS does not attackX andF ′(S) =F(S).
Now, we consider two cases : eitherE attacksX or not.
If E attacksX, Z ∈ F ′(E), which is included inF ′(E ′).
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And by definition of the grounded extension,F ′(E ′) is E ′.
So, if E attacksX, E ∪ {Z} ⊆ E ′. Conversely,F ′(E)=
F(E)∪{Z} = E ∪{Z}. So,F ′(E ∪{Z}) = F ′(E)∪{Z}
= E ∪ {Z}. By definition of the grounded extension ofG′

(least fixed point), it follows thatE ′ ⊆ E ∪ {Z}. So, we
have proved that ifE attacksX, E ′ = E ∪ {Z}. If E does
not attackX, F ′(E) = F(E) = E . So, by definition of the
grounded extension ofG′ (least fixed point),E ′ ⊆ E . So,
we have proved that ifE does not attackX, E ′ = E .

• under the stable semantics:∀i, Ei is conflict-free inG′.
Moreover, ifX ∈ Ei thenZ 6∈ Ei (becauseX attacksZ)
andEi is a stable extension ofG′. X is the unique attacker
of Z. If X 6∈ Ei, Ei ∪ {Z} is conflict-free. Moreover, in
G, Ei attacks all the arguments which are not inEi; so, in
G′, Ei ∪ {Z} attacks all the arguments which are not in
Ei ∪ {Z}; soEi ∪ {Z} is a stable extension ofG′.

• under the preferred semantics:Z attacks no argument of
G, so∀i, Ei is admissible inG′. So there exists a preferred
extensionE ′

j of G′ including Ei. But Z 6∈ Ei, so Ei ⊆
E ′

j \ {Z}. Due to Lemma 3,E ′
j \ {Z} is admissible inG,

so there existsk ≥ 1 such thatEi ⊆ E ′
j \{Z} ⊆ Ek. Using

the definition of a preferred extension (⊆-maximal among
the admissible sets), we can conclude thatEi = E ′

j\{Z} =
Ek. So, eitherE ′

j = Ei (if Z 6∈ E ′
j), or E ′

j = Ei ∪ {Z} (if
Z ∈ E ′

j). Moreover, ifZ ∈ E ′
j , E ′

j defendsZ soE ′
j attacks

X and soEi = E ′
j\{Z} attacksX. Conversely, ifEi attacks

X, Ei defendsZ andEi ∪ {Z} is conflict-free inG′. So,
Ei ∪ {Z} is admissible inG′ andZ ∈ E ′

j .

�

Lemma 7 If the added interaction is(X, Z), then the number of
extensions is preserved by the revision.

Proof: Due to Lemma 4 (resp. Lemma 5), ifE = ∅ (resp.
E = {{}}) then the revision does not create new extensions.
Let us study the case whereE = {E1, . . . , En}, n ≥ 1 and
∀i, Ei 6= ∅:

• under the stable semantics: Due to Lemma 6,∀i ≥ 1 either
X ∈ Ei and Ei is an extension ofG′, or X 6∈ Ei and
Ei ∪{Z} is an extension ofG′. So,G′ has at least as many
extensions asG. Let E ′

j be an extension ofG′. Due to
Lemma 2,E ′

j \{Z} is an extension ofG. LetEi = E ′
j \{Z}.

EitherZ ∈ E ′
j and thenE ′

j isEi∪{Z}, orZ 6∈ E ′
j and then

E ′
j = Ei is an extension ofG. So,G andG′ have the same

number of extensions.
• under the preferred semantics: Due to Lemma 6,∀i ≥ 1

eitherEi does not attackX andEi is an extension ofG′, or
Ei attacksX andEi∪{Z} is an extension ofG′. So,G′ has
at least as many extensions asG. Let E ′

j be an extension
of G′. Due to Lemma 3,E ′

j \ {Z} is admissible inG. So
there existsEi, an extension ofG such thatE ′

j \ {Z} ⊆ Ei.

– EitherEi attacksX, and using Lemma 6,Ei ∪ {Z} is an
extension ofG′. So,E ′

j ⊆ Ei∪{Z}, and asE ′
j is maximal

admissible inG′, E ′
j = Ei ∪ {Z}.

– Or Ei does not attackX, and using Lemma 6,Ei is an
extension ofG′. As E ′

j is maximal admissible inG′, we
haveZ 6∈ E ′

j andE ′
j = E ′

j \ {Z} = Ei.

So,G andG′ have the same number of extensions.

�

Lemma 8 LetS be a set of arguments ofG such thatX 6∈ F(S).
If the added interaction is(Z, X), thenF(S) ⊆ F ′(S)

Proof: Let Y ∈ F(S). If Y is not attacked inG then, due to
the fact thatY 6= X, Y is not attacked inG′, soY ∈ F ′(S).
Consider the case whenY is attacked inG and assume that
the argumentA is the attacker ofY in G′. EitherA ∈ G and
S defendsY againstA, soS attacksA andY ∈ F ′(S), or
A = Z andX = Y which is impossible. �

Proof of Property 4: Due to Property 1 and Lemma 1, each ex-
tension ofG′ containsZ. If G has no odd-length cycle, as revision
introduces no cycle, thenG′ has no odd-length cycle. Hence,G′

has at least one stable extension (Property 2.4). �

Proof of Property 5:
• Grounded semantics: The only extensionE of G contains at least

the argument that attacksX, so E is a non-empty extension.
Lemma 6 may be applied and eitherE ′ = E or E ′ = E ∪ {Z}.
Z is only attacked byX soZ is defended byE in G′, and then
Z ∈ F ′(E). If E ′ = E , F ′(E ′) = F ′(E). By definition ofE ′,
we haveE ′ = F ′(E ′), soE = E ′ = F ′(E), which contradicts the
fact thatZ ∈ F ′(E). Hence,E ′ = E ∪ {Z}.

• Preferred semantics: LetE ′
i be a preferred extension ofG′. As-

sume thatZ 6∈ E ′
i thenE ′

i is conflict-free inG. E ′
i is admissible

in G sinceZ attacks no argument. Moreover, asE ′
i is an exten-

sion ofG′, E ′
i is maximal admissible inG and so is a preferred

extension ofG. SinceX is attacked by each preferred extension
of G, we know thatE ′

i attacksX, soX 6∈ E ′
i and soE ′

i ∪ {Z}
is conflict-free inG′. Moreover,E ′

i defendsZ. It follows that
E ′

i ∪ {Z} is admissible inG′. That contradicts the fact thatE ′
i is

a preferred extension ofG′ not containingZ. SoZ belongs to
each preferred extension ofG′.

• Stable semantics: LetE ′
i be a stable extension ofG′. Assume

thatZ 6∈ E ′
i thenE ′

i attacksZ. SinceX is the only attacker of
Z, X ∈ E ′

i . Moreover, asE ′
i is a subset ofG, it is also a stable

extension ofG. That contradicts the fact that each extension of
G attacksX. SoZ belongs to each stable extension ofG′.

�

Proof of Property 6:
• E = ∅ andE

′ = {E ′} (that case can appear only under the
stable semantics): The revision creates an extension, that is im-
possible if we add an attacked argument [cf.Lemma 4]; so the
added interaction is(Z, X).

• E = {{}} andE
′ = {E ′} (that case can appear only under the

grounded and preferred semantics since at least one argument
exists): IfE = {{}} and the added interaction is(X, Z) then
E

′ = {{}} [cf. Lemma 5]; so the added interaction is(Z, X).

• E = {E1, . . . , En} andE
′ = {E ′} (under the stable or pre-

ferred semantics): The revision removes some extensions, that
is impossible if we add an attacked argument [cf. Lemma 7]. So
the added interaction is(Z, X).
Now, if the added interaction is(Z, X), each extension ofG′

containsZ [cf. Lemma 1]. SoZ ∈ E ′, and the revision is classical.
�

Proof of Theorem 1: In G′, Z is not attacked. So, due to
Property 1.5,Z belongs to the grounded extension. SoG′ has a
grounded extension which is not empty. �

Proof of Theorem 2: The added interaction is(Z, X), soZ is not
attacked; it belongs to each preferred extension [cf. Property 1.5].
Moreover, there is no even-length cycle inG, so there is no even-
length cycle inG′. G′ has only one preferred extension [cf.Prop-
erty 2.5], which is not empty (it containsZ). �
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Proof of Property 7:

• If the added interaction is (Z, X): due to Lemma 1,Z belongs
to each extension ofG′; so the revision is classical.

• If the added interaction is (X, Z): due to Lemma 6,∀i, either
E ′

i = Ei, or E ′
i = Ei ∪ {Z}. Because the revision is expansive,

we haveE ′
i = Ei ∪ {Z}; so the revision is classical.

�

Proof of Theorem 3: Due to the fact thatR is finite, we have
E = ∪i≥1F

i(∅) andE ′ = ∪i≥1F
′i(∅). We prove by induction

on i ≥ 1 thatF i(∅) ⊆ F ′i(∅).
Basic case (i= 1): If Y ∈ F(∅) thenY is not attacked inG

and due to the fact thatX 6∈ E , we haveY 6= X andY is not
attacked inG′ andY ∈ F ′(∅).

Induction hypothesis (for1 ≤ i ≤ p, F i(∅) ⊆ F ′i(∅)): let
S = Fp(∅) andS ′ = F ′p(∅). S is a set of arguments ofG
andX 6∈ F(S) (sinceX 6∈ E). So Lemma 8 may be applied
and we haveF(S) ⊆ F ′(S). Using the induction hypothesis, we
also haveS ⊆ S ′. Moreover, by definitionF ′ is monotonic. So
F(S) = Fp+1(∅) ⊆ F ′(S) ⊆ F ′(S ′) = F ′p+1(∅).

So,E ⊆ E ′. Moreover,Z is not attacked, soZ ∈ E ′ (cf Prop-
erty 1.5). SoE  E ′. �

Proof of Theorem 4: E 6= ∅ sinceE attacksX. So Lemma 6
applies andE ′ = E ∪ {Z}. �

Proof of Theorem 5: X is the only attacker ofZ andX 6∈ Ei;
so Ei ∪ {Z} is conflict-free. Moreover, inG, Ei attacks all the
arguments which are not inEi; so, inG′, Ei ∪ {Z} attacks all the
arguments which are not inEi ∪ {Z}; so Ei ∪ {Z} is a stable
extension ofG′. Due to Lemma 7,G′ andG have the same number
of stable extensions. So, the stable extensions ofG′ are exactly the
Ei ∪ {Z}. �

Proof of Theorem 6: ∀i, Ei attacksX soX 6∈ Ei. It follows that
Ei ∪ {Z} is conflict-free inG′. ∀i, Ei defendsZ againstX, andEi

is admissible, soEi ∪ {Z} is admissible inG′. Now, we prove that
Ei ∪ {Z} is⊆-maximal admissible inG′. Assume that it is not the
case:∃E ′

j preferred extension ofG′ such thatE ′
j ! Ei ∪ {Z}. Due

to Lemma 3,E ′
j \{Z} is admissible inG. So,Ei  E ′

j \{Z}, which
is in contradiction with the fact thatEi is a preferred extension ofG.
So,∀i, Ei ∪ {Z} is a preferred extension ofG′. Due to Lemma 7,
G′ andG have the same number of preferred extensions. So, the
preferred extensions ofG′ are exactly theEi ∪ {Z}. �

Proof of Property 8: ∀i ≥ 1, X 6∈ Ei, soZ attacks no argument
of Ei, andEi ∪ {Z} is conflict-free inG′. Let A 6∈ Ei ∪ {Z}.
A 6∈ Ei andA ∈ G. Ei is stable,Ei attacksA, soEi ∪ {Z} also
attacksA. SoEi ∪ {Z} is a stable extension ofG′. �

Proof of Property 9: ∀i ≥ 1, X 6∈ Ei soEi ∪ {Z} is conflict-free
in G′. Let A ∈ Ei ∪ {Z} being attacked inG′. Since no argument
attacksZ, A 6= Z, so A ∈ Ei. SinceX 6∈ Ei, A 6= X, so A
is attacked inG. Ei is admissible inG, soEi defendsA and then
Ei ∪ {Z} also defendsA. So,Ei ∪ {Z} is admissible inG′.

If there is no odd-length cycle inG, preferred and stable exten-
sions coincide. So, Property 8 may be applied. �
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