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Campylobacter jejuni is the leading cause of bacterial foodborne gastroenteritis world

wide and represents a major public health concern. Over the past two decades, significant

progress in functional genomics, proteomics, enzymatic-based virulence profiling (EBVP),

and the cellular biology of C. jejuni have improved our basic understanding of this

important pathogen. We review key advances in our understanding of the multitude of

emerging virulence factors that influence the outcome ofC. jejuni–mediated infections. We

highlight, the spatial and temporal dynamics of factors that promote C. jejuni to sense,

adapt and survive in multiple hosts. Finally, we propose cohesive research directions to

obtain a comprehensive understanding of C. jejuni virulence mechanisms.
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INTRODUCTION

Campylobacters are the leading cause of bacterial foodborne gastroenteritis in the world. There are 31

different species1 and 10 sub-species within the genus Campylobacter (Garcia-Sanchez et al., 2018;

Wilkinson et al., 2018). The Campylobacter genus encompasses several clinically relevant species, such

as Campylobacter jejuni subsp. jejuni, Campylobacter coli, Campylobacter fetus, Campylobacter

lari, and Campylobacter upsaliensis (Kaakoush et al., 2015; Garcia-Sanchez et al., 2018). This
review focuses on C. jejuni subsp. jejuni which is the most relevant clinically (Skirrow, 1977;

Skirrow, 2006). C. jejuni is responsible for 80%–90% of the diagnosed cases of Campylobacter

infections (Facciola et al., 2017). C. jejuni colonizes the gastrointestinal (GI) tract of a wide variety of

food-producing animals such as poultry, cattle, sheep and swine (Figure 1). However, poultry,

particularly chickens are the major source of human infection (Humphrey et al., 2014; Ijaz et al., 2018;

McKenna et al., 2020). Outbreaks of C. jejuni infections are also associated with exposure to

contaminated soil, unpasteurized milk and untreated water sources (Korlath et al., 1985; Hudson
et al., 1999; Bronowski et al., 2014; Artursson et al., 2018). Clinical symptoms of C. jejuni infection can

be watery or bloody diarrhea accompanied by abdominal cramps, nausea, fever and sometimes

vomiting (Blaser, 1997; Hansson et al., 2018; Igwaran and Okoh, 2019). Although C. jejuni infection is

acute and self-limiting, in a small number of patients (1:1000) post infection sequalae can lead to

severe neurological disorders such as Guillain-Barré syndrome (Yuki et al., 1993; Nachamkin et al.,

1998; Sheikh et al., 1998a; Sheikh et al., 1998b; Houliston et al., 2011). According to a recent report by
the World Health Organization (WHO), C. jejuni is responsible for 96 million cases of enteric

1http://www.bacterio.net/campylobacter.html
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infection globally each year (Havelaar et al., 2015; Bailey et al.,

2018). In the United Kingdom, C. jejuni is responsible for more
than 700,000 cases, of which 22,000 hospitalisations and more

than 100 deaths occur each year (Bronowski et al., 2014; John

et al., 2017). The economic burden associated with C.

jejuni infection in the United Kingdom is estimated to be £1

billion per year (Bronowski et al., 2014). Moreover, in the

European Union (EU), C. jejuni is responsible for estimated

cases of 9 million with an economic burden of around €2.4
billion each year (https://www.efsa.europa.eu/en/topics/topic/

campylobacter). According to the United States Centers for

Disease Control, C. jejuni is responsible for an estimated 1.5

million human infections each year2 with a staggering economic

burden of between $1.3 to 6.8 billion dollars per year.

C. jejuni does not possess classical virulence factors observed
in bacterial enteropathogens such as enterotoxigenic Escherichia

coli and Salmonella spp. (Gaytan et al., 2016; Park et al., 2018).

However, C. jejuni has a complex array of fitness and virulence

factors (Crόinıń and Backert, 2012; Backert and Hofreuter, 2013;

Backert et al., 2013) which aid the bacterium to respond to the
defense mounted by the host; C. jejuni can adhere, invade

and temporarily survive inside human intestinal epithelial

cells (IECs) in vitro. We review recent progress made in

understanding C. jejuni pathogenesis. We highlight findings

from several approaches that pioneered the integration of

selective mutagenesis, phenotypic assays, high-resolution

proteomics and ‘omics. Finally, we describe challenges ahead
for successful research in understanding how C. jejuni causes

disease in humans.

C. JEJUNI VIRULENCE FACTORS,

A BREAKTHROUGH IN UNDERSTANDING

THE MISSING LINK

In early 2000, the availability of the full genome sequence of C.

jejuni NCTC 11168, isolated from the feces of a diarrheic patient in2https://www.cdc.gov/campylobacter/technical.html

FIGURE 1 | Overview of C. jejuni reservoirs and transmission routes of infection. C. jejuni reside in the GI tract of chickens, where the bacteria can be spread

through consumption of contaminated poultry products. C. jejuni transmission can also occur via the consumption of contaminated raw cows drinking milk (RDM)

which can occur during the milking process, most commonly via fecal contamination of udders. Pigs are also recognized as reservoirs of C. jejuni. Contamination of

the environment can also occur via host fecal contamination. C. jejuni can persist for long periods in feces, milk and water, especially at temperatures close to 4℃. In

adverse conditions, C jejuni converts to a viable nonculturable form that can be reactivated when ingested.
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1977 by Martin Skirrow, marked a new era in the study of the

pathogenesis of this major enteric pathogen (Skirrow, 1977;

Parkhill et al., 2000). The annotation of the full genome sequence

revealed the absence of genes encoding for a non-flagellar type 3

protein secretion system (NF-T3SS). This finding has raised an

intriguing question: Does C. jejuni sense, inject and secrete putative
virulence factors into host cells? In contrast to the absence of NF-

T3SS, the genome sequence shed light on the presence of a genomic

locus encoding a novel bacterial protein N-glycosylation (pgl)

system, absent in other enteropathogens (Szymanski et al., 1999;

Linton et al., 2005). This 11 gene locus encodes for all the necessary

enzymes for N-linked pgl system to produce a conserved
heptasaccharide consisting of GalNAc–a1,4-GalNAc–a1,4
(Glcb1,3)-GalNAc–a1,4-GalNAc–a1,4-GalNAc–a1,3-Bac (Bac is

bacillosamine or 2,4,-diacetamido-2,4,6-trideoxyglucose (Young

et al., 2002; Jervis et al., 2012). C. jejuni conserved

heptasaccharide has been found to modify up to 100 periplasmic

and membrane-bound proteins while it also appears to be
responsible for multiple cell functions (Cain et al., 2019;

Abouelhadid et al., 2019; Abouelhadid et al., 2020). A feature of

the availability of C. jejuni genome sequence was the identification

and characterization of different glycostructures. In addition to the

N-linked pgl system, other studies have facilitated systematic

analysis of genes encoding for flagellar biosynthesis and

modification (Jagannathan et al., 2001; Hendrixson and DiRita,
2003; Konkel et al., 2004), lipooligosaccharide (LOS) (Parker et al.,

2005; Parker et al., 2008; Kanipes et al., 2008; Hameed et al., 2020)

and capsule polysaccharide (CPS) (Karlyshev et al., 2001; Karlyshev

et al., 2005). In parallel, the genome sequence ofC. jejuni identified a

large repertoire of phase-variable genes (Guerry et al., 2002; Aidley

et al., 2018). The genome sequence of C. jejuni further accelerated
characterization of repertoire of virulence and fitness factors such as

putative adhesins (Konkel et al., 2005), proteases (Brondsted et al.,

2005), autotransporters (Ashgar et al., 2007), chemotaxis regulatory

genes (Marchant et al., 2002) and the cytolethal distending toxin

(CDT) (Purdy et al., 2000). Sequencing the genomes of various C.

jejuni isolates have also elucidated strain-specific genetic diversity,

noticeably the finding of the putative pVir plasmid in C. jejuni strain
81–176 (Bacon et al., 2000). Because of the high genome plasticity of

C. jejuni, genome sequencing also facilitated genome-wide

association studies (GWAS) which provided insight into the

prevalence of C. jejuni virulence genes, antimicrobial resistance

markers as well as relatedness of human clinical isolates (Sheppard

et al., 2013; Buchanan et al., 2017). Understanding the genetic
variability of C. jejuni isolates is important for defining key

factors that contribute to its ability to host adaptation and

evolution. Some C. jejuni strains are restricted to specific

host while there are C. jejuni strains with multi-host lineages.

Defining how C. jejuni adapts to hosts is an enduring challenge.

However, study has demonstrated that one factor that is driving

rapid C. jejuni host adaptation is gain and loss of panBCD
genes encoding for vitamin B5 biosynthesis pathway (Sheppard

et al., 2013). Recently, the advent of large scale genome

sequencing has also identified C. jejuni isolates possessing

Type VI Secretion System (T6SS) (Corcionivoschi et al., 2015;

Ugarte-Ruiz et al., 2015), offering the potential to better

understand the role of T6SS in C. jejuni pathogenesis (Liaw

et al., 2019).

C. JEJUNI IN THE HOST-PATHOGEN

CROSSTALK: VIRULENCE AND

FITNESS FACTORS

In its natural environment C. jejuni adapts, survives and

proliferates in the nutrient-rich mucous layer of the avian GI

tract. C. jejuni growth in chicken ceca exceeds 108 colony-
forming units per g of cecal contents (CFU)/g (Dhillon et al.,

2006; Hermans et al., 2011; Gormley et al., 2014). The transition

of C. jejuni from nutrient-rich chicken ceca to the environment

exposes C. jejuni to perturbations. These perturbations unveil

C. jejuni to atmospheric oxygen (ca. 21% O2) and temperature

fluctuations which thus alter C. jejuni nutrient acquisition and
metabolism. In the context of human infection, C. jejuni faces

additional stresses such as peristalsis and expulsion in the

GI tract. C. jejuni also faces endogenous stresses ranging

from oxidative, nitrosative, pH fluctuations and cationic

stresses. The ability to persist in spite of various stresses

indicate C. jejuni harbors complex virulence and fitness factors

(Hermans et al., 2012). These virulence and fitness factors do
not only confer protection but also play a role in the ability of

C. jejuni to sense, adapt and compete the constantly changing

host microenvironments, working for example as sensors and/

signal molecules, adhesins for host receptors, and/or effectors for

invasion and intracellular survival.

C. jejuni interaction and invasion of human IECs induce
numerous downstream host signaling pathways. C. jejuni

activates mitogen-activated protein kinases (MAPKs),

extracellular signal-regulated kinase (ERK) and p38, leading to

the induction of a potent pro-inflammatory cytokine interleukin-

8 (IL-8) (MacCallum et al., 2005). IL-8 is an important pro-

inflammatory cytokine of IECs and acts as a chemotactic factor
of immune cells. However, it is hypothesized that induction IL-8

from human IECs which is found to correlate with an increase in

circulating neutrophils to the site of infection can inadvertently

exacerbate the classical acute inflammatory symptoms. C. jejuni

induction of Erk and p38 signaling pathways is dependent on

bacterial de novo protein synthesis and a functional flagellum (Jin

et al., 2003; Watson and Galan, 2005).

C. JEJUNI FLAGELLA: FUNCTION

AND VIRULENCE

C. jejuni produces two polar flagella at each pole of the cell,

termed as amphitrichous flagellation. C. jejuni flagella is a

multifunctional organelle which enables the bacterium to avoid

hostile environments including forceful peristalsis and expulsion

from the GI tract. C. jejuni flagella also enable the bacterium to

penetrate the viscous mucosa lining of the human IECs, and to

reach the distal ileum, jejunum and colon. Thus, C. jejuni flagella
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promotes bacteria motility, chemotaxis and avian colonization.

Besides mediating these virulence attributes, C. jejuni flagellar

also promotes adhesion and invasion into human IECs in vitro

(Black et al., 1988; Grant et al., 1993; Szymanski et al., 1995;

Konkel et al., 1999), biofilm formation (Svensson et al., 2014)

and non-flagella protein export. The latter enables C. jejuni to
secrete ∼18 putative virulence-associated proteins termed

Campylobacter invasion antigens (Cia) (Konkel et al., 2004;

Christensen et al., 2009). Some of C. jejuni Cia proteins are

required for invading human IECs in vitro, for instance CiaC

plays a role in invasion whereas CiaI is required for intracellular

survival in human IECs (Buelow et al., 2011; Neal-McKinney and
Konkel, 2012). Interestingly study showed CiaD involves in

maximal activation of the MAP kinase signaling pathways Erk

1/2 and p38 resulting in the secretion of IL-8 (Samuelson

et al., 2013).

C. jejuni flagella synthesis and glycan modification involves

over 50 flagellum-related genes. The flagellum is composed of
three major parts, the basal body, which crosses the bacterial cell

membrane, as well as a flagellar-associated cytoplasmic ring, the

hook complex and the flagellar filament. Debates had focused on

finding relationships between C. jejuni flagellum, motility,

colonization and secretion. C. jejuni flagellar filament

contributes to bacterial motility (Wassenaar et al., 1991;

Guerry et al., 1991), adherence and colonization. The flagellar
filament is composed of subunits of FlaA and FlaB proteins. C.

jejuni flagellin proteins are O-linked glycosylated and the O-

linked glycosylation is specific to the serine and threonine

residues on a flagellin subunit which is modified by

pseudaminic acid (Pse) and derivatives containing acetyl and

acetamindino groups (PseAcOAc or PseAm, respectively
(Thibault et al., 2001; Schirm et al., 2005). Sometimes C. jejuni

flagellin subunits are modified with legionaminic acid (Leg),

moieties (Logan et al., 2009; Schoenhofen et al., 2009; Howard

et al., 2009). C. jejuni flagellar subunit FlaA rather than FlaB is

essential for C. jejunimotility. This is supported by evidence that

showed a mutation of the flaA gene led to the generation of non-

flagellated and non-motile cells (Nuijten et al., 1990; Wassenaar
et al., 1991). By contrast, the mutation of flaB, has no impact

on C. jejuni flagella synthesis and motility. These findings suggest

that FlaA protein, rather than motility, is essential for C.

jejuni optimal colonization in chickens (Wassenaar et al.,

1993). However, subsequent studies have identified C. jejuni

mutant with normal but paralyzed flagella that is also non-motile
and had a reduced ability to colonize chickens (Yao et al., 1994).

The role of C. jejuni flagella in chicken colonization is further

confirmed through mutation of the flagellar motor genes MotA

and MotB which are essential for the rotation of the flagella. A

motAB mutant produced non-motile cells with a full-length

flagellum that is unable to rotate, thus unable to colonize

chickens (Hendrixson and DiRita, 2004). Other C.
jejuni flagella genes that have been studied include the flagellar

sigma factor s28 (fliA) and the alternative sigma factor s54

(rpoN). These two sigma factors regulate a large number of

genes that are responsible for the expression and function of C.

jejuni flagella. For example, sigma s28 is known to regulate the

major flagellin gene flaA and some other late flagellar genes

which control synthesis of proteins forming motor and

chemotaxis proteins. On the other hand, C. jejuni s54 involves
the transcription of genes encoding for the hook, basal body, and

minor flagellin flaB. In the context of host colonization and

infection, mutation of s54 (rpoN) gene results a non-motile cells
that are unable to colonize chickens (Fernando et al., 2007),

adhere to and invade into human IECs in vitro (Wassenaar et al.,

1991). Also, C. jejuni flagellar functions as an organelle to secrete

flagellar co-expressed determinants (Feds) which are required for

efficient invasion of human IECs in vitro (Song et al., 2004;

Barrero-Tobon and Hendrixson, 2012). A unique feature of C.
jejuni flagellar filament is its mechanism to escape immune

interaction with Toll-like receptor 5 (TLR5). TLR5s are found

at the basolateral side of the human IECs and recognize a highly

conserved epitope in bacterial flagellin. However, C. jejuni

flagellar filament evades TLR5 activation because it fails to

make complementary contacts with the TLR5 LRR9 loop
(Song et al., 2017). This is attributed to sequence divergence of

C. jejuni flagellin particularly the highly conserved epitope found

in most g-proteobacteria and Firmicutes bacterial flagellin.

Recently, specific amino acids found in C. jejuni flagellar

filament have been shown to mediate weakened binding to

human TLR5 (Kreutzberger et al., 2020).

C. JEJUNI CAPSULAR POLYSACCHARIDE

(CPS)

The first evidence of a CPS at the surface of C. jejuni was

reported in 2001 (Karlyshev et al., 2001). C. jejuni CPS is found

on the outermost layer of the cell surface of the bacterium and it

is composed of a rare structure of diverse repeating units of
sugars (Karlyshev et al., 2005; McNally et al., 2005; Gilbert et al.,

2007). C. jejuni CPS possess a heptoses sugar with an unusual

configuration (e.g., ido, gulo, and altro) and nonstoichiometric

modifications on the sugars, including ethanolamine,

aminoglycerol, and O-methyl phosphoramidate (MeOPN).

Unsurprisingly, C. jejuni CPS is the major sero-determinant of

the Penner serotyping scheme of C. jejuni strains (Karlyshev
et al., 2000). Currently, there are more than 47 different C. jejuni

Penner serotypes of the bacterial CPS with some forming related

serotype complexes (Poly et al., 2015). The structural variations

of C. jejuni CPS reflects differences in the genetic content of the

genomic locus that drives CPS biosynthesis (Karlyshev et al.,

2005). C. jejuni CPS contains homopolymeric tracts which are
prone to phase variation. As expected, homopolymeric tracts

allow a rapid on/off switching of the C. jejuni CPS genes resulting

in variations in CPS arrangements even in C. jejuni isolates that

have identical gene contents. In addition to the phase variation

observed in CPS sugar composition, C. jejuni CPS is also

modified with ethanolamine, glycerol, and nonstoichiometric

MeOPN modifications in approximately 75% of C. jejuni
strains (Thota et al., 2018).

C. jejuni CPS plays a role in bacteria pathogenicity (Guerry

et al., 2012; Bolton, 2015). C. jejuni CPS is required to resist
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complement-mediated killing (Bacon et al., 2001; Keo et al.,

2011), invade into human IECs in vitro (Bachtiar et al., 2007;

Corcionivoschi et al., 2009), colonization of chickens (Jones et al.,

2004), and diarrheal disease in ferrets (Bacon et al., 2001).

Consistently, the nonstoichiometric modification of CPS with

MeOPN has also been demonstrated to be essential for
complement resistance. The role of CPS in C. jejuni resistance

to complement-mediated killing is supported by evidence

showing C. jejuni expressing full CPS structure but lacking

MeOPN, displayed the same pattern of serum killing as a

nonencapsulated kpsM mutant, which lacked CPS. Also, study,

using Galeria mellonella larvae infection model demonstrated C.
jejuni expressing full CPS but lacking specific MeOPN

modification to be significantly attenuated in virulence

(Champion et al., 2010). This same study suggested the

structure of the MeOPN moiety has a remarkable similarities

to the active structures of organophosphorous pesticides

(McNally et al., 2007), therefore, the virulence attenuation of
C. jejuni expressing full CPS but lacking specific MeOPN may be

due to a consequence of toxicity provided by the MeOPN.

However, from virulence perspective, the role of C. jejuni CPS

in serum resistance is still unclear as C. jejuni induces human b-
defensins 2 and 3 (hBD2 and hBD3) from human IECs in vitro

(Zilbauer et al., 2005).

C. JEJUNI PUTATIVE ADHESINS

Adhesins play an important role in the pathogenesis of bacteria

to adhere, colonize, and invade into hosts. C. jejuni adherence to

human IECs in vitro involves putative adhesins decorated on its

outer membrane (OM) surface. C. jejuni adhesins seem to have

alternate primary functions, yet some can target the same host

receptor such as fibronectin. Once C. jejuni adheres to
fibronectin on the basolateral side of human IECs, it is

preceded by secondary steps that orchestrate cellular invasion

(Konkel et al., 2020). The most highly investigated adhesins in C.

jejuni that exist almost in mutually exclusive fashion are

Campylobacter adhesion to fibronectin (CadF) and fibronectin-

like protein A (FlpA). C. jejuni adhesins (CadF and FlpA) are
highly conserved among C. jejuni strains. CadF and FlpA

proteins are important for C. jejuni adherence to human IECs

and colonization of chickens (Konkel et al., 2020). A C.

jejuni cadF mutant displays reduced ability to adhere to

human IECs and chicken hepatoma cell line, LMH cells. C.

jejuni cadF mutant is also unable to adhere to immobilized

fibronectin (Talukdar et al., 2020). C. jejuni FlpA also promotes
C. jejuni adherence to human IECs in vitro and plays a role in C.

jejuni colonization of chickens (Flanagan et al., 2009; Konkel

et al., 2010; Larson et al., 2013). There are additional C.

jejuni surface-exposed adhesins, such as Campylobacter

adhesion protein A (CapA), PEB1 (Kervella et al., 1993; Pei

et al., 1998) and PEB4 (Asakura et al., 2007). These adhesins
which also play a role in C. jejuni adherence to human and

chicken IECs in vitro represent the multifactorial ability of C.

jejuni virulence mechanisms. However, study suggested that

PEB1 is not required for adhering to chicken LMH cells but

rather as a transporter of amino acids aspartate and glutamate

(Leon-Kempis Mdel et al., 2006). Unfortunately, an important

gap in our current knowledge is the lack of mechanistic insight as

to how C. jejuni orchestrates adherence steps to IECs. This is due

in part to the fact that some of the adhesins identified to date
display an overlap in binding mechanisms, a factor that

confounds straightforward analysis of C. jejuni adhesion

mechanisms. It is hypothesized that these C. jejuni different

adhesins are required in the multiple steps of infection. First, to

adhere to the mucosal layer at the luminal side of human IECs

and then to adhere to the fibronectin receptor at the basolateral
side of IECs.

OTHER C. JEJUNI OUTER MEMBRANE

CHANNELS

C. jejuni produces numerous virulence and/or fitness proteins

that function as major outer membrane proteins (MOMPs). Two

of the most well characterized MOMPs in C. jejuni are MOMP

and OMP50. C. jejuni MOMP is also referred to as PorA. In
contrast to E. coli, C. jejuni possesses only one MOMP that is

present in all isolates and is highly (but not absolutely) conserved

in other Campylobacters (Ferrara et al., 2016). C. jejuni, MOMP,

is a 44-kDa protein, with sequence signature typical of b-barrel
porin seen in other enteropathogens (Amako et al., 1996; Ferrara

et al., 2016). C. jejuni, MOMP is relatively well characterized
compared to OMP50. As might be expected, considering its

association with the outer surface of the bacterial cell, C. jejuni

MOMP exhibits substrate selectivity and functions as a control

channel for the entry/exit of nutrients and other specific

molecules (Dhanasekar et al., 2017). Mutation of porA have

been thought to be lethal due to critical structural and transport

functions. However, inactivation of porA enhances sensitivity to
certain hydrophilic antibiotics (Iovine, 2013). Unlike MOMP,

which is present in most Campylobacters, Omp50 is only found

in C. jejuni and C. lari strains, but not in C. coli (Dedieu et al.,

2008). The synthesis of Omp50 is tightly regulated by the host

microenvironment. For example, C. jejuni Omp50 is down-

regulated in chicken cecum and up-regulated in rabbit ileal
loop (Stintzi et al., 2005; Woodall et al., 2005). Mutation of

Omp50 substantially reduced C. jejuni motility and invasion,

while it also involves bacterium decreased Nox1-dependent ROS

generation (Corcionivoschi et al., 2012).

C. JEJUNI PUTATIVE PROTEASES:

NEW PERSPECTIVE IN VIRULENCE

INVOLVEMENT

Recent characterization of C. jejuni putative proteases represent

an important step forward in the efforts to dissect C. jejuni

pathogenesis. As opposed to traditional candidate-mutant
experimental approaches, a proteomics analysis coupled with
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enzymatic-based virulence profiling (EBVP) have shed light on

the specific role of C. jejuni putative proteases in adhesion to and

invasion into human IECs in vitro. C. jejuni secretes outer

membrane vesicles (OMVs) that contain three active serine

proteases (HtrA, Cj0511, and Cj1365c) (Elmi et al., 2012). The

mechanism responsible for the abundance of these serine
proteases in OMVs remains elusive. However, C. jejuni

proteases have been demonstrated to contribute targeted

damage to human IECs in vitro (Elmi et al., 2016). Treatment

of human IECs with active protease result in cleavage of IECs

tight and adherens junction proteins, namely occludin and E‐

cadherin. The targeted proteolytic activity of C. jejuniOMVs also
enhance C. jejuni adhesion to and invasion into IECs in vitro

(Elmi et al., 2016). Moreover, follow-up study has shown that bile

salt sodium taurocholate (ST) upregulates C. jejuni expression of

htrA, Cj0511, Cj1365, and the cdtABC operon, highlighting the

importance of bacterium adaptation to host metabolites (Elmi

et al., 2018). Furthermore, recent study has demonstrated that
physiological concentrations of ST regulates C. jejuni OMVs

production through changes in expression of the maintenance of

lipid asymmetry (MLA) pathway (Davies et al., 2019). Although

most of the examples discussed above had focused on the role of

serine proteases in virulence, it should be remembered that C.

jejuni OMVs also contain a cocktail of virulence and fitness

factors, including stress response enzymes, adhesins, CDT,
lipoproteins and other metalloproteases, which also play an

important role in bacterial virulence. Thus, suggestions have

been raised that C. jejuni OMVs might also function as fitness

and survival factors, allowing the bacterium to adapt new niches,

adhere to surfaces, translocate rapidly across IECs, and resist

antibiotics and other deleterious circumstances.

C. JEJUNI FITNESS AND VIRULENCE

FACTORS: ROLE IN STRESS

ADAPTATION, TEMPERATURE, NUTRIENT

SENSING, AND METABOLIC REWIRING

As C. jejuni transitions from nutritionally rich ceca in the GI

tract of chickens to accidentally infect humans, the bacterium

faces formidable stresses. Here, the term “stress” refers to

environmental and human host stresses that reduce C. jejuni
fitness or negatively impact on its virulence. Unlike other entero-

pathogens, C. jejuni does not have homologs of the classical

stress response regulators such as SoxRS and OxyR found in E.

coli and Salmonella spp. respectively. SoxRS regulates response to

redox-active compounds while OxyR responds to hydrogen

peroxide (Nunoshiba et al., 1992; Zheng et al., 1998). In

addition, C. jejuni lacks transcription regulators such as cold
shock protein A (CspA) and leucine-responsive regulatory

protein (Lrp) (Calvo and Matthews, 1994; Murphy et al., 2006;

Keto-Timonen et al., 2016). Besides, C. jejuni does not possess

the classical alternative sigma factors such as RpoS (s38)

although it has limited sigma factors including RpoD (s70),

RpoN (s54), and RpoF/FliA (s28). Interestingly, C. jejuni
possesses unique and yet unresolved mechanisms to survive

under various stress conditions. C. jejuni utilizes OmpR‐type

response regulators such as Campylobacter oxidative stress

regulator (CosR) (Hwang et al., 2011), peroxide-sensing

regulator (PerR) (Palyada et al., 2009) and Multiple Antibiotic

Resistance Regulator, MarR‐type regulators designated for

response to peroxide stress (Gundogdu et al., 2016). C. jejuni
CosR is a pleiotropic regulator that controls the expression of

genes involved in various cellular processes, especially genes that

involve in macromolecule biosynthesis, metabolism, and

oxidative stress response (Kim et al., 2015b). The genes that

CosR regulates mostly encode for stress response-related

proteins such as the DNA binding protein from starved cells
(Dps), rubredoxin oxidoreductase/rubrerythrin (Rrc), alkyl

hydroperoxide reductase (AhpC), and superoxide dismutase

(SodB). On the other hand PerR, non-OxyR-dependent

regulator, controls transcription of peroxide as well as the

superoxide defense genes particularly under oxidative stress

conditions. For instance, perR mutation abrogates the
transcriptional response of ahpC, katA, and sodB to oxidants

(Kim et al., 2015a).

C. jejuni also possesses global transcriptional regulators such

as carbon starvation regulator (CsrA), ortholog of the E. coli

global posttranscriptional regulator CsrA. In addition, C. jejuni

has two-component regulatory systems (TCRS) such as

Campylobacter planktonic growth regulator (CprRS) (Svensson
et al., 2015; El Abbar et al., 2019). Mutation of csrA results in C.

jejuni cells with altered motility, biofilm formation, adherence to

and invasion of human IECs cells and resistance to oxidative

stress (Fields and Thompson, 2008). CprRS is two‐component

systems regulator typically consisting of a sensor kinase and a

response regulator. The CprR response regulator is essential and
mutation to the cprR, is lethal to C. jejuni, but a cprS mutation,

results in decreased expression of SodB, Rrc and LuxS. C. jejuni

also possesses a ferric uptake regulator (Fur) to control the

expression of a range of oxidative stress genes, to prevent the

build-up of toxic levels of iron within the cell (Butcher et al.,

2012). In addition to the stress-responsive regulators, C. jejuni

KatA and SodB proteins play critical roles in detoxification, SodB
detoxifies free radicals O−

2 while KatA contributes for the

detoxification of H2O2 (Atack and Kelly, 2009). SodB also

contributes to C. jejuni chicken colonization and intracellular

survival in human IECs in vitro (Palyada et al., 2009; Novik et al.,

2010). C. jejuni cell surface structures such as flagella, CPS, LOS

and OM also can act at the interface between the bacterium and
the extracellular environment. These cellular surface structures

assist C. jejuni to sense environmental and host stresses, in

principle, inducing a collective response to protect the

bacterium from damage caused by stresses.

Environmental Stress Survival
and Adaptation
In light of its relatively small genome (1.6–1.7 Mb), it remains
enigmatic how C. jejuni senses, adapts and persists in diverse

environmental stresses. C. jejuni requires optimal oxygen

concentrations of approximately 5%–10% for growth; however,

the bacterium can survive in the environment, which is rich in
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oxygen (ca. 21% O2). This variation in oxygen concentration

constraints C. jejuni to rewire its physiology to adapt flexible

metabolic pathways. The requirement of 5%–10% O2 for growth

is governed by single class I-type Ribonucleotide Reductase

(RNR) (Burnham and Hendrixson, 2018). This is an oxygen-

dependent enzyme that catalyses the de novo conversion of
ribonucleotides diphosphates (NDPs) to deoxyribonucleotides

diphosphates (dNDPs), and therefore plays a pivotal role in

maintaining C. jejuni synthesis of deoxyribonucleotide (dNTP).

Besides, C. jejuni also possesses a highly-branched respiratory

chain feature that facilitates the use of oxygen as an electron

acceptor for one of two respiratory oxidases, cytochrome c
oxidase (CcoNOQP), a cbb3-type cytochrome c oxidoreductase

and a bd-type (CioAB or CydAB) quinol oxidase (Guccione

et al., 2017; van der Stel and Wosten, 2019). The sensitivity of C.

jejuni pyruvate: acceptor oxidoreductase (POR) and the TCA

cycle 2-oxoglutarate: acceptor oxidoreductase (OOR) to oxygen

has been suggested as one of the explanations of the so-called ‘C.
jejuni-oxygen paradox’ - that is, why C. jejuni is unable to

proliferate in aerobic environment. Also, atmospheric levels of

oxygen inactivate C. jejuni L-serine dehydratase (SdaA), which

catalyses the deamination of serine and converts serine into

pyruvate which is further converted to acetyl CoA, which is

oxidized via the TCA cycle to carbon dioxide and free

energy. SdaA is essential for colonization of the avian gut
(Velayudhan et al., 2004). The ability of C. jejuni to tolerate

oxygen in the environment can also vary between strains. For

instance, study has found a higher prevalence of some strain

genotypes in environmental samples attributing these variations

in oxygen tolerance (Champion et al., 2005; Bronowski et al., 2014).

Besides, another study has reported atypicalC. jejuni Bf strain that is
oxygen tolerant (Rodrigues et al., 2015; Bronnec et al., 2016a). This

strain has been demonstrated to have protective mechanisms

against oxidative stress which is thought to be mediated by

regulation of genes involved in oxidative stress response and

biofilm formation (Bronnec et al., 2016b). Interestingly, recent

assessment of C. jejuni phospholipidome profile has indicated

that C. jejuni phospholipidome have an unusually high
percentage of lysophospholipid. Lysophospholipids are small

bioactive lipid molecules characterized by a single carbon chain

and a polar head group. It is hypothesized lysophospholipid

allows C. jejuni to be motile under low O2 conditions (Cao et al.,

2020a). This is a significant observation considering the

requirement of C. jejuni to adapt to the low oxygen deep in the
mucus layer of the human GI tract. This could give C. jejuni

competitive advantage when competing with other microbiota that

colonize the mucosal layer as it transitions into the IECs. In

addition, the ability of C. jejuni to sense environmental oxygen

have been thought to correlate altering its membrane lipid

composition which could be crucial for biofilm formation.

C. jejuni Biofilm: Environmental Adaptation
and Persister Phenomena
C. jejuni adaptation to an oxygen-rich environment such as

contaminated freshwater, poultry meat or raw milk can be

attributed to the ability of the bacterium to form biofilms on

different substrates. C. jejuni can attach and persist on a variety

of abiotic and biotic surfaces, and several studies have reported

on the viable but non-culturable (VBNC) state (Teh et al., 2014;

Magajna and Schraft, 2015). C. jejuni cells switch to VBNC state

to survive better under adverse environmental conditions. In the
environments, C. jejuni is exposed to high oxygen tension,

limited nutrient availability, heat, acidic pH, temperatures

fluctuations and antimicrobials. These environmental

constraints are known to stimulate increased C. jejuni biofilm

formation to a relatively high level, supporting the proposal that

C. jejuni forms biofilm as a survival strategy outside of the avian
host. C. jejuni forms increased biofilm in oxygen-rich conditions

compared to microaerobic conditions (Reuter et al., 2010). It is

commonly agreed that all C. jejuni strains form biofilm, however,

the ability of C. jejuni to form biofilm appears to be strain-

dependent (Melo et al., 2017). Interestingly, C. jejuni mutant

strains deficient in genes encoding for key oxidative stress
resistance enzymes such as alkyl hydroperoxide reductase

(AhpC) or C. jejuni’s sole catalase enzyme (KatA) have been

shown to have an increased ability to form biofilm (Oh and Jeon,

2014). This is attributed to the accumulation of reactive oxygen

species (ROS) which may serve as a trigger to increase the level of

biofilm formed in response to increased oxidative stress.

Overexpression of ahpC is correlated with decreased biofilm
formation, and treatment of the ahpC mutant with antioxidants

reduces biofilm formation (Oh and Jeon, 2014). C. jejuni lacks

the classical two-component regulatory systems involved in

biofilm formation found in other bacteria, such as GacSA in

Pseudomonas aeruginosa, however, C. jejuni biofilm formation is

thought to be under the control of a complex array of regulatory
factors that respond to a variety of environmental signals. These

complex regulatory factors include global regulator CsrA,

Campylobacter oxidative stress regulator (CosR), stringent

response regulator (SpotT) and CprRS, which have been

shown to play an important role in biofilm formation in C.

jejuni under aerobic conditions (Gaynor et al., 2005; Fields and

Thompson, 2008; Svensson et al., 2015; El Abbar et al., 2019).
Mutations of cosR, cprRS, and, spotT increase biofilm formation

under aerobic conditions, while mutation of the gene encoding

for global regulator (CsrA) decreases the ability of C. jejuni to

form biofilms when grown in static culture as well as increased

sensitivity to oxidative stresses (Fields and Thompson, 2008).

Interestingly, in other enteric bacteria spoT mutation decreases
biofilm formation (He et al., 2012). In C. jejuni, the mutation of

spoT alters the expression of genes related to redox balance,

metabolism, energy production, and conversion pathways while

CosR, a key orphan regulator in the maturation of biofilm, has

also been shown to affect the expression of the antimicrobial

efflux pump CmeABC (Turonova et al., 2015). CprRS is two‐

component systems regulator typically consisting of a sensor
kinase and a response regulator. The CprR response regulator is

essential and deletion of the cprS sensor kinase enhances

biofilms. Current evidence suggests that CprRS likely regulates

genes related to aspects of the C. jejuni surface structures

(Svensson et al., 2015). The molecular mechanism of C. jejuni

Elmi et al. Campylobacter jejuni: Virulence and Fitness Factors

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org February 2021 | Volume 10 | Article 6077047

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


biofilm formation also appears to indirectly correlate with factors

required for fitness and virulence. For instance, mutation of the

flagella genes flaA, flaB and the cell surface modification genes

pgp1 and waaF have been shown to increase biofilm formation

(Reeser et al., 2007). This indicates that C. jejuni increases

biofilm formation as a survival strategy during stress.
Interestingly, a recent study suggests C. jejuni does not form

biofilms under conditions encountered in the environment but

attaches to surfaces or biofilms of other species (Teh et al., 2014;

Teh et al., 2019). This is an attractive proposal supporting the

notion that C. jejuni is a poor biofilm initiator, and is likely to

form enhanced biofilms in a “mixed-species biofilm” with other
bacteria such as P. aeruginosa, Enterococcus faecalis and

Staphylococcus simulans.

C. jejuni Temperature Stress Adaptation
Temperature is a prominent signal used by many enteric

pathogens. The strategies enteric pathogens use to sense

temperature variation across space, hosts and time broadly acts

as a mechanism to adjust bacterial survival and virulence. For C.

jejuni, the transition from its primary chicken host (42°C) to the

environment, the bacterium experiences temperature variation.
This temperature variation confines proliferation and shifts C.

jejuni physiology forcing the bacterium to coordinate fitness and

virulence regulatory systems. It is puzzling that C. jejuni lacks

classical RpoS homolog (Parkhill et al., 2000) and cold shock

proteins (Oh et al., 2019), yet C. jejuni has the ability to survive in

low and/or high nonpermissive temperature growth conditions

before reaching human host. C. jejuni doesn’t also grow
temperatures below ~ 30°C, however the bacterium survives

temperature growth range between 4°C to 33°C (Hazeleger et al.,

1998). C. jejuni survives better at 4°C in various biological milieu

than at 25°C (Murphy et al., 2006). C. jejuni also survives in

water, at low temperatures, for up to 4 months (Oberheim et al.,

2020). The ability of C. jejuni to survive in cold temperatures is
different among strains, with C. jejuni strains isolated from

human infection being significantly more capable of prolonged

survival at 4°C than poultry‐derived strains (Chan et al., 2001).

Intriguingly C. jejuni also survives extreme freezing temperatures

(−20°C) for several weeks (Bhaduri and Cottrell, 2004).

C. jejuni genes associated with oxygen tolerance, starvation

and osmotic stress are essential for the bacterium to survive in
the low temperature. This perplexing physiology of C. jejuni

seems to be the bottleneck to the efforts aimed to eradicate the

risk of C. jejuni to human health. The ability of C. jejuni to

rapidly sense and adapt to cold temperature is largely driven at

the transcriptional level (Bronowski et al., 2017). Studies

focusing on human infections, use in vitro human IECs grown
at 37°C to mimic the temperature that the bacteria encounters

inside human host. C. jejuni ability to sense 37°C is crucial to

optimize its fitness and adjust expression of its virulence genes.

C. jejuni is more invasive into human IECs cultured at 37°C than

IECs cultures at 42°C (Aroori et al., 2013). Although the exact

mechanism of C. jejuni response to temperature stress is not yet
explicitly known, changes in temperature are known to affect

expression of bacterial heat shock proteins (HSP). C. jejuni

possesses two-component regulatory systems (TCSs) such as

reduced ability to colonize response regulator (RacRS). RacRS

function to assist the bacteria to overcome stresses associated

with heat shock response. In addition, C. jejuni RacR is required

for avian colonization and growth while mutation of racR alters

the expression of selected proteins in both temperature-
dependent and independent manners (Hazeleger et al., 1998;

Wouters et al., 2000).

C. jejuni Acid Stress Adaptation
C. jejuni grows at optimal pH range of 6.5–7.5, while it is also

able to survive pH range as low as 5.5 and as high as 8.5.

However, C. jejuni encounters acidic conditions either in the

environment or within the gut of the various hosts that it
colonizes. In the context of human infection, C. jejuni survives

passage through the stomach, where the concentration of acid is

high and the pH ranges 1.5–3.5. The molecular strategies that

C. jejuni uses to sense, adapt and survive the luminal acid

concentration in the stomach upon ingestion and within the

phagosomes and phagolysosomes of human IECs is not

currently known. However, C. jejuni tolerance to human GI
tract luminal acid is important for disease development. So far,

it is hypothesized C. jejuni lacks proteins required for acid

tolerance such as urease protein found in Helicobacter pylori.

However, it is intriguing that with low infectious dose of (500–

800 bacteria), C. jejuni cells survive the gastric acid of the

human stomach and continue down to reach the small
intestine. Study has demonstrated some C. jejuni strains can

survive acid exposure at pH 3.5 and above for up to 30 min (Le

et al., 2012). Another study has suggested adaptation of C.

jejuni to the luminal acid concentration in humans requires

genes mediating various cellular processes, including those

involved in motility, metabolism, stress response, DNA repair

and surface polysaccharide biosynthesis (Reid et al., 2008). For
instance, C. jejuni RpoN, a classical flagellar transcriptional

regulator, which is historically known to play an important role

in motility has been demonstrated to be important for the

resistance of C. jejuni to various stresses including acid stress.

This suggested flagella mediated motility is critical for both

initial navigation through the acid environment in the GI
tract lumen and mucus layer to IECs attachment. C. jejuni

adaptation to low pH stress also involved the differential

expression of genes involve in respiratory pathways, the

upregulation of genes for phosphate transport, and the

repression of energy generation and intermediary metabolism

genes (Reid et al., 2008). Recent study that investigated acid-
stressed adaptation of C. jejuni under iron-enriched conditions

has shown the capacity of C. jejuni to survive acid stress is

greatly enhanced in presence of iron (Askoura et al., 2020).

However, limited information is available about the role which

human host microbiota plays in the pathophysiology of C.

jejuni adaptation in acidity along the gut, although it is evident

that many species of the microbiota are able to generate
metabolites that have bearing on the composition of GI tract

luminal acidity. For example, lactate which is an organic acid

that is found in the upper GI tract of human and avian species
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can act as a chemoattractant signal of C. jejuni (Bernalier-

Donadille, 2010; Hofreuter, 2014).

C. jejuni Metabolic Sensing
and Adaptation
While, as discussed above, C. jejuni has complex stress response

mechanisms, its ability to resist stresses overlaps its ability to

adapt to different metabolic requirements. C. jejuni sequenced

strain NCTC11168 lacks the glycolytic enzymes glucokinase

(Glk) and phosphofructokinase (PfkA) of the classical

Embden-Meyerhof-Parnas (EMP) pathway (Parkhill et al.,
2000; Guccione et al., 2008; Hofreuter, 2014). C. jejuni was

once considered to be non-saccharolytic since C. jejuni

sequenced strain NCTC11168 lacks genes encoding for the

complete pentose phosphate (PPP) or Entner-Doudoroff (ED)

pathway. Interestingly, few isolates of C. jejuni subsp. doylei

encode a complete ED pathway which suggests the potential to
catabolize glucose (Vegge et al., 2016; Garber et al., 2020). The

inability to utilize glucose has necessitated C. jejuni to utilize

amino acids such as serine, aspartate, glutamate, glutamine,

proline and asparagine as carbon and energy sources (Stahl

et al., 2012; Hofreuter, 2014; Szymanski, 2015). Most C. jejuni

strains preferentially use serine, aspartate, glutamate, and

proline, although certain C. jejuni strains can also utilize
asparagine and glutamine (Thompson and Gaynor, 2008; van

der Hooft et al., 2018). This unique ability to metabolize only a

few amino acids allows the bacterium to utilize efficient strategies

to include host nutrients into its anabolic processes, to fuel its

metabolic pathways and to support its survival and adaptation in

hosts with largely commensalism outcome in avian species or
pathogenesis in humans. For instance, C. jejuni catabolism of

serine and aspartate enhances the ability of the bacterium to

colonize the avian gut (Hermans et al., 2011), while a C. jejuni

mutant that is lacking an oxygen-labile serine dehydratase and

unable to catabolize serine is demonstrated to be incapable of

colonizing chickens (Velayudhan et al., 2004). Furthermore, C.

jejuni rewires its metabolic requirements during avian colonization
and human infection. C. jejuni has the ability to adopt an

asaccharolytic lifestyle, likely as a strategy to evade microbiome

competition. It is known that certain C. jejuni strains metabolize

sugars such as L‐fucose (Stahl et al., 2011). These C. jejuni strains

possess an operon for L‐fucose utilisation which until recently has

been known to be limited to some C. coli and C. jejuni subsp. doylei
strains. L-fucose acts as a chemoattractant for C. jejuni (Dwivedi

et al., 2016). Interestingly, C. jejuni binds to a1, 2-fucosylated
glycans, however the L-fucose catabolism is not essential for

C. jejuni colonization of avian species (Muraoka and Zhang,

2011; Stahl et al., 2011). Furthermore, C. jejuni lacks fucosidase

enzyme which is essential for the release of the L-fucose from

glycosylated host proteins such as mucin. A study recently
demonstrated that C. jejuni fucose positive strain utilisation of

L-fucose is dependent on the fucosidase activity of the

gastrointestinal bacterium Bacteriodes fragilis (Garber et al.,

2020). This same study also revealed that C. jejuni becomes more

invasive toward human Caco-2 cells in the presence of an

exogenous fucosidases from B. fragilis.

Recently, examining the idea of a host nutritional role in C.

jejuni adaptation and pathogenesis, studies showed that C. jejuni

senses and utilizes catabolic end products of the intestinal

microbiota such as short-chain fatty acids (SCFAs) butyrate and

acetate, CO2-derived hydrogen carbonate, and free amino acids and

di-/or oligopeptides, which are released by microbiota from dietary
or endogenous proteins (Gao et al., 2017). The ability of C. jejuni to

sense SCFAs positively regulates many C. jejuni amino acids uptake

and catabolism systems that are essential for host colonization.

SCFAs are found in abundance in the lower regions of the intestinal

tracts of avian species and humans where they play a major role

in host physiology through nutritional, regulatory, and
immunomodulatory functions. However, in the context of C.

jejuni avian and human colonization, the abundance of butyrate

and acetate in the lower GI tract provides the bacterium with a

competitive advantage to thrive in this niche (Burnham and

Hendrixson, 2018). A prevailing belief is that C. jejuni has the

ability to spatially differentiate between sections of the GI tract by
sensing the presence of acetate and butyrate, and thereby modifying

the transcription of its colonization factors (Goodman et al., 2020).

This enables C. jejuni to obtain sufficient nutrients and resources to

allow for optimal survival and persistence in both avian and human

intestinal tracts. C. jejuni specifically senses butyrate via a

noncanonical TCS termed BumSR (Goodman et al., 2020). BumS

functions as a phosphatase, via a noncanonical mechanism for
signal transduction in place of a sensor kinase, to control the activity

of the cognate BumR response regulator. BumS phosphorylates

BumR in response to the presence of butyrate. C. jejuni genes

known to be induced after sensing butyrate and acetate include

genes encoding for nutrient acquisition systems, energy generation

pathways, and colonization factors (Goodman et al., 2020). In
addition, acetate which is more abundant in the gut is preferred

metabolite for C. jejuni once the rate-limiting step of carbohydrate

metabolism is surpassed in stationary phase. C. jejuni also

catabolizes organic acids such as lactate which is abundant in the

upper gut of avian hosts (Luethy et al., 2017).

CONCLUSIONS AND FUTURE

DIRECTIONS

Recent developments in the understanding of C. jejuni pathogenesis
have combined several experimental approaches that link the

functional characterization of various putative genes. Although this

is important, characterizing C. jejuni virulence and fitness factors

requires an integrative approach. In the future, an ideal experiment

should involve the use of single-gene inactivations and phenotypic

assays, incorporated with integrative multi-omics approach
including, transcriptomics, proteomics and metabolomics. This

should reveal comprehensive findings that would contribute to the

characterization of C. jejuni pathogenesis. This approach will

also guide us to re-focus on re-characterization of many C.

jejuni virulence-associated genes that have not yet been fully

characterized. From our perspective, the incorporation of

integrative multi-omics and phenotypic assays in C. jejuni research
promises enormous potential. However, there are many challenges
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and thus, opportunities for further development of experiments

involving multi-omics technology. Also, future studies of C.

jejuni should include refining, optimisation and normalization of

experimental design and protocols that represent ideal settings

for C. jejuni and host cells, allowing researchers to reproduce data.

Unsurprisingly, there are a plethora of C. jejuni studies that use
experimental approaches that give an insight into the selected role

of C. jejuni putative virulence associate genes. For instance, in stress

survival, adhesion, invasion and intracellular survival, however, few

studies provide information about the function of such putative

genes. Also, integration of C. jejuni virulence characterizations with

spatial analysis at the various time point and C. jejuni strains
variability is needed to improve our understanding of C.

jejuni pathogenesis.

AUTHOR’S NOTE

For the purpose of this review, we define a virulence factor as a

protein (such as a toxin) or macromolecular structure (such as

flagellum) that contribute to the ability of the bacteria to cause

disease and a fitness factor as a protein or macromolecular

structure that, while not required for virulence, offers a

competitive advantage during infection.
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