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Abstract

Bilinear pooling has achieved state-of-the-art performance on
fusing features in various machine learning tasks, owning to
its ability to capture complex associations between features.
Despite the success, bilinear pooling suffers from redundancy
and burstiness issues, mainly due to the rank-one property of
the resulting representation. In this paper, we prove that bilin-
ear pooling is indeed a similarity-based coding-pooling for-
mulation. This establishment then enables us to devise a new
feature fusion algorithm, the factorized bilinear coding (FBC)
method, to overcome the drawbacks of the bilinear pooling.
We show that FBC can generate compact and discriminative
representations with substantially fewer parameters. Experi-
ments on two challenging tasks, namely image classification
and visual question answering, demonstrate that our method
surpasses the bilinear pooling technique by a large margin.

Introduction

Bilinear Pooling (BiP) provides an expressive representation
to fuse features by exploiting the higher-order information
captured in the form of pairwise correlations between fea-
tures (Lin, RoyChowdhury, and Maji 2015). Various studies
show the superiority of bilinear representations over other
fusion techniques such as concatenation, element-wise sum,
Hadamard product, and Vector of Locally Aggregated De-
scriptor (VLAD) (Gong et al. 2014).

Despite the success of BiP in many computer vision tasks
including image classification (Lin, RoyChowdhury, and
Maji 2015) and heterogeneous multi-modal tasks (Fukui et
al. 2016), two shortcomings, i.e., the redundancy and the
burstiness, hinder the wide-application of BiP. First, BiP
creates a redundant representation in an exceptionally high-
dimensional space. For example, in the case of image clas-
sification, several studies (Lin, RoyChowdhury, and Maji
2015; Ionescu, Vantzos, and Sminchisescu 2015) leveraged
the relatively small VGG-16 network to fuse features, yet
they have to process (512 × 512 = 262, 144) dimensional
representations as the result of BiP, where 512 is the di-
mensionality of input features. A recent study by Gao et al.
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showed that in such a high-dimensional space, less than 5%
of dimensions are informative (Gao et al. 2016). The dimen-
sionality of bilinear representations unnecessarily increases
the memory footprint and incurs heavy computational loads.

Second, the bilinear representation could suffer from the
burstiness phenomenon (Wei et al. 2018; Lin and Maji 2017;
Li et al. 2017a). Generally speaking, the burstiness corre-
sponds to the problem that features are not invariant enough
where the feature elements may have large variances within
the same class (Wei et al. 2018). This becomes more dra-
matic in visual recognition when there exist large illumina-
tion and appearance changes, and repeated visual elements.
To get a feeling about this issue, in Figure 1a and Figure 1c,
we plot bilinear representations for two challenging tasks,
namely visual question answering (VQA) using the VQA
2.0 dataset (Goyal et al. 2017) and material classification us-
ing the MINC dataset (Quattoni and Torralba 2009). These
plots suggest that bilinear representations in the same class
may have large variances. This, in return, creates intertwined
distributions. For example, in Figure 1a, each of the ‘batter’
and ‘umbrellas’ classes has two separate clusters with large
distances. Besides, bilinear representations of ‘store’, ‘oven’
and ‘hand’ classes have large intra-class distances, leading
to a non-discriminative geometry.

To address the shortcomings of BiP, some methods opt for
approximating BiP via the tensor sketch (Gao et al. 2016;
Fukui et al. 2016) or factorization (Li et al. 2017b; Kim et
al. 2016; Ben-Younes et al. 2017; 2019) to generate compact
representations. To improve the discriminative power of BiP,
several methods investigate normalization strategies (Li et
al. 2017a; Lin and Maji 2017) and orthonormal representa-
tions (Wei et al. 2018). Despite providing solutions for the
targeted issues, studying compact and discriminative BiP in
a unified framework has received little attention and is still a
challenging and open problem.

In this paper, we prove that BiP is a form of similarity-
based coding-pooling (Riesenhuber and Poggio 1999). This
new perspective helps us to better analyze and understand
the nature of the redundancy and discriminative issues of
BiP. In particular, we will see that bilinear features are rank-
one matrices, hence overly redundant in high-dimensional
spaces (see Corollary 1 of the ‘Further Insights’ section).

3954



Furthermore, unlike well-established coding techniques, we
show that BiP uses a varying dictionary to encode inputs (see
Corollary 2 of the ‘Further Insights’ section). This makes the
resulting codes fragile, leading to large intra-distances and
non-discriminative distributions.

The coding perspective inspires us to propose a novel fu-
sion technique based on BiP, which we will refer to as fac-
torized bilinear coding (FBC) henceforth. FBC makes use
of the concept of sparse coding to reduce the redundancy
and obtain a compact representation. Furthermore, by learn-
ing a dictionary in an end-to-end manner for coding, FBC
generates more discriminative representations. As the name
suggests, FBC factorizes the dictionary atoms into low-rank
matrices, eliminating the need to explicitly compute high-
dimensional bilinear features. This immensely reduces the
number of parameters of the model and results in a scalable
solution. Our thorough empirical study on the challenging
tasks of image classification and VQA demonstrates that the
proposed FBC outperforms the BiP technique comfortably,
while performing competitively or even exceeding various
state-of-the-art algorithms. The code is available at https:
//github.com/ZhiGaomcislab/FactorizedBilinearCoding.

Contributions. Our main contributions are three-fold.
1. Theoretically, we prove that BiP is indeed a similarity-

based coding-pooling formulation. Under this formulation,
we provide reasons behind properties that affect the perfor-
mance of BiP.

2. Based on the coding perspective, we design a new fea-
ture fusion algorithm, namely FBC, to encourage compact-
ness and discriminative power of the representation.

3. By factorizing dictionary atoms into low-rank matrices
and by avoiding massive matrix operations (e.g., inversion),
we achieve a highly scalable solution with small memory
footprint.

Notations. Throughout this paper, scalars are denoted by
lower-case letters, such as z; vectors are represented by bold
lower-case letters, such as z, and matrices are denoted by
bold upper-case letters, such as Z. Vec(·) and ⊤ show ma-
trix vectorization (i.e., reshaping a matrix to a vector by
stacking its columns on top of one another) and the transpose
operation, respectively. We denote a p dimensional Hilbert
space by Hp.

Bilinear Pooling as Similarity-based Coding
In many problems, fusing features into a combined represen-
tation for further processing is important. Let {xs ∈ R

p}ms=1
and {yt ∈ R

q}nt=1 be two groups of features. In BiP, the fu-
sion is achieved by

Z =
∑

(s,t)∈S

xsy
⊤
t ∈ R

p×q,

z = Vec(Z) =
∑

(s,t)∈S

Vec(xsy
⊤
t ) ∈ R

pq,
(1)

where z is the combined representation, Z is its matrix
from, and S is the feature pair set of the two groups of fea-
tures. The feature pair set S has two common forms. In some

(a) BiP on VQA. (b) FBC on VQA.

(c) BiP on MINC. (d) FBC on MINC.
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Figure 1: Feature distributions of BiP and FBC on VQA 2.0
and MINC datasets (best viewed in color) using the t-SNE.
Different colors represent different classes. We observe that
BiP creates scatter clusters and does not have the locality. It
has large intra-distances and the confused distribution. On
the contrary, FBC generates discriminative clusters.

tasks (e.g., image classification and action recognition (Lin,
RoyChowdhury, and Maji 2015; Zhang et al. 2019)), the two
groups {xs}

m
s=1 and {yt}

n
t=1 have the same number of fea-

tures, m = n, and xs and ys are extracted from the same
spatial or temporal location of the data. In this case, BiP
takes the form

z =

m∑

s=1

Vec(xsy
⊤
s ). (2)

In the other form, S contains all pairs of features from the
two groups. This form is commonly used in multi-modal
tasks, such as VQA (Kim, Jun, and Zhang 2018) with the
fusion being

z =

m∑

s=1

n∑

t=1

Vec(xsy
⊤
t ). (3)

The dimensionality of the final output z ∈ R
pq can eas-

ily become overwhelming. Existing methods generate com-
pact representations using the aforementioned explicit BiP
formulation (Gao et al. 2016; Li et al. 2017b; Yu et al.
2018). Different from them, we show that BiP is a form of
similarity-based coding-pooling. We then make use of the
coding perspective to develop compact and discriminative
representations.

The Coding-pooling Formulation

Generally speaking, the coding is mapping a feature from
a p dimensional Hilbert space Hp into a d dimensional
Hilbert space Hd. A graceful coding is uniquely defined
through a finite set of signals, a.k.a., a dictionary B =
[b1, b2, . . . , bk] ∈ R

p×k. For example, in sparse coding, the
mapping is identified by solving argminz ‖x − Bz‖2 +
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λ‖z‖1. One can seamlessly generalize the above concept to
coding on two features. Here, the dictionary B is used to
jointly map inputs from two different Hilbert spaces, a p
dimensional space Hp and a q dimensional space Hq into
Hd. A straight-forward approach to implement such coding
is to separately encode the two features in Hp and Hq , fol-
lowed by concatenating the results. However, such an ap-
proach is blind to possible cross-correlations of data points
in Hp and Hq . BiP, to some degree, addresses this shortcom-
ing via Eq. (1).

Eq. (1) shows that the representation z is the sum of bi-
linear features {Vec(xsy

⊤
t )}. It is now clear that it can be

interpreted as a coding-pooling scheme of {xs}
m
s=1 encoded

by the dictionary B = {yt}
n
t=1 or vice versa (i.e., {yt}

n
t=1

is encoded by the dictionary B = {xs}
m
s=1). All codes are

then sum-pooled into the representation z. Considering BiP
operates on two inputs, in this paper, we can further derive
BiP to another coding-pooling formulation.

Lemma 1. Given features {xs ∈ R
p}ms=1 and {yt ∈

R
q}nt=1, BiP in Eq. (1) is equal to a coding-pooling formu-

lation.

Proof. Via the singular value decomposition of the matrix
Z, we have

Z =
o∑

j=1

σjujvj
⊤ (4)

Zvj = σjuj (5)

u⊤
j uj = v⊤

j vj = Tr(uju
⊤
j ) = Tr(vjv

⊤
j ) = 1, (6)

where σj is the j-th singular value, uj is the corresponding
left singular vector, vj is the corresponding right singular
vector, o is the rank of Z, and Tr(·) is the matrix trace. We
can write the singular value σj as

σj = σjTr(uju
⊤
j ) = Tr(σjuju

⊤
j ) = Tr(Zvju

⊤
j )

= Tr
(( ∑

(s,t)∈S

xsy
⊤
t

)
vju

⊤
j

)

=
∑

(s,t)∈S

Tr(xsyt
⊤vju

⊤
j )

=
∑

(s,t)∈S

〈Vec(xsyt
⊤),Vec(ujv

⊤
j )〉

=
N∑

i=1

〈f i,Vec(ujv
⊤
j )〉,

(7)

Here, we denote N the number of pairs in S . For con-
venience, we reorganize N bilinear features {Vec(ujv

⊤
j )}

into an ordered set indexed by i, and denote the bilinear fea-
ture as f i = Vec(xsyt

⊤) ∈ R
pq , i ∈ [1, N ]. We substitute

σj of Eq. (7) into Eq. (4) and have

Z =

o∑

j=1

N∑

i=1

〈f i,Vec(ujv
⊤
j )〉ujv

⊤
j

=

N∑

i=1

o∑

j=1

〈f i,Vec(ujv
⊤
j )〉ujv

⊤
j =

N∑

i=1

Ci,

(8)

where

Ci =

o∑

j=1

〈f i,Vec(ujv
⊤
j )〉ujv

⊤
j . (9)

By plugging Eq. (8) into the representation z of Eq. (1), we
arrive at

z = Vec(Z) =

N∑

i=1

Vec(Ci) =

N∑

i=1

ci, (10)

where ci = Vec(Ci). Based on Eq. (9), we have

ci = Vec(Ci) =

o∑

j=1

〈f i,Vec(ujv
⊤
j )〉Vec(ujv

⊤
j )

=

o∑

j=1

Vec(ujv
⊤
j )Vec(ujv

⊤
j )

⊤f i

=
( o∑

j=1

Vec(ujv
⊤
j )Vec(ujv

⊤
j )

⊤
)
f i.

(11)

Here we denote

o∑

j=1

Vec(ujv
⊤
j )Vec(ujv

⊤
j )

⊤ = B = [b1, b2, · · · , bpq],

(12)
where B ∈ R

pq×pq , bl ∈ R
pq is the l-th column of B, and

B = B⊤. Thus, BiP of Eq. (1) can be rewritten as

z =

N∑

i=1

ci, (13)

where

ci = [c1i , c
2
i , · · · , c

k
i ] = B⊤f i, (14)

cli = 〈bl,f i〉 = b⊤l f i, (15)

ci ∈ R
pq , and cli is the l-th element of ci. In Eq. (15),

Eq. (14), and Eq. (13), B can be understood as a dictio-
nary that contains k = pq atoms. As such, BiP encodes the
bilinear features f i via computing inner product similari-
ties between f i and the dictionary atoms {bl}

k
l=1. This con-

cludes the proof that BiP on features {xs}
m
s=1 and {yt}

n
t=1

is equivalent to a coding-pooling formulation (Riesenhu-
ber and Poggio 1999) with the dictionary being B =∑o

j=1 Vec(ujv
⊤
j )Vec(ujv

⊤
j )

⊤.

To summarize and with the dictionary B as above, BiP
encodes f i = Vec(xsyt

⊤) into ci ∈ R
k with cli, the l-th

element of the code, obtained by Eq. (15). Codes are finally
sum-pooled into a global representation z by Eq. (13).

Further Insights

From the discussion above, one can identify the follow-
ing properties that affect the performance of BiP: (1) bilin-
ear features {xsy

⊤
t } are rank-one matrices, incurring high

amount of information redundancy (see Corollary 1); (2) the
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dictionary B is determined by the input and hence is incon-
sistent for all data (see Corollary 2); (3) when the set S con-
tains all pairs of features, the representation Z is also a rank-
one matrix, and it further makes dictionary atoms {bl}

k
l=1

collinear and codes {ci}
N
i=1 collinear (see Corollary 3). The

imperfect dictionary causes BiP to have large intra-distances
and leads to a non-discriminative distribution.

Corollary 1. For any given two matrices A ∈ R
m×p and

B ∈ R
p×n, the rank of their multiplication AB satisfies

rank(AB) ≤ min
(
rank(A), rank(B)

)
, where rank(·) de-

notes the rank of a matrix. As such, the bilinear feature
xsy

⊤
t is a rank-one matrix, as it is the multiplication of two

vectors in Eq. (1). In the rank-one matrix, only one row and
one column preserve the necessary information, and other
elements in the matrix can be represented by this row and
column. This clearly shows that the bilinear feature xsy

⊤
t

is very redundant, especially in high-dimensional spaces.
The redundancy unnecessarily increases the memory foot-
print and incurs heavy computational loads.

Corollary 2. From Eq. (12), we know that the dictionary B
is determined by the singular vectors of Z, meaning that the
dictionary B contains the individual characteristic of the
input and varies with the input. As such, BiP codes for dif-
ferent inputs are constructed by disparate dictionaries. This
may deteriorate the discriminative power of BiP codes as
one should at least implicitly consider variations in the dic-
tionary in the follow-up analysis. We can also associate the
large intra-class variations observed in Figure 1a and Fig-
ure 1c to variations in the dictionaries (as points in the same
class will be processed with different and perhaps contradic-
tory dictionaries). Add to this the fact that the dictionary is
local and may not be able to capture the global geometry of
the whole data space.

Corollary 3. Consider the general form of BiP, replicated
for clarity below

Z =
m∑

s=1

n∑

t=1

xsy
⊤
t . (16)

Although it may imply that Z is the sum of rank-one matri-
ces, the rank of Z is also one, as Z is the outer product of
two vectors:

∑m

s=1

∑n

t=1 xsy
⊤
t = (

∑m

s=1 xs)(
∑n

t=1 y
⊤
t ).

The rank-one property of Z results in the dictionary atoms
{bl}

k
l=1 in Eq. (12) to become collinear, and codes {ci}

N
i=1

in Eq. (14) are also collinear.

Proof. Z being a rank-one matrix implies that o = 1 and
hence Z = σuv⊤. Therefore, the dictionary B and the atom
bl in Eq. (12) are

B = Vec(uv⊤)Vec(uv⊤)⊤ = [b1, b2, · · · , bk],

bl =
(
Vec(uv⊤)

)
l
Vec(uv⊤),

(17)

where
(
Vec(uv⊤)

)
l

is the l-th element of Vec(uv⊤). In
the resulting dictionary, atoms only vary in their coefficients
while being aligned with Vec(uv⊤) and collinear. A dictio-
nary with highly correlated atoms cannot span a big enough
space.

The collinearity of atoms results in any two codes ci and
cj to become collinear as well. We recall that in a code ci,

cli and cl
′

i are similarities between f i and bl, f i and bl′ ,

respectively. The proportion of cli to cl
′

i is

cli

cl
′

i

=
b⊤

l f i

b⊤

l′
f i

=

(
Vec(uv⊤)

)
l
Vec(uv⊤)⊤f i(

Vec(uv⊤)
)
l′
Vec(uv⊤)⊤f i

=

(
Vec(uv⊤)

)
l(

Vec(uv⊤)
)
l′

,

which only depends on the atom coefficients rather the in-
put features. Thus, the proportion is a constant for codes
encoded by the same dictionary. For codes ci and cj , we

assume c1i = βc1j , and have

cli
cl
j

=
cli
c1
i

·
c1i
c1
j

·
c1j

cl
j

=

(
Vec(uv⊤)

)
l(

Vec(uv⊤)
)
1

· β ·

(
Vec(uv⊤)

)
1(

Vec(uv⊤)
)
l

= β.

Thus ci = βcj , and codes are collinear. Such coding formu-
lation encodes inputs into collinear codes and cannot reflect
the differences between inputs well.

Factorized Bilinear Coding

In this section, we present the factorized bilinear coding
(FBC) to fuse features based on BiP from the coding per-
spective. Specifically and in contrast to BiP that uses a dy-
namic dictionary, we propose of learning a dictionary B to
capture the structure of the whole data space. Being vigi-
lant to the redundancy issue of bilinear features, we propose
to replace the similarity-based coding with sparse coding to
generate a compact representation, which can preserve as
much information as possible and activate as few dictio-
nary atoms as possible, reducing unnecessary information
and further enhancing fusion results.

Due to the high-dimensionality of bilinear features,
naively coding bilinear features of size p × q using a dic-
tionary B with k atoms demands storing k× p× q elements
which quickly becomes overwhelming. Our idea here is to
factorize dictionary atoms into low-rank matrices. Given a
pair of features (xs,yt) as the input, FBC encodes (xs,yt)
into ci by solving the following optimization problem,

min
ci

∥∥∥∥xsy
⊤
t −

k∑

l=1

cliU lV
⊤

l

∥∥∥∥
2

+ λ‖ci‖1. (18)

Here, λ is a trade-off between the reconstruction error and
the sparsity. Each dictionary atom bl is factorized into

U lV
⊤

l , where U l ∈ R
p×r and V l ∈ R

q×r are low-rank
matrices. The rank of decomposition r ≪ p, q is a hyper-
parameter of the algorithm. In essence, we reconstruct the

bilinear feature xsy
⊤
t by

∑k

l=1 c
l
iU lV

⊤

l , with ci ∈ R
k be-

ing the FBC code, and cli representing the l-th element of ci.
The l1-norm ‖ · ‖1 is used to impose the sparsity constraint
on ci.

We adopt the LASSO method (Tibshirani 1996) to obtain
the FBC code ci from Eq. (18):
⎧
⎨
⎩

c′i =
(
P (U⊤UP⊤ ◦ V ⊤V P⊤)

)−1
P (U⊤xs ◦ V

⊤yt),

ci = sign(c′i) ◦max
(
abs(c′i)−

λ

2
, 0
)
.

(19)
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Here, ◦ denotes the Hadamard product, U =
[U1, · · · ,Uk] ∈ R

p×rk and V = [V 1, · · · ,V k] ∈ R
q×rk

are learnable parameters of the dictionary. P ∈ R
k×rk is a

fixed binary matrix with only elements in the row l, columns(
(l − 1)× r + 1

)
to (lr) being “1”, where l ∈ [1, k].

In Eq. (19), the matrix inversion (i.e.,
(
P (U⊤UP⊤ ◦

V ⊤V P⊤)
)−1

) is required. In high-dimensional spaces,
this can become computationally expensive. Fortunately,

there is a workaround here. Let Q⊤ =
(
P (U⊤UP⊤ ◦

V ⊤V P⊤)
)−1

P . We can rewrite the first part of Eq. (19)
as

c′i = Q⊤(U⊤xs ◦ V
⊤yt). (20)

Now, the l-th element of c′i is

c′i
l
= q⊤

l (U
⊤xs ◦ V

⊤yt), (21)

where ql is the l-th column of Q. We can further rewrite c′i
l

in Eq. (21) as

c′i
l
= 1

⊤
r

((
1
r
·O

(
(ql1

⊤
rk) ◦U

⊤
)
xs

)
◦
(

1
r
·OV ⊤yt

))
,

(22)
where O ∈ R

r×rk is an all “1” matrix. Similarly, 1r ∈ R
r

and 1rk ∈ R
rk are vectors whose elements are all “1”s. We

denote Ũ
⊤

l = 1
r
· O

(
(ql1

⊤
rk) ◦ U⊤

)
∈ R

r×p and Ṽ
⊤

l =
1
r
·OV ⊤ ∈ R

r×q to have a simplified form of Eq. (22) as,

c′i
l
= 1

⊤
r (Ũ

⊤

l xs ◦ Ṽ
⊤

l yt). (23)

With this, we can now introduce new parameters Ũ =

[Ũ1, · · · , Ũk] ∈ R
p×rk and Ṽ = [Ṽ 1, · · · , Ṽ k] ∈ R

q×rk

to replace U and V , and the solution of Eq. (18) becomes
⎧
⎪⎨
⎪⎩

c′i = P (Ũ
⊤

xs ◦ Ṽ
⊤

yt),

ci = sign(c′i) ◦max
((

abs(c′i)−
λ

2

)
, 0
)
.

(24)

As such, we just need to learn Ũ and Ṽ , and the inversion is
avoided. The above derivation applies to two individual in-
put features. If two groups of features {xs}

m
s=1 and {yt}

n
t=1

are at our disposal, we compute all FBC codes {ci}
N
i=1 and

simply fuse them using the max operation to attain the global
representation z,

z = max{ci}
N
i=1. (25)

The whole FBC module is shown in Figure 2c.
Our method leads to large save in the memory footprint

and the computational load. For example, in the VQA task,
p = 1024, q = 2048, and there are 3000 classes. In BiP,
the classifier needs to store 3000pq > 1010 parameters. If
we first compute the bilinear feature f i, and then deliver
it to the non-factorized coding process, we need to store a
dictionary B with k complete dictionary atoms, where each
dictionary atom contains pq elements. In totally, there are
kpq elements in the dictionary, k ≈ 1000, and we need to
store (kpq + 3000k) > 109 parameters. In contrast to these
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Figure 2: Our network architecture. Figure 2a shows the net-
work architecture on the image classification task. Figure 2b
shows the network architecture on the VQA task. Figure 2c
shows the architecture of our FBC module.

two solutions, our FBC does not need to compute the high-
dimensional bilinear feature f i explicitly, and the spatial
complexity of the dictionary atom is reduced from O(pq)
to O((p + q)r). Since r ≪ p, q, our method requires quite
fewer parameters. In our implementation, we set r = 5.
Thus, we just need to store about (p+ q)rk + 3000k ≈ 107

parameters. Furthermore, in Eq. (24) we just need to com-
pute three matrix multiplications and a Hadamard prod-
uct, rather than seven matrix multiplications, two Hadamard
products, and a matrix inversion in Eq. (19).

Experiments

In order to evaluate the performance of the proposed FBC
module, we conduct experiments on the challenging image
classification and VQA tasks.

Implementation

FBC can be readily incorporated into Deep Neural Networks
(DNNs). For the task of image classification and VQA, the
architecture of DNNs used in this work is shown in Fig-
ure 2a and Figure 2b. In the image classification task, fea-
tures {xs}

m
s=1 are extracted using a DNN (i.e., the VGG-16

network), and then {xs}
m
s=1 and their copies are sent to our

FBC module to generate the representation z (see Eq. 25).
In the VQA task, features {xs}

m
s=1 and {yt}

n
t=1 are first ex-

tracted from the image and the question, respectively. Then
{xs}

m
s=1 and {yt}

n
t=1 are fed to our FBC module to gener-

ate the representation z. Finally, the representations z from
the FBC module are sent to the softmax classifier. Updating

parameters Ũ and Ṽ of the FBC module is simply achieved
by the backpropagation algorithm.

Evaluation on the Image Classification Task

We conduct experiments to compare FBC with existing
BiP methods on the image classification task. Four datasets
are used: Describing Texture Dataset (DTD) (Cimpoi et al.
2014), MINC-2500 (MINC) (Bell et al. 2015), MIT-Indoor
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Table 1: Comparisons for BiP methods in terms of Average Precision (%).

Method Feature dim. param DTD Indoor MINC CUB

VGG-16 (Simonyan and Zisserman 2014) 4096 120.4M 60.1 64.5 73.0 66.1
B-CNN (Lin, RoyChowdhury, and Maji 2015) 2.6× 105 52.4M 67.5 77.6 74.5 84.0

DeepO2P (Ionescu, Vantzos, and Sminchisescu 2015) 2.6× 105 52.4M 66.1 72.4 69.3 -
CBP (Gao et al. 2016) 8192 1.64M 67.7 76.8 73.3 84.0
MPN (Li et al. 2017a) 32896 13.1M 68.0 76.5 76.2 84.1

LRBP (Kong and Fowlkes 2017) 100 0.21M 65.8 73.6 69.0 84.2
FBN (Li et al. 2017b) - 0.39M 67.8 - - 82.9

SMSO (Yu and Salzmann 2018) 2048 1.46M 69.3 79.5 78.0 85.0

FBC 512 0.63M 70.3 79.6 79.7 83.6
FBC 2048 2.51M 71.7 79.8 79.6 83.6
FBC 8192 10.0M 71.5 79.9 80.2 84.3

(Indoor) (Quattoni and Torralba 2009), and Caltech-UCSD
Bird (CUB) (Xie et al. 2013), which are the texture dataset,
the material dataset, the indoor scene dataset, and the fine-
grained dataset, respectively. Following the work in (Yu and
Salzmann 2018), the size of input images in DTD, Indoor,
and CUB is 448 × 448, and the size of input images in
MINC is 224 × 224. We use the VGG-16 network as the
backbone, and layers after the conv5-3 layer are removed.
Our FBC module is on the top of the conv5-3 layer, and
the obtained representation z is followed by an FC layer
and a softmax layer. The accuracies are shown in Table 1,
where ‘param’ denotes the number of parameters after the

last convolutional layer. We set the rank of Ũ and Ṽ as 1,
the number of atoms as 512, 2048, and 8192, and λ as 0.001.

We can find that BiP scheme improves a significant mar-
gin than the VGG-16 model, as BiP can capture more richer
information. Compared with B-CNN, our method further
improves the accuracy. FBC can achieve 71.7% on the DTD
dataset, 79.9% on the Indoor dataset, 80.2% on the MINC
dataset, and 84.3% on the CUB dataset. When the number
of atoms is 512, FBC requires only 0.63M parameters, and
its performance can still exceed several BiP methods. Com-
pared with CBP, LRBP, FBN, and SMSO which aim to gen-
erate compact representations, FBC using comparable pa-
rameters achieves competitively and even higher accuracies.
Especially on the MINC dataset, our accuracy is about 2%
higher than these methods. Note that, FBN is also a factor-
ization based method, while FBC is 2.5% and 0.7% higher
than it on Indoor and CUB datasets. MPN applies normaliza-
tion to improve the discriminative power of BiP representa-
tions. Compared with it, FBC has more than 3% improve-
ments on DTD, Indoor, and MINC datasets, and requires
fewer parameters. Experiments show FBC can generate a not
only compact but also discriminative representation.

Evaluation on the VQA Task

The VQA system is able to answer questions about images,
where combining textual features and visual features is cru-
cial. We use the VQA 1.0 (Agrawal et al. 2017) and VQA
2.0 (Goyal et al. 2017) datasets. For the VQA 1.0 dataset,
we extract image features from ResNet-152. To obtain the
question features, we use a Glove word embedding module
after an RNN (LSTM for VQA1.0 and GRU for VQA2.0
following (Anderson et al. 2018)). For the VQA 2.0 dataset,

Table 2: Accuracies on VQA 1.0 and VQA 2.0 val split.

Method param VQA1.0 VQA2.0

Concatenation 0.77M 54.4 53.2
Element-wise sum 0.38M 52.3 51.6
Hadamard product 0.38M 54.9 55.8

Bilinear 49.15M 55.8 56.5
Bilinear-VLAD 983.4M 58.9 60.0

Bilinear-similarity 19.6M 58.9 59.8
Bilinear-BoW 19.6M 56.3 56.9

MCB 49.15M 57.4 -
MLB 8.94M 57.9 -

MUTAN 6.07M 58.2 58.2
MFB 18.36M 58.3 58.4
BAN 46.85M - 65.6
FBC 18.8M 61.6 62.0

FBC+Att 35.62M - 65.7

we utilize bottom-up features (Anderson et al. 2018) to de-
scribe images.

Comparisons between Coding Schemes We assess the
performance of our FBC algorithm against various coding
techniques including the similarity-based coding, Bag of
Words (BoW), and VLAD. In addition, we contrast FBC
against five state-of-the-art BiP methods: MCB (Fukui et
al. 2016), MLB (Kim et al. 2016), MUTAN (Ben-Younes
et al. 2017), MFB (Yu et al. 2017), and BAN (Kim, Jun,
and Zhang 2018), where BAN is equipped with an advanced
residual attention mechanism, and the others are not.

In FBC, we set the rank of Ũ and Ṽ as 5 and the num-
ber of atoms as 1024. λ is set as 0.01. Due to the memory
limitation, for the three coding techniques, we add a con-
volutional layer with the 1 × 1 kernel on the two modality
features to change the dimensionality to 128, thereby the di-
mensionality of their bilinear features is 128× 128. We use
1024 centers for BoW and similarity-based coding, and 80
centers for VLAD. We choose the final dimensionality of
16000 for MCB, 1200 for MLB, 1000 for MFB, and 1280
for BAN. For a fair comparison, we replace our max pooling
in Eq. (25) with the advanced attention mechanism (Kim,
Jun, and Zhang 2018) of 2 glimpses, denoted by ‘FBC+Att’.
Results can be found in Table 2. All models are trained on
the training split and evaluated on the validation split.

Coding techniques on bilinear features lead to a clear
boost in the accuracy. In comparison to these coding tech-
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Table 3: VQA 2.0 Test-dev and Test-standard results evaluated on the VQA Challenge 2019 platform.

Method Att Test-dev Test-standard
All Y/N Num Other All Y/N Num Other

BottomUp (Anderson et al. 2018) � 65.3 81.8 44.2 56.1 65.7 82.2 43.9 56.3
MCB (Fukui et al. 2016) � - - - - 62.3 78.8 38.3 53.4

MUTAN (Ben-Younes et al. 2017) � 66.0 82.9 44.5 56.5 66.4 - - -
MLB (Kim et al. 2016) � 66.3 83.6 44.9 56.3 66.6 - - -
MFB (Yu et al. 2017) � 65.0 - - - - - - -
MFH (Yu et al. 2018) � 68.8 84.3 49.6 59.9 - - - -

BLOCK (Ben-Younes et al. 2019) � 67.6 83.6 47.3 58.5 67.9 84.0 46.8 58.8
MuRel (Cadene et al. 2019) � 68.0 84.8 49.8 57.9 68.4 - - -

BAN (Kim, Jun, and Zhang 2018) � 69.5 85.3 50.9 60.3 69.9 85.6 50.5 60.7
BAN + Counter (Kim, Jun, and Zhang 2018) � 70.0 85.4 54.4 60.5 70.4 85.8 53.7 60.7

FBC × 65.9 83.0 43.5 57.0 - - - -
FBC+Att � 69.7 85.3 50.7 60.6 70.1 85.7 50.4 61.0

FBC+Att+Counter � 70.0 85.5 53.2 60.6 70.3 85.6 53.4 61.0

niques, FBC is a head and shoulders above (e.g., 2.0%
higher than VLAD which is the best coding technique on
VQA2.0). FBC also comfortably outperforms state-of-the-
art BiP methods. For example, the performance of MFB (Yu
et al. 2017) reads as 58.3% and 58.4% on the VQA 1.0
and VQA 2.0 datasets, which is 3.3% and 3.6% less than
that of FBC. BAN (Kim, Jun, and Zhang 2018) utilizes
an advanced attention mechanism and achieves the expres-
sive performance. Compared with BAN, ‘FBC+Att’ has the
same configuration, while our method obtains a better result,
65.7% on VQA 2.0, and requires fewer parameters.

Comparisons with State-of-the-art Methods We com-
pare FBC against state-of-the-art BiP methods on the VQA
2.0 test set (see Table 3). All models are trained on the train-
ing and validation splits, and the Test-dev and Test-standard
results are evaluated on the VQA Challenge 2019 platform.
‘FBC+Att’ uses the attention mechanism (Kim, Jun, and
Zhang 2018) of 8 glimpses. We also evaluate FBC combined
with the counter model (Zhang, Hare, and Prügel-Bennett
2018) following (Kim, Jun, and Zhang 2018).

FBC without any attention mechanism achieves compara-
ble results with MUTAN, MLB, and MFB that use the at-
tention mechanism. For example, MFB achieves 65.0% on
the Test-dev split, while FBC achieves 65.9%, 0.9% higher
than it. When FBC is equipped with the attention mechanism
(i.e.,, ‘FBC+Att’), it has the same configuration with MFH
and BAN. They achieve 68.8% and 69.5%, while ‘FBC+Att’
is 0.9% and 0.2% higher than them. FBC also achieves bet-
ter performance than the latest BiP methods: BLOCK and
MuRel. These results show representations from FBC are
more powerful, and its performance can be further enhanced
equipped with advanced VQA techniques.

Analyses of Parameters

The rank r and the atom number k play important roles in
FBC. We vary r from 1 to 20, and k from 128 to 8192, and
measure the accuracy of FBC on the MINC dataset (see Fig-
ure 3). Due to the memory limitation, we do not evaluate the
performance of k = 8192, r = 20.

We find that FBC is relatively stable for the atom num-
ber k. When k = 8192 and r = 1, FBC achieves the best
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Figure 3: The accuracy on the MINC dataset.

performance 80.2%. When k = 128 and r = 1, the accu-
racy is about 79.3% with only 0.9% decrease. This shows
that FBC does not need a large number of atoms, and it can
extract essential information into a compact representation.
When k ≤ 4096, as r increases, accuracies first improve and
then decrease, showing that low-rank atoms are suitable to
the rank-one features, and a large r may bring an overfitting
model. As bilinear features are rank-one matrices, and one
row and one column can represent the whole feature, a small
number of low-rank atoms can construct inputs well.

Conclusion

In this paper, we have proved BiP is a similarity-based
coding-pooling formulation and presented a factorized bilin-
ear coding (FBC) method to fuse features from the coding
perspective. FBC can address the redundancy issue of BiP
and generate a compact representation. Our method avoids
the explicit computation of high-dimensional bilinear fea-
tures, and the spatial complexity of required parameters is
reduced from O(pq) to O((p + q)r) with r ≪ p, q. Mean-
while, FBC can overcome the burstiness issue. We show that
the compact representation from FBC is more discriminative
as compared to BiP. Experiments demonstrate that FBC per-
forms competitively or even exceeding various state-of-the-
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art algorithms on image classification and VQA tasks.
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