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ABSTRACT

We revisit the stochastic mesh method for pricing American
options, from a conditioning viewpoint, rather than the
importance sampling viewpoint of Broadie and Glasserman
(1997). Starting from this new viewpoint, we derive the
weights proposed by Broadie and Glasserman (1997) and
show that their weights at each exercise date use only the
information of the next exercise date (therefore, we call them
forward-looking weights). We also derive new weights that
exploit not only the information of the next exercise date
but also the information of the last exercise date (therefore,
we call them binocular weights). We show how to apply
the binocular weights to the Black-Scholes model, more
general diffusion models, and the variance-gamma model.
We demonstrate the performance of the binocular weights
and compare to the performance of the forward-looking
weights through numerical experiments.

1 INTRODUCTION

The pricing of American options is one of the challenging
problems in financial engineering. By the term American
options, we refer to derivative securities which can be early-
exercised at a finite number of dates prior to the maturity.
They are sometimes called Bermudan options. To price an
American option using Monte Carlo simulation, one may
formulate it as a dynamic programming problem, and then
approximate the value of the American option backwards
recursively.

To approximate the value of the option at each exer-
cise date, Tsitsiklis and Van Roy (1999) and Longstaff and
Schwartz (2001) use a regression approach by employing a
sequence of basis functions, and Broadie and Glasserman
(1997) design a stochastic mesh method. In this paper, we
focus on the stochastic mesh method. Basically the stochas-
tic mesh method approximates the option value by using
weight functions which explore the information contained in
the simulation, e.g., the density information. Along this line

of research, Avramidis and Hyden (1999) consider the the
efficiency improvement of the method, and Avramidis and
Matzinger (2004) show the convergence of the stochastic
mesh estimators. Other subsequent work includes Broadie,
Glasserman, and Ha (2000) and Broadie, Glasserman, and
Jain (1997).

A key feature of the stochastic mesh method is how
to derive the weight functions. Broadie and Glasserman
(1997) take an importance sampling viewpoint and derive
weights of each exercise date based on the information of
the next exercise date. Therefore, we call them forward-
looking weights. In this paper we revisit this problem,
and consider it from a conditioning viewpoint. From this
viewpoint, we can derive the same weights of Broadie and
Glasserman (1997). Furthermore, we can also derive new
weights that use not only the information of the next ex-
ercise date but also the information of the last exercise
date. Therefore, we call them binocular weights. To illus-
trate how to apply the binocular weights, we study how to
apply them to the Black-Scholes model and more general
diffusion models. We compare these two weights for the
Black-Scholes model through some simple and preliminary
numerical experiments. The numerical results show that
the forward-looking weights have smaller variances, but the
binocular weights have smaller biases. We also demonstrate
how to apply the binocular weights to the variance-gamma
model. Note that the forward-lookingweights are difficult to
implement for this model since they require a large amount
of computational effort. A simple numerical study shows
that the binocular weights work well for the variance-gamma
model.

The rest of the paper is organized as follows. In Section 2
we review some preliminary knowledge on pricingAmerican
options and the stochastic mesh method. Then in Section
3 we analyze the problem from a conditioning viewpoint,
and derive the forward-looking and binocular weights. In
Section 4 we consider several examples to illustrate how to
apply the forward-looking and binocular weights, followed
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by numerical study in Section 5. We conclude the paper in
Section 6.

2 PRELIMINARIES

Let St denote the price at time t of the underlyingasset whose
price dynamics follows a Markov process on Rd . Suppose
that 0 = t0 < t1 < .. . < tm = T are exercise opportunities
(also called exercise dates), i.e., the American option can
be exercised at ti for any i ∈ {0,1, . . .,m}. Without loss of
generality, we assume that ti+1−ti = τ for all i = 0,1, . . .,m−
1. We write Si for Sti for simplicity of notation. Moreover,
suppose that n independent sample paths of {S0,S1, . . .,Sm}
are generated, denoted by {S0,S j

1, . . .,S j
m} the j-th sample

path.
Let Li(x) denote the payoff function of the American

option from exercise at date ti when Si = x, and Vi(x)
denote the value of the option at date ti when Si = x. Then
a backwards recursion algorithm for pricing the American
option can be expressed as

Vm(x) = Lm(x)
Vi(x) = max

(
Li(x),e−rτ E [Vi+1(Si+1)|Si = x]

)
,

i = 0,1, . . .,m−1,

where the expectation is taken under the risk-neutral mea-
sure, r is the risk-free interest rate. For simplicity we only
consider the interest rate as a constant, while it can be ex-
tended to more complicated models of interest rates. Then
the price of the American option at time 0 is V0(S0).

For i = 0,1, . . .,m, let Hi(x) be the holding value of the
option at date ti when Si = x, i.e.,

Hi(x) = e−rτ E [Vi+1(Si+1)|Si = x] .

Then the major difficulty of pricing the American option
reduces to how to estimate the holding value Hi(x) for any
state x.

Broadie and Glasserman (1997) propose a stochastic
mesh method to price the American option. The key feature
of the method is that for any x, it evaluates Hi(x) by exploiting
all the nodes at time ti+1, i.e., S1

i+1, . . .,Sn
i+1. Essentially

they choose an appropriate weight function w(i,x,Si,Si+1)
such that Hi(x) can be estimated by

H̄i(x) = e−rτ 1
n

n

∑
j=1

V̄i+1(S
j
i+1) ·w(i,x,S j

i ,S j
i+1),

where V̄i+1(x) = max{Li+1(x), H̄i+1(x)}. The key issue of
the stochastic mesh method is how to choose an appropriate
weight function w(i,x,Si,Si+1). Broadie and Glasserman
(1997) analyze this problem from an importance sampling

viewpoint. One of the weight functions they suggest is

w2(i,x,Si+1) =
fi(x,Si+1)

1
n ∑n

j=1 fi(S
j
i ,Si+1)

,

where fi(x,y) is the transition density from Si = x to Si+1 = y.

3 ESTIMATING THE HOLDING VALUE Hi(x)

Note that

Hi(x) = e−rτ E [Vi+1(Si+1)|Si = x]

= lim
ε→0+

E
[
e−rτVi+1(Si+1) ·1{x−ε≤Si≤x+ε}

]

E
[
1{x−ε≤Si≤x+ε}

] (1)

≈ E

[
e−rτVi+1(Si+1) ·

1{x−ε≤Si≤x+ε}

E
[
1{x−ε≤Si≤x+ε}

]
]

,

when ε is small. Based on this expression, an estimator of
Hi(x) can be

H̄ε
i (x) = e−rτ 1

n

n

∑
j=1

V̄ ε
i+1

(
S j

i+1

)
·wε(x,S j

i ),

where

wε(x,S j
i ) =

1{x−εn≤Si≤x+εn}
1
n ∑n

k=1 1{x−εn≤Sk≤x+εn}
,

or more generally,

wε(x,S j
i ) = K

(
S j

i − x

εn

)/[
1
n

n

∑
k=1

K

(
Sk

i − x
εn

)]

by the kernel method (Bosq 1998) where K is a kernel
density function, e.g., the standard normal density function.
To ensure the convergence of the kernel estimators, by Bosq
(1998), we need to select εn such that εn → 0 and nεn → ∞
as n → ∞.

In the above kernel estimator, V̄ ε
i+1(x) =

max
(
Li+1(x), H̄ε

i+1(x)
)

and V̄ ε
m(x) = Lm(x). An ad-

vantage of this estimator is that it does not require
any density information, but only the sample paths S j

i ,
i = 1,2, . . .,m and j = 1,2, . . .,n. However, its performance
is typically poor since it essentially exploits only the
information in the S j

i s which are close to x. Generally,
kernel estimators have a rate of convergence of (nεn)−1/2

which is slower than the typical n−1/2.
Basically, the weight function w(x,S j

i ) is crucial to the
performance of the estimator. Intuitively, with further infor-
mation, e.g., the densities, one may obtain better weights,
and hence better estimators for Hi(x), which have faster rate
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of convergence. For instance, the rate of convergence of
the estimators of Broadie and Glasserman (1997) is n−1/2.

In the following two subsections, we apply conditioning
approach to Equation (1) to incorporate more information in
the weight functions, and derive estimators that have better
rate of convergence.

3.1 Forward-Looking Weights

Note that by conditioning on Si+1, we have

Hi(x) = lim
ε→0

E
[
e−rτVi+1(Si+1) ·1{x−ε≤Si≤x+ε}

]

E
[
1{x−ε≤Si≤x+ε}

]

= lim
ε→0

E
(
E
[

e−rτVi+1(Si+1) ·1{x−ε≤Si≤x+ε}
∣∣Si+1

])

E
[
1{x−ε≤Si≤x+ε}

]

= lim
ε→0

E
(
e−rτVi+1(Si+1)E

[
1{x−ε≤Si≤x+ε}

∣∣Si+1
])

E
[
1{x−ε≤Si≤x+ε}

] .

With some regularity conditions, we can take the limit into
the expectations. Then we have

Hi(x) = E
[
e−rτVi+1(Si+1)w(i,x,Si+1)

]
,

where

w(i,x,Si+1) = lim
ε→0

E
[

1{x−ε≤Si≤x+ε}
∣∣Si+1

]

E
[
1{x−ε≤Si≤x+ε}

] .

Suppose that the transition density of Si+1 given Si = x and
the marginal density of Si are available, denoted by fi(x, ·),
and f (i, ·) respectively. When they are smooth, we have

w(i,x,Si+1)

=
limε→0

1
2ε E
[

1{x−ε≤Si≤x+ε}
∣∣Si+1

]

limε→0
1

2ε E
[
1{x−ε≤Si≤x+ε}

]

=
limε→0

1
2ε

∫ x+ε
x−ε f (i,u) fi(u,Si+1)du

f (i +1,Si+1)

× 1

limε→0
1

2ε
∫ x+ε

x−ε f (i,u)du

=
f (i,x) fi(x,Si+1)

f (i +1,Si+1)
· 1

f (i,x)
=

fi(x,Si+1)
f (i +1,Si+1)

,

where the third equality follows from the mean value the-
orem.

The above weight w(i,x,Si+1) involves two density
functions, fi(x, ·) and f (i+1, ·). In practice fi(x, ·) is usually
known or can be calculated, since it is actually the transition
density which is used to generate the sample pathes of the
underlying asset price. However, the explicit expression of
f (i+1, ·) is often unknown or can not be easily calculated,
except for some simple models, e.g., St following geometric

Brownian motion. When the explicit expression of f (i+1, ·)
is unknown, we may estimate it by using the transition
densities. Since

f (i +1,v) = E [ fi(Si,v)] ,

then f (i+1,Si+1) can be approximated by a sample mean,
i.e.,

f̂ (i +1,Si+1) =
1
n

n

∑
k=1

fi(Sk
i ,Si+1).

Therefore, we obtain two weights, denoted by w1 and w2

respectively,

w1(i,x,Si+1) =
fi(x,Si+1)

f (i +1,Si+1)
, (2)

w2(i,x,Si+1) =
fi(x,Si+1)

1
n ∑n

j=1 fi(S
j
i ,Si+1)

. (3)

We refer to these two weights as forward-looking weights,
since they are obtained by conditioning on Si+1, the sample
paths in the next exercise date.

In fact, the forward-looking weights derived here are
special cases of the weights in Broadie and Glasserman
(1997). As shown in Broadie and Glasserman (1997), the
weight w1(i,x,Si+1) may lead to estimator whose variance
grows exponentially with the number of exercise opportu-
nities, while w2(i,x,Si+1) can avoid this problem.

Generally speaking, the weights in Broadie and Glasser-
man (1997) exploit the information of the next exercise date,
and they are obtained from an importance sampling view-
point, rather than the conditioning viewpoint in our analy-
sis. In their work the weights can be generally expressed
as w(i,x,Si+1) = fi(x,Si+1)/gi+1(Si+1), where gi+1(·) is the
density of Si+1 from which the mesh points S j

i+1’s are actu-
ally generated. Emphasis should be given to that fi(x,Si+1)
is the transition density under risk-neutral measure while
the marginal density gi+1(·) may not be under risk-neutral
measure. Since the choice of gi+1(·) is crucial to the perfor-
mances of the estimators, Broadie and Glasserman (1997)
suggest a good choice of gi+1(·), gi+1(u) = 1

n ∑n
k=1 fi(Sk

i ,u),
which is called average density function. Then the weight
function becomes w2(i,x,Si+1). Intuitively, the average den-
sity function is equivalent to generating n independent paths
of St and then “forgetting” the path to which each S j

i belongs
(see, e.g., Broadie and Glasserman 1997 or Avramidis and
Hyden 1999). For more details of the weights in Broadie and
Glasserman (1997), one is referred to Glasserman (2004)
for a comprehensive overview.
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3.2 Binocular Weights

Notice that the forward-looking weights are obtained by
conditioning on the information of the next exercise date.
Now we take one step further: what if we conditions on
not only the information of the next exercise date, but also
the information of the last exercise date? Motivated by the
usage of Brownian bridge sampling in Monte Carlo methods,
hopefully we may obtain new weights. We describes how
we can do so. Since these new weights use the information
on both sides of the current exercise date, we refer to them
as binocular weights.

By conditioning on Si−1 and Si+1, we have,

Hi(x)

= lim
ε→0

E
(
e−rτ E

[
Vi+1(Si+1) ·1{x−ε≤Si≤x+ε}

∣∣Si−1,Si+1
])

E
[
1{x−ε≤Si≤x+ε}

]

= lim
ε→0

E
(
e−rτVi+1(Si+1)E

[
1{x−ε≤Si≤x+ε}

∣∣Si−1,Si+1
])

E
[
1{x−ε≤Si≤x+ε}

] .

With some regularity conditions we can take the limit inside
the expectation. Then

Hi(x) = E
[
e−rτVi+1(Si+1) ·w(i,x,Si−1,Si+1)

]
,

where

w(i,x,Si−1,Si+1) =
limε→0

1
2ε E

[
1{x−ε≤Si≤x+ε}

∣∣Si−1,Si+1
]

limε→0
1

2ε E
[
1{x−ε≤Si≤x+ε}

] .

Let fi|i−1,i+1(·,v1,v2) denote the conditional density of Si

given Si−1 = v1 and Si+1 = v2, and we assume that it is a
smooth function. Then by the mean value theorem,

w(i,x,Si−1,Si+1) =
fi|i−1,i+1(x,Si−1,Si+1)

f (i,x)
.

For many models, the expression of fi|i−1,i+1(·,v1,v2) is
known or can be approximated based on the bridge sampling
techniques. For instance, if St follows a geometric Brownian
motion, then fi|i−1,i+1(·,v1,v2) can be obtained using the
result for Brownian bridge. It can also be calculated or
approximated in other models, e.g., the variance-gamma
model.

Since the marginal density f (i,x) is typically unknown
except for some very simple models of St , we may use
fi|i−1,i+1(·,v1,v2) to estimate it. Note that

f (i,x) = E
[

fi|i−1,i+1( · ,Si−1,Si+1)
]
,

then f (i,x) can be unbiasedly estimated by

f̂ (i,x) =
1
n

n

∑
k=1

fi|i−1,i+1(x,Sk
i−1,Sk

i+1).

Then we obtain two new weights:

w̃1(i,x,Si−1,Si+1) =
fi|i−1,i+1(x,Si−1,Si+1)

f (i,x)
, (4)

w̃2(i,x,Si−1,Si+1) =
fi|i−1,i+1(x,Si−1,Si+1)

1
n ∑n

k=1 fi|i−1,i+1(x,Sk
i−1,Sk

i+1)
. (5)

Note the denominator of w̃1(i,x,Si−1,Si+1) is exactly
the marginal density f (i,x), while in w̃2(i,x,Si−1,Si+1) it
is replaced by an average. As we have discussed for the
forward-looking weights w1(i,x,Si+1) and w2(i,x,Si+1), us-
ing the marginal density may lead to estimator whose vari-
ance grows exponentially with the number of exercise op-
portunities, while the use of an average can avoid this
problem. We conjecture that the binocular weights have the
similar properties, and we indeed observe this phenomenon
in numerical experiments. Therefore, we recommend to use
w̃2(i,x,Si−1,Si+1) when both can be implemented.

4 EXAMPLES

In this section we use several examples to illustrate how the
forward-looking and binocular weights can be applied. We
first consider the Black-Schole model where the underlying
asset follows a geometric Brownian motion, and then general
diffusion models. At the end we consider the variance-
gamma model, which is a Lévy process.

For the Black-Scholes model, both forward-lookingand
binocular weights can be derived, while for general diffusion
models, forward-looking weights can be derived but binoc-
ular weights need to be approximated. Forward-looking
weights can also be derived for the variance-gamma model,
but it is not practical to implement them since they are
expressed in terms of expectations and hence require to be
evaluated using extra simulations which may be computa-
tionally intensive. However, binocular weights with explicit
forms can be derived for the variance-gamma model, which
can be implemented practically.

4.1 Black-Scholes Model

Suppose that the price of the underlying asset follows a
Geometric Brownian motion under the risk neutral measure,
i.e.,

dSt

St
= (r−δ )dt +σdBt ,
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where r is the risk-free interest rate, δ is the dividend rate,
σ is the volatility, and Bt is a standard Brownian motion.

Then we have Si = S0e(r−δ− 1
2 σ 2)ti+σBti , and by elemen-

tary calculation,

fi(u,v) =
1

vσ
√

τ
φ
(

1

σ
√

τ

[
log
( v

u

)
− (µ −σ2/2)τ

])
,

f (i,x) =
1

xσ
√

ti
φ
(

1
σ
√

ti

[
log

(
x
S0

)
−
(
µ −σ2/2

)
ti

])
,

where φ (·) denotes the standard normal density.
Plug the transition density fi(u,v) and the marginal

density f (i,x) in Equations (2) and (3), then the forward-
looking weights can be obtained.

To consider the binocular weights, we need to first obtain
the conditional density of Si given Si−1 and Si+1. To do so,
we use the result of a Brownian bridge. Conditioningon Bi−1

and Bi+1, Bi is a Brownian bridge where Bi represents Bti for
simplicity of notation. Particularly, Bi ∼ 1/2 [Bi−1 +Bi+1]+√

τ/2 ·Z (see, e.g., Avramids and L’Ecuyer 2006), where Z
follows a standard normal distribution, and the operator “∼”
stands for equivalence in distribution. Then conditioning
on Si−1 and Si+1, we can easily obtain that

Si ∼
√

Si−1 ·Si+1 · eσ
√

τ/2·Z.

Then by some simple algebra, we have

fi|i−1,i+1(x,v1,v2) =
1

xσ
√

τ/2
φ

(
1

σ
√

τ/2
log

x
√

v1 · v2

)
.

Therefore, the binocular weights of Equations (4) and (5)
can also be applied.

4.2 General Diffusion Models

Suppose that the price of the underlying asset follows the
diffusion process:

dSt = µ(t,St)dt +σ(t,St)dBt .

We use Euler scheme to discretize St (Glasserman 2004).
Under the scheme,

Si+1 = Si +µ(ti,Si)τ +σ(ti,Si)
√

τ Zi+1, i = 0,1, · · · ,m−1,

where {Z1,Z2, · · · ,Zm} are independent standard normal
random variables. To simplify the notation, we let µi(Si)
and σi(Si) denote µ(ti,Si) and σ(ti,Si) respectively.

For general diffusion models where the drift µ and
volatility σ depend on t and St , it is easy to derive the
forward-looking weights since the transition density fi(x, ·)
can be calculated based on the discretization scheme, while

it is not easy to derive the binocular weights since the
conditional density fi|i−1,i+2(·,v1,v2) is not easy to obtain.
However, based on the discretization scheme, we are able
to derive explicit expressions for approximations of the
binocular weights. We describe how this can be done. Recall
that conditioningon Bi−1 and Bi+1, Bi ∼ 1/2 (Bi−1 +Bi+1)+√

τ/2 ·Z, where Z is a standard normal random variable.
Then

Bi −Bi−1 ∼ 1
2

(Bi+1 −Bi−1)+
√

τ/2 ·Z. (6)

By Euler scheme, when the step size τ is small, approxi-
mately we have

Si = Si−1 + µi−1(Si−1)τ +σi−1(Si−1) [Bi −Bi−1] , (7)

Si+1 ≈ Si−1 + µi−1(Si−1)2τ +σi−1(Si−1) [Bi+1 −Bi−1] . (8)

Then combining Equations (6), (7) and (8) together we
have, conditioning on Si−1 and Si+1,

Si ∼
1
2

[Si−1 +Si+1]+σi−1(Si−1)
√

τ/2 ·Z.

Then by some simple algebra, we have

fi|i−1,i+1(x,v1,v2) =
1

σi−1(v1)
√

τ/2
φ

(
x− 1

2 (v1 + v2)

σi−1(v1)
√

τ/2

)
.

Moreover, the transition density fi(x, ·) can be easily
obtained:

fi(x,u) =
1

σ(ti,x)
√

τ
φ
(

u− x−µ(ti,x)τ
σ(ti,x)

√
τ

)
.

Then plugging fi(x,u) and fi|i−1,i+1(x,v1,v2) in Equations
(3) and (5) respectively, we obtain the forward-looking
weight and the binocular weight.

4.3 Variance-Gamma Model

The forward-looking and binocular weights work not only
for the diffusion processes, but also for some other models.
In this example, we consider the variance gamma model.

Following the notation in Avramidis and L’Ecuyer
(2006). Let B(t; θ ,σ) be a Brownian motion with drift
parameter θ and variance parameter σ . Let G(t; µ,ν) be a
gamma process independent of B(t; θ ,σ), with drift µ > 0
and volatility ν > 0. Then G(0; µ,ν) = 0, the process
G has independent increments, and the increments follow
a Gamma distribution, i.e., G(t + δ ; µ,ν)− G(t; µ,ν) ∼
Γ(δ µ2/ν,ν/µ) for t ≥ 0 and δ > 0.
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A variance gamma process with parameters (θ ,σ ,ν)
is defined by

X = {X(t) = X(t; θ ,σ ,ν)= B(G(t; 1,ν),θ ,σ),t ≥ 0} ,

which is obtained by subjecting the Brownian motion to
a random time change following a gamma process with
parameter µ = 1.

Then the risk neutralized asset price process St is

St = S0 exp{(ω + r−δ )t +X(t)},

where r is the risk-free interest rate, δ is the dividend rate,
and the constant ω = log(1−θν −σ2ν/2)/ν is chosen so
that the discounted value of a portfolio invested in the asset
is a martingale. In particular, E(St) = S0 exp[(r−δ )t]. Then
we require

(θ +σ2/2)ν < 1,

which ensures that E(St) < ∞ for all t > 0. We assume that
this requirement is satisfied in this example.

To analyze this model, we first review two schemes
of simulating the variance gamma process. The first one
is simulating it as Gamma time-changed Brownian motion,
while the second one simulating it via a Brownian bridge.
For details of these schemes, one is referred to Fu (2007)
and Avramidis and L’Ecuyer (2006). With the first scheme,
we will derive the transition density fi(x, ·), while with the
second scheme we obtain the conditional density of Si given
Si−1, Si+1. Then the weights obtained by plugging these
densities in Equations (3) and (5) can be applied.

We first look at the scheme of simulating variance
gamma process as Gamma time-changed Brownian motion.
For simplicity of notation, we let Xi and Gi denote X(ti) and
G(ti) respectively from now on. We independently generate
∆Gi := Gi+1−Gi according to a Gamma distribution and Zi

from a standard normal distribution, which are independent
of the past r.v.s. Particularly, let Γ(a,b) denote the Gamma
distribution with shape parameter a and scale parameter
b, and (a,b) the normal distribution with mean a and
variance b, then ∆Gi ∼ Γ(τ/ν,ν), and Zi ∼ (0,1). Then
we have

Xi+1 = Xi +θ ∆Gi +σ
√

∆Gi Zi.

By simple algebra we obtain the transition density of Si+1

given Si = x:

fi(x,u)

=
∫ ∞

0

1
uσ√

y
φ
(

log(u/x)− (ω + r−δ )τ −θ y
σ√

y

)
γ(y)dy

= EW
[

1

uσ
√

W
φ
(

log(u/x)− (ω + r−δ )τ −θW

σ
√

W

)]
,

where γ(·) is the density of the random variable which
follows a Γ(τ/ν,ν) distribution, and the expectation is taken
over W . Then we can use fi(x,u) to obtain forward-looking
weights.

The variance-gamma process can also be simulated via
Brownian bridge. In particular, given Xi−1, Xi+1, Gi−1 and
Gi+1, Xi can be simulated by a two-step algorithm. Let
β (a,b) denote the beta distribution with parameters a and
b, then in the first step, we generate Y ∼ β (τ/ν,τ/ν), and
let

Gi = Gi−1 +(Gi+1−Gi−1)Y. (9)

Then in the second step, we generate Z ∼(
0, (Gi+1−Gi)σ2Y

)
, and let

Xi = Y Xi+1 +(1−Y)Xi−1 +Z. (10)

Then we have

Xi = YXi+1 +(1−Y )Xi−1 +σ
√

(Gi+1 −Gi)Y ·Z1

= YXi+1 +(1−Y )Xi−1 +Y1 ·Z1,

where Z1 is a standard normal random variable independent
of Y , and Y1 = σ

√
Y (1−Y ) (Gi+1 −Gi−1).

With the above bridge sampling scheme, we derive the
conditional density of Si given Si−1, Si+1, Gi−1 and Gi+1

by simple algebra. Specifically,

fi|i−1,i+1(x,Si−1,Si+1,Gi−1,Gi+1)

=
∫ 1

0

1

xσ
√

y(1− y)[Gi+1 −Gi−1]
φ̃(y)g(y)dy

= EY

[
1

xσ
√

Y (1−Y )[Gi+1−Gi−1]
φ̃(Y )

]
,

where

φ̃(y) = φ




log

(
x

Sy
i+1·S

1−y
i−1

)
+(2y−1)(w + r−δ )τ

σ
√

y(1− y)[Gi+1 −Gi−1]


 ,

g(y) is the density of the random variable Y which follows a
β (τ/ν,τ/ν) distribution, and the expectation is taken for Y .
Then the corresponding binocular weight can be obtained.

So far we have derived the forward-looking and
binocular weights following exactly the analysis in the
previous sections. For these weights, though the tran-
sition density fi(x,Si+1) and the conditional density
fi|i−1,i+1(x,Si−1,Si+1,G(ti−1),G(ti+1)) can be estimated by
running extra Monte Carlo simulations, it may not be easy
to implement in practice because of the huge computational
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effort required. Fortunately, we may obtain other weights
which are much easier to implement, in the light of the con-
ditioning viewpoint of the weights. This viewpoint provides
us some flexibility in choosing the conditioning quantities.
By conditioning on some appropriate quantities we may
obtain weights that are practically applicable. We illustrate
how we can do so.

Rather than condition only on (Si−1,Si+1,Gi−1,Gi+1),
we additionallyconditionon Gi. Then similar to the previous
analysis, a binocular weight can be expressed as:

w (i,x,Si−1,Si+1,Gi−1,Gi+1,Gi)

=
limε→0 E

[
1{x−ε≤Si≤x+ε}

∣∣Si−1,Si+1,Gi−1,Gi+1,Gi
]

limε→0 E
[
1{x−ε≤Si≤x+ε}

]

=
fc (i,x,Si−1,Si+1,Gi−1,Gi+1,Gi)

E [ fc (i,x,Si−1,Si+1,Gi−1,Gi+1,Gi)]
, (11)

where fc (i,x,Si−1,Si+1,Gi−1,Gi+1,Gi) is the conditional
density of Si given (Si−1,Si+1,Gi−1,Gi+1,Gi).

Using Equations (9) and (10), by elementary algebra
we can obtain

fc (i,x,Si−1,Si+1,Gi−1,Gi+1,Gi) =
1

xσ
√

li
φ (Ui) ,

where ∆Gi = Gi+1−Gi,

pi =
∆Gi−1

∆Gi−1 +∆Gi
, li =

∆Gi−1 ·∆Gi

∆Gi−1 +∆Gi
,

and

Ui =
log
[
x/
(

Spi
i+1 ·S

1−pi
i−1

)]
+(ω + r−δ )(2pi −1)τ

σ
√

li
.

5 NUMERICAL STUDY

In the previous section we have shown how to applied the
forward-lookingand binocular weights for several examples.
To illustrate the performances of these weights, we conduct
numerical experiments for the Black-Scholes model and the
variance-gamma model.

We consider an American call option underlying an asset
following the Black-Scholes model, i.e., the underlyingasset
price follows a geometric Brownian motion. The option
expires in three years and can be exercised at any of 10
equally spaced exercise opportunities. The payoff upon
exercise at ti is (Si − K)+, with K = 100 and S0 = 100,
volatility σ = 0.2, interest rate r = 5%, and dividend yield
δ = 10%. We have known that the price of this American
call option is 7.98, obtained from a binomial lattice (see age
469 of Glasserman 2004). We use it as a benchmark value
to test the performances of different weights. We conduct

Table 1: Results of forward-looking and binocular weights
for the Black-Scholes model

n 500 1000 1500 2000

forward mean 8.281 8.131 8.075 8.048
Var 0.186 0.090 0.051 0.037
bias 0.301 0.151 0.095 0.048

binocular mean 8.128 8.051 8.026 8.007
Var 0.276 0.128 0.085 0.063
bias 0.148 0.071 0.046 0.027

1000 replications to estimate the error of the estimators.
We observed that the estimators using weights w1 and w̃1

which involve marginal densities, have large errors (the
standard deviations can be in a order of 104 while the true
value is 7.98). These large errors are due to some extreme
large observations occasionally. This phenomenon coincides
with the proof in Broadie and Glasserman (1997) that use of
marginal densities in weights may lead to estimators whose
variances grow exponentially with the number of exercise
opportunities. Then we mainly compare the estimators
using the weights w2 and w̃2. The comparison results are
presented in Table 1, where we show the mean, variance
and bias of the estimators correspond to forward-looking
weight and binocular weight respectively. From the table
we can see that binocular weight has smaller bias while the
the forward-looking weight has smaller variance.

We also consider an American put option un-
der the variance-gamma model, to illustrate the perfor-
mance of the stochastic mesh method using the weight
w (i,x,Si−1,Si+1,Gi−1,Gi+1,Gi). In the experiments, we
let T = 0.5616, r = 5.41%, δ = 1.2%, σ = 20.72%,
ν = 0.5022, θ = −0.2290, S0 = 1369.4 and K = 1200.
These settings are cited from Hirsa and Madan (2003). We
let m = 10 and the value of the American option at cur-
rent time is approximately 35.56. By using the binocular
weights as in Equation (11), the numerical results of the
stochastic mesh estimator are summarized in Table 2. From
the table we can see that and standard deviation (stdev) of
the estimator decreases as the sample size increases.

6 CONCLUSIONS

In this paper we revisit the stochastic mesh method from
a conditioning viewpoint. Based on this new viewpoint,
binocular weights of the stochastic mesh method are derived,
which exploit the information on both sides of the current
exercise date. Though binocularweights may not be superior
to the existing forward-looking weights, they can be applied
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Table 2: Results of the binocular weights for the variance-
gamma model

n 500 1000 1500 2000

mean 40.40 39.53 39.28 38.97
stdev 4.43 3.28 2.63 2.21

to some models, e.g., the variance-gamma model, where
the forward-looking weights may not be applied efficiently.

For future research, it would be interesting to compare
the forward-looking weights and the binocular weights for
high dimensional problems, to examine whether the extra
information has benefits in the estimation.
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