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ABSTRACT

The goal of two-sample tests is to assess whether two samples, SP ∼ Pn and SQ ∼
Qm, are drawn from the same distribution. Perhaps intriguingly, one relatively
unexplored method to build two-sample tests is the use of binary classifiers. In
particular, construct a dataset by pairing the n examples in SP with a positive label,
and by pairing the m examples in SQ with a negative label. If the null hypothesis
“P = Q” is true, then the classification accuracy of a binary classifier on a held-out
subset of this dataset should remain near chance-level. As we will show, such
Classifier Two-Sample Tests (C2ST) learn a suitable representation of the data on
the fly, return test statistics in interpretable units, have a simple null distribution,
and their predictive uncertainty allow to interpret where P and Q differ.

The goal of this paper is to establish the properties, performance, and uses of C2ST.
First, we analyze their main theoretical properties. Second, we compare their per-
formance against a variety of state-of-the-art alternatives. Third, we propose their
use to evaluate the sample quality of generative models with intractable likelihoods,
such as Generative Adversarial Networks (GANs). Fourth, we showcase the novel
application of GANs together with C2ST for causal discovery.

1 INTRODUCTION

One of the most fundamental problems in statistics is to assess whether two samples, SP ∼ Pn and
SQ ∼ Qm, are drawn from the same probability distribution. To this end, two-sample tests (Lehmann
& Romano, 2006) summarize the differences between the two samples into a real-valued test statistic,
and then use the value of such statistic to accept1 or reject the null hypothesis “P = Q”. The
development of powerful two-sample tests is instrumental in a myriad of applications, including the
evaluation and comparison of generative models. Over the last century, statisticians have nurtured a
wide variety of two-sample tests. However, most of these tests are only applicable to one-dimensional
examples, require the prescription of a fixed representation of the data, return test statistics in units
that are difficult to interpret, or do not explain how the two samples under comparison differ.

Intriguingly, there exists a relatively unexplored strategy to build two-sample tests that overcome
the aforementioned issues: training a binary classifier to distinguish between the examples in SP

and the examples in SQ. Intuitively, if P = Q, the test accuracy of such binary classifier should
remain near chance-level. Otherwise, if P 6= Q and the binary classifier is able to unveil some of the
distributional differences between SP and SQ, its test accuracy should depart from chance-level. As
we will show, such Classifier Two-Sample Tests (C2ST) learn a suitable representation of the data
on the fly, return test statistics in interpretable units, have simple asymptotic distributions, and their
learned features and predictive uncertainty provide interpretation on how P and Q differ. In such a
way, this work brings together the communities of statistical testing and representation learning.

The goal of this paper is to establish the theoretical properties and evaluate the practical uses of C2ST.
To this end, our contributions are:

• We review the basics of two-sample tests in Section 2, as well as their common applications
to measure statistical dependence and evaluate generative models.

• We analyze the attractive properties of C2ST (Section 3) including an analysis of their exact
asymptotic distributions, testing power, and interpretability.

1For clarity, we abuse statistical language and write “accept” to mean “fail to reject”.
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• We evaluate C2ST on a wide variety of synthetic and real data (Section 4), and compare
their performance against multiple state-of-the-art alternatives. Furthermore, we provide
examples to illustrate how C2ST can interpret the differences between pairs of samples.

• In Section 5, we propose the use of classifier two-sample tests to evaluate the sample quality
of generative models with intractable likelihoods, such as Generative Adversarial Networks
(Goodfellow et al., 2014), also known as GANs.

• As a novel application of the synergy between C2ST and GANs, Section 6 proposes the use
of these methods for causal discovery.

2 TWO-SAMPLE TESTING

The goal of two-sample tests is to assess whether two samples, denoted by SP ∼ Pn and SQ ∼ Qm,
are drawn from the same distribution (Lehmann & Romano, 2006). More specifically, two-sample
tests either accept or reject the null hypothesis, often denoted by H0, which stands for “P = Q”.
When rejecting H0, we say that the two-sample test favors the alternative hypothesis, often denoted by
H1, which stands for “P 6= Q”. To accept or reject H0, two-sample tests summarize the differences
between the two samples (sets of identically and independently distributed examples):

SP := {x1, . . . , xn} ∼ Pn(X) and SQ := {y1, . . . , ym} ∼ Qm(Y ) (1)

into a statistic t̂ ∈ R. Without loss of generality, we assume that the two-sample test returns a
small statistic when the null hypothesis “P = Q” is true, and a large statistic otherwise. Then, for a
sufficiently small statistic, the two-sample test will accept H0. Conversely, for a sufficiently large
statistic, the two-sample test will reject H0 in favour of H1.

More formally, the statistician performs a two-sample test in four steps. First, decide a significance
level α ∈ [0, 1], which is an input to the two-sample test. Second, compute the two-sample test

statistic t̂. Third, compute the p-value p̂ = P (T ≥ t̂|H0), the probability of the two-sample test

returning a statistic as large as t̂ when H0 is true. Fourth, reject H0 if p̂ < α, and accept it otherwise.

Inevitably, two-sample tests can fail in two different ways. First, to make a type-I error is to reject
the null hypothesis when it is true (a “false positive”). By the definition of p-value, the probability
of making a type-I error is upper-bounded by the significance level α. Second, to make a type-II
error is to accept the null hypothesis when it is false (a “false negative”). We denote the probability
of making a type-II error by β, and refer to the quantity π = 1− β as the power of a test. Usually,
the statistician uses domain-specific knowledge to evaluate the consequences of a type-I error, and
thus prescribe an appropriate significance level α. Within the prescribed significance level α, the
statistician prefers the two-sample test with maximum power π.

Among others, two-sample tests serve two other uses. First, two-sample tests can measure statistical
dependence (Gretton et al., 2012a). In particular, testing the independence null hypothesis “the
random variables X and Y are independent” is testing the two-sample null hypothesis “P (X,Y ) =
P (X)P (Y )”. In practice, the two-sample test would compare the sample S = {(xi, yi)}ni=1 ∼
P (X,Y )n to a sample Sσ = {(xi, yσ(i))}ni=1 ∼ (P (X)P (Y ))n, where σ is a random permutation

of the set of indices {1, . . . , n}. This approach is consistent when considering all possible random
permutations. However, since independence testing is a subset of two-sample testing, specialized
independence tests may exhibit higher power for this task (Gretton et al., 2005).

Second, two-sample tests can evaluate the sample quality of generative models with intractable
likelihoods, but tractable sampling procedures. Intuitively, a generative model produces good samples

Ŝ = {x̂i}ni=1 if these are indistinguishable from the real data S = {xi}ni=1 that they model. Thus,

the two-sample test statistic between Ŝ and S measures the fidelity of the samples Ŝ produced by the
generative model. The use of two-sample tests to evaluate the sample quality of generative models
include the pioneering work of Box (1980), the use of Maximum Mean Discrepancy (MMD) criterion
(Bengio et al., 2013; Dziugaite et al., 2015; Lloyd & Ghahramani, 2015; Bounliphone et al., 2015;
Sutherland et al., 2016), and the connections to density-ratio estimation (Kanamori et al., 2010;
Wornowizki & Fried, 2016; Menon & Ong, 2016; Mohamed & Lakshminarayanan, 2016).

Over the last century, statisticians have nurtured a wide variety of two-sample tests. Classical
two-sample tests include the t-test (Student, 1908), which tests for the difference in means of two
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samples; the Wilcoxon-Mann-Whitney test (Wilcoxon, 1945; Mann & Whitney, 1947), which tests
for the difference in rank means of two samples; and the Kolmogorov-Smirnov tests (Kolmogorov,
1933; Smirnov, 1939) and their variants (Kuiper, 1962), which test for the difference in the empirical
cumulative distributions of two samples. However, these classical tests are only efficient when applied
to one-dimensional data. Recently, the use of kernel methods (Smola & Schölkopf, 1998) enabled
the development of two-sample tests applicable to multidimensional data. Examples of these tests
include the MMD test (Gretton et al., 2012a), which looks for differences in the empirical kernel
mean embeddings of two samples, and the Mean Embedding test or ME (Chwialkowski et al., 2015;
Jitkrittum et al., 2016), which looks for differences in the empirical kernel mean embeddings of
two samples at optimized locations. However, kernel two-sample tests require the prescription of
a manually-engineered representation of the data under study, and return values in units that are
difficult to interpret. Finally, only the ME test provides a mechanism to interpret how P and Q differ.

Next, we discuss a simple but relatively unexplored strategy to build two-sample tests that overcome
these issues: the use of binary classifiers.

3 CLASSIFIER TWO-SAMPLE TESTS (C2ST)

Without loss of generality, we assume access to the two samples SP and SQ defined in (1), where
xi, yj ∈ X , for all i = 1, . . . , n and j = 1, . . . ,m, and m = n. To test whether the null hypothesis
H0 : P = Q is true, we proceed in five steps. First, construct the dataset

D = {(xi, 0)}ni=1 ∪ {(yi, 1)}ni=1 =: {(zi, li)}2ni=1.

Second, shuffle D at random, and split it into the disjoint training and testing subsets Dtr and Dte,
where D = Dtr ∪ Dte and nte := |Dte|. Third, train a binary classifier f : X → [0, 1] on Dtr; in the
following, we assume that f(zi) is an estimate of the conditional probability distribution p(li = 1|zi).
Fourth, return the classification accuracy on Dte:

t̂ =
1

nte

∑

(zi,li)∈Dte

I

[

I

(

f(zi) >
1

2

)

= li

]

(2)

as our C2ST statistic, where I is the indicator function. The intuition here is that if P = Q, the test
accuracy (2) should remain near chance-level. In opposition, if P 6= Q and the binary classifier
unveils distributional differences between the two samples, the test classification accuracy (2) should
be greater than chance-level. Fifth, to accept or reject the null hypothesis, compute a p-value using
the null distribution of the C2ST, as discussed next.

3.1 NULL AND ALTERNATIVE DISTRIBUTIONS

Each term I [I(f(zi) > 1/2) = li] appearing in (2) is an independent Bernoulli(pi) random variable,
where pi is the probability of classifying correctly the example zi in Dte.

First, under the null hypothesis H0 : P = Q, the samples SP ∼ Pn and SQ ∼ Qm follow the

same distribution, leading to an impossible binary classification problem. In that case, ntet̂ follows a
Binomial(nte, p = 1

2 ) distribution. Therefore, for large nte, we can use the central limit theorem to

approximate the null distribution of (2) by N ( 12 ,
1

4nte
).

Second, under the alternative hypothesis H1 : P 6= Q, the statistic ntet̂ follows a Poisson Binomial
distribution, since the constituent Bernoulli random variables may not be identically distributed.
In the following, we will approximate such Poisson Binomial distribution by the Binomial(n, p̄)
distribution, where p̄ = 1

n

∑n
i=1 pi (Ehm, 1991). Therefore, we can use the central limit theorem to

approximate the alternative distribution of (2) by N (p̄, p̄(1−p̄)
nte

).

3.2 TESTING POWER

To analyze the power (probability of correctly rejecting false null hypothesis) of C2ST, we assume
that the our classifier has an expected (unknown) accuracy of H0 : t = 1

2 under the null hypothesis

“P = Q”, and an expected accuracy of H1 : t = 1
2 + ǫ under the alternative hypothesis “P 6= Q”,
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where ǫ ∈ (0, 1
2 ) is the effect size distinguishing P from Q. Let Φ be the Normal cdf, nte the number

of samples available for testing, and α the significance level. Then,

Theorem 1. Given the conditions described in the previous paragraph, the approximate power of

the statistic (2) is Φ

(

ǫ
√
nte−Φ−1(1−α)/2√

1

4
−ǫ2

)

.

See Appendix B for a proof. The power bound in Theorem 1 has an optimal order of magnitude
for multi-dimensional problems (Bai & Saranadasa, 1996; Gretton et al., 2012a; Reddi et al., 2015).
These are problems with fixed d and n→∞, where the power bounds do not depend on d.

Remark 1. We leave for future work the study of quadratic-time C2ST with optimal power in high-
dimensional problems (Ramdas et al., 2015). These are problems where the ratio n/d→ c ∈ [0, 1],
and the power bounds depend on d. One possible line of research in this direction is to investigate the
power and asymptotic distributions of quadratic-time C2ST statistics 1

nte(nte−1)
∑

i 6=j I[I(f(zi, zj) >
1
2 ) = li], where the classifier f(z, z′) predicts if the examples (z, z′) come from the same sample.

Theorem 1 also illustrates that maximizing the power of a C2ST is a trade-off between two competing
objectives: choosing a classifier that maximizes the test accuracy ǫ and maximizing the size of the test
set nte. This relates to the well known bias-variance trade-off in machine learning. Indeed, simple
classifiers will miss more nonlinear patterns in the data (leading to smaller test accuracy), but call for
less training data (leading to larger test set sizes). On the other hand, flexible classifiers will miss
less nonlinear patterns in the data (leading to higher test accuracy), but call for more training data
(leading to smaller test sizes). Formally, the relationship between the test accuracy, sample size, and
the flexibility of a classifier depends on capacity measures such as the VC-Dimension (Vapnik, 1998).
Note that there is no restriction to perform model selection (such as cross-validation) on Dtr.

Remark 2. We have focused on test statistics (2) built on top of the zero-one loss ℓ0−1(y, y′) =
I[y = y′] ∈ {0, 1}. These statistics give rise to Bernoulli random variables, which can exhibit
high variance. However, our arguments are readily extended to real-valued binary classification
losses. Then, the variance of such real-valued losses would describe the norm of the decision function
of the classifier two-sample test, appear in the power expression from Theorem 1, and serve as a
hyper-parameter to maximize power as in (Gretton et al., 2012b, Section 3).2

3.3 INTERPRETABILITY

There are three ways to interpret the result of a C2ST. First, recall that the classifier predictions
f(zi) are estimates of the conditional probabilities p(li = 1|zi) for each of the samples zi in the test
set. Inspecting these probabilities together with the true labels li determines which examples were
correctly or wrongly labeled by the classifier, with the least or the most confidence. Therefore, the
values f(zi) explain where the two distributions differ. Second, C2ST inherit the interpretability
of their classifiers to explain which features are most important to distinguish distributions, in the
same way as the ME test (Jitkrittum et al., 2016). Examples of interpretable features include the
filters of the first layer of a neural network, the feature importance of random forests, the weights of
a generalized linear model, and so on. Third, C2ST return statistics t̂ in interpretable units: these
relate to the percentage of samples correctly distinguishable between the two distributions. These
interpretable numbers can complement the use of p-values.

3.4 PRIOR USES

The reduction of two-sample testing to binary classification was introduced in (Friedman, 2003),
studied within the context of information theory in (Pérez-Cruz, 2009; Reid & Williamson, 2011),
discussed in (Fukumizu et al., 2009; Gretton et al., 2012a), and analyzed (for the case of linear
discriminant analysis) in (Ramdas et al., 2016). The use of binary classifiers for two-sample testing
is increasingly common in neuroscience: see (Pereira et al., 2009; Olivetti et al., 2012) and the
references therein. Implicitly, binary classifiers also perform two-sample tests in algorithms that
discriminate data from noise, such as unsupervised-as-supervised learning (Friedman et al., 2001),
noise contrastive estimation (Gutmann & Hyvärinen, 2012), negative sampling (Mikolov et al., 2013),
and GANs (Goodfellow et al., 2014).

2For a related discussion on this issue, we recommend the insightful comment by Arthur Gretton and Wittawat
Jitkrittum, available at https://openreview.net/forum?id=SJkXfE5xx.
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(c) Student-t versus Gaussian
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(b) Student-t versus Gaussian

0 500 1000 1500 2000

sample size

0.00

0.05

0.10

0.15

0.20

ty
p

e
-I

e
rr

o
r

(a) two Gaussians

C2ST-KNN

C2ST-NN

MMD

Wilcoxon

K-S

Kuiper

ME

Figure 1: Results (type-I and type-II errors) of our synthetic two-sample test experiments.

4 EXPERIMENTS ON TWO-SAMPLE TESTING

We study two variants of classifier-based two-sample tests (C2ST): one based on neural networks
(C2ST-NN), and one based on k-nearest neighbours (C2ST-KNN). C2ST-NN has one hidden layer
of 20 ReLU neurons, and trains for 100 epochs using the Adam optimizer (Kingma & Ba, 2015).

C2ST-KNN uses k = ⌊n1/2
tr ⌋ nearest neighbours for classification. Throughout our experiments,

we did not observe a significant improvement in performance when increasing the flexibility of
these classifiers (e.g., increasing the number of hidden neurons or decreasing the number of nearest
neighbors). When analyzing one-dimensional data, we compare the performance of C2ST-NN
and C2ST-KNN against the Wilcoxon-Mann-Whitney test (Wilcoxon, 1945; Mann & Whitney,
1947), the Kolmogorov-Smirnov test (Kolmogorov, 1933; Smirnov, 1939), and the Kuiper test
(Kuiper, 1962). In all cases, we also compare the performance of C2ST-NN and C2ST-KNN
against the linear-time estimate of the Maximum Mean Discrepancy (MMD) criterion (Gretton et al.,
2012a), the ME test (Jitkrittum et al., 2016), and the SCF test (Jitkrittum et al., 2016). We use
a significance level α = 0.05 across all experiments and tests, unless stated otherwise. We use
Gaussian approximations to compute the null distributions of C2ST-NN and C2ST-KNN. We use the
implementations of the MMD, ME, and SCF tests gracefully provided by Jitkrittum et al. (2016), the
scikit-learn implementation of the Kolmogorov-Smirnov and Wilcoxon tests, and the implementation
from https://github.com/aarchiba/kuiper of the Kuiper test. The implementation of our
experiments is available at https://github.com/lopezpaz/classifier_tests.

4.1 EXPERIMENTS ON TWO-SAMPLE TESTING

Control of type-I errors We start by evaluating the correctness of all the considered two-sample
tests by examining if the prescribed significance level α = 0.05 upper-bounds their type-I error.
To do so, we draw x1, . . . , xn, y1, . . . , yn ∼ N (0, 1), and run each two-sample test on the two
samples {xi}ni=1 and {yi}ni=1. In this setup, a type-I error would be to reject the true null hypothesis.
Figure 1(a) shows that the type-I error of all tests is upper-bounded by the prescribed significance
level, for all n ∈ {25, 50, 100, 500, 1000, 5000, 10000} and 100 random repetitions. Thus, all tests
control their type-I error as expected, up to random variations due to finite experiments.

Gaussian versus Student We consider distinguishing between samples drawn from a Normal
distribution and samples drawn from a Student’s t-distribution with ν degrees of freedom. We shift
and scale both samples to exhibit zero-mean and unit-variance. Since the Student’s t distribution
approaches the Normal distribution as ν increases, a two-sample test must focus on the peaks of
the distributions to distinguish one from another. Figure 1(b,c) shows the percentage of type-II
errors made by all tests as we vary separately n and ν, over 100 trials (random samples). We set
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Problem nte ME-full ME-grid SCF-full SCF-grid MMD-quad MMD-lin C2ST-NN

Bayes-Bayes 215 .012 .018 .012 .004 .022 .008 .002

Bayes-Deep 216 .954 .034 .688 .180 .906 .262 1.00

Bayes-Learn 138 .990 .774 .836 .534 1.00 .238 1.00

Bayes-Neuro 394 1.00 .300 .828 .500 .952 .972 1.00

Learn-Deep 149 .956 .052 .656 .138 .876 .500 1.00

Learn-Neuro 146 .960 .572 .590 .360 1.00 .538 1.00

Table 1: Type-I errors (first row) and powers (rest of rows) in distinguishing NIPS papers categories.

Problem nte ME-full ME-grid SCF-full SCF-grid MMD-quad MMD-lin C2ST-NN

± vs. ± 201 .010 .012 .014 .002 .018 .008 .002

+ vs. − 201 .998 .656 1.00 .750 1.00 .578 .997

Table 2: Type-I errors (first row) and powers (second row) in distinguishing facial expressions.

n = 2000 when ν varies, and let ν = 3 when n varies. The Wilcoxon-Mann-Whitney exhibits the
worst performance, as expected (since the ranks mean of the Gaussian and Student’s t distributions
coincide) in this experiment. The best performing method is the the one-dimensional Kuiper test,
followed closely by the multi-dimensional tests C2ST-NN and ME.

Independence testing on sinusoids For completeness, we showcase the use two-sample tests
to measure statistical dependence. This can be done, as described in Section 2, by performing a
two-sample test between the observed data {(xi, yi)}ni=1 and {(xi, yσ(i))}ni=1, where σ is a random

permutation. Since the distributions P (X)P (Y ) and P (X,Y ) are bivariate, only the C2ST-NN,
C2ST-KNN, MMD, and ME tests compete in this task. We draw (xi, yi) according to the generative
model xi ∼ N (0, 1), ǫi ∼ N (0, γ2), and yi ∼ cos(δxi) + ǫi. Here, xi are iid examples from
the random variable X , and yi are iid examples from the random variable Y . Thus, the statistical
dependence between X and Y weakens as we increase the frequency δ of the sinusoid, or increase
the variance γ2 of the additive noise. Figure 1(d,e,f) shows the percentage of type-II errors made
by C2ST-NN, C2ST-KNN, MMD, and ME as we vary separately n, δ, and γ over 100 trials. We let
n = 2000, δ = 1, γ = 0.25 when fixed. Figure 1(d,e,f) reveals that among all tests, C2ST-NN is the
most efficient in terms of sample size, C2ST-KNN is the most robust with respect to high-frequency
variations, and that C2ST-NN and ME are the most robust with respect to additive noise.

Distinguishing between NIPS articles We consider the problem of distinguishing between some
of the categories of the 5903 articles published in the Neural Information Processing Systems (NIPS)
conference from 1988 to 2015, as discussed in Jitkrittum et al. (2016). We consider articles on
Bayesian inference (Bayes), neuroscience (Neuro), deep learning (Deep), and statistical learning
theory (Learn). Table 1 shows the type-I errors (Bayes-Bayes row) and powers (rest of rows) for the
tests reported in (Jitkrittum et al., 2016), together with C2ST-NN, at a significance level α = 0.01,
when averaged over 500 trials. In these experiments, C2ST-NN achieves maximum power, while
upper-bounding its type-I error by α.

Distinguishing between facial expressions Finally, we apply C2ST-NN to the problem of distin-
guishing between positive (happy, neutral, surprised) and negative (afraid, angry, disgusted) facial
expressions from the Karolinska Directed Emotional Faces dataset, as discussed in (Jitkrittum et al.,
2016). See the fourth plot of Figure 2, first two-rows, for one example of each of these six emotions.
Table 2 shows the type-I errors (± vs ± row) and the powers (+ vs − row) for the tests reported in
(Jitkrittum et al., 2016), together with C2ST-NN, at α = 0.01, averaged over 500 trials. C2ST-NN
achieves a near-optimal power, only marginally behind the perfect results of SCF-full and MMD-quad.

5 EXPERIMENTS ON GENERATIVE ADVERSARIAL NETWORK EVALUATION

Since effective generative models will produce examples barely distinguishable from real data, two-
sample tests arise as a natural alternative to evaluate generative models. Particularly, our interest
is to evaluate the sample quality of generative models with intractable likelihoods, such as GANs
(Goodfellow et al., 2014). GANs implement the adversarial game

min
g

max
d

E
x∼P (X)

[log(d(x))] + E
z∼P (Z)

[log(1− d(g(z)))] , (3)
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random sample MMD KNN NN

0.158 0.830 0.999

0.154 0.994 1.000

0.048 0.962 1.000

0.012 0.798 0.964

0.024 0.748 0.949

0.019 0.670 0.983

0.152 0.940 1.000

0.222 0.978 1.000

0.715 1.000 1.000

0.015 0.817 0.987

0.020 0.784 0.950

0.024 0.697 0.971

Table 3: Results on GAN evaluation. Lower test statistics are best. Full results in Appendix A.

where d(x) depicts the probability of the example x following the data distribution P (X) versus
being synthesized by the generator. This is according to a trainable discriminator function d. In the
adversarial game, the generator g plays to fool the discriminator d by transforming noise vectors
z ∼ P (Z) into real-looking examples g(z). On the opposite side, the discriminator plays to
distinguish between real examples x and synthesized examples g(z). To approximate the solution to
(3), alternate the optimization of the two losses (Goodfellow et al., 2014) given by

Ld(d) = Ex [ℓ(d(x), 1)] + Ez [ℓ(d(g(z)), 0)] ,

Lg(g) = Ex [ℓ(d(x), 0)] + Ez [ℓ(d(g(z)), 1)] . (4)

Under the formalization (4), the adversarial game reduces to the sequential minimization of Ld(d)
and Lg(g), and reveals the true goal of the discriminator: to be the C2ST that best distinguishes data

examples x ∼ P and synthesized examples x̂ ∼ P̂ , where P̂ is the probability distribution induced
by sampling z ∼ P (Z) and computing x̂ = g(z). The formalization (4) unveils the existence of an
arbitrary binary classification loss function ℓ (See Remark 2), which in turn decides the divergence
minimized between the real and fake data distributions (Nowozin et al., 2016).

Unfortunately, the evaluation of the log-likelihood of a GANs is intractable. Therefore, we will
employ a two-sample test to evaluate the quality of the fake examples x̂ = g(z). In simple terms,
evaluating a GAN in this manner amounts to withhold some real data from the training process,
and use it later in a two-sample test against the same amount of synthesized data. When the two-
sample test is a binary classifier (as discussed in Section 3), this procedure is simply training a fresh
discriminator on a fresh set of data. Since we train and test this fresh discriminator on held-out
examples, it may differ from the discriminator trained along the GAN. In particular, the discriminator
trained along with the GAN may have over-fitted to particular artifacts produced by the generator,
thus becoming a poor C2ST.

We evaluate the use of two-sample tests for model selection in GANs. To this end, we train a number
of DCGANs (Radford et al., 2016) on the bedroom class of LSUN (Yu et al., 2015) and the Labeled
Faces in the Wild (LFW) dataset (Huang et al., 2007). We reused the Torch7 code of Radford
et al. (2016) to train a set of DCGANs for {1, 10, 50, 100, 200} epochs, where the generator and
discriminator networks are convolutional neural networks (LeCun et al., 1998) with {1, 2, 4, 8} × gf
and {1, 2, 4, 8} × df filters per layer, respectively. We evaluate each DCGAN on 10, 000 held-out
examples using the fastest multi-dimensional two-sample tests: MMD, C2ST-NN, and C2ST-KNN.

Our first experiments revealed an interesting result. When performing two-sample tests directly on
pixels, all tests obtain near-perfect test accuracy when distinguishing between real and synthesized
(fake) examples. Such near-perfect accuracy happens consistently across DCGANs, regardless of the
visual quality of their examples. This is because, albeit visually appealing, the fake examples contain
checkerboard-like artifacts that are sufficient for the tests to consistently differentiate between real
and fake examples. Odena et al. (2016) discovered this phenomenon concurrently with us.
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On a second series of experiments, we featurize all images (both real and fake) using a deep
convolutional ResNet (He et al., 2015) pre-trained on ImageNet, a large dataset of natural images
(Russakovsky et al., 2015). In particular, we use the resnet-34 model from Gross & Wilber (2016).
Reusing a model pre-trained on natural images ensures that the test will distinguish between real and
fake examples based only on natural image statistics, such as Gabor filters, edge detectors, and so on.
Such a strategy is similar to perceptual losses (Johnson et al., 2016) and inception scores (Salimans
et al., 2016). In short, in order to evaluate how natural the images synthesized by a DCGAN look,
one must employ a “natural discriminator”. Table 3 shows three GANs producing poor samples
and three GANs producing good samples for the LSUN and LFW datasets, according to the MMD,
C2ST-KNN, C2ST-NN tests on top of ResNet features. See Appendix A for the full list of results.
Although it is challenging to provide with an objective evaluation of our results, we believe that the
rankings provided by two-sample tests could serve for efficient early stopping and model selection.

Remark 3 (How good is my GAN? Is it overfitting?). Evaluating generative models is a delicate
issue (Theis et al., 2016), but two-sample tests may offer some guidance. In particular, good (non-
overfitting) generative models should produce similar two-sample test statistics when comparing
their generated samples to both the train-set and the test-set samples. 3 As a general recipe, prefer
generative models that achieve the same and small two-sample test statistic when comparing their
generated samples to both the train-set and test-set samples.

5.1 EXPERIMENTS ON INTERPRETABILITY

We illustrate the interpretability power of C2ST. First, the predictive uncertainty of C2ST sheds light
on where the two samples under consideration agree or differ. In the first plot of Figure 2, a C2ST-NN
separates two bivariate Gaussian distributions with different means. When performing this separation,
the C2ST-NN provides an explicit decision boundary that illustrates where the two distributions
separate from each other. In the second plot of Figure 2, a C2ST-NN separates a Gaussian distribution
from a Student’s t distribution with ν = 3, after scaling both to zero-mean and unit-variance. The
plot reveals that the peaks of the distributions are their most differentiating feature. Finally, the third
plot of Figure 2 displays, for the LFW and LSUN datasets, five examples classified as real with
high uncertainty (first row, better looking examples), and five examples classified as fake with high
certainty (second row, worse looking examples).

Second, the features learnt by the classifier of a C2ST are also a mechanism to understand the
differences between the two samples under study. The third plot of Figure 2 shows six examples
from the Karolinska Directed Emotional Faces dataset, analyzed in Section 4.1. In that same figure,
we arrange the weights of the first linear layer of C2ST-NN into the feature most activated at
positive examples (bottom left, positive facial expressions), the feature most activated at negative
examples (bottom middle, negative facial expressions), and the “discriminative feature”, obtained
by substracting these two features (bottom right). The discriminative feature of C2ST-NN agrees
with the one found by (Jitkrittum et al., 2016): positive and negative facial expressions are best
distinguished at the eyebrows, smile lines, and lips. A similar analysis Jitkrittum et al. (2016) on the
C2ST-NN features in the NIPS article classification problem (Section 4.1) reveals that the features
most activated for the “statistical learning theory” category are those associated to the words inequ,
tight, power, sign, hypothesi, norm, hilbert. The features most activated for the “Bayesian inference”
category are those associated to the words infer, markov, graphic, conjug, carlo, automat, laplac.

6 EXPERIMENTS ON CONDITIONAL GANS FOR CAUSAL DISCOVERY

In causal discovery, we study the causal structure underlying a set of d random variables X1, . . . , Xd.
In particular, we assume that the random variables X1, . . . , Xd share a causal structure described
by a collection of Structural Equations, or SEs (Pearl, 2009). More specifically, we assume that the
random variable Xi takes values as described by the SE Xi = gi(Pa(Xi,G), Ni), for all i = 1, . . . , d.
In the previous, G is a Directed Acyclic Graph (DAG) with vertices associated to each of the random
variables X1, . . . , Xd. Also in the same equation, Pa(Xi,G) denotes the set of random variables
which are parents of Xi in the graph G, and Ni is an independent noise random variable that follows

3As discussed with Arthur Gretton, if the generative model memorizes the train-set samples, a sufficiently
large set of generated samples would reveal such memorization to the two-sample test. This is because some
unique samples would appear multiple times in the set of generated samples, but not in the test-set of samples.
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Figure 2: Interpretability of C2ST. The color map corresponds to the value of p(l = 1|z).
Method ANM-HSIC IGCI RCC CGAN-C2ST Ensemble C2ST type

Accuracy 67% 71% 76%
73% 82% KNN
70% 73% NN
58% 65% MMD

Table 4: Results on cause-effect discovery on the Tübingen pairs experiment.

the probability distribution P (Ni). Then, we say that Xi → Xj if Xi ∈ Pa(Xj), since a change in
Xi will cause a change in Xj , as described by the i-th SE.

The goal of causal discovery is to infer the causal graph G given a sample from P (X1, . . . , Xd). For
the sake of simplicity, we focus on the discovery of causal relations between two random variables,
denoted by X and Y . That is, given the sample D = {(xi, yi)}ni=1 ∼ Pn(X,Y ), our goal is to
conclude whether “X causes Y ”, or “Y causes X”. We call this problem cause-effect discovery
(Mooij et al., 2016). In the case where X → Y , we can write the cause-effect relationship as:

x ∼ P (X), n ∼ P (N), y ← g(x, n). (5)

The current state-of-the-art in the cause-effect discovery is the family of Additive Noise Models, or
ANM (Mooij et al., 2016). These methods assume that the SE (5) allow the expression y ← g(x)+n,
and exploit the independence assumption between the cause random variable X and the noise random
variable N to analyze the distribution of nonlinear regression residuals, in both causal directions.

Unfortunately, assuming independent additive noise is often too simplistic (for instance, the noise
could be heteroskedastic or multiplicative). Because of this reason, we propose to use Conditional
Generative Adversarial Networks, or CGANs (Mirza & Osindero, 2014) to address the problem
of cause-effect discovery. Our motivation is the shocking resemblance between the generator of a
CGAN and the SE (5): the random variable X is the conditioning variable input to the generator,
the random variable N is the noise variable input to the generator, and the random variable Y is the
variable synthesized by the generator. Furthermore, CGANs respect the independence between the
cause X and the noise N by construction, since n ∼ P (N) is independent from all other variables.
This way, CGANs bypass the additive noise assumption naturally, and allow arbitrary interactions
g(X,N) between the cause variable X and the noise variable N .

To implement our cause-effect inference algorithm in practice, recall that training a CGAN from X
to Y minimizes the two following objectives in alternation:

Ld(d) = Ex,y [ℓ(d(x, y), 1)] + Ex,z [ℓ(d(x, g(x, z)), 0)] ,

Lg(g) = Ex,y [ℓ(d(x, y), 0)] + Ex,z [ℓ(d(x, g(x, z)), 1)] .

Our recipe for cause-effect is to learn two CGANs: one with a generator gy from X to Y to synthesize
the dataset DX→Y = {(xi, gy(xi, zi))}ni=1, and one with a generator gx from Y to X to synthesize
the dataset DX←Y = {(gx(yi, zi), yi)}ni=1. Then, we prefer the causal direction X → Y if the
two-sample test statistic between the real sample D and DX→Y is smaller than the one between D
and DY→X . Thus, our method is Occam’s razor at play: declare the simplest direction (in terms of
conditional generative modeling) as the true causal direction.

Table 4 summarizes the performance of this procedure when applied to the 99 Tübingen cause-effect
pairs dataset, version August 2016 (Mooij et al., 2016). RCC is the Randomized Causation Coefficient
of (Lopez-Paz et al., 2015). The Ensemble-CGAN-C2ST trains 100 CGANs, and decides the causal
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direction by comparing the top generator obtained in each causal direction, as told by C2ST-KNN.
The need to ensemble is a remainder of the unstable behaviour of generative adversarial training, but
also highlights the promise of such models for causal discovery.

7 CONCLUSION

Our take-home message is that modern binary classifiers can be easily turned into powerful two-sample
tests. We have shown that these classifier two-sample tests set a new state-of-the-art in performance,
and enjoy unique attractive properties: they are easy to implement, learn a representation of the data
on the fly, have simple asymptotic distributions, and allow different ways to interpret how the two
samples under study differ. Looking into the future, the use of binary classifiers as two-sample tests
provides a flexible and scalable approach for the evaluation and comparison of generative models
(such as GANs), and opens the door to novel applications of these methods, such as causal discovery.
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A RESULTS ON EVALUATION OF GENERATIVE ADVERSARIAL NETWORKS

gf df ep random sample MMD KNN NN

- - - - - -

32 32 1 0.154 0.994 1.000

32 32 10 0.024 0.831 0.996

32 32 50 0.026 0.758 0.983

32 32 100 0.014 0.797 0.974

32 32 200 0.012 0.798 0.964

32 64 1 0.330 0.984 1.000

32 64 10 0.035 0.897 0.997

32 64 50 0.020 0.804 0.989

32 64 100 0.032 0.936 0.998

32 64 200 0.048 0.962 1.000

32 96 1 0.915 0.997 1.000

32 96 10 0.927 0.991 1.000

32 96 50 0.924 0.991 1.000

32 96 100 0.928 0.991 1.000

32 96 200 0.928 0.991 1.000

64 32 1 0.389 0.987 1.000

64 32 10 0.023 0.842 0.979

64 32 50 0.018 0.788 0.977

64 32 100 0.017 0.753 0.959

64 32 200 0.018 0.736 0.963

64 64 1 0.313 0.964 1.000

64 64 10 0.021 0.825 0.988

64 64 50 0.014 0.864 0.978

64 64 100 0.019 0.685 0.978

64 64 200 0.021 0.775 0.980

64 96 1 0.891 0.996 1.000

64 96 10 0.158 0.830 0.999

64 96 50 0.015 0.801 0.980

64 96 100 0.016 0.866 0.976

64 96 200 0.020 0.755 0.983

96 32 1 0.356 0.986 1.000

96 32 10 0.022 0.770 0.991

96 32 50 0.024 0.748 0.949

96 32 100 0.022 0.745 0.965

96 32 200 0.024 0.689 0.981

96 64 1 0.287 0.978 1.000

96 64 10 0.012 0.825 0.966

96 64 50 0.017 0.812 0.962

96 64 100 0.019 0.670 0.983

96 64 200 0.020 0.711 0.972

96 96 1 0.672 0.999 1.000

96 96 10 0.671 0.999 1.000

96 96 50 0.829 0.999 1.000

96 96 100 0.668 0.999 1.000

96 96 200 0.849 0.999 1.000

Table 5: GAN evaluation results on the LSUN dataset, for all epochs (ep), filters in discriminator (df),
filters in generator (gf), and test statistics (for MMD, C2ST-KNN, C2ST-NN). A lower test statistic
estimates that the GAN produces better samples. Best viewed with zoom.
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gf df ep random sample MMD KNN NN

- - - - - -

32 32 1 0.806 1.000 1.000

32 32 10 0.152 0.940 1.000

32 32 50 0.042 0.788 0.993

32 32 100 0.029 0.808 0.982

32 32 200 0.022 0.776 0.970

32 64 1 0.994 1.000 1.000

32 64 10 0.989 1.000 1.000

32 64 50 0.050 0.808 0.985

32 64 100 0.036 0.766 0.972

32 64 200 0.015 0.817 0.987

32 96 1 0.995 1.000 1.000

32 96 10 0.992 1.000 1.000

32 96 50 0.995 1.000 1.000

32 96 100 0.053 0.778 0.987

64 96 200 0.037 0.779 0.995

64 32 1 1.041 1.000 1.000

64 32 10 0.086 0.971 1.000

64 32 50 0.043 0.756 0.988

64 32 100 0.018 0.746 0.973

64 32 200 0.025 0.757 0.972

64 64 1 0.836 1.000 1.000

64 64 10 0.103 0.910 0.998

64 64 50 0.018 0.712 0.973

64 64 100 0.020 0.784 0.950

64 64 200 0.022 0.719 0.974

64 96 1 1.003 1.000 1.000

64 96 10 1.015 1.000 1.000

64 96 50 1.002 1.000 1.000

64 96 100 1.063 1.000 1.000

64 96 200 1.061 1.000 1.000

96 32 1 1.022 1.000 1.000

96 32 10 0.222 0.978 1.000

96 32 50 0.026 0.734 0.965

96 32 100 0.016 0.735 0.964

96 32 200 0.021 0.780 0.973

96 64 1 0.715 1.000 1.000

96 64 10 0.042 0.904 0.999

96 64 50 0.024 0.697 0.971

96 64 100 0.028 0.744 0.983

96 64 200 0.020 0.697 0.976

96 96 1 0.969 1.000 1.000

96 96 10 0.920 1.000 1.000

96 96 50 0.926 1.000 1.000

96 96 100 0.920 1.000 1.000

96 96 200 0.923 1.000 1.000

Table 6: GAN evaluation results on the LFW dataset, for all epochs (ep), filters in discriminator (df),
filters in generator (gf), and test statistics (for MMD, C2ST-KNN, C2ST-NN). A lower test statistic
estimates that the GAN produces better samples. Best viewed with zoom.
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B PROOF OF THEOREM 1

Our statistic is a random variable T ∼ N
(

1
2 ,

1
4nte

)

under the null hypothesis, and T ∼
N
(

1
2 + ǫ, n−1te

(

1
4 − ǫ2
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under the alternative hypothesis. Furthermore, at a significance level

α, the threshold of our statistic is zα = 1
2 + Φ−1(1−α)√

4nte
; under this threshold we would accept the null

hypothesis. Then, the probability of making a type-II error is
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Therefore, the power of the test is

π(α, nte, ǫ) = 1− Φ
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 ,

which concludes the proof.
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