Revision Processing in a Stream Processing Engine: A High-Level Design

Esther Ryvkina! Anurag S. Maskey'

'Brandeis University, Waltham, MA

{essie, anurag, mfc}ecs.brandeis.edu

1 Introduction

Data stream processing systems have become ubiquitous
in academic [1, 2, 5, 6] and commercial [11] sectors, with
application areas that include financial services, network
traffic analysis, battlefield monitoring and traffic control [3].
The append-only model of streams implies that input data
is immutable and therefore always correct. But in prac-
tice, streaming data sources often contend with noise (e.g.,
embedded sensors) or data entry errors (e.g., financial data
feeds) resulting in erroneous inputs and therefore, erroneous
query results. Many data stream sources (e.g., commercial
ticker feeds) issue “revision tuples” (revisions) that amend
previously issued tuples (e.g. erroneous share prices). Ide-
ally, any stream processing engine should process revision
inputs by generating revision outputs that correct previous
query results. We know of no stream processing system that
presently has this capability.

In this paper we describe the high-level design for the
revision-processing facility of Borealis [1, 4]. Note that re-
visions (on which our work focuses) are not the same as
updates, which have been discussed extensively in the con-
text of streams (e.g. [7, 8]). Revisions are corrections as
they invalidate previously processed inputs, and by impli-
cation, all query results that were produced from them. On
the other hand, updates close the time interval during which
previously processed inputs were valid, and therefore do not
invalidate any previously output query results.

The paper proceeds as follows. We begin by present-
ing the goals for the design of the revision processing com-
ponent in Borealis in Section 2. We then present two ap-
proaches to revision processing and an example that illus-
trates them in Section 3. We conclude by discussing future
work in Section 4. Further details and implementation con-
siderations can be found in our technical report [10].

2 Design Goals

In designing a revision processing component for Bore-
alis, our goals are twofold:

e Goal #1: Minimize disruption to the existing Borealis
data model and runtime system, and

e Goal #2: Impose as few constraints as possible on a
Borealis application performing revision processing.

1

Mitch Cherniack! Stan Zdonik?

2Brown University, Providence, RI

sbz@cs.brown.edu

The Borealis stream processing engine (SPE) is an exten-
sion of the Aurora SPE [4]. Both use the boxes-and-arrows
paradigm that is found in most workflow systems to express
continuous queries. Each box denotes a query operator and
each arrow (arc) between two boxes represents the stream
of data (consisting of flat tuples) that is output from one box
and sent as input to the next. An arc can be annotated with a
connection point. a repository containing all “recent tuples”
that have been seen on that arc. A query network consists of
a set of continuous queries over a fixed set of input streams.
A scheduler schedules boxes, which when scheduled, pro-
cess tuples in their input queues and deliver outputs to the
input queues of subsequent boxes.

To minimize disruption to the existing Aurora/Borealis
system, we extend rather than modify, the data model and
runtime engine. Revisions extend the data model by adding
a distinction between insertions (which add to the contents
of a stream), deletions (which signal that a previously seen
tuple should be removed), and replacements (which change
the value of a previously seen tuple)!. This generalizes
the Aurora model which consists solely of insertions. Fur-
ther, the operators (boxes) of Aurora are extended to process
these new forms of tuples. Thus far, we have designed ex-
tensions for the following operators: Map (which applies
a function to every tuple on the stream), Filter (which ap-
plies one or more predicates to a tuple and routes the tuple
to the output that corresponds to the predicate that evalu-
ated to true), and Aggregate (which applies an aggregation
function, e.g. MAX, AVG, to windows of tuples at a time).
To minimize disruption to the runtime engine, all new com-
ponents introduced to process revision tuples are designed
as special-purpose “boxes”, thereby making them schedula-
ble when tuples appear on their input queues. For example,
connection points are special-purpose boxes which process
input tuples by updating the contents of their repositories.
Sweepers (described in Section 3.3) are similarly designed.

Any Borealis query network can process revisions pro-
vided that it satisfies the minimal constraint of having a
connection point on each input stream upon which revisions
can arrive. This constraint ensures that any prior computa-
tion can be recomputed from its original inputs, and also

ITaken collectively, revisions refer to insertions that arrive out-of-order,
replacements, and deletions.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 22nd International Conference on Data Engineering (ICDE’06)
8-7695-2570-9/06 $20.00 © 2006 IEEE

(Time,Symbol,Price) (Time,Symbol,Sum)
(c) B (c,)

are shown with an asterisk. For each of these two windows,

> L7 2/ the old sum is recalculated using the original value of $25

. gfig, :gm, ziii : 5;238* :gmy gggg and the new sum is calculated using the revised value of
(1:50, IBM, $31)* o $22. The results are compared and since they are different
gf?g' :gm, zfg for both windows, two revisions are emitted - one revising
(220, IBM $18)" the 1:40 sum from $80 to $77, and the other revising the
(2:30, IBM, $28) ... 2:00 sum from $62 to $59.

Figure 1. Aggregate Revision Processing

adds no additional historical storage requirements to an ap-
plication beyond those required to ensure high availability,
as described in [9]. Additional connection points can be
placed on any arc to potentially improve the performance of
revision processing, though these are not strictly required
for functionality.

3 Revision Processing
We introduce two approaches to revision processing.

1. Upstream processing “replays” previously processed
input tuples that were involved in the same computa-
tions as the tuple being revised. Results are generated
using both the old and the new values of the tuple, and
revisions are output if those results differ.

2. Downstream processing “retrieves” all previously pro-
duced output tuples to which the tuple being revised
originally contributed, and modifies these tuples ac-
cording to the revision to produce the revised results.
Again, revisions are output if the revised results differ
from the original results.

Both of these approaches require storing a certain amount
of history (i.e. tuples that previously flowed in the system)
which is maintained by connection points. A box in Bo-
realis can always process revisions in upstream processing
mode and can sometimes process revisions in downstream
processing mode depending on the type of the box, its loca-
tion in the network and the locations of connection points.

3.1 Example

To illustrate the difference between upstream and down-
stream processing, consider the example in Figure 1 which
shows a query network consisting of two connection points
(C1 and C5) and an Aggregate box (B), which computes
the sum of prices of IBM shares during 30 minute intervals
every 20 minutes. Figure 1 shows the partial contents of Cy
and Cs at the point when a revision, ¢, which revises the
IBM 2:00 share price from $25 to $22, arrives at box B,
and after having already corrected the 2:00 share price in
C1. Note that the 1:40 and 2:00 sums of share prices stored
at (s still reflect the erroneous 2:00 price of IBM of $25.

If B operates in upstream processing mode, it will re-
quest from C all tuples from the two windows that con-
tained the original IBM 2:00 quote: 1:40-2:09 and 2:00-
2:29. The tuples contained in either of these two windows

2

If B operates in downstream processing mode, it will re-
quest from C5 the results ($80 and $62) that it previously
emitted for the 1:40-2:09 and 2:00-2:29 windows. For each
of these results, the revised result is derived by subtracting
$25 from and adding $22 to these previous results. This re-
sults in identical revisions that would be output in upstream
processing mode.

3.2 Upstream Processing

The key idea behind upstream processing is to replay
the input tuples required to produce previously generated
output results, and to regenerate these results using both
the original and revised values reported by the revision?.
Upstream processing has minimal connection point re-
quirements (only requiring connection points on the input
streams to the query network) and any box can be made to
process revisions in this mode. On the other hand, upstream
processing must recreate outputs from scratch rather than
revising them directly (as in downstream processing).

In upstream processing mode, a stateless box (e.g. Map
or Filter) processes a revision without requesting any pre-
viously processed (historical) tuples. In our design, we as-
sume that a replacement contains the revised value and the
original value of the tuple being revised, a deletion contains
the original value of the tuple being deleted, and an inser-
tion contains just the new value. The box uses these values
to produce the original and revised results and issue a revi-
sion if the results are different. In order to process a revision
by a stateful box (e.g. Aggregate) in upstream processing
mode, all tuples that were in the same windows as the tuple
being revised need to be replayed. The nearest upstream
connection point is designated as the source for those tuples
(the anchor). The anchor places these tuples into its associ-
ated arcs (queues) and these get processed and propagated
downstream. Note that a connection point must replay all
historical tuples needed by all boxes that have this connec-
tion point as their anchor, so that boxes can process that
revision and all resulting revisions produced in flight. The
number of tuples to replay is specified by the radius of the
connection point, which is calculated statically on the basis
of window sizes of Aggregates in the query network when
the network is created. When Aggregate processes a revi-
sion, it recalculates the original and revised results using the
original and revised values respectively and emits a revision

2Upstream processing is so named because the connection point con-
taining these tuples must be upstream of the box processing revisions.

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 22nd International Conference on Data Engineering (ICDE’06)
8-7695-2570-9/06 $20.00 © 2006 IEEE

for each window if the results are different.
3.3 Downstream Processing

The key idea behind downstream processing is to request
previously generated output tuples and correct them using
the original and revised values of the revision. The original
result is obtained from a downstream connection point and
the revised result is derived from it. Unlike upstream pro-
cessing, which any box can use to process revisions, down-
stream processing can only be used by certain boxes in the
query network. Specifically, a box can use downstream pro-
cessing to process revisions if there is a connection point
downstream from it, and all intermediate boxes on the path
from this box to the connection point satisfy certain proper-
ties that guarantee that the set of output tuples is generated
from a unique and identifiable set of input tuples (see [10]
for details).

In downstream processing mode, a stateless box pro-
cesses a revision in the same way as it would in upstream
processing mode because it does not need to request any
historical tuples. When a stateful box in downstream pro-
cessing mode processes a revision, it must retrieve previ-
ously output results generated using the tuple being revised.
The box first stores the revision and emits request tuples
(requests) for these outputs. A connection point down-
stream from the box processes these requests by sending
the requested outputs as historical tuples to the box via a
sweeper: a schedulable “box” that places these tuples in the
requesting box’s input queue, thus serving as a surrogate
“backchannel” between a connection point and boxes up-
stream from it. When the box receives the requested tuples,
it calculates revised results based on the original results (re-
ceived from connection point) and the revision (previously
stored), and emits revisions if the results differ.

4 Status and Future Work

We have implemented a functional, but as yet untuned,
revision processing component of Borealis that performs
both upstream and downstream revision processing. After
we finish tuning the system, we intend to explore the fol-
lowing issues.

1) Since a revision processed by stateful boxes, in general,
produces several revisions (as one tuple contributes to more
than one window), one revision at the input to the query
network can produce many revisions throughout the system
and at the outputs. Thus, the number of revisions in the net-
work depends not only on the number of revisions at the
inputs but also on the characteristics and number of state-
ful boxes. If not controlled somehow, this proliferation of
revisions can hamper the performance of the system. To ad-
dress this concern, we plan to explore approximate revision
processing — processing and emitting only those revisions
which will make a significant difference in the end result.

3

2) We also intend to study the performance differences be-
tween upstream and downstream processing, both with re-
spect to throughput of the system and the proliferation of
additional tuples to process revisions. It is our conjecture
that in many cases, downstream processing is preferable to
upstream processing in both respects. (Consider, for exam-
ple, the case where a revision affects the computation of an
aggregate over a 1000 tuple window that advances by 1000
tuples. In this case, upstream processing requires recomput-
ing two aggregate results over 1000 tuples for each arriving
revision, whereas downstream processing requires simply
retrieving one output tuple and revising it.) We intend to
explore the characteristics of Borealis query networks that
make one or the other mode of revision processing prefer-
able, to suggest where connection points could be added to
best improve revision processing performance. This will
also entail adding support for adaptive revision processing:
the dynamic switching of processing modes in response to
addition or removal of a connection point.

References

[1] D.J. Abadi, Y. Ahmad, M. Balazinska, U. Cetintemel, M. Cherni-
ack, J.-H. Hwang, W. Lindner, A. S. Maskey, A. Rasin, E. Ryvkina,
N. Tatbul, Y. Xing, and S. Zdonik. The Design of the Borealis Stream
Processing Engine. In Second Biennial Conference on Innovative
Data Systems Research (CIDR 2005), Asilomar, CA, January 2005.

[2] A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, I. Nizhizawa,
J. Rosenstein, and J. Widom. STREAM: The Stanford Stream Data
Manager. In ACM SIGMOD Conference, June 2003.

[3] A. Arasu, M. Cherniack, E. Galvez, D. Maier, A. Maskey, E. Ryvk-
ina, M. Stonebraker, and R. Tibbetts. Linear Road: A Stream Data
Management Benchmark. In VLDB Conference, September 2004.

[4] D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee, G. Seid-
man, M. Stonebraker, N. Tatbul, and S. Zdonik. Monitoring Streams
- A New Class of Data Management Applications. In VLDB Confer-
ence, Hong Kong, China, August 2002.

[5] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M.
Hellerstein, W. Hong, S. Krishnamurthy, S. Madden, F. Reiss, and
M. A. Shah. TelegraphCQ: Continuous Datafbw Processing. In ACM
SIGMOD Conference, June 2003.

[6] J.Chen, D.J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A Scalable
Continuous Query System for Internet Databases. SIGMOD Record
(ACM Special Interest Group on Management of Data), 29(2), 2000.

[7]1 T.M. Ghanem, M. A. Hammad, M. F. Mokbel, W. G. Aref, and A. K.
Elmagarmid. Query Processing using Negative Tuples in Stream
Query Engines. Technical Report CSD 04-040, Purdue University,
2005.

[8] L. Golab and M. T. Ozsu. Update-Pattern-Aware Modeling and Pro-
cessing of Continuous Queries. In ACM SIGMOD Conference, Bal-
timore, MD, June 2005.

[9] J.-H. Hwang, M. Balazinska, A. Rasin, U. Cetintemel, M. Stone-

braker, and S. Zdonik. High-Availability Algorithms for Distributed

Stream Processing. In IEEE ICDE Conference, April 2005.

E. Ryvkina, A. S. Maskey, I. Adams, B. A. Sandler, C. Fuchs,

M. Cherniack, and S. Zdonik. Oops, I Streamed it Again:

Processing Revision Tuples in a Stream Processing Engine.

Technical report, Brandeis University, June 2005. URL:

http://nms.Ics.mit.edu/projects/borealis/revisions_techreport_06.pdf.

StreamBase Systems, Inc. URL: http://www.streambase.com/.

[10]

(11]

YF]',F.

COMPUTER
SOCIETY

Proceedings of the 22nd International Conference on Data Engineering (ICDE’06)
8-7695-2570-9/06 $20.00 © 2006 IEEE

