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Fig. 1: Different dimensionality reduction results of the ExtYaleB dataset, which contains 320 images of five people. The twelve
dimensionality reduction techniques fall into four categories: Non-linear & Local (NL&Lc), Non-linear & Global (NL&G), Linear &
Local (L&Lc), and Linear & Global (L&G). Instances of task stimuli: (a) Cluster identification (T1), (b) Membership identification
(T2), (c) Distance comparison (T3), and (d) Density comparison (T4). (e) lasso tool used in T1–T4.

Abstract—Dimensionality Reduction (DR) techniques can generate 2D projections and enable visual exploration of cluster structures
of high-dimensional datasets. However, different DR techniques would yield various patterns, which significantly affect the performance
of visual cluster analysis tasks. We present the results of a user study that investigates the influence of different DR techniques on
visual cluster analysis. Our study focuses on the most concerned property types, namely the linearity and locality, and evaluates twelve
representative DR techniques that cover the concerned properties. Four controlled experiments were conducted to evaluate how the
DR techniques facilitate the tasks of 1) cluster identification, 2) membership identification, 3) distance comparison, and 4) density
comparison, respectively. We also evaluated users’ subjective preference of the DR techniques regarding the quality of projected
clusters. The results show that: 1) Non-linear and Local techniques are preferred in cluster identification and membership identification;
2) Linear techniques perform better than non-linear techniques in density comparison; 3) UMAP (Uniform Manifold Approximation
and Projection) and t-SNE (t-Distributed Stochastic Neighbor Embedding) perform the best in cluster identification and membership
identification; 4) NMF (Nonnegative Matrix Factorization) has competitive performance in distance comparison; 5) t-SNLE (t-Distributed
Stochastic Neighbor Linear Embedding) has competitive performance in density comparison.

Index Terms—Dimensionality reduction, visual cluster analysis, perception-based evaluation

1 INTRODUCTION

Visual cluster analysis usually employs dimensionality reduction (DR)
techniques to project high-dimensional data into 2D scatterplots, in
which analysts can visually identify cluster patterns [53, 59]. The
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cluster analysis is an inherent human-in-the-loop task that lacks a
universal ground truth [6]. Therefore, visual cluster analysis, which
assumes clusters in the projection are faithful representation matching
with actual clusters, is widely used in evaluating automatic clustering
algorithms [6] and clustering applications [7, 21, 33, 58, 60].

However, different DR techniques perform differently in a set of
aspects in visual cluster analysis, e.g., cluster separation, membership
preservation, distance preservation, and density preservation. As shown
in Fig. 1, the twelve DR techniques generated various visual patterns
out of the same dataset. Although each DR technique provides different
insights into clusters, most of them are rarely used in real applications.
For example, we have surveyed papers in the mainstream visualization
journals and conferences from 2010 to 2020 with a focus on applying
DR techniques in visual cluster analysis. Among the 51 resulted papers,
we found that only PCA (Principal Component Analysis) [55], MDS
(Multidimensional Scaling) [28], and t-SNE (t-Distributed Stochastic
Neighbor Embedding) [47] are used for more than 2 times. A revisit
to DR techniques is needed to guide the use of them for visual cluster
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analysis.
Moreover, a high-level view of the performances of DR techniques

on visual cluster analysis is a common concern of researchers. When
choosing DR techniques from a large set, analysts usually consider the
property that the DR technique preserves. Among various properties,
linearity and locality have gained the most attention [16, 38]. For ex-
ample, linear DR techniques are believed to outperform in preserving
the density of clusters [11, 37]. On the other hand, non-linear DR tech-
niques, such as t-SNE and UMAP (Uniform Manifold Approximation
and Projection) [36], are widely used because of their performance
in separating clusters. The locality property, i.e., if local or global
pairwise relationships are preserved, also yields significant differences
in the generated scatterplots [13, 16].

Nevertheless, many qualitative comparisons have been conducted
towards understanding how different DR techniques perform in visual
cluster analysis tasks [17, 49, 57, 61]. However, we argue that two sig-
nificant gaps exist in current research. First, while the aforementioned
high-level properties are of concern to both DR researchers and ana-
lysts, there lacks experimental studies that test and verify them against
user’s visual perception in visual cluster analysis tasks. Second, none of
the existing experimental studies has evaluated a set of DR techniques
that can be representative of all the properties or cover the most popular
DR techniques, calling for a comprehensive and systematic comparison
of these methods.

To fill these gaps, we conduct controlled experiments to evaluate DR
techniques in visual cluster analysis. Given the same high-dimensional
datasets and certain cluster analysis tasks, our study compares the
effectiveness of graphical outcomes generated by different DR tech-
niques and investigates how their essential properties affect user’s visual
perception and the task performance. The study starts with a compre-
hensive literature review of existing DR techniques, upon which twelve
widely-used techniques are selected for evaluation (see Table 1). They
are grouped based on two properties, namely locality and linearity,
both of which are among the most concerned topics in the existing DR
research. This grouping allows a high-level view of the DR techniques
regarding their core features and thus the study results can be easily
understood by data analysts. To ensure the study results are intuitive
and generalized to various domains, we carefully define four analytical
tasks that are essential for general visual cluster analysis. Each task
is evaluated through a controlled experiment. The four corresponding
controlled experiments are assessed based on ground truth established
in the data space.

Regarding the effectiveness of the selected DR techniques, a total of
twelve hypotheses are formulated before the study. They are derived
based on the summarized advantages of the DR techniques from our
literature review. In the experiment design, three key design choices are
made to ensure the soundness of the experiment and obtain compelling
results. First, we select a total of eight datasets whose dimension
count, data points count, and cluster patterns are balanced in the design.
Then, a pre-study is conducted to tune and optimize the parameters for
the selected DR techniques, ensuring their robustness for each of the
datasets. In addition to the four controlled experiments, a subjective
experiment is conducted where the participants rank the clustering
outcomes based on their personal preference. It allows us to evaluate
the DR from a more subjective perspective.

Based on the experiment results, we perform a comprehensive sta-
tistical analysis. The analysis results of the objective metrics validate
seven of the hypotheses but leave five rejected. We found that although
non-linear and local techniques show significant advantages in tasks
such as cluster identification and cluster membership identification,
there is not a technique that can outperform the others in all the four
visual cluster tasks. Moreover, some linear techniques that receive
less citation, such as NMF (Nonnegative Matrix Factorization) [29]
and t-SNLE (t-Distributed Stochastic Neighbor Linear Embedding) [9],
catch our eyes because they yield better performance in tasks such as
cluster distance comparison and density comparison, respectively. We
also discuss the impact of the two DR properties on the effectiveness of
the visual perception and the potential improvement of the experiment
design. The DR techniques, datasets, and records of the study are

available at https://github.com/DR-approach/DR-approaches.

2 RELATED WORK

2.1 DR techniques for visual cluster analysis
Because our study focuses on the two essential properties of linear-
ity and locality, we divide existing DR techniques into four groups
as Espadoto et al. [16]: Non-Linear&Local, Linear&Local, Non-
Linear&Global, and Linear&Global.

Non-Linear&Local utilizes non-linear functions and preserves lo-
cal neighborhood in DR processes. Representatives include LLE (Lo-
cally Linear Embedding) [42], LE (Laplacian Eigenmaps) [8], LAMP
(Local Affine Multidimensional Projection) [25], t-SNE [47], and
UMAP [36]. They are usually considered as manifold learning tech-
niques that can capture the clusters in manifolds. For example, LLE
preserves the linear combination of local neighborhoods. To achieve a
similar goal, LE embeds data points according to the eigenfunctions of
the Laplace Beltrami operator on the manifold. LAMP uses orthogonal
mapping theory to build accurate local transformations. Especially,
t-SNE and UMAP are widely used in visual cluster analysis because of
their robust performance on clustering separation [2, 32].

Linear&Local utilizes linear functions and preserves local neighbor-
hood in DR processes. Representatives include LPP (Locality Preserv-
ing Projection) [23], NPE (Neighborhood Preserving Embedding) [22],
and t-SNLE [9]. All the three techniques are linear variants of LE, LLE,
and t-SNE, respectively. Compared to their non-linear counterparts,
they retain the advantage in clustering separation but are limited by the
linear projection [9].

Non-Linear&Global utilizes non-linear functions to preserve the
pairwise distance among all the data points. Representatives include
LSP (Least Square Projection) [39], MDS (non-linear version) [24, 28],
and Isomap [46]. LSP uses least squares approximations. The non-
linear version of MDS preserves distances of high-dimensional space
in the embedded low-dimensional space. Different from MDS, Isomap
attempts to preserve the geodesic distance between any two pairs of
data points. The scheme enables a consistent overview of the data based
on the globally optimal layouts [12].

Linear&Global uses linear functions to preserve the pairwise dis-
tance structure amongst all the data samples. Representatives include
PCA [55], FA (Factor Analysis) [34], and NMF [29]. PCA aims to
preserve data patterns in the aspect of variance. Ding et al. [14] prove
that principal components are actually the continuous solution of the
cluster membership indicators in the K-means clustering method, which
indicates that PCA implicitly performs clustering. Compared to PCA,
FA intends to identify latent variables underlying a higher-dimensional
space of measurements. NMF aims to find two non-negative matrices
W and H whose product can well approximate the original matrix V ,
namely W ×H ≈V . The matrix W is a low-dimensional representation
of the original data [10].

2.2 Evaluations of DR techniques in the aspect of visual
cluster/class analysis

Evaluation based on quantitative metrics. A variety of quantitative
metrics has been used to measure the spatial aspects of projections
generated by different DR techniques. The metrics can be used either
standalone to gauge desirable aspects of a projection, or jointly to assess
the overall quality of outcomes. For example, aggregate metrics such as
trustworthiness, continuity, neighborhood hit, distance and class consis-
tency can be used to assess the quality of data clusters in the projected
space [16]. Local metrics, such as projection precision score [43] and
average local errors [35], separately compare small neighborhoods in a
projection, upon which the detailed levels of the result can be assessed.
To further assess the effectiveness of human perception on the projec-
tion, Aupetit et al. [5] proposed a set of visual measures that can mimic
the human notion of separability in data classes. By validating the
measures with a machine learning framework, they found the average
proportion of same-class neighbors has the best prediction accuracy on
human perception. Unlike the above measures [5], which are specific to
color-coded scatterplots, Clumpy scagnostic [54] and ClustMe [1] are
visual quality measures to quantify clusters in monochrome scatterplots.

https://github.com/DR-approach/DR-approaches


ClustMe was based on a quantitative study of cluster counting task.
Wang et al. [51] used GONG [4] and SC (silhouette coefficient) [41] to
compare the class separation performance of 10 DR techniques such as
PCA and t-SNE on 93 datasets. Spathis et al. [45] used SC to evaluate
the performance of interactive DR techniques such as LAMP, PLMP
(Part-Linear Multidimensional Projection), and KELP (Kernel-based
Linear Projection). Vernier et al [50] evaluated performance of eleven
DR techniques on ten datasets using the neighborhood preservation.

Evaluation based on user perception. Lewis et al. [30] and Sedl-
mair et al. [44] reported that quantitative metrics might perform dif-
ferently from human perception in cluster recognition and visual class
separation tasks, respectively. A set of researches focus on perception
based evaluations. Lewis et al. [31] designed a study to investigate hu-
man agreement on the embedding quality. Their results show that expert
users are reasonably consistent judges of embedding quality, whereas
novice users are very inconsistent with one another. Etemadpour et
al. [17] conducted a controlled experiment to evaluate the performance
of DR techniques on five visual cluster analysis tasks. Ventocilla et
al. [49] conducted a similar perception evaluation but with foci on PCA,
t-SNE, Radviz, and SC. Xu et al. [57] conducted an experiment to
compare advanced feature transformation technology (FT-high) and
traditional DR techniques, such as PCA and MCML, regarding their
performance in visual cluster analysis tasks. The results show that FT-
high would yield better results than the DR techniques, especially in the
accuracy of identifying clusters. Zhao et al. [61] conducted a controlled
experiment to evaluate the performance of four DR techniques on fuzzy
clusters analysis. Nevertheless, none of the above experimental studies
has considered the two important properties, namely linearity and local-
ity, in terms of their impact on the performance of the DR techniques.
Another important difference lies in the task design and measure. Most
existing studies are based on color-encoded scatterplots rather than
monochrome scatterplots. In the task of identifying clusters [17], al-
though monochrome scatterplots are used, their metric is based on the
number of identified clusters only and lacks an accurate measure. Fur-
thermore, most existing studies do not explore other cluster properties,
such as density and membership.

3 EVALUATION LANDSCAPE

In order to establish a solid basis for our study, we have conducted a
comprehensive literature review, upon which the DR techniques, the
datasets, and the analytical tasks of the study are derived.

3.1 Selection of DR techniques
To select the most representative techniques from the wealth of existing
DR research, we consider the following three metrics: (1) influence -
the techniques should be influential in general research fields, and more
importantly, in the visualization field as well. In practice, we consider
the citation as a major indicator of the influence; (2) task-suitability - the
techniques should have been widely applied in visual cluster analysis,
and considered essential for accomplishing the related analytical tasks.
Specifically, we focus on those that are the most cited techniques for
certain visual cluster analysis tasks; (3) comparison-balance - since we
intend to investigate the techniques based on their high-level categories,
each category should have a consistent number of techniques for an
effective comparison.

Based on the first two metrics, we conducted a comprehensive litera-
ture survey on recent research papers in the visualization community.
Specifically, the source includes papers published in the journal of
IEEE TVCG and three mainstream visualization conferences (IEEE
VIS, EuroVis, and PacificVis) between 2010 and 2020. We distilled 937
papers that not only consist of the keywords ”cluster” or ”clustering”
but also are relevant to DR techniques. Among them, we narrowed the
keyword search related to the visual cluster analysis, which derived 51
papers as the finally refined source.

We conducted an in-depth survey on each of the papers and selected
nine DR techniques based on our metrics. They were grouped based on
the properties of linearity and locality. Table 1 summarizes the selected
techniques with their categories, their google scholar citation counts,
and the number of times it has been cited within the 51 papers. The

Techniques Linearity Locality Citation NO. of Applications

t-SNE [47] non-linear local 18655 30
Isomap [46] non-linear global 14394 2
UMAP [36] non-linear local 2244 2
MDS [28] non-linear global 7942 19
LE [8] non-linear local 4803 2
LLE [42] non-linear local 15811 2
PCA [55] linear global 8807 14
FA [34] linear global 14660 1
NMF [29] linear global 12365 1
LPP [23] linear local 4702 0
NPE [22] linear local 1829 0
t-SNLE [9] linear local 87 0

Table 1: DR techniques used in our evaluation.

Datasets Data Items Dimensions Clusters

EcoliProteins [15] 336 7 8
Dermatology [15] 259 34 6
ExtYaleB [20] 320 30 5
World12d [44] 151 12 5
Boston [44] 155 13 3
Mnist64 [15] 1083 64 6
Weather [49] 366 194 7
Olive [18] 572 8 3

Table 2: Datasets used in our evaluation.

classical techniques, such as PCA, have multiple related papers that
have high citation counts. For clarity, we selected the paper with the
highest citation counts for a technique. While there was no DR tech-
nique in the group of Linear&Local, we selected three more techniques,
namely LPP, NPE, and t-SNLE, which are linear variants of LE, LLE,
and t-SNE, respectively. Similar to Espadoto et al. [16], these twelve
techniques were distributed into four groups, including Linear & Local
(L&Lc), Linear & Global (L&G), Non-linear&Local (NL&Lc), and
Non-linear & Global (N&G) (see Table 1).

3.2 Selection of Datasets

To reflect the common interests of visualization community, we select
eight datasets out of 41 datasets that were used in the visualization
applications in our survey. First, we considered the data size within
a range from 100 to 1500 data instances and the cluster size from 3
to 10 to avoid scalability issue. Second, in order to make sure that
the study can distinguish the performance of DR techniques, we select
datasets for which cluster patterns can be visually separated in at least
one projection result of a DR technique. Due to the huge decision space
(41 datasets and 12 DR techniques), we assumed classes given by data
labels formed clearly separable clusters. We used visual separation
measures [5] GONG and KNNG to quantify class separation and select
the best projections for our study. Noting that we have not fixed the DR
technique that can visually separate clusters, selecting datasets with
visually distinguishable clusters introduces few bias into the study, if
there is. As a result, the selected eight datasets are shown in Table 2).
We use PCA to reduce the dimensionality of ExtYaleB from 32,256
to 30 for a meaningful projection. All datasets are normalized by
dimension.

3.3 Selection of Typical Tasks

The goal of the task formulation is to select the most common analytical
tasks of the visual cluster analysis within general application domains.
To this end, we extracted all the analytical tasks from the 51 surveyed
cluster analysis papers and selected the top four most-cited tasks.

• Cluster identification (T1): given a scatterplot generated by a
DR technique, identify dense and well-separated clusters. Input:
projected data. Output: color-coded points from each identified
cluster. Action: lasso selection.



Techniques Key Parameters Settings Other Parameters

t-SNE Perplexity 5,15,30,40,50
Early exaggeration=6
Iteration=3000

t-SNLE Perplexity 5,15,30,40,50
Early exaggeration=6
Iteration=3000

UMAP Neighbors 4,7,10,13,16
Initialization=spectral
Mininum distance=0.1
Iteration=500

LLE Neighbors 4,7,10,13,16
IReg=0.001
Iteration=200

LPP Neighbors 4,7,10,13,16 None
NPE Neighbors 4,7,10,13,16 None
Isomap Neighbors 4,7,10,13,16 None
LE Neighbors 4,7,10,13,16 None

MDS None Iteration=500
FA None Iteration=2000
NMF None Iteration=400
PCA None No parameters

Table 3: The parameter settings of DR techniques in the pre-study. The
formal study used the same settings except for perplexity and neighbors.

• Membership identification (T2): given a point in a scatterplot,
identify the cluster it belongs to. Input: projected data and one
color-coded target point. Output: color-coded points of the cluster
identified to contain the target point. Action: lasso selection.

• Distance comparison (T3): given a cluster in a scatterplot, iden-
tify the nearest cluster to it. Input: projected data and color-coded
points from one target cluster. Output: color-coded points from
the cluster identified to be nearest to the target one. Action: lasso
selection.

• Density comparison (T4): given multiple clusters, identify the
cluster with the largest density. Input: projected data. Output:
color-coded points from the cluster identified to be of largest
density. Action: lasso selection.

All tasks are completed in projection space. For each task, we
created an experiment to compare the performance of different DR
techniques. They are described in Section 5.2.

4 PRE-STUDY: PARAMETERS OF DR TECHNIQUES

The projection of the DR technique is usually significantly affected by
their hyperparameters [19]. Improper parameters will lead to unreliable
comparison results. In order to optimize the parameters of selected
DR techniques for each dataset, we have conducted a preliminary
experiment.

4.1 Parameters
In this study, we focus on hyperparameters that significantly affect the
projection results and require trial-and-error tuning. Specifically, we
considered two parameters, namely neighborhood value and perplexity,
as they significantly affect the projection quality of LPP, NPE, Isomap,
UMAP, LE, LLE, t-SNE, and t-SNLE in different degrees [16, 19, 48].
For the other parameters, such as iteration times, we adopted rec-
ommended values based on previous studies [44, 47]. Following the
previous studies [16, 48], we formulated 5-level ranges for the parame-
ter neighborhood value and perplexity, from which the optimal values
can be selected for each DR method. The parameter range formulation
ensures a moderate degree of discrimination for the projection results
while keeping a reasonable range to fit the optimal values. The settings
are presented in Table 3.

4.2 Task and Procedure
The same set of datasets was used in both formal study and pre-study.
For a given dataset and a DR technique, participants were provided
with 5 projections resulting from 5 parameter settings (see Table 3).
The number and size of classes, which are taken as ground truth for
clusters, are also expicitly mentioned to the participants of the pre-study

1 2 3 4 5 6 7 8

t-SNE 40 5 15 5 15 40 5 40
t-SNLE 30 15 30 30 15 40 5 40
UMAP 13 16 10 7 7 16 4 10
Isomap 16 4 10 4 10 10 13 10
LLE 4 10 10 4 10 10 4 7
LE 4 4 7 10 10 16 10 13
LPP 10 7 10 13 7 4 10 16
NPE 4 10 7 4 4 16 13 7

Table 4: The optimal parameters, i.e., the perplexity and neighbors (see
Table 3), of DR techniques on the 8 datasets. Each dataset is represented
by a serial number ID from 1 to 8, which corresponds to the 8 datasets
in an order of Weather, Dermatology, ExtYaleB, World12d, Boston,
Mnist64, EcoliProteins, and Olive, respectively.

(see figure 5 in 7.1 of supplemental material). It is worth mentioning
that this is only for the pre-study to select good projections, not for the
formal study. They were asked to select the projection that best fits the
description: “Please select the scatterplot that presents the cluster
structure of the given dataset most actually”. For each participant,
a total of 8(DR techniques)×8(datasets) = 64 trials were evaluated.

Participants. We recruited 20 participants (16 males, 4 females)
who are graduate students majoring in computer science. None of the
participants reported color blindness or color weakness.

Procedure. The preliminary experiment was conducted on an on-
line application that enables a selection of DR projections for the
pre-processed datasets. Participants were instructed to log in to the
application to complete the tasks remotely. The tasks were conducted
on standard laptops with a 1,920×1,080 screen resolution using the
Chrome browser. Before completing the tasks, each participant was
provided with a 10-minute background introduction, including research
purposes, related concepts, experimental procedures, and precautions.
Then, the participants were instructed to finish a total of 64 trials in
random order. There was no time limit for task completion, but all
the participants finished within 50 minutes. To track the progress, the
participants were asked to share the screen with a remote instructor
during the experiments.

4.3 Results
For a given DR technique and a dataset, we retrieved the projection
with the majority vote and considered the corresponding parameter
values optimal for that dataset. The result is shown in Table 4. Based
on the results, we utilized the optimal values of the DR techniques for
the corresponding dataset in the formal study.

5 FORMAL STUDY

5.1 Hypotheses
This formal study aims to evaluate the performance of twelve selected
DR techniques on four common visual cluster analysis tasks. Please
refer to the tasks from section 3. Based on the general views from
our literature review and practical experience, we put forward twelve
hypotheses to verify the possible performance differences of different
types of DR techniques on the four tasks.
H1.1–H1.3 Regarding T1, existing research pointed out that local DR
techniques often ensure a clear visual separation of data entities in
projections [23,47]. It is also pointed out that non-linear DR techniques
favor the optimization of neighborhood distances and mostly disregard
large distances [11]. Again, this might have positive effects on dif-
ferentiating clusters in the projections. Moreover, most applications
employed t-SNE and UMAP for cluster analysis. Therefore, we have
the following hypotheses:

• H1.1 Local DR techniques perform better than global ones in T1
if they have the same linearity type;

• H1.2 Non-linear DR techniques perform better than linear ones
in T1 if they have the same locality type;

• H1.3 t-SNE and UMAP perform better than other techniques in
T1 .



H2.1–H2.3 Regarding T2, although it is a different perception task
from T1, it also requires the ability to separate clusters and preserve
near neighbors. Therefore, we have hypotheses H2.1, H2.2, and H2.3
in T2 that are identical to H1.1, H1.2, and H1.3 in T1, respectively.
H3.1–H3.3 Regarding T3, global DR techniques are designed to pre-
serve global pairwise distances and thus could enable more faithful
projections of global structures, e.g., cluster relationships, of high-
dimensional spaces [26]. Compared to the non-linear embeddings,
the linear embeddings are more reliable in terms of metric-preserving
properties [27]. This might facilitate the representation of cluster re-
lationships. Moreover, PCA is the most widely used global linear
technique. Therefore, we have the following hypotheses:

• H3.1 Global DR techniques perform better than local ones in T3
when they have the same linearity;

• H3.2 Linear DR techniques perform better than non-linear ones
in T3 when they have the same locality;

• H3.3 PCA performs better than other techniques in T3.
H4.1–H4.3 When considering T4, there are many practical experi-
ences [37, 52] pointing out that non-linear or local techniques neglect
the density information. It is also considered that PCA performs better
than non-linear techniques [11]. Therefore, we have hypotheses H4.1,
H4.2, and H4.3 in T2 that are identical to H3.1, H3.2, and H3.3 in T3,
respectively.

5.2 Experiments
Under the guidance of the four tasks (T1-T4) and the associated
twelve hypotheses (H1.1-H4.3), we designed four controlled exper-
iments: E1–E4 for T1–T4 to verify H1–H4, respectively. In addi-
tion to the four controlled experiments, a subjective evaluation E5
was designed where we studied participants’ preferences for differ-
ent DR techniques based on their free exploration of datasets. All
DR techniques and datasets for E1–E5 are the same. There were
12(techniques)×8(datasets) = 96 trials for each participant in E1–E4
and 1(3×4 layout f or 12 techniques)×8(datasets) = 8 trials for each
participant in E5.

E1: T1 was performed to test if projected clusters were separated
cleanly and easily recognized by participants. In each trial, the par-
ticipants were asked to use a lasso tool to interactively select well-
separated clusters, if any, from the visualization generated by a
DR technique. Compared with other evaluation methods such as
counting the cluster number [1, 17], interactive selections enable more
accurate reflection of participants’ visual perceptions, especially for
handling aggregated clusters that might lead to bias in counting the
cluster number [3]. Since color would interfere with the judgments of
the clusters, we rendered all data points in grey color and full opacity.

E2: T2 was performed to test whether a meaningful belonging
relationship between data points and clusters can be easily identified.
In each trial, a pre-defined data point was highlighted in red color.
Participants were asked to use a lasso tool to interactively select a
well-separated cluster, if any, that contains the highlighted data
point. When selecting the pre-defined data point, we prefer challenging
ones that are close to the cluster boundary in the high-dimensional space.
To this end, we extend the clustering metric of silhouette coefficient
[41] to high-dimensional space, upon which the silhouette coefficient
values of each data point are calculated. Then, the point with the lowest
value was selected.

E3: T3 was performed to evaluate the ability of different DR tech-
niques to preserve the relative distance among clusters in terms of
visual perception. In each trial, a pre-defined cluster was highlighted in
red color. Participants were asked to use a lasso tool to interactively
select a well-separated cluster, if any, that is closest to the given
cluster.

E4: T4 was performed to evaluate the ability of different DR tech-
niques to preserve the density in the aspect of visual perception. In
each trial, participants were asked to use a lasso tool to interactively
select a well-separated cluster, if any, that has the highest density
among all clusters.

E5: Subjective experiment was used to compare the overall per-
formance of different DR techniques based on participants’ personal

Fig. 2: Example interface of E1 in the formal study. Participants were
asked to identify clusters by lasso tool.

Fig. 3: Example interface of E5 in the formal study. Participants
were asked to rank the twelve visualizations according to their cluster
separation performance.

preferences. In each trial, we assigned a participant twelve visualiza-
tions of a dataset generated by twelve DR techniques, respectively.
They were asked to rank the rank the visualization from 1 to 12 (1
is the best) by their personal preference in terms of cluster separa-
tion performance, identical ranking for multiple visualizations is
allowed in case their qualities are hard to distinguish. The visual-
izations were numbered and placed in a 3× 4 layout with a random
order (see Fig.3).

5.3 Participants, Apparatus, and Testing Data
Participants. We recruited 60 participants (40 males and 20 females)
for the formal study. Their age was from 19 to 32 with an average of
24. 56 of them are graduate students and four of them are bachelor
students with research experience. They come from majors including
computer science (46), engineering (9), art (4), and mathematics (1).
19 participants have a data visualization background. 6 participants
study clustering algorithms. 11 participants have performed cluster
analysis in bioinformatics. Each participant was rewarded $20 per hour
for completing the experiments. None of them reported color blindness
or color weakness. Participants in the formal study are different from
participants in the pre-study.
Apparatus. The formal study was conducted online on a pre-built web
application in order to involve more participants. The application allows
participants to complete all the controlled experiments and subjective
studies (E1–E5), providing functionality such as visualizations, interac-
tions, and time counter to facilitate the experiments. All the participants
remotely took the experiments on standard laptops with a 1,920×1,080
screen resolution and chrome browser. The participants were asked to
share their screens with the researcher during the experiments to enable



remote monitoring.
Testing Data. Before the formal study, we generated scatterplots based
on the eight selected datasets. For each dataset, we created twelve
scatterplots by each of the selected DR techniques, respectively. The
parameter of each DR technique was determined based on the results
of the pre-study. The same layout was used for a specific DR technique
and a dataset for different experiments. Except for the given points
in E2 and the given clusters in E3, which were coded in red, the data
points in the scatter plots were all coded in gray. The points were
rendered with a radius of 3 pixels without transparency. The size of the
scatterplots was 600×550 pixels in E1–E4, and 300×300 pixels in
E1.

5.4 Procedure
A training session was conducted before the formal experiments. For
the training session, we utilized the Iris dataset [15] to generate scat-
terplots for each DR technique. In the training session, the instructor
explained the related concepts and the experimental procedure. Then,
the participant was asked to complete a total of thirteen training trials,
including three trials for each controlled experiment (E1–E4) and one
trial for the subjective experiment (E5). The DR technique of the trial
was randomly selected for each experiment. After the training session,
the participant was asked to complete E1–E5 in order. A 5-minutes
break was allowed before each experiment. The completion order of
the trials in each experiment was randomly assigned to each participant.
The participants used the application to complete each trial, upon which
the trial completion time and results were automatically stored by the
application. There was no time limit for each experiment. All the
participants finished the five experiments within 120 minutes.

Toward the end of E5, the participants were asked to complete a
questionnaire about their background and subjective feedback of the
experiments. The questionnaire includes three sections. The first
section is about the participant background, such as the education level,
visualization experience, and knowledge about the DR techniques.
In the second section, the participant was asked to list the factors,
including variance of density, cluster separation, variance of count,
variance of size and variance of shape, if any, they relied on identifying
the clusters in E1. In the last section, the participant was asked to rate
the importance of the four analytical tasks (T1-4) in their data analysis
experience using a five-point Likert scale. After the questionnaire, we
conducted a subjective interview to understand how the scatterplots
could affect participants’ trial completion and their preference and/or
experience on any DR techniques and visual clustering techniques in
daily work.

6 STATISTICAL ANALYSIS

6.1 Result Measurement
To measure results of each trial for the five experiments, two conditions
were considered: the trial completion time (the shorter the better),
precision and recall (1 is best) were calculated for E1–E4; and the
average ranking score of DR techniques was calculated for E5. The
ground truth for computing the precision and recall are based on the
class label of the datasets.
E1: While participants would identify different cluster structures, e.g.,
number of clusters, from the ground truth, matching the identification
and the ground truth should be performed before the computation of
precision and recall. We denote the identified clusters by participants as
{Ci}K

i=1, where K is the number of identified clusters. The ground-truth
clusters are denoted as {G j}N

j=1, where N is the number of labels in the
dataset. A matching function f matches an identified cluster Ci to f (Ci),
where f (Ci) ∈ {G j}N

j=1. Note that f (Ci) could be an empty set when
there is no matching for Ci. The match is based on two rules. First,
if an identified cluster Ci contains data points from multiple ground-
truth clusters, it is matched with the ground-truth cluster contributing
the most data points to Ci. Second, if multiple identified clusters are
matched to the same ground-truth cluster following the first rule, only
the identified cluster containing the most data points from the ground-
truth cluster is accepted. In each trial, we compute the precision as

∑
K
i=1 |Ci∩ f (Ci)|

∑
K
i=1 |Ci|

, where |Ci| is the size of Ci. The recall is computed as

∑
K
i=1 |Ci∩ f (Ci)|

∑
N
j=1 |G j |

.

E2–E4: The computation of precision and recall in E2–E4 is simpler
than E1, because there is only one identified cluster Ci. We denote
the ground truth cluster as G j, In each trial, the precision is the ratio
of |Ci ∩G j| to |Ci|, and the recall is the ratio of |Ci ∩G j| to |G j|. In
E3, We calculated the distance among clusters in the high-dimensional
space for the ground truth. As Etemadpour et al. [17], for each pair of
clusters, we calculated the average pairwise Euclidean distances of all
pairs of points belonging to the two clusters, respectively. Based on
the distance among clusters, we randomly selected one cluster as the
pre-defined cluster and its nearest cluster as the ground truth. In E4, the
participants’ selection was tested against the ground truth that has the
highest density based on the minimum spanning tree-based measure in
the high-dimensional space [17].
E5: For the subjective experiment E5, we compare the average ranking
score of DR techniques in all trials. In each trial, the first one gets 12
points, the second one gets 11, ..., and the last one gets 1 point.
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Single cluster

Single cluster

High precision

High recall

High precision

Low recall

High precision

High recall

Low precision

High recall

HD data

2D layout
In E1–E4, For evaluating

the performance of a DR tech-
nique in an experiment, we cal-
culate the average precision and
recall values on all participants
and on all corresponding trials
of the experiment. It is worth
noting that both precision and
recall are important for accu-
rate measure of the quality. On
one hand, when participants mistakenly identify unrelated points to the
target cluster, the precision decreases. On the other hand, if they cor-
rectly identify partial target cluster, the recall decreases. As shown in
the confusion matrix, a DR technique with high precision is capable of
well separating ground truth clusters. Otherwise, multiple ground truth
clusters that mixed in the projection would result in low precision. A
low recall indicates that the DR technique cannot gather points together
in one ground truth cluster, leading to a peak splitting event [56]. If
a DR technique projects multiple ground truth clusters as one cluster
in the 2D layout, participants would select all the connection points as
one cluster, resulting in low precision and high recall.

6.2 Statistical Analysis Approaches

We utilize the average value and confidence interval of the result mea-
sures as indicators to test our hypotheses. Based on a Shapiro-Wilk test,
we found that the results of E1–E4 do not follow a normal distribution.
Therefore, we employed a Friedman test to examine any significant
differences among the various indicators for the DR techniques. For
any resulted significant differences from the test, we further conducted
detailed comparisons based on Tukey’s HSD test. Here, we consider
the standard significance level α = 0.05 as a statistical significance
for the results. When we take the effect size as 0.25 and the power as
0.95, the power analysis show that we need at least 18 samples in each
experiment [40]. In our experiment, we have 60 samples for each trial
that is sufficient for the p-value test.

6.3 Result Analysis

6.3.1 Objective Experiment Results

H1.1–H1.3 The results of E1 are displayed in Fig. 4. Among all
techniques, UMAP and t-SNE have the best precision (89.07% and
85.34%, respectively) and recall (88.98% and 84.99%, respectively).
UMAP also has the shortest completion time (13.65s). The Fried-
man tests show statistical significance of precision (χ2(11)=524.90,
p<0.05), recall(χ2(11)=524.89, p<0.05) and average completion time
(χ2(11)=261.82, p<0.05). Fig. 5 shows the pairwise significance rela-
tionships for all the DR techniques.

• H1.1 Local DR techniques perform better than global ones in T1
if they have the same linearity type. H1.1 is partially confirmed.
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Fig. 4: Precision, Recall and Completion time of E1–E4. Error bars indicate 95% confidence intervals.

In the non-linear group (NL&Lc and NL&G), local techniques t-SNE
and UMAP perform significantly better than all global techniques
in terms of precision and recall. However, the local technique LLE
performs significantly worse than global techniques MDS and Isomap.
In the linear group (L&Lc and L&G), the local techniques t-SNLE and
LPP performs significantly better than all the global techniques in terms
of precision and recall. In terms of completion time, local techniques
UMAP and LE perform significantly better than all global techniques.

• H1.2 Non-linear DR techniques perform better than linear ones in
T1 if they have the same locality type. H1.2 is partially confirmed.

In terms of precision and recall, in the local group (NL&Lc and L&Lc),
non-linear techniques t-SNE and UMAP perform significantly better
than all linear techniques. However, the non-linear technique LLE
performs significantly poorer than linear techniques t-SNLE and LPP.
In the global group (NL&G and L&G), non-linear techniques MDS
and Isomap perform significantly better than all the linear techniques
except for PCA.

• H1.3 t-SNE and UMAP perform better than other techniques in
T1. H1.3 is confirmed.

In E1, UMAP and t-SNE perform significantly better than all other
techniques in precision and recall. They also perform well in comple-
tion time. In terms of completion time, UMAP performs significantly
better than other techniques except LE.
H2.1–H2.3 As shown in Fig. 4, UMAP has the highest precision
(85.81%) and shortest completion time (3.87s) in E2. t-SNE is the
second in precision(85.14%) and completion time (4.29s). The Fried-
man tests show significance among different DR techniques in terms
of precision (χ2(11)=534.79,p<0.05), recall (χ2(11)=506.43,p<0.05)
and average completion time(χ2(11)=297.76,p<0.05). The pairwise
significance relationships between each pair of DR techniques can be
seen in Fig. 5.

• H2.1 Local DR techniques perform better than global ones in T2
if they have the same linearity type. H2.1 is partially confirmed.

In the non-linear group (NL&Lc and NL&G), local techniques t-SNE
and UMAP perform significantly better than all global techniques
in terms of precision. However, the local technique LLE performs
significantly poorer than the global technique Isomap. In terms of
recall, local techniques perform significantly better than all global
techniques except Isomap. In the linear group (L&Lc and L&G), in
terms of precision and recall, local techniques t-SNLE and LPP perform
significantly better than all global techniques except PCA. In terms
of completion time, local techniques t-SNE and UMAP also perform
significantly better than all global techniques.

• H2.2 Non-linear DR techniques perform better than linear ones
in T2 if they have the same locality. H2.2 is partially confirmed.

In the local group (NL&Lc and L&lc), non-linear techniques t-SNE and
UMAP perform significantly better than all linear techniques in terms of
precision and recall. However, the non-linear technique LLE performs
significantly poorer than the linear technique t-SNLE in precision. In
the global group (NL&G and L&G), the non-linear technique Isomap
performs significantly better than all linear techniques. In terms of
completion time, non-linear techniques t-SNE and UMAP perform
significantly better than all techniques except LPP.

• H2.3 t-SNE and UMAP perform better than other techniques in
T2. H2.3 is partially confirmed.

In E2, UMAP and t-SNE perform significantly better than all linear
techniques in precision. Though they have lower recall than LE and
LLE, there is no significant difference between the four techniques. In
terms of completion time, UMAP and t-SNE also perform significantly
better than the other techniques except LLE, LE and LPP.
H3.1–H3.3 The results of E3 are displayed in Fig. 4. UMAP has the
highest precision (43.94%) but ranked 8th in recall(54.42%). NMF
has the second-highest precision(43.69%) and highest recall(75.42%).
The Friedman tests show statistical significance among different DR
techniques in terms of precision (χ2(11)=534.79,p<0.05) and recall
(χ2(11)=506.43,p<0.05). However, Tukey’s HSD test shows there
are no pairwise significance relationships exist between each pair of
DR techniques in terms of completion time. The pairwise significance
relationships between each pair of DR techniques can be seen in Fig. 6.

• H3.1 Global DR techniques perform better than local ones in T3
when they have the same linearity. H3.1 is rejected.

In the non-linear group (NL&Lc and NL&G), the local technique
UMAP performs significantly better than all global techniques in terms
of precision. In terms of recall, global techniques MDS and Isomap
only significantly better than local techniques t-SNE. In the linear group
(L&Lc and L&G), all global techniques perform significantly better
than all local techniques except NPE in terms of precision and recall.

• H3.2 Linear DR techniques perform better than non-linear ones
in T3 when they have the same locality. H3.2 is rejected.

In the local group (NL&Lc and L&Lc), the non-linear technique UMAP
performs significantly better than all linear techniques in terms of
precision. The linear technique NPE performs significantly better than
non-linear techniques t-SNE and LLE in precision. In the global group
(NL&G and L&G), linear techniques PCA, FA, and NMF perform
significantly better than the non-linear technique MDS in terms of
precision and recall.



Fig. 5: Matrix depiction of the pairwise significance relationships of
the precision, recall and completion time differences of the projection
techniques in E1–E2. A blue cell in row i and column j denotes that
the technique with ID i performs significantly better than the technique
with ID j. The red rectangles denote the best DR techniques.

• H3.3 PCA performs better than other techniques in T3. H3.3 is
rejected.

In E3, PCA ranks as the third technique in precision (39.27%) and
the second technique in recall (73.5%). UMAP performs significantly
better than PCA in precision.
H4.1–H4.3 As shown in Fig. 4, t-SNLE has the highest precision
(40.77%) and the third recall(54.29%) in E4. NPE has the fifth preci-
sion(32.11%) but the highest recall(63.15%). The Friedman tests show
statistical significance among different DR techniques in terms of preci-
sion (χ2(11)=247.55,p<0.05) and recall (χ2(11)=352.34.43,p<0.05).
However, Tukey’s HSD test shows there are no pairwise significance
relationships exist between each pair of DR techniques in terms of
completion time. The pairwise significance relationships between each
pair of DR techniques can be seen in Fig. 6.

• H4.1 Global techniques perform better than local ones in T4 if
they have the same linearity. H4.1 is rejected.

In the non-linear group (NL&Lc and NL&G), global techniques MDS
and Isomap perform significantly better than all local techniques in
terms of precision and recall. In the linear group (L&Lc and L&G),
the local technique t-SNLE performs significantly better than all global
techniques in terms of precision. In terms of recall, the local technique
NPE performs significantly better than all global techniques.

• H4.2 Linear techniques perform better than non-linear ones in T4
if they have the same locality. H4.2 is partially confirmed.

For the local group (NL&Lc and L&lc), in terms of precision, lin-
ear techniques t-SNLE and NPE perform significantly better than all
non-linear techniques. In terms of recall, t-SNLE, LPP, and NPE also
perform significantly better than all non-linear techniques except LLE.
However, in the global group (NL&G and L&G), the non-linear tech-
nique MDS performs significantly better than the linear technique FA
in terms of precision.

• H4.3 PCA performs better than other techniques in T4. H4.3 is
rejected.

In E4, PCA ranks as the third technique in precision (33.91%) and
the second technique in recall (55.96%). t-SNLE and NPE perform
significantly better than PCA in precision and recall, respectively.

6.3.2 Subjective Experiment Results
The results of E5 are shown in Fig. 7. The rankings of the most pre-
ferred techniques are: UMAP (9.26), t-SNE (8.60), LE (7.07), LPP
(6.74), LLE (6.38), t-SNLE (6.26), Isomap (6.15), NPE (6.00), FA
(5.95), PCA (5.86), MDS (5.16), NMF (4.53). Local techniques obtain
the top four preferred techniques with UMAP and t-SNE ranked the

Fig. 6: Matrix depiction of the pairwise significance relationships of the
precision and recall differences of the projection techniques in E3–E4.
A blue cell in row i and column j denotes that the technique with ID
i performs significantly better than the technique with ID j. The red
rectangles denote the best DR techniques.
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Fig. 7: Average ranking scores of E5 (the higher the better). Error bars
indicate 95% confidence intervals.

highest positions. It suggests a strong preference for the local tech-
niques from the participants. Regarding linearity, LPP is ranked as the
4th preferred techniques. It indicates that there is no strong tendency
toward a particular linearity type by the participants. It is worth noting
that there could be misunderstandings in interpreting the projection
results. For example, if a single cluster in the data space was scattered
into two clusters by the projection, the participants could view it as a
correct visual cluster. Similar to Lewis et al. [31], we made a corre-
lation analysis between the results of the subjective experiment and
the results of objective experiments. The correlation coefficients be-
tween the rankings of E5 and E1 are 0.73 (precision) and 0.76 (recall).
The correlation confirms the consistency and differences between the
subjective experiment and objective experiments.

6.4 Summary

Our experiment results indicate that there is no universally better DR
technique and high-level property. Therefore, it is essential to choose
appropriate techniques for enhancing particular tasks involving visual
cluster analysis. (1) In cluster identification, local DR techniques per-
form better than global DR techniques in cluster identification if they
have the same linearity type, except LLE; non-linear DR techniques
perform better than linear DR techniques if they have the same locality
type, except LLE; t-SNE and UMAP have an outstanding performance.
(2) In membership identification, local DR techniques perform better
than global DR techniques if they have the same linearity type, except



E1P E1R E1T E2P E2R E2T E3P E3R E3T E4P E4R E4T

t-SNE 0.05 0.12 0.33 0.14 0.18 0.15 0.39 0.36 0.36 0.46 0.31 0.36
UMAP 0.03 0.13 0.15 0.14 0.17 0.1 0.35 0.32 0.34 0.12 0.05 0.39
LE 0.26 0.27 0.26 0.23 0.15 0.28 0.41 0.38 0.19 0.36 0.31 0.29
LLE 0.31 0.29 0.38 0.41 0.35 0.28 0.34 0.38 0.16 0.25 0.37 0.32
MDS 0.28 0.26 0.16 0.31 0.34 0.27 0.27 0.31 0.24 0.37 0.35 0.35
Isomap 0.26 0.26 0.28 0.32 0.37 0.34 0.35 0.36 0.31 0.42 0.39 0.24
t-SNLE 0.35 0.34 0.32 0.42 0.34 0.27 0.35 0.39 0.39 0.35 0.36 0.37
LPP 0.15 0.12 0.26 0.24 0.35 0.22 0.27 0.36 0.19 0.35 0.44 0.36
NPE 0.32 0.33 0.15 0.35 0.44 0.27 0.38 0.35 0.24 0.3 0.36 0.27
PCA 0.23 0.25 0.34 0.32 0.37 0.26 0.33 0.35 0.37 0.34 0.32 0.35
FA 0.3 0.3 0.34 0.42 0.43 0.26 0.3 0.35 0.32 0.36 0.36 0.2
NMF 0.27 0.25 0.19 0.26 0.32 0.25 0.37 0.26 0.23 0.34 0.27 0.31

Table 5: The homogeneity of eight datasets. E#P, E#R, and E#T
represent the normalized standard deviations of precision, recall, and
completion time in E# in terms of eight datasets, respectively.
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Fig. 8: The importance rating of the four visual cluster analysis tasks
evaluated in our experiments.

LLE; non-linear DR techniques perform better than linear DR tech-
niques if they have the same locality type, except LLE; t-SNE and
UMAP have an outstanding performance. (3) In density comparison,
linear DR techniques perform better than non-linear DR techniques if
they have the same locality type, except MDS; t-SNLE and NPE are
the preffered techniques. (4) In distance comparison, NMF and UMAP
are the preffered techniques. The experiment results shed light on DR
techniques that received less attentions, such as NPE, t-SNLE.

7 DISCUSSION

Visual cluster analysis tasks. The participants answered the subjec-
tive questionnaire of the importance of the four analysis tasks after
completing the experiments. As Fig. 8 shows, the average scores of the
four tasks are cluster identification (4.36), membership identification
(4.30), density comparison (4.15), and cluster distance comparison
(4.03), respectively. These scores once again confirm that these four
tasks are common concerns when using DR techniques for visual cluster
analysis. The experiment results also show that overall DR techniques
perform better in E1 and E2 than in E3 and E4 in terms of precision and
recall. The average precision of all DR techniques in E1–E4 are 0.69,
0.67, 0.32, and 0.29, respectively.The average recall of them are 0.67,
0.74, 0.60, and 0.46, respectively. It suggests a research opportunity to
design DR techniques that support E3 and E4 better.
The homogeneity of datasets. We check the homogeneity of eight
datasets by comparing the normalized standard deviations of precision,
recall, and time for each task and each DR technique. As Table 5 shows,
the normalized standard deviations are ranged from 0.03 to 0.46 and
present a reasonable homogeneity of datasets. Another observation is
that t-SNE and UMAP that perform better than other DR techniques in
most tasks, also present low normalized standard deviations. Therefore,
t-SNE and UMAP are recommended in the aspects of performance and
stability on datasets with different characteristics.
Cluster identification and class separation. In this study, our evalu-
ation is based on the perception of cluster identification. Participants
were provided with monochrome scatterplots without color-coded class
information. It is worth noting that we have also used the class label
information with the datasets as the ground truth of clusters. Therefore,
in selecting the datasets, we check the visual separation of clusters with
the visual class separation measure. However, when a class is scattered
into several clusters, the class separation measure also presents a good
but misleading result. This issue can be addressed by additional user
controlled selection with colored scatterplot. More discussion on this
issue is referred to Aupetit [3].

Parameter robustness of DR techniques. Our pre-study provides an
opportunity to analyze the DR techniques in the aspect of parameter
robustness. In our pre-study, participants were asked to select the
result that best fits the structure of datasets among five settings. If the
selections are uniformly distributed in all five settings, we can infer that
the tuning of parameters has few effects on the quality of projection.
Otherwise, a big variation of the setting distribution indicates that the
DR technique is sensitive to the parameter. We calculated the average
standard deviation across datasets of each tested eight DR techniques
in the pre-study. The rankings are: t-SNLE (3.25), t-SNE (3.15),
LLE (3.11), UMAP (3.04), LE (2.57), NPE (2.39), Isomap (2.35), and
LPP (1.85). The results show that although t-SNE is one of the most
popular techniques, its sensitivity to the perplexity parameter should be
considered. This observation is the same as Espadoto et al. [16]. It is
also worth noting that UMAP is less sensitive than t-SNE while having
similar performance in most tasks.
Conducting remote studies. Remote study lacks a face-to-face com-
munication environment and yields several challenges for a control
study. First, the test should be performed independently. In our study,
participants are required to set an independent environment to avoid
possible disturbance. Second, the test could be interrupted due to net-
work issues. We ask participants to test their network to ensure a stable
connection. During the test, if a participant is disconnected for more
than ten minutes, we discard this sample to ensure the validity of tests.
Third, the remote communication would be limited in a remote study.
To address this issue, we monitor the experimental screen of partici-
pants through screen sharing throughout the test. We also communicate
with participant during the test in voice.
Order of experiments and trials. A limitation of our study is the
order of experiments and trials. Because E3 is conducted before E4, it
may reveal a part of ground truth clusters and make a potential threat
to validity of E4. If the given cluster in E3 happens to be the cluster
with the highest density in E4: 1) when several classes overlap in a
single cluster, then an increase of precision would occur; 2) when a
single class is scattered in several clusters, then an increase of recall
would occur. In addition, learning effects should be considered. A
Latin square design could address this issue.
Limitations and future work. Due to the different characteristics of
datasets, DR techniques will inevitably produce different performance
in different types of datasets. Therefore, the experimental results may
have a certain correlation with the datasets. In this study, we focus on
the characteristics of locality and linearity and four objective visual
clustering tasks. In the future, it is valuable to perform further studies
on other characteristics (for example, false and missed neighbors could
have an impact on clustering tasks that is worth evaluating [38] ) and
tasks. The linear-nonlinear pairs of techniques, such as t-SNE and
t-SNLE, also shed light on the development of DR techniques and
design of comparative analysis.

8 CONCLUSION

In this paper, we present an empirical evaluation of DR techniques from
the perspective of perception in visual cluster analysis tasks. Twelve
representative DR techniques are identified from a literature review.
They are grouped into groups based on linearity and locality. We
first conduct a pre-study to determine the proper input parameters for
each DR technique. Then, the techniques are formally evaluated in
four controlled experiments each of which focuses on hypotheses on a
particular analytical task. A subjective task is also conducted to collect
users’ preferences on each technique. Several guidelines and interesting
insights are provided by the result analysis.
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