Revision of the genus Castillomys (Muridae, Rodentia)

E. Martín Suárez \& P. Mein

Abstract

E. Martín Suárez \& P. Mein. Revision of the genus Castillomys (Muridae, Rodentia). - Scripta Geol., 96: 47-81, 17 figs., 2 pls, Leiden, October 1991.

In this paper a revision of the genus Castillomys Michaux, 1969 is given. Previously described subspecies are elevated to species rank, and a new species, Castillomys rivas, is proposed. Several populations from Italy and Turkey are transferred to the genus Centralomys de Giuli, 1989. For a population from Maritsa the new subgenus Rhodomys is created within the genus Occitanomys. E. Martín Suárez, Departamento de Estratigraffa y Palcontología e I.A.G.M. (C.S.I.C.). Universidad de Granada, E 18071 Granada, España; P. Mein, Département des Sciences de la Terre, Université Claude Bernard, 27-43 Bd. 11 Novembre, F 69622 Villeurbanne Cedex, France.

Introduction 47
Studied material 48
Morphological analysis; definition of character states 49
Systematics 57
Genus Castillomys Michaux, 1969 57
Genus Centralomys de Giuli, 1989 68
Genus Occitanomys Michaux, 1969 72
Table 1: Measurements 75
Conclusions 79
References 80

Introduction

The genus Castillomys, with only one species, C. crusafonti, was created by Michaux (1969) for a group of Pliocene and Early Pleistocene Muridae from SW Europe with 'molaires brachidontes, forte stéphanodontie, $t 1$ reculé, petite taille'. Since that date no general revision of the genus has been carried out. Van de Weerd (1976) created the subspecies C. crusafonti gracilis on the basis of material from Spanish localities older than Layna, the type-locality of C. crusafonti. Subsequently Mein et al. (1978) found at the locality of Valdeganga a Castillomys, which was larger than the known representatives, and considered it to be a new subspecies,
which was, however, not named. Recently Antunes \& Mein (1989) described a new species, Castillomys margaritae, from the uppermost Miocene of Portugal. Coiffait et al. (1985) described a C. crusafonti aff. crusafonti from Argoub Kemellal (North Africa). From Italy only Castillomys (Centralomys) benericettii de Giuli, 1989 is known, found in the locality of Brisighella 1. For eastern Europe and Turkey we have the citations of Castillomys magnus Sen, 1977 from Çalta and C. crusafonti from Maritsa 1 (de Bruijn et al., 1970), which has later been called C. debruijni (Sen et al., 1989).

The taxonomy of the genus can be summarised as follows:

Genus	subgenus	species	subspecies	author
Castillomys		crusafonti		Michaux, 1969
	crusafonti	gracilis	van de Weerd, 1976	
	magnus		Sen, 1977	
	debruijni		Sen et al., 1989	
	margaritae		Antunes \& Mein, 1989	
	Centralomys	benericettii		de Giuli, 1989

In this paper the following scheme is proposed:

Genus	subgenus	species	author
Castillomys		margaritae gracilis	Antunes \& Mein, 1989 crusafonti
rivas	van de Weerd, 1976		
Centralomys		sp. nov. 1969	
		magnus	(de Giuli, 1989)
Occitanomys	Rhodomys	debruijni	(Sen 1977)

STUDIED MATERIAL

For the realization of this paper we could count with the population from Maritsa 1, put at our disposal by Dr H. de Bruijn (Utrecht); material from Çalta and Develi lent by Dr S. Sen; unpublished material from Casablanca 3 lent by Dr J. Agustí (Sabadell); material from several Moreda localities collected by Dr C. Castillo (Granada); the collections of the 'Département des Sciences de la Terre', (DST, Lyon) from Caravaca, Layna, Sète, Seynes, Mas Rambault (donated by Dr J. Michaux, Montpellier), Brisighella 25 (donated by Dr F. Massini, Florence); and material collected by the authors in the Betic and Teruel basins.

Acknowledgements - We wish to express our thanks to Drs Agustí, de Bruijn, Sen, and Castillo, who gave us permission to study their collections, including even un-
published material. We are grateful to Dr Rivas, who allowed us to give his name to a new species.

We thank Dr M. Freudenthal for his computer programs, that helped us process our data, for his scientific suggestions and for the correction of the English text.

The photographs have been made on the Zeiss 950 digital scan microscope of the University of Granada.

This study was realized within the framework of the research group 4076 'Paleogeografía de cuencas sedimentarias' of the Consejería de Educación y Ciencia de la Junta de Andalucía and within the research project PB 0582/86 of CICYT.

Morphological analysis, definition of character states

We have made a morphological and biometrical analysis of the previously mentioned populations. For each dental element a large number of characters has been studied; the characters considered to be diagnostic are listed hereafter. All definitions refer to little-worn specimens, unless otherwise stated.

The nomenclature used in the descriptions is the one by van de Weerd (1976). Measurements were carried out on a Leitz Ortholux microscope with measuring clocks and/or on a Wild M7S binocular microscope with mechanical stage and Sony Magnescale LM12 digital measuring equipment.

M_{1} and M_{2}

The characters considered to be diagnostic are: longitudinal connection between the two main pairs of cusps; shape and disposition of the labial cingulum; size of the posterior heel. Other characters that have been analyzed are: presence of tma; size, shape and disposition of accessory cuspids, etc.

Longitudinal connection - In the lower molars of Castillomys there may be a longitudinal structure that arises from the anteromedian part of the hypoconid-entoconid pair, and extends forward (Fig. 1). For this character two states are defined: When it reaches the posterior border of the enamel of the protoconid-metaconid at full height (i.c. when the two pairs are connected) we call it longitudinal crest (Figs. 1b and $4 \mathrm{~b})$. When, on the other hand, it tapers out in the valley between the two pairs of main cusps, without reaching the enamel border of the anterior pair, we call it longitudinal spur.

Labial cingulum - For the labial cingulum of \mathbf{M}_{1} and \mathbf{M}_{2} three states are defined: absent if there is no cingulum at the labial border of the protoconid (Figs. 2a and 5 a). When a continuous cingulum connects hypoconid and anteroconid there are two possibilities: narrow when, at the level of the protoconid, it is a mere basal ledge (Figs. 2b and 5 b); wide when it forms a lateral expansion of the tooth and is separated from the protoconid by a clearly distinguishable valley (Figs. 2c and 5c).

Fig. 1. Percentages for the longitudinal spur or crest in \mathbf{M}_{1}.

Posterior heel - Three states are defined for this character (Figs. 3 and 6): absent when there is no cusp in the posterior valley (Figs. 3a and 6a). If such a cusp is present, it is considered small when it does not protrude beyond the posterior border of the tooth (Figs. 3b and 6b); or it is large when it overhangs the posterior border of the tooth, and this border is convex (Figs. 3c and 6c). The shape of the posterior heel is not important in this respect.

a

b

c

Locality	$\%$	$\%$	$\%$	N
Casablanca 3	0	10	90	10
Loma Quemada 1	0	0	100	19
Mas Rambault	0	29	71	7
Valdeganga 7	0	4	96	23
Seynes	0	50	50	10
Moreda 1B	8	60	32	78
Belmez 1	13	74	13	23
Layna	12	44	44	25
Moreda 1A	7	52	41	87
Caravaca	8	75	17	12

Fig. 2. Percentages for the character states of the labial cingulum in \mathbf{M}_{1}.

Locality	$\%$	$\%$	$\%$	N
Casablanca 3	0	20	80	10
Loma Quemada 1	0	11	89	19
Mas Rambault	0	14	86	7
Valdeganga 7	0	13	87	23
Seynes	0	50	50	10
Moreda 1B	5	63	32	78
Belmez 1	13	65	22	23
Layna	4	64	32	25
Moreda 1A	3	54	43	37
Caravaca	0	75	25	12

Fig. 3. Percentages for the character states of the posterior heel in M_{1}.
M_{3}
The only character considered to be diagnostic is the longitudinal crest, which may be absent or present. For definitions see the previous paragraph.
M^{1}
tlbis - Three character states are defined: absent when there is no cusp between tl and t 2 (Fig. 7 a), usually there is a gap between t 1 and t 2 . If present, it is considered small when it is no more than a slight widening of the crest between t 1 and t 2 , or a ledge on the lingual base of t 2 (Fig. 7b); it is defined as large when it is welldeveloped and affects the shape of the crown basis (Fig. 7c).

Locality	$\%$	$\%$	N
Casablanca 3	0	100	8
Loma Quemada 1	0	100	27
Mas Rambault	0	100	13
Valdeganga 7	0	100	22
Seynes	0	100	11
Moreda 1B	21	79	78
Belmez 1	41	59	17
Layna	23	77	22
Moreda 1A	21	79	73
Caravaca	100	0	16

Fig. 4. Percentages for the longitudinal spur or crest in \mathbf{M}_{2}.

Locality	$\%$	$\%$	$\%$	N
Casablanca 3	0	25	75	8
Loma Quemada 1	0	33	67	27
Mas Rambault	0	72	28	18
Valdeganga 7	0	42	58	19
Seynes	18	73	9	11
Moreda 1B	33	55	12	78
Belmez 1	18	64	18	17
Layna	21	54	25	24
Moreda 1A	9	79	12	75
Caravaca	37	63	0	16

Fig. 5. Percentages for the character states of the labial cingulum in \mathbf{M}_{2}.
t2bis - Like in the previous case three states are defined: absent when there is no cusp between t 2 and t 3 (Fig. 8a). If present, it is considered small when it is nothing but a small notch on the crest between $t 2$ and $t 3$, or when it is just a minuscule isolated cusp in the anterolabial valley of the tooth between t 2 and t 3 (Fig. 8b); large when there is a well-developed crest throughout the length of the valley that separates t 2 and t 3 anteriorly (Fig. 8c).

Connection t1-t5 - The connection is present when there is a spur on the posterior wall of the $t 1$, that reaches the anterior rim of the $t 4-t 5$ connection or the $t 5$. We call this connection lingual longitudinal crest (Fig. 9b); it has nothing to do with the

Locality	$\%$	$\%$
Casablanca 3	0	37
Loma Quemada 1	0	31
Mas Rambault	0	54
Valdeganga 7	0	10
Seynes	0	100
Moreda 1B	24	52
Belmez 1	18	53
Layna	21	58
Moreda 1A	19	61

Fig. 6. Percentages for the character states of the posterior heel in M_{2}.

Fig. 7. Percentages for the character states of the t bis in M^{1}.
stephanodont crest. The other character state is isolated $t 1$, which includes the cases where the spur is present, but does not reach the $\mathbf{t 4 - 1 5}$ connection (Fig. 9a). In general there is a relation between the presence of tlbis and that of the lingual longitudinal crest.

Connection $t 3-15$ - The connection is present when there is a spur on the posterior wall of the t 3 , that reaches the anterior rim of the t 5 - t 6 connection or the t 5 (Fig. 10 b). This is the labial longitudinal crest, which, like in the previous case, has

Locality	$\%$	5
Casablanca 3	43	53
Loma Quemada 1	20	75
Mas Rambault	0	17
Valdeganga 7	17	52
Seynes	83	38
Moreda 1B	27	37
Belmez 1	53	0

Fig. 8. Percentages for the character states of the t 2 bis in M^{1}.

Fig. 9. Percentages for the character-states of the lingual longitudinal crest (connection t1-t5) in $\mathbf{M}^{\mathbf{1}}$.
nothing to do with the stephanodont crest. The opposite case, when there is no connection, is called isolated $t 3$ (Fig. 10a).

Connection $t 4-t 8$ - For this character three states are distinguished: absent means that $t 4$ and $t 8$ are separated (Fig. 11a); $t 4-t 8$ crest means that there is a spur on the posterior wall of $t 4$ that reaches the posterolingual border of $t 8$; this connection, if present, has more or less the same height as the $t 4-15$ crest and its position is symmetrical with the $\mathrm{t} 9-\mathrm{t} 8$ crest (Fig. 11b). The third state, inflated t 4 - t 8 crest means a thickening of the connection, which forms a small 't7' (Fig. 11c). In this case the connection $44-\mathrm{t} 8$ is higher than the connection $\mathbf{t 4 - t 5 - t 6 - t 9}$.

Fig. 10. Percentages for the character states of the labial longitudinal crest (connection t3-t5) in M^{1}.

Fig. 11. Percentages for the character states of the t4-t7 connection in M^{1}.

M2
tlbis - Three character states are defined: absent when there is no cusp between tl and t2 (Fig. 12a). If present, it is considered small when it is an anterior constriction of tl (Fig. 12b); it is defined as large when it is a well-developed cusp in front of t 1 (Fig. 12c).

Connection tl-t5 - The definitions are identical to those given for M^{1}. So the states are isolated t1 and lingual longitudinal crest (Fig. 13).

Connection t3-t5 - Like in M^{1} : isolated t 3 and labial longitudinal crest (Fig. 14).

Fig. 12. Percentages for the character states of the t 1 bis in M^{2}.

Locality	$\%$	$\%$	N
Casablanca 3	17	83	6
Loma Quemada 1	11	89	19
Mas Rambault	0	100	2
Valdeganga 7	11	89	18
Seynes	67	33	6
Moreda 1B	53	47	55
Belmez 1	61	39	18
Layna	57	43	14
Moreda 1A	56	44	63
Caravaca	100	0	13

Fig. 13. Percentages for the character states of the lingual longitudinal crest in \mathbf{M}^{2}.

Connection 14 -t8 - The character states are the same as in M^{1} : absent, 44 -t8 crest, and inflated 44 -t 8 crest (Fig. 15).

The analysis of the mentioned characters has enabled us to quantify the distribution of the various character-states in the mentioned populations. A first observation is, that populations from stratified deposits are homogeneous. On the other hand the populations from karst fissures are more heterogeneous and present a mosaic distribution of character states.

Locality	$\%$	$\%$	N
Casablanca 3	17	83	6
Loma Quemada 1	11	89	19
Mas Rambault	0	100	2
Valdeganga 7	25	75	12
Seynes	73	27	11
Moreda 1B	84	16	55
Belmez 1	89	11	19
Layna	92	8	13
Moreda 1A	89	11	62
Caravaca	100	0	13

Fig. 14. Percentages for the character states of the labial longitudinal crest (connection $\mathrm{t} 3-\mathrm{t} 5$) in M^{2}.

Fig. 15. Percentages for the character states of the $\mathbf{t 4 - t} 7$ connection in \mathbf{M}^{2}.

The biometric data show the same pattern: populations from karst deposits show a higher variability; this feature has also been demonstrated by Freudenthal \& Martín Suárez (1990).

Systematics

Genus Castillomys Michaux, 1969
Type-species - Castillomys crusafonti Michaux, 1969.
Original diagnosis - 'molaires brachiodontes, forte stéphanodontie, t 1 reculé, petite taille'.

Emended diagnosis - Small murids with brachyodont molars; upper molars strongly stephanodont; tl of M^{1} placed backward with respect to $\mathrm{t} 2, \mathrm{M}^{2}$ with 3 roots; upper and lower molars with longitudinal crests that gain importance in the course of evolution.

Castillomys rivas sp. nov. Pl. 1, figs. 1-11.

Holotype - M ${ }^{1}$ dext., LQ-1, 158; kept in the Department of Stratigraphy and Paleontology of the University of Granada.
Type-locality - Loma Quemada 1 (Granada, Spain), co-ordinates UTM 30SWG442811.

Other localities - Venta Micena 1, 2; Orce 1, 2, 3, 7; Cueva Victoria, Valdeganga 7, Bagur II, Mas Rambault.
Derivatio nominis - This species is dedicated to our friend and colleague Dr P. Rivas. This new Castillomys and Dr Rivas share a big size in comparison with their relatives.

Stratigraphic distribution - Latest Pliocene, Early Pleistocene.
Measurements - Table 1, Fig. 16.
Diagnosis - Large Castillomys. Lower molars with well-developed longitudinal crests, that connect the hypoconid-entoconid with the protoconid-metaconid. M_{1} with a very broad labial cingulum, separated from the protoconid by a valley. M^{1} and M^{2} with lingual and labial longitudinal crests well-developed. The $t 4$ and t 8 are connected by a crest.

Differential diagnosis - Castillomys rivas differs from all other Castillomys species by its larger size.

It differs from C. margaritae by the presence of t 1 bis and t 2 bis.
It differs from C. gracilis by the presence of well-developed longitudinal crests in both the upper and the lower molars, and by the $t 4-\mathrm{t} 8$ connection in M^{1} and M^{2}.
C. rivas differs from C. crusafonti by the presence of a longitudinal crest in all specimens of the lower molars and a very broad labial cingulum in \mathbf{M}_{1}, that is separated from the protoconid by a valley. The M^{1} and M^{2} of C. rivas generally have t1bis, t2bis, and labial and lingual longitudinal crests; the stephanodont crown is completed by a connection $44-\mathrm{t} 8$.

Plate 1

Castillomys rivas sp. nov. From Loma Quemada 1; coll. University of Granada.
Fig. 1. M ${ }^{1}$ dext., LQ-1 4.
Fig. 2. M^{1} dext., LQ-1 160.
Fig. 3. M^{1} dext., LQ-1 158, holotype.
Fig. 4. $\mathrm{M}^{2} \sin$., LQ-1 164.
Fig. 5. M ${ }^{2}$ dext., LQ-1 37.
Fig. 6. $\mathrm{M}^{3} \sin$., LQ-1 180.
Fig. 7. M^{3} dext., LQ-1 56.
Fig. 8. M_{1} dext., LQ-1 64.
Fig. 9. $M_{1} \sin$., LQ-1 107.
Fig. 10. $\mathrm{M}_{2} \sin$., LQ-1 117.
Fig. 11. M_{3} dext., LQ-1 154.
Castillomys crusafonti Michaux, 1969
From Layna; coll. DST, Lyon.
Fig. 12. M^{3} dext.

Fig. 13. M^{2} dext.
Fig. 14. M^{1} dext.
Fig. 15. $\mathrm{M}_{1} \sin$.
Fig. 16. M_{2} dext.
Fig. 17. $\mathrm{M}_{3} \sin$.
Castillomys gracilis van de Weerd, 1976
From Caravaca; coll. DST, Lyon.
Fig. 18. M^{1} dext.
Fig. 19. $\mathrm{M}^{2} \sin$.
Fig. 20. M^{3} dext.
Fig. 21. M_{1} dext.
Fig. 22. $\mathrm{M}_{2} \sin$.
Fig. 23. $\mathrm{M}_{3} \sin$.

Fig. 16. Length/width diagrams of the molars of Castillomys rivas sp . nov.; $\mathrm{o}=$ Loma Quemada 1, $x=$ Valdeganga 7.

Description of the type-material

M_{1} - Teeth considerably much broader posteriorly than anteriorly. There is no tma. The anteroconid is asymmetrical; there is a very well-developed crest that connects the meeting point of the two anteroconid cusps with the labial part of the metaconid. The protoconid is situated well behind the metaconid. The longitudinal crest is high and diagonal, connecting the anterolabial wall of the entoconid with the posterolingual wall of the protoconid. The labial cingulum is separated from the protoconid by a deep valley, and forms a longitudinal crest along the labial border of the tooth. C 1 is always present, and in half the specimens there is a second cuspid in the cingulum, situated between protoconid and anteroconid. The anterolingual border of the entoconid bears a small fold. The posterior heel is well-developed, oval or subtriangular, and extends beyond the posterior border of the tooth. There are two roots.
M_{2} - Teeth with a subquadrate outline. The anterolabial cuspid is big and isolated. The longitudinal crest is high and diagonal. The labial cingulum is broad, though less than in M_{1}; c1 vestigial or absent; other cuspids on the cingulum are rarely present. The posterior heel is as large as the anterolabial cusp (alc), its shape is round or oval, and it extends beyond the posterior wall of the tooth. There are two roots.
M_{3} - Anterolabial cusp well-developed, though it is not as high as the other cusps. The longitudinal crest is high and always present. The hypoconid-entoconid complex is completely shifted towards the lingual side of the tooth. In some specimens there is a minuscule $c 1$, that is never isolated. There are two roots.
M^{1} - The t 1 lies so far backwards, that in some cases it has even lost contact with the t 2 . A tlbis is present; it is reduced to a small bulge on the wall of t 2 , or well-developed on the $\mathrm{t} 1-\mathrm{t} 2$ crest. A t2bis is absent in 20% of the specimens, small in 53%, or a well-developed fold that extends far into the valley between t 2 and t 3 (27%); see Fig. 8. The lingual and labial longitudinal crests are high and wellmarked. Generally the connection $\mathrm{t} 4-\mathrm{t} 8$ is higher than the connections $\mathrm{t} 4-\mathrm{t} 5-\mathrm{t} 6-\mathrm{t} 9$; in 50% of the entire population (57% of the specimens with crest) it widens and forms a t 7 . The t 12 is a thickening of the $\mathrm{t} 9-\mathrm{t} 8$ crest. There are three main roots, and a very small one in the centre of the molar. One of the specimens (Pl. 1, fig. 1; LQ-1 4) is considerably larger than the rest, especially in its length (Fig. 16); its morphology is identical to the other specimens.
M^{2} - This element has a rounded shape. t 1 bis is always present: reduced to a widening of the anterolabial end of t 1 , or tubercular and either connected to, or separated from tl. The lingual longitudinal crest is present in 90% of the specimens; when this connection is absent, $\mathbf{t 1}$ is isolated. In 90% of the specimens the labial longitudinal crest connects $\mathfrak{t 3}$ and t 5 , in the other cases there is an anterior spur on the t 5 or on the t 5 - t 6 crest, that does not reach the t 3 . In one case there is no t 3 . The connection $\mathrm{t} 4-\mathrm{t} 8$ is thickened like in M^{1}. The t 12 is a mere protuberance of the $9-\mathrm{t} 8$ crest. There are three roots.
M^{3} - The t 1 is connected to t 5 ; t 1 is double in 30% of the specimens. A t 3 is absent. The $t 4$ is very massive and united to $t 5$. The $t 8$ is isolated. There are two or three roots.

Remarks - Within the genus Castillomys, C. rivas includes the youngest populations with the largest dimensions. These are all found in the Iberian Peninsula and Southern France. No record is known from outside this biogeographic province.

In its oldest occurrence (the Upper Pliocene of Valdeganga 7, Albacete) it is associated with Mimomys aff. medasensis (Mein et al., 1978). In the Guadix-Baza Basin this species of Mimomys is associated with Castillomys crusafonti, and C. rivas is restricted to Pleistocene levels. In the oldest Guadix-Baza occurrence (Orce 2) C. rivas is associated with Mimomys ostramosensis and M. pusillus (Martín Suárez, 1988); in its type-locality the Arvicolidae are represented by Mimomys savini, Allophaiomys nutiensis, and Allophaiomys burgondiae. The youngest record known is from Cúllar de Baza B, where it is associated with Pitymys (Agustí, 1985).

The dental morphology of C. rivas shows several characters that can be considered apomorphic within the context of the evolution of the genus. E.g. in all the three lower molars the longitudinal crests are very well-developed; in \mathbf{M}_{1} the labial cingulum is so strongly developed, that it might be called a labial longitudinal crest. In M^{1} and M^{2} there is a connnection $\mathbf{t 4 - t 8 \text { , which, in quite some cases, is thickened, }}$ forming a beginning of a \mathfrak{t}; or, in other words, the stephanodonty is as complete as in many Apodemus.

> Castillomys crusafonti Michaux, 1969. Pl. 1, figs. 12-17.

1969 Castillomys crusafonti sp. nov. - Michaux, pp. 6-8; pl. 1, figs. 1-3.
Holotype - A left maxillary with $\mathrm{M}^{1-} \mathrm{M}^{3}$, Ly-1311, kept in the Instituto de Paleontología, Sabadell.

Localities - Layna (Soria; type),Moreda 1A, 1B; Rambla Seca, Belmez, Gorafe 2, 3, 5; Cañada del Castaño 1, 2; Galera 2, Alquería, Villalba Alta 1, 2, 3; Villalba Alta Río 2, 3; Lomas de Casares 1, Escorihuela, Sarrión 2, La Gloria 2, Orrios III, Arquillo III, Sète, Seynes, Balaruc II, 6; Mont-Hélène, Lo Fournas 4, Pla de la Ville, Serrat d'en Vacquer.

Stratigraphic distribution - Middle Pliocene: latest Alfambrian, earliest 'Villanian or Villafranchian'; zones MN 15, 16 and 17 of Mein (1975, 1990).

Measurements - See Table 1. The measurements indicated by LAY* are those of M_{1} and M^{1} taken from the original description (Michaux, 1969); those indicated by LAY are the measurements of all specimens of a collection of Castillomys from Layna, kept in the DST.

Original diagnosis - 'voir celle du genre' (Michaux, 1969, p. 6).
Emended diagnosis - Castillomys of medium size. M_{1} and M_{2} with a longitudinal spur, which forms a crest in 50% to 90% of the specimens. M_{2} generally without
posterior heel or with a reduced one. In the upper molars $t 1$ develops a lingual longitudinal crest in more than half the M^{1} and in somewhat less than half the M^{2}. The majority of the M^{1} have a labial longitudinal crest ($\mathrm{t} 3-\mathrm{t} 5$). In M^{2} the t 3 is generally isolated.

Differential diagnosis - C. crusafonti differs from C. margaritae by its larger size and by the presence of a labial longitudinal crest in the majority of the M^{1}.

The lower molars of C. crusafonti have a longitudinal spur, which in the majority of the specimens forms a crest; in C. gracilis, on the other hand, this spur never forms a complete crest. In C. crusafonti the spur of the t 3 forms a labial longitudinal crest in more than 70% of the M^{1}, whereas in C . gracilis it doesn't form a crest. The tl of M^{2} is usually isolated in C. gracilis.

Description - See Michaux (1969, pp. 6-8).
Remarks - The population from Layna is extremely heterogeneous in size and morphology, as was proven already by Freudenthal \& Martín Suárez (1990). It is an abundant material, in which two morphotypes may be distinguished:
An 'archaic' morphotype (gracilis type), in which \mathbf{M}_{1} has a symmetrical anteroconid and a very low longitudinal spur; \mathbf{M}^{1} without t 2 bis and with very poorly developed crests; and a 'derived' morphotype (crusafonti type), in which \mathbf{M}_{1} has an asymmetrical anteroconid and well-developed longitudinal crests; M^{1} with a small t2bis and very high crests.

The populations from Moreda 1A, Moreda 1B and Belmez are very similar to the type population from Layna (see Figs. 1-15, and 17). So, all these populations are highly heterogeneous, a fact that led Castillo (1990) to the conclusion that in these localities associations of Castillomys gracilis and C. crusafonti are found.

Of all the character-states defined in this paper only the degrees of development of t 1 bis and of the lingual longitudinal crest (connection t1-t5) show a positive correlation (never 100%). The rest of the character-states is independent, nor is there a correlation with size. This means that within Castillomys crusafonti the attribution of the morphotypes 'archaic' and 'derived' to two separate groups (gracilis and crusafonti) is impossible. Firstly, because the independent distribution of the character-states resides in a mosaic morphology. Secondly, one would expect a correlation between 'archaic' morphotypes and small size, and 'derived' morphotypes and large size. Though this is frequently true, there are numerous small specimens with characters that can be considered apomorphic within the context of the genus, e.g. well-developed t1bis. Many large specimens show plesiomorph characters like longitudinal spurs that don't form crests.

Aguilar et al. (1986) attribute the population from Mont-Hélène to C. gracilis, though they state that morphologically it is identical to the population from Sète (attributed to C. crusafonti). On the basis of size and morphology we include this population in C. crusafonti.

Fig. 17. Size ranges for length and width of the first molars of Centralomys, Rhodomys and Castillomys. The population from Argoub Kemellal has been tentatively placed in Centralomys (see paragraph on Castillomys from Argoub Kemellal). For an explanation of the locality codes see Table 1 (p. 78).
$\square=$ Centralomys; $\square \boxed{\square}=$ Rhodomys; Castillomys margaritae; $\pi \pm=$ C. gracilis; umm $=$ C. crusafonti; $=$ C. rivas.

Castillomys gracilis van de Weerd, 1976.
Pl. 1, figs. 18-23.
1976 Castillomys crusafonti gracilis sp. nov. - van de Weerd,pp. 73-76, pl. 8, figs. 1-5.
Holotype - Isolated M1 ${ }^{1}$, CA no. 1801, kept in the Instituto de Paleontología, Sabadell.
N. B. Van de Weerd's choice of no. CA 1081 as holotype is quite unfortunate. It is the only specimen showing a connection between $t 3$ and $t 5 / t 6$. All other M^{1} in the collections of Utrecht and DST have an isolated t 3 .

Localities - Caravaca (Murcia; type), Botardo C, D; Gorafe 1, 4; La Gloria 4, Orrios 1, Celadas 6, Aldehuela, La Alberca 1, Alcoy, Salobreña (?).

Stratigraphic distribution - Latest Miocene (?), Early Pliocene: latest Turolian (?), Early Alfambrian; zones MN 13 (?) and 14 of Mein (1990).

Measurements - The measurements in Table 1 are taken from van de Weerd (1976).
Original diagnosis - 'The teeth of C. crusafonti gracilis are very small and low. Some M1 show a connection between t 3 and $\mathrm{t} / \mathrm{t} 6$.

Emended diagnosis - Castillomys of small size. In \mathbf{M}_{1} and \mathbf{M}_{2} the longitudinal spur rarely forms a crest. In $\mathrm{M}^{1} \mathfrak{t 1}$ and t 3 develop posterior spurs that rarely form longitudinal crests. M^{2} with t 1 and t 3 isolated. In both M^{1} and $\mathrm{M}^{2}, \mathrm{t} 4$ and t 8 are isolated. M^{3} with $\mathrm{t} 1, \mathrm{t} 4$ and t 8 generally isolated, not connected to the t 5 -t 6 complex.

Differential diagnosis - See under C. rivas and C. crusafonti. C. gracilis differs from C. margaritae by the presence of t 1 bis and t 12 .

Description - See van de Weerd (1976, pp. 73-76).
Remarks - This is the smallest Castillomys species, even smaller than C. margaritae. It is known solely from the Iberian Peninsula. There are few localities with an abundant material of C. gracilis. In the Teruel Basin Castillomys is very rare, as well as in the Granada Basin, where none of the thirty-odd Lower Pliocene localities have yielded any Castillomys material. In the Guadix-Baza Basin, where Castillomys is abundant, there are hardly any Lower Pliocene localities.

Castillomys margaritae Antunes \& Mein, 1989
1989 Castillomys margaritae sp. nov. - Antunes \& Mein, p. 165, pl. 1, fig. 13.
Holotype - M^{1} dext., 1.46×1.03.

Type-locality - Santa Margarida (Alvalade Basin, Portugal).
Diagnosis and differential diagnosis - See Antunes \& Mein, 1989.
Original description - 'cette dent vraiment très petite correspond aux valeurs minimales observées dans la population de C. crusafonti gracilis. On note également le grand développement du t3 aussi important que le t2. La corne du t 3 dirigée vers la base du t5 est épaisse; chez C. crusafonti gracilis le t3 est plus petit que le t2, la corne du t 3 est grêle. La forme et la disposition des racines ne differe pas de celle des autres espèces du genre Castillomys: il y a trois racines principales inclinées vers l'avant dont l'antérieure est la plus grosse; on trouve en outre une minuscule racine centrale.

La très petite taille laisserait supposer une forme très (ou la plus) primitive au sein de la lignée. Le très grand recul du t1, au contraire, semble un caractère apomorphe plaçant cette forme en dehors de la lignée C. crusafonti gracilis-C. crusafonti crusafonti.' (Antunes \& Mein, 1989, p. 165).

'Castillomys sp.'

1985 Castillomys crusafonti aff. crusafonti Michaux - Coiffait et al., p. 173, pl. 1, fig. 8.
Locality - Argoub Kemellal.
Material - Unknown number of M^{1}, average measurements: $\mathrm{L}=1.75 \mathrm{~mm}, \mathrm{~W}=1.20$ mm .

Remarks - The study of this Castillomys is part of the doctoral thesis of Mrs B. Coiffait, who considers this population close to the Brisighella material (Mrs Coiffait, personal communication). This would mean that it should be included in the genus Centralomys, though the M^{2} from Argoub Kemellal have three roots, and those from Brisighella have four roots.

Discussion on the genus Castillomys
The origin of this group remains uncertain. Various authors suggest an Asian origin, though there is no record of similar fossils outside the Ibero-Occitanian faunal province and North Africa.

The oldest representative, C. margaritae, does not clarify much, since its relationship with the Castillomys from the Pliocene and Pleistocene is unclear. The same goes for the Castillomys from Salobreña.

One might construe the evolutionary lineage C. gracilis - C. crusafonti - C. rivas. As shown in the descriptions of the character-states there is a clear difference between the older and the younger populations. For almost all characters that are
considered diagnostic C. gracilis and C. rivas are located at opposite points of the variability. C. crusafonti, on the other hand shows a mosaic distribution intermediate between the former two, to such a degree, that the differential diagnosis has to rely on frequency percentages.

Within the supposed lineage gracilis-crusafonti-rivas, a number of morphological changes may be noted, that seem to point towards an anagenetical evolution:
M_{1} - The longitudinal spur is a long and high crest and the labial cingulum is wider in the youngest populations, and, consequently, the teeth are relatively broader. The number of accessory cuspids increases with the width of the cingulum, but the relative size of c1 remains almost constant. The posterior heel is more developed in the youngest populations.
M_{2} - Like in M_{1}, the longitudinal crest is more evident and the labial cingulum broader in the youngest populations. The labial cingulum is always narrower than in M_{1}. The number of accessory cusps and the relative size of c 1 decrease in the course of time.
M_{3} - The longitudinal crest is present in the youngest populations only. The hypoconid-entoconid complex is relatively smaller and shifted towards lingual in the youngest populations; this leaves a wide valley in the labial part of the talonid.
M^{1} - The lingual (t1-t5) and labial ($\mathrm{t} 3-\mathrm{t} 5$) longitudinal connections gain importance in the course of time; they form crests in the youngest populations. Solely in the youngest populations there may be a crest between $t 4$ and $t 8$, that completes the stephanodont crest. In none of the populations it is present in 100% of the specimens. E.g. in 50% of the specimens of the type-population of C. rivas the t 4 -t8 crest is inflated and forms a small t 7 , that may be even more developed than in many Parapodemus specimens. The degree of development of tl bis is variable through time: present in C. gracilis, absent in a considerable part of the C. crusafonti material, present again in C. rivas, where it may even be quite large. The degree of development of t2bis, on the other hand, increases through time.
M^{2} - The longitudinal connections $\mathrm{t} 1-\mathrm{t} 5$ and $\mathrm{t} 3-\mathrm{t} 5$ are more developed in the youngest populations. The connection $\mathrm{t} 4-\mathrm{t} 8$ increases too, and, like in M^{1}, a little t 7 may arise. Strangely enough, t 1 bis does not show the same pattern as in M^{1}, since in M^{2} its size increases and it becomes more isolated in the course of time.
M^{3} - In the type-material of C. gracilis $\mathrm{t} 1, \mathrm{t} 4$ and t 8 are isolated. In C. crusafonti $t 1$ and $t 8$ are isolated and $t 4$ and $t 5$ may be isolated or connected. In C. rivas $t 4$ and $t 5$ are always connected; tl is isolated in some specimens from Valdeganga III and connected to 15 in all specimens from Loma Quemada 1; in the latter population t8 is connected to t6 by a weak longitudinal crest.

Size increases from the oldest towards the youngest populations, but this increase is not the same in the various dental elements. We have calculated the degree of size increase on the basis of the mean values of length and width of the populations from Caravaca and Loma Quemada. The size of M_{1} increases equally for the length (14.08%) and the width (14.77%). In M_{2} the length increases more than the width (18.37% and 14.28 respectively), so the width/length relation decreases from the oldest population (0.928 in Caravaca) towards the youngest one (0.896 in Loma

Quemada); this relation is subject to oscillations, fundamentally due to population size: the most unexpected values are found in the less numerous populations. In M_{3} the length (11.54%) increases less than the width (18.75%).

The increase of the width of the upper molars is larger than in the lower molars: $\mathbf{1 7 . 7 6} \%$ for $\mathrm{M}^{1}, 17.17 \%$ for M^{2}, and 31.25% for M^{3}. The increase of the length is largest in $\mathrm{M}^{1}(21.19 \%)$, less in $\mathrm{M}^{3}(20.89 \%)$, and least in $\mathrm{M}^{2}(11.32 \%)$.

Genus Centralomys de Giuli, 1989
Type-species - Centralomys benericettii (de Giuli, 1989).
Original diagnosis - 'degree of stephanodonty somewhat intermediate between Castillomys and Occitanomys. Tubercula bent backwards as in Orientalomys. \mathbf{M}^{2} with 4 roots. Both M^{1} and M^{2} with t1-t5 and t4-t8 connection; isolated t 3 and well developed t1-bis'.

Emended diagnosis - Medium-sized Muridae. Teeth with voluminous cusps. Anteroconid of M_{1} symmetrical. Lower molars with very broad labial cingulums and reduced longitudinal spurs. Upper molars with weak longitudinal connections. M ${ }^{2}$ with four roots.

Centralomys benericettii (de Giuli, 1989) Pl. 2, figs. 12-17.

1989 Castillomys (Centralomys) benericettii sp. nov. - de Giuli, pp. 206-208, pl. 3, figs. 1-10.
Holotype - M^{1} sin., BRS 1 (op. cit., pl. 3, fig. 1), kept at the Dipartamento di Scienze della Terra, Università di Firenze.

Type-locality - Brisighella 1, Monticino quarry, Brisighella (Faenza, Italia).

Plate 2

Occitanomys (Rhodomys) debruijni (Sen et al., 1989)
From Maritsa; coll. Instituut voor Aardwetenschappen, Utrecht.
Fig. 1. M ${ }^{1}$ sin., MA 461.
Fig. 2. M ${ }^{1}$ dext., MA 471, holotype.
Fig. 3. \mathbf{M}^{1} dext., MA 472.
Fig. 4. M ${ }^{2}$ dext., MA 483.
Fig. 5. M² sin., MA 494.
Fig. 6. M^{3} sin., MA 503.
Fig. 7. M ${ }^{3}$ sin., MA 505.
Fig. 8. M1 dext., MA 404.
Fig. 9. M_{1} sin., MA 415.

Fig. 10. M_{2} sin., MA 434.
Fig. 11. M M_{3} dext., MA 443.
Centralomys benericettii (de Giuli, 1989)
From Brisighella 25. Coll. DST, Lyon.
Fig. 12. M^{1} dext.
Fig. 13. M^{2} dext.
Fig. 14. M_{1} dext.
Fig. 15. $M_{1} \sin$.
Fig. 16. $M_{2} \sin$.
Fig. 17. $M_{3} \sin$.

Stratigraphic distribution - Late Miocene or Early Pliocene.
Measurements - In the original description no measurements are given, and only M^{1} and M^{2} are described. We were able to study a collection of Centralomys from the locality Brisighela 25 (BRS 25), donated to the DST by Dr F. Massini (Firenze). The measurements are given in Table 1.

Original diagnosis - 'Small sized murid, occurring with few specimens in many of the Brisighella sites. The comparative description of the new subgenus accounts for the new species'.

Emended diagnosis - Small-sized Centralomys. M_{1} may have a small tma. Upper molars with t 3 isolated, and the connections $\mathrm{t}-\mathrm{t} 5$ and $\mathrm{t} 4-\mathrm{t} 8$ very low, without forming crests. t 12 very much reduced. M^{1} with a very large t 1 bis.

Description of the material from BRS 25

M_{1} - Teeth with 'inflated' cusps. A minuscule tma is visible in 19% of the specimens. Anteroconid almost symmetrical; the connection between the anteroconid and the second pair of cuspids varies considerably: in some specimens the lingual cusps are connected, in others the labial cusps; in other cases there is an anterior spur on the metaconid, that may or may not be in contact with the labial lobe of the anteroconid. There is no spur or longitudinal crest between the second and the third pair of cusps. The labial cingulum is very broad, and forms a continuous crest, separated from the protoconid by a valley. The c1 is well developed; there may be a second accessory cusp on the cingulum, either at the level of the protoconid, or between protoconid and anteroconid. The posterior cingulum is big and protuberant, rounded, or triangular. There are two roots.
\mathbf{M}_{2} - Anterolabial cuspid very well developed, with a rounded shape (also in worn teeth). In some specimens there is a weak longitudinal spur, that starts from the hypoconid-entoconid complex and is directed forward towards the protoconid, without ever forming a crest. The labial cingulum is broad, but (contrary to M_{1}) stuck to the protoconid. The cl varies between absent and well-developed, but in each specimen it is smaller than the posterior heel. In 7% of the specimens a thickening of the cingulum at the level of the protoconid forms a second accessory labial cuspid. The posterior heel is absent (7%) or of medium size (93%), oval-shaped, never subtriangular. There are two roots.
\mathbf{M}_{3} - Anterolabial cuspid reduced or absent. There is no trace of a longitudinal spur or crest. A small ledge, labially of the hypoconid, forms the cl (in one specimen the c1 is separated). The hypoconid-entoconid complex is slightly shifted lingually. There are two roots.
M^{1} - The cusps are higher than in the M^{1} of Castillomys. The tl is situated backwards and tlbis is always present, situated in the $\mathrm{t} 1-\mathrm{t} 2$ connection, slightly closer to $t 2$ than to $t 1$. In worn specimens $t 1$ and $t 5$ are connected. In fresh specimens one can observe, that the incipient connection does not start as a posterior spur of $t 1$, but as a lingual spur of $t 5$, that is directed anteriorly towards $t 1$. The $t 3$
develops a posterior spur, that is directed towards the base of t 5 , but the cusp t 3 remains isolated. The $t 4$ sends a basal spur in the direction of $t 8$, but these cusps remain isolated until an advanced degree of wear. The $t 12$ is reduced to a slight swelling of the crest t 9 -t8. There are three roots.
M^{2} - The t 1 is voluminous and isolated (not connected to 5); in its anterior part it forms a tlbis, which is isolated in 8% of the cases. The t 3 is isolated. The crest t4-t5 is very low and appears only in well-worn specimens. The $t 4$ is isolated in fresh specimens. The stephanodonty is very incomplete. The t12 is absent (84 \%) or reduced to a widening of the crest $9-18(16 \%)$. There are four roots.
M^{3} - The $t 1$ is connected to $t 5$. The $t 3$ is very reduced or absent. The $t 4$ is connected to $t 5$. The $t 8$ is isolated. There is a valley between $t 4$ and $t 6$, that, with increasing wear, forms a completely isolated mesosinus. There are three roots.

Centralomys magnus (Sen, 1977)

1977 Castillomys magnus sp. nov. - Sen, pp. 95-99, pl. 1, figs. 1-14; pl. 2, figs. 1-3.
Holotype - M1 dext., (ACA, 824).
Type-locality - Çalta (Ankara, Turkey).
Stratigraphic distribution - Middle Pliocene, latest Alfambrian.
Measurements - In Table 1 the measurements by Sen (1977) are given.
Original diagnosis - ' M^{1} avec t 1 et t 3 reculés par rapport au t 2 et reliés à la couronne par des cornes postérieures; cingulum postérieur réduit, stéphanodontie très développée. M_{1}, contrairement à celle de C. crusafonti, dépourvue de tma et possédant une marge cingulaire plus forte et une crête médiane plus faible. Dimensions des molaires plus grandes que celles de C. crusafonti'.

Description - See Sen (1977).

Discussion on the genus Centralomys

We include two species in this genus: Centralomys benericettii, which was found in uppermost Miocene or lowermost Pliocene deposits in central Italy (de Giuli, 1989); and C. magnus, from the Middle Pliocene of the Isle of Rhodes and Anatolia. They have dental morphologies with characters of both Occitanomys and Castillomys. The teeth are larger than those of Castillomys, and smaller than those of Occitanomys, found in western European localities of similar age. The dental morphology of Centralomys is archaic in comparison with that of Castillomys: the development of the longitudinal crests, in both the lower and the upper molars, is poor to nil. The stephanodonty is considerably less advanced than in Castillomys; at least in C.
benericettii 16 and 19 remain separated until in a well-advanced state of wear. Centralomys differs from Occitanomys by the better development of the longitudinal crests, by the backward position of t 1 in the M^{1}, and by the large labial cingulum in M_{1} and M_{2}. The presence of four roots in the M^{2} of Centralomys is a character that distinguishes it from Castillomys and Occitanomys. However, in a sample of $100 \mathrm{M}^{2}$ of Castillomys from Mont-Hélène, 5 specimens have a lingual root with two canals and a bifid tip, and in 2 specimens the lingual root is completely subdivided. Centralomys is more closely related to Castillomys then to Occitanomys.

Genus Occitanomys Michaux, 1969.
Type species - Occitanomys brailloni Michaux, 1969.
Original diagnosis - 'Stéphanodontie moins accusée que celle de Stephanomys et Castillomys, mais plus forte que celle du genre Apodemus, tl reculé, taille moyenne'.
N.B. For some comments on this diagnosis see the discussion on the genus Occitanomys.

Remarks - The importance of Occitanomys for this study is the fact, that it includes several populations, that were initially described as Castillomys. We are dealing with one specimen found by Adrover (1986) in Arquillo 3, with the population from Develi (Sen et al., 1989), and the population from Maritsa.

Occitanomys alcalai Adrover, Mein \& Moissenet, in press

1986 Castillomys sp. - Adrover, p. 219, fig. 46, no. 16.
Locality - Arquillo 3.
Material-1 $\mathrm{M}_{1}(1.71 \times 1.13)$.
Remarks - According to Adrover (1986, p. 219), this M_{1} is intermediate in size between Castillomys and Occitanomys; it is supposed to have an aberrant morphology in comparison with both these genera. In our opinion this is not a Castillomys, but we are dealing with Occitanomys alcalai (Adrover, Mein \& Moissenet, in press), which is characterized by its symmetrical anteroconid.

Occitanomys sp.

1989 Castillomys debruini sp. nov. - Sen et al., pp. 1731, 1734, figs. b-e (pro parte).
Locality - Develi (Anatolia, Turkey).

Material $-1 \mathrm{M}^{1}, 1 \mathrm{M}^{3}, 3 \mathrm{M}_{2}$, and $1 \mathrm{M}_{3}$.
Description - See Sen et al., 1989.
Remarks - Sen et al. (1989) attribute this population to C. debruijni. Their fig. b represents an M^{1}, in which the t 1 is connected to t 2 and t 5 . In the Maritsa population, however, the t 1 is separated from the t 2 , and the prelobe is formed exclusively by t 2 and t 3 . Dr Sen kindly allowed us to study the material; we think it is a species of Occitanomys, different from the population from Maritsa, and not even belonging to the subgenus Rhodomys subgen. nov. A specific determination is not possible in view of the limited material available.

Subgenus Rhodomys subgen. nov.
Type-species - Castillomys debruijni Sen et al., 1989.
Derivatio nominis - The genus is named after the Isle of Rhodes, where the typespecies was found, and after the Greek word for mouse.

Diagnosis - Small-sized Occitanomys; ${ }^{1}{ }^{1}$ with t 1 placed very far backwards, often isolated from $t 2$, and sometimes connected to $t 5$ by a longitudinal crest. M_{1} without tma and with a poorly developed longitudinal spur (or crest) between entoconid and protoconid; M_{2} reduced posteriorly, and sometimes possessing a c 2 .

Attributed species - Occitanomys sondaari van de Weerd, 1976.

Occitanomys (Rhodomys) debruijni (Sen et al., 1989)
Pl. 2, figs. 1-11.
1970 Castillomys crusafonti Michaux - de Bruijn et al., pp. 546-547; pl. 2, figs. 1-3, 5-6.
1989 Castillomys debruijni sp. nov. - Sen et al. (pro parte: only the population from Maritsa 1, not the one from Develi).

Holotype - M^{1} dext., MAR-471, kept in the Instituut voor Aardwetenschappen, University of Utrecht, figured in de Bruijn et al., 1970, pl. 2, fig. 3.

Type-locality - Maritsa 1 (Isle of Rhodes, Greece).
Stratigraphic distribution - Early Pliocene, zone MN14 of Mein $(1975,1990)$.
Measurements - See Table 1.
Original diagnosis - 'Crête longitudinale faible sur les molaires inférieures, connection absente ou imparfaite entre le t 3 et le t 5 -t 6 sur la M^{1}. Tubercule postérieur
isolé sur la M^{3}. Taille intermédiaire entre C. crusafonti et C. magnus.' (Sen et al., 1989, p. 1734).

Emended diagnosis - Large-sized Rhodomys; M^{1} with a big, sometimes isolated, tlbis; labial longitudinal spur (connection t3-t5) reduced or absent. The t 8 in M^{3} is generally isolated. Lower molars with a longitudinal spur that seldom forms a crest. M_{2} without c .

Description

M_{1} - Morphology highly variable. There are specimens with asymmetrical and others with symmetrical anteroconid. The tma is absent. In three specimens there is a longitudinal spur, which in only one case forms a crest. The labial cingulum varies between reduced and very broad. In the latter case it bears one or two accessory cuspids (apart from c1). The posterior heel is low and oval-shaped.
\mathbf{M}_{2} - The anterior part of the tooth is much broader than the posterior part. The anterolabial cusp is isolated and high. Half the specimens have a longitudinal spur, which never forms a crest. The labial cingulum is reduced or broad; in the latter case it bears an accessory cuspid at the level of the protoconid. There is no c1. The posterior heel is oval-shaped and very low, almost absent.
M_{3} - The anterolabial cusp is reduced (66.6 \%) or well developed (33.3 \%). There is no c 1 . The hypoconid-entoconid complex is shifted lingually.
M^{1} - The material is very heterogeneous, both in size and morphology. The t 1 is placed extremely far backwards, and separated from t2; it may be isolated (fresh specimens) or connected to the lingual wall of $t 5$. A tlbis is always present. The prelobe is made up of $t 2$ and $t 3$ only. The $t 3$ bears a short posterior spur. The t4-t5-t6-t9-t8 are connected by very low crests; in one specimen $t 4$ and $t 5$ are separated. The $t 4$ and $t 8$ are connected at their bases only; their tops are separated by a valley; in 22.2% of the cases there is a minuscule cusplet in the external part of this valley. The t 12 is a swelling of the connection $\mathrm{t} 9-\mathrm{t} 8$.
M^{2} - The tl is isolated or weakly connected to $t 5$. The t1bis equals t 3 in size in 81.25% of the cases. The t4-t5-t6-t9-t8 connected by a stephanodont crest, which is higher than in M^{1}. The t 4 is connected to t 8 ; there is no trace of an enamel protuberance on the external side of the connection $\mathrm{t} 4-\mathrm{t} 8$. A 112 is absent.
$\mathrm{M}^{3}-\mathrm{The} \mathrm{t} 1$ is voluminous and generally connected to t 5 . There is no t 3 . The t8 is isolated, except for one specimen.

Remarks - Thanks to the kindness of Dr H. de Bruijn we have been able to study the material from Maritsa. It is a very heterogeneous population, both in size and morphology. Among the M^{1} more than 41% have a t1 completely separated from the $\mathbf{t} 2$. This feature estranges this population from Castillomys and Centralomys, and is shared with Orientalomys and ancient populations of Occitanomys. A difference with Orientalomys is the absence of tma in the \mathbf{M}_{1} from Maritsa 1.

The population from Maritsa 1 was first attributed to Castillomys crusafonti (de Bruijn et al., 1970). It was restudied by van de Weerd (1976), who called it Castillomys sp., and supposed it to be part of an evolutionary lineage different from
crusafonti-gracilis because of the combination of larger size and very primitive morphology. In later papers this Castillomys is not even mentioned in the faunal lists of Maritsa 1 (de Bruijn et al., 1979). Sümengen et al. (1990) recognize it to be an Occitanomys and report it from Igdeli.

Sen et al. (1989) studied the material from Develi (Anatolia, Turkey), which in their opinion is very similar to that from Maritsa, and defined a new species for the Maritsa material, which they called Castillomys debruijni, similar to C. magnus, but smaller and with a 'degré évolutif moindre'.

We find little in common between this population and those of Castillomys from western Europa. Apart from a significantly larger size, the population from Maritsa shows a number of characters, e.g. the total absence of longitudinal crests, that separate it clearly from Castillomys sensu stricto.

It differs from Centralomys, which has four roots in M^{2}, while O. (Rhodomys) debruijni has only three.

Discussion on the genus Occitanomys
The original diagnosis of this genus is very wide; in order to give a more restricted diagnosis a complete revision of the genus is necessary, but this falls outside the scope of this paper. We are sure, however, that it contains a number of species, that should be transferred to other genera or at least subgenera.

One of the species to be excluded from Occitanomys is O. provocator de Bruijn, 1976, in which the $t 1$ is not placed very far backward, and in which the t6 and $\mathbf{t 9}$ are separated. This species should be included in the genus Karnimata.
O. pusillus (Schaub, 1938) and O. neutrum de Bruijn, 1976 form a separate subgenus, characterized by the presence of $t 12$ and tma, and a poorly developed tlbis; it combines these plesiomorphic characters with well-developed longitudinal crests, and the tendency to form 4 roots in M^{2}.

Small forms of Occitanomys have been found in several localities in the Eastern Mediterranean, like Dorkovo (Thomas et al., 1986), Develi (Sen et al., 1989) and Igdeli (Sümengen et al., 1990). Either they have not been described, or the material is so poor, that its relation with O. (Rhodomys) debruijni from Maritsa cannot be established.

TABLE 1: MEASUREMENTS

	Length			Width				
	N	min.	mean	\max.	N	\min.	mean	max.
M_{1}								
$\mathrm{BG-2}$	7	1.61	1.70	1.82	7	0.99	1.07	1.23
$\mathrm{CB}-3$	11	1.55	1.64	1.72	11	1.01	1.08	1.11
LQ-1	17	1.52	1.62	1.76	19	0.87	1.01	1.10
MRAM	8	1.54	1.60	1.74	8	0.96	1.04	1.09
VAL-7	22	1.49	1.61	1.71	22	0.94	1.03	1.09
Mo1B	87	1.39	1.51	1.70	87	0.88	0.96	1.07

76 Martín Suárez \& Mein, Revision of the genus Castillomys, Scripta Geol. 96 (1991)

	Length				Width			
	N	min.	mean	max.	N	min.	mean	max.
SEY	31	1.47	1.58	1.66	31	0.96	1.00	1.05
SARR	4	1.38	1.52	1.62	4	0.91	0.95	0.98
Bz-1	25	1.42	1.51	1.65	26	0.89	0.95	1.06
LAY*	25	1.36	1.55	1.82	25	0.99	1.09	1.22
LAY	27	1.46	1.57	1.66	27	0.91	0.99	1.06
Mo1A	90	1.28	1.50	1.61	88	0.86	0.95	1.09
SETE	19	1.36	1.47	1.57	19	0.82	0.94	1.02
ORR3	9	1.48	1.56	1.60	9	0.90	0.98	1.04
ARQ3	4	1.37	1.41	1.46	4	0.80	0.88	0.91
MHEL	20	1.37	1.47	1.58	20	0.82	0.92	0.97
CA	10	1.34	1.42	1.52	10	0.80	0.88	0.94
SAL	1	-	1.52	-	1	-	0.94	-
MAR	15	1.56	1.65	1.82	15	0.96	1.04	11.5
AK	?	-	1.75	-	?	-	1.20	-
ÇALTA	4	1.77	1.79	1.83	4	1.12	1.17	1.20
BRS25	19	1.53	1.62	1.72	20	0.98	1.05	1.12
M_{2}								
CB-3	8	1.17	1.22	1.26	8	1.04	1.11	1.17
LQ-1	24	1.04	1.16	1.26	27	0.96	1.06	1.16
VAL-7	22	1.05	1.18	1.29	22	0.98	1.06	1.14
Mo1B	92	1.02	1.10	1.22	94	0.91	1.00	1.19
SARR	2	1.10	1.13	1.16	2	0.91	0.95	0.98
Bz-1	14	1.01	1.11	1.18	14	0.93	1.01	1.11
LAY	28	1.03	1.14	1.20	28	0.94	1.01	1.08
Mola	73	0.95	1.09	1.22	73	0.84	0.99	1.12
ORR3	4	1.00	1.13	1.22	4	0.86	0.94	1.01
ARQ3	2	1.02	1.06	1.10	2	0.91	0.94	0.96
MHEL	14	0.98	1.08	1.18	14	0.92	1.00	1.04
CA	10	0.94	0.98	1.02	10	0.86	0.91	0.96
DEV	3	-	1.27	-	3	-	1.14	-
MAR	17	1.09	1.20	1.28	16	1.03	1.10	1.18
ÇALTA	5	1.25	1.30	1.36	5	1.15	1.19	1.24
BRS25	28	1.16	1.23	1.32	28	1.03	1.11	1.28
M_{3}								
LQ-1	16	0.78	0.87	0.97	16	0.77	0.83	0.91
VAL-7	20	0.78	0.84	0.93	20	0.70	0.79	0.87
Mo1B	32	0.75	0.82	0.91	32	0.69	0.77	0.84
LAY	15	0.77	0.83	0.87	15	0.70	0.76	0.82
Mo1A	14	0.71	0.82	0.88	14	0.70	0.79	0.89
ORR3	1	-	0.77	-	1	-	0.76	-
ARQ3	1	-	0.85	-	1	-	0.77	-
MHEL	3	0.76	0.77	0.80	3	0.75	0.76	0.77
CA	1	-	0.78	-	1	-	0.70	-

	Length		Width					
	N	min.	mean	max.	N	min.	mean	max.
DEV	1	-	0.86	-	1	-	0.82	-
MAR	10	0.85	0.90	0.95	10	0.79	0.85	0.91
ÇALTA	2	0.97	1.00	1.03	2	0.92	0.94	0.97
BRS25	6	0.94	0.96	0.99	6	0.82	0.87	0.91
M1								
BG-2	10	1.83	1.90	2.01	10	1.21	1.33	1.42
CB-3	14	1.75	1.83	1.91	14	1.25	1.31	1.36
LQ-1	16	1.64	1.84	2.12	16	1.19	1.26	1.35
MRAM	9	1.65	1.77	1.88	9	1.17	1.26	1.36
VAL-7	24	1.67	1.79	1.95	24	1.17	1.24	1.33
Mo1B	67	1.51	1.67	1.84	72	1.07	1.19	1.28
SEY	20	1.52	1.64	1.76	20	0.98	1.12	1.20
SARR	2	1.68	1.70	1.71	2	1.10	1.15	1.20
Bz-1	40	1.37	1.61	1.79	40	1.06	1.20	1.33
LAY*	63	1.50	1.66	1.83	63	1.08	1.16	1.30
LAY	29	1.59	1.71	1.86	29	1.13	1.21	1.28
Mo1A	91	1.52	1.65	1.78	91	1.10	1.19	1.30
SETE	24	1.41	1.56	1.68	24	1.05	1.13	1.31
ORR3	3	1.70	1.77	1.85	3	1.17	1.21	1.25
ARQ3	9	1.55	1.67	1.87	9	1.12	1.18	1.31
MHEL	19	1.46	1.57	1.66	19	1.06	1.14	1.24
CA	10	1.35	1.51	1.59	10	1.02	1.07	1.16
SMAR	1	-	1.46	-	1	-	1.03	-
DEV	1	-	1.88	-	1	-	1.32	-
MAR	17	1.65	1.83	1.95	18	1.20	1.27	1.37
ÇALTA	4	1.86	1.95	2.04	4	1.38	1.39	1.39
BRS25	4	1.65	1.76	1.88	4	1.18	1.23	1.29
M^{2}								
CB-3	6	1.20	1.24	1.28	6	1.20	1.24	1.31
LQ-1	18	1.12	1.18	1.28	19	1.08	1.16	1.25
VAL-7	18	1.11	1.20	1.28	18	1.14	1.21	1.31
MolB	62	1.05	1.15	1.24	62	1.04	1.13	1.24
SARR	1	-	1.06	-	1	-	1.16	-
Bz-1	17	1.05	1.16	1.33	17	1.10	1.17	1.36
LAY	18	1.05	1.17	1.28	18	1.07	1.15	1.26
MolA	68	1.02	1.14	1.33	68	1.02	1.14	1.45
ORR3	3	1.15	1.17	1.20	3	1.08	1.11	1.13
ARQ3	5	1.10	1.18	1.30	5	1.03	1.11	1.26
MHEL	14	0.99	1.09	1.15	14	0.99	1.09	1.15
CA	10	1.00	1.06	1.10	10	0.96	0.99	1.03
SAL	1	-	1.12	-	1	-	1.11	-
MAR	16	1.15	1.23	1.35	16	1.17	1.23	1.32

	Length				Width			
ÇALTA	2	1.24	1.31	1.38	3	1.12	1.23	1.33
BRS25	12	1.16	1.23	1.31	12	1.17	1.22	1.29
M^{3}								
LQ-1	10	0.74	0.81	0.85	10	0.77	0.84	0.91
VAL-7	19	0.74	0.80	0.89	10	0.75	0.80	0.85
MolB	14	0.71	0.79	0.91	14	0.64	0.72	0.82
LAY	10	0.68	0.78	0.90	10	0.71	0.80	0.93
Mo1A	13	0.70	0.81	0.92	13	0.69	0.77	0.89
ORR3	1	-	0.80	-	1	-	0.75	-
MHEL	1	-	0.79	-	1	-	0.73	-
CA	2	0.65	0.67	0.70	2	0.62	0.64	0.67
DEV	1	-	0.98	-	1	-	0.88	-
MAR	17	0.79	0.87	0.96	16	0.75	0.89	1.00
ÇALTA	1	-	1.00	-	1	-	0.99	-
BRS25	4	0.82	0.88	0.95	4	0.91	0.93	0.94

Explanation of locality codes for Table 1 and Fig. 17:
AK = Argoub Kemellal data by Coiffait et al. (1985)
ARQ3= Arquillo 3, Adrover (1986)
BG-2 = Bagur 2, Lopez et al. (1976)
BRS25 = Brisighella 25, collection DST, Lyon
$\mathrm{Bz}-1=$ Belmez 1, Castillo (1990)
CA = Caravaca, van de Weerd (1976)
CB-3 = Casablanca 3, unpublished data Dr J. Agustí
ÇALTA = data by Sen (1977)
DEV = Develi, Sen et al. (1989)
LAY* = Layna, Michaux (1969)
LAY = Layna, collection DST, Lyon
LQ-1 = Loma Quemada 1, Martín Suárez (1988) and new data in this paper
MAR = Maritsa, de Bruijn et al. (1970)
MHEL $=$ Mont-Hélène, Aguilar et al. (1986)
Mo1A = Moreda 1A, Castillo (1990)
Mo1B = Moreda 1B, Castillo (1990)
MRAM = Mas Rambault, Michaux (1969)
ORR3 = Orrios, Adrover (1986)
SAL = Salobreña, Aguilar et al. (1983)
SARR = Sarrión, Adrover (1986)
SETE = data by Michaux (1969)
SEY = data by Michaux (1969)
SMAR = Santa Margarida, Antunes \& Mein (1989)
VAL-7 $=$ Valdeganga $7=$ Valdeganga III in Mein et al. (1978)

Conclusions

Various lineages of small Muridae without $\mathfrak{t 7}$ and tma exist in Europe during the Early Pliocene and possibly Late Miocene. Many of these murids had been included in the genus Castillomys. Our revision of many populations has shown, that we are dealing with different groups, that probably belong to the same stock.

We have divided this complex into three genera. One of these, Centralomys, groups the populations known from Italy and Turkey. It is characterized by large teeth with characters considered to be plesiomorph in the context of the evolution of European Muridae (e.g. the poor development of the longitudinal crests). The population from Maritsa is attributed to the new subgenus Rhodomys.

The species belonging to the genera Castillomys, Centralomys and Occitanomys share a number of characters: teeth with a tendency to develop the stephanodont crest (t4-t5-t6-t9-t8); labial and lingual longitudinal crests in the upper molars; the longitudinal connection in the lower molars. Contrary to Stephanomys the teeth are very brachyodont. Differences are: The position of t 6 in relation with t 3 and t 9 , and the shape of $t 6$ in labial view. In Castillomys and Centralomys t6 is almost vertical, its top lies halfway between t 3 and t 9 ; in Occitanomys $\mathbf{t} 6$ is inclined, and its top lies closer to 9 than to t 3 . The connection $\mathrm{t} 3-\mathrm{t} 5$. In Castillomys this crest ends at the level of the connection $55-\mathrm{t} 6$; in Occitanomys it ends at half height of $\mathbf{t 5}$ (if it exists); in Centralomys it is directed towards the base of $t 5$. The shape of the anterior palatine foramen. It is long and wide in Castillomys and Centralomys; long and narrow in Occitanomys (unknown in the population from Maritsa). The shape of the labial cingulum in the lower molars. In Occitanomys and Centralomys there is a continuous crest that connects c 1 with the labial anteroconid, and which generally bears various accessory cusps; in Castillomys this crest ususally is discontinuous at the base of the protoconid or before the protoconid; the accessory cusps are less developed, and only in the youngest populations the crest is continuous. The shape of \mathbf{M}_{2}. Clearly more reduced posteriorly in the teeth of species belonging to Occitanomys.

The genus Castillomys remains restricted to southern France, the Iberian Peninsula, and maybe North Africa. It seems difficult to accept an Asiatic origin for this genus, since no record is known from outside of these three areas. The persistence of Castillomys during a long period of time in an area with strong climatic oscillations may indicate that we are dealing with a group capable of living in a wide scale of climatic conditions, and that it cannot be used as a palaeoclimatological marker.

The development of longitudinal crests is a parallel evolution in Castillomys, Stephanomys and, at a lesser scale, in Occitanomys and Centralomys. These four genera share the circumstance that no extant representatives are known. Why did only the Muridae survive that never developed longitudinal crests?

References

Adrover, R., 1986. Nuevas faunas de Roedores en el Mio-Plioceno continental de la región de Teruel (España). Interés bioestratigráfico y paleoecologico. - Inst. Estudios Turolenses, Teruel: 1-423.
Adrover, R., P. Mein \& E. Moissenet, in press. Contribucíon al conocimiento de la fauna de roedores del Plioceno de la región de Teruel. - Estudios Turolensis, Teruel.
Aguilar, J.P., L.D. Brandy \& L. Thaler, 1983. Les rongeurs de Salobreña (sud de l'Espagne) et le problème de la migration messinienne. - Paléobiol. Continent., 14, 2 (R.C.M.N.S. InterimColl. Mediterranean Neogene continental paleoenvironments and paleoclimatic evolution, Montpellier, 1983): 3-17.
Aguilar, J.P., M. Calvet \& J. Michaux, 1986. Description des rongeurs pliocènes de la faune du Mont-Hélène (Pyrénées-orientales, France), nouveau jalon entre les faunes de Perpignan (Serrat-d'en-Vacquer) et de Sète. - Paleovertebrata, 16, 3: 127-144, 2 pls.
Aguilar, J.P., \& J. Michaux, 1983. Le gisement à micromammifères du Mont-Hélène (Pyrénéesorientales). Apports à la connaissance de l'Histoire des faunes et des environnements continentaux. Implications stratigraphiques pour le Pliocène du Sud de la France. - Paléobiol. Continent., 14, 2 (R.C.M.N.S. Interim-Coll. Mediterranean Neogene continental paleoenvironments and paleoclimatic evolution, Montpellier, 1983): 19-31.
Agustr, J., 1985. Bioestratigrafía de los depósitos Plio-Pleistocenos de la depresión Guadix-Baza (prov. Granada). - Paleont. i Evol., 18: 13-18.
Antunes, M.T., \& P. Mein, 1989. Petits mammifères du Miocène terminal du bassin de Alvalade (Portugal). Comparaisons avec des faunes de l'Espagne et du Maghreb. - Boll. Soc. Paleont. Italiana, 28, 2-3: 161-170.
Bruijn, H. de, M.R. Dawson \& P. Mein, 1970. Upper Pliocene Rodentia, Lagomorpha and Insectivora (Mammalia) from the Isle of Rhodes (Greece). - Proc. Kon. Ned. Akad. Wetensch., B, 73, 5: 535-584.
Bruijn, H. de, \& A. van der Meulen, 1981. A review of the Neogene rodent succession in Greece. Ann. Géol. Pays Hellén. (VII Congr. R.C.M.N.S, Athens, 1979), H.S., 1: 207-217.
Bruijn, H. de, \& W.J. Zachariasse, 1981. The correlation of marine and continental biozones of Kastellios Hill reconsidered. - Ann. Géol. Pays Hellén. (VII Congr. R.C.M.N.S, Athens, 1979), H. S., 1: 219-226, 1 pl.

Castillo, C., 1990. Paleocomunidades de micromamfferos de los yacimientos kársticos del Neógeno superior de Andalucfa oriental. - Doctor's Thesis Univ. Granada: 1-255, 10 pls.
Coiffait, B., P.E. Coiffait \& J.J. Jaeger, 1985. Découverte en Afrique du Nord des genres Stephanomys et Castillomys (Muridae) dans un nouveau gisement de microvertébrés néogènes d'Algérie orientale: Argoub Kemellal. - Proc. Kon. Ned. Akad. Wetensch., B, 88, 2 : 167-183.
Freudenthal, M., \& E. Martín Suárez, 1990. Size variation in samples of fossil and recent murid teeth. - Scripta Geol., 93: 1-24.
Giuli, C. de, 1989. The Rodents of the Brisighella latest Miocene fauna. - Boll. Soc. Pal. Ital., 28, 2-3: 197-212, 4 pls.
López, N., J. Michaux \& J.F. Villalta, 1976. Rongeurs et Lagomorphes de Bagur-2 (Province de Gérone, Espagne), Nouveau remplissage de fissure du début du Pléistocène Moyen. - Acta Geol. Hisp., 11, 2: 46-54.
Martín Suárez, E., 1988. Sucesiones de micromamíferos en la depresión Guadix-Baza. - Doctor's Thesis Univ. Granada: 1-241, 9 pls.
Mein., P., 1975. Résultats du Groupe de Travail des Vertébrés. - Report Activity R.C.M.N.S. Working Groups (1971-1975), Bratislava: 78-81.
Mein, P., 1990. Updating of MN zones. In: E.H. Lindsay, V. Fahlbusch \& P. Mein (eds): European Mammal Chronology. - NATO ASI Series, A, 180: 73-90.

Mein, P., E. Moissenet \& G. Truc, 1978. Les formations continentales du Néogène supérieur des vallées du Júcar et du Cabriel au NE d'Albacete (Espagne). Biostratigraphie et environnement. - Docum. Lab. Géol. Fac. Sci. Lyon, 72: 99-147
Michaux, J., 1969. Muridae (Rodentia) du Pliocène supérieur d'Espagne et du Midi de la France. Palaeovertebrata, 3: 1-25, 2 pls.
Sen, S., 1977. La faune de rongeurs pliocènes de Çalta (Ankara, Turquie). - Bull. Mus. Natl. Hist. Nat., 3, 465: 89-171.
Sen, S., J.J. Jaeger, N. Dalfes, J.M. Mazin \& H. Bocherens, 1989. Découverte d'une faune de petits mammifères pliocènes en Anatolie occidentale. - C. R. Acad. Sci. Paris, 2, 309: 17291734, 1 pl.
Sümengen, M., E. Ünay, G.Saraç, H. de Bruijn, 1. Terlemez \& M. Gürbüz, 1990. New Neogene rodent assemblages from Anatolia (Turkey). In: E.H. Lindsay, V. Fahlbusch \& P. Mein (eds): European Mammal Chronology. - NATO ASI Series, A, 180: 61-72.
Thomas, H., N. Spassov, E. Kodjumdgieva, J.-L. Poidevin, V. Popov, S. Sen, P. Tassy \& D. Visset, 1986. Résultats préliminaires de la première mission paléontologique franco-bulgare à Dorkovo (arrondissement de Pazardjik, Bulgarie). - C.R. Acad. Sci. Paris, 302, 2, 16: 1037-1042.
Weerd, A. van de, 1976. Rodent faunas of the Mio-Pliocene continental sediments of the TeruelAlfambra region, Spain. - Utrecht Micropal. Bull., Spec. Publ., 2: 1-217, 16 pls.

Manuscript received 30 May 1991.

